JP2020043758A - Motor driver, vacuum cleaner and hand dryer - Google Patents

Motor driver, vacuum cleaner and hand dryer Download PDF

Info

Publication number
JP2020043758A
JP2020043758A JP2019211277A JP2019211277A JP2020043758A JP 2020043758 A JP2020043758 A JP 2020043758A JP 2019211277 A JP2019211277 A JP 2019211277A JP 2019211277 A JP2019211277 A JP 2019211277A JP 2020043758 A JP2020043758 A JP 2020043758A
Authority
JP
Japan
Prior art keywords
motor
phase
current
inverter
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019211277A
Other languages
Japanese (ja)
Other versions
JP6815470B2 (en
Inventor
啓介 植村
Keisuke Uemura
啓介 植村
裕次 ▲高▼山
裕次 ▲高▼山
Yuji Takayama
篠本 洋介
Yosuke Shinomoto
洋介 篠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019211277A priority Critical patent/JP6815470B2/en
Publication of JP2020043758A publication Critical patent/JP2020043758A/en
Application granted granted Critical
Publication of JP6815470B2 publication Critical patent/JP6815470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Vacuum Cleaner (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

To obtain a motor driver capable of realizing air volume control corresponding to single-phase instantaneous power pulsation, when realizing air volume control for a single-phase PM motor.SOLUTION: A motor driver 100 for driving a motor blower including a single-phase PM motor 3 includes a single-phase inverter 2 for rotating the rotor of the single-phase PM motor 3 by applying an AC voltage to the single-phase PM motor 3, a motor current detector 5 outputting a signal according to a motor current flowing through the single-phase PM motor 3, a DC power supply voltage detector 6 for detecting the voltage of a DC power supply 1 supplying power to the single-phase inverter 2 and an inverter control section 4 receiving the motor current and outputting a drive signal to switching elements 211-214 of the single-phase inverter 2, where the single-phase inverter 2 increases and decreases effective power or wattless power supplied to the single-phase PM motor 3, and changes the number of revolution of the single-phase PM motor 3 by increasing and decreasing effective power or wattless power.SELECTED DRAWING: Figure 1

Description

本発明は、単相の永久磁石同期電動機(以下適宜、単相PM(Permanent Magnet)モータと称する)を駆動するモータ駆動装置ならびに単相PMモータを用いた電気掃除機およびハンドドライヤーに関する。   The present invention relates to a motor drive device for driving a single-phase permanent magnet synchronous motor (hereinafter, appropriately referred to as a single-phase PM (Permanent Magnet) motor), and a vacuum cleaner and a hand dryer using the single-phase PM motor.

モータには、ブラシ付き直流モータ、誘導モータ、PMモータ等、様々な種類があり、モータの相数にも単相、三相等の種類がある。これらの種々のモータの中で、単相PMモータは、ブラシ付き直流モータと比較して、機械構造であるブラシを用いない“ブラシレス”の構造であるためブラシの摩耗が発生しない。この特徴により、単相PMモータは、高寿命且つ高信頼性を容易に得ることができる。   There are various types of motors such as brushed DC motors, induction motors, PM motors, and the like. The number of motor phases also includes single-phase and three-phase. Among these various motors, the single-phase PM motor has a brush-less structure that does not use a brush, which is a mechanical structure, as compared with a DC motor with a brush, so that brush wear does not occur. With this feature, the single-phase PM motor can easily obtain a long life and high reliability.

また、単相PMモータは、誘導モータと比較して、ロータに2次電流が流れないため高効率なモータである。   Further, the single-phase PM motor is a highly efficient motor because no secondary current flows through the rotor as compared with the induction motor.

さらに、単相PMモータの場合、相数が異なる三相PMモータと比較しても次の利点がある。三相PMモータの場合には三相インバータが必要であるのに対し、単相PMモータでは単相インバータでよい。三相インバータとして一般的に用いられるフルブリッジインバータを用いると、6つのスイッチング素子が必要であるのに対し、単相PMモータの場合、フルブリッジインバータを用いたとしても4つのスイッチング素子で構成できる。このため、単相PMモータは、三相PMモータに比して、装置の小型化が可能である。   Further, in the case of a single-phase PM motor, there are the following advantages as compared with a three-phase PM motor having a different number of phases. In the case of a three-phase PM motor, a three-phase inverter is required, whereas a single-phase PM motor may be a single-phase inverter. When a full-bridge inverter generally used as a three-phase inverter is used, six switching elements are required. On the other hand, a single-phase PM motor can be configured with four switching elements even if a full-bridge inverter is used. . Therefore, the single-phase PM motor can be downsized compared to the three-phase PM motor.

なお、単相PMモータの駆動方式に関する先行文献としては、例えば以下に記載する特許文献1および非特許文献1が開示されている。   As prior documents relating to the driving method of a single-phase PM motor, for example, Patent Document 1 and Non-Patent Document 1 described below are disclosed.

特開2012−130378号公報JP 2012-130378 A

電気学会 回転機・リニアドライブ合同研究会 「直流シャント検出によるSPMSM向け風量センサレス風量一定制御」IEEJ Joint Research Group on Rotating Machines and Linear Drives "Airflow Sensorless Airflow Constant Control for SPMSM by DC Shunt Detection"

上記特許文献1によれば、『電動送風機への通電量を制御する制御手段を有し、予め実験等によって求められている「通電量−電流−風量」の関係より風量を推定すると共に、推定風量が第一の所定の範囲内であるときに、前記推定風量が低下するにしたがって、前記電動送風機への通電量を下げる方向に制御し、且つ、前記通電量は、前記第一の所定の範囲となる風量領域において、前記集塵室内の真空度が略一定に、且つ、予め実験等によって設定された値となるように制御する』との記載がある。すなわち、特許文献1において、電動送風機による風量は、電動送風機の仕事量により決定されることになる。   According to Patent Literature 1, "control means for controlling the amount of current supplied to the electric blower is provided, and the air volume is estimated and estimated from the" current-current-air volume "relationship obtained in advance through experiments and the like. When the air volume is within a first predetermined range, as the estimated air volume decreases, the amount of power to the electric blower is controlled to be reduced, and the amount of power is the first predetermined amount. In such a range, the degree of vacuum in the dust collection chamber is controlled to be substantially constant and to a value set in advance by experiments or the like. " That is, in Patent Literature 1, the air volume of the electric blower is determined by the work amount of the electric blower.

上記の通り、特許文献1では推定風量に応じて通電量を制御しているが、通電量のみでは皮相電力は制御されるものの、有効電力および無効電力という観点での制御は行われていない。すなわち、特許文献1の制御では、必要な有効電力を個別に制御することはできていない。このため、特許文献1の技術では、電動機に流れる電流が最大効率点より大きくなり、効率が悪化するという課題がある。   As described above, in Patent Literature 1, the amount of energization is controlled according to the estimated airflow. However, although apparent power is controlled only by the amount of energization, control is not performed in terms of active power and reactive power. That is, in the control of Patent Document 1, the required active power cannot be individually controlled. For this reason, the technique of Patent Literature 1 has a problem that the current flowing through the electric motor becomes larger than the maximum efficiency point, and the efficiency is deteriorated.

また、非特許文献1では、推定した風量に基づいて制御を行う技術に関する記載は存在するが、三相PMモータに対してのみの記載であり、単相PMモータを対象とした記載はない。特に、単相PMモータに供給する際の瞬時電力である単相瞬時電力は、電気角周波数の2倍の周波数で正弦波状もしくは余弦波状に脈動するため、非特許文献1に記載の手法では、単相瞬時電力の脈動による回転数の脈動または負荷トルクの脈動によって騒音が発生するなどの問題が懸念される。   In addition, Non-Patent Document 1 describes a technique for performing control based on an estimated air volume, but describes only a three-phase PM motor and does not describe a single-phase PM motor. In particular, since the single-phase instantaneous power, which is the instantaneous power when supplied to the single-phase PM motor, pulsates in a sine wave or cosine wave at twice the electrical angular frequency, the method described in Non-Patent Document 1 There is a concern that noise may be generated due to the pulsation of the rotation speed or the pulsation of the load torque due to the pulsation of the single-phase instantaneous power.

本発明は、上記に鑑みてなされたものであって、単相PMモータ向けの風量制御の実現に際し、単相瞬時電力の脈動に対応した風量制御の実現を可能とするモータ駆動装置、電気掃除機およびハンドドライヤーを提供することを目的とする。   The present invention has been made in view of the above, and when realizing the air flow control for a single-phase PM motor, a motor driving device capable of realizing the air flow control corresponding to the pulsation of the single-phase instantaneous electric power, an electric cleaner The purpose is to provide machines and hand dryers.

上述した課題を解決し、目的を達成するために、本発明は、単相永久磁石同期モータを具備する電動送風機を駆動するモータ駆動装置であって、複数のスイッチング素子を具備し、前記単相永久磁石同期モータに交流電圧を印加する単相インバータと、前記単相永久磁石同期モータに流れるモータ電流に応じた信号を出力する電流検出部と、前記単相インバータに電力を供給する直流電源の電圧を検出する直流電源電圧検出部と、前記モータ電流が入力され、前記単相インバータの前記スイッチング素子への駆動信号を出力するインバータ制御部と、を備え、前記単相インバータは、前記単相永久磁石同期モータに供給する有効電力または無効電力を増減させ、前記有効電力または前記無効電力の増減によって前記モータの回転数を変化させる。   In order to solve the above-described problems and achieve the object, the present invention is a motor driving device for driving an electric blower including a single-phase permanent magnet synchronous motor, comprising: a plurality of switching elements; A single-phase inverter that applies an AC voltage to the permanent magnet synchronous motor, a current detection unit that outputs a signal corresponding to a motor current flowing through the single-phase permanent magnet synchronous motor, and a DC power supply that supplies power to the single-phase inverter. A DC power supply voltage detection unit that detects a voltage, and an inverter control unit that receives the motor current and outputs a drive signal to the switching element of the single-phase inverter, wherein the single-phase inverter includes the single-phase inverter. Increase or decrease the active power or reactive power supplied to the permanent magnet synchronous motor, and change the rotation speed of the motor by increasing or decreasing the active power or the reactive power. .

本発明によれば、単相PMモータ向けの風量制御の実現に際し、単相瞬時電力の脈動に対応した風量制御を実現することができる、という効果を奏する。   According to the present invention, when realizing the air volume control for the single-phase PM motor, there is an effect that the air volume control corresponding to the pulsation of the single-phase instantaneous electric power can be realized.

実施の形態1におけるモータ駆動装置の構成を示す図FIG. 3 shows a configuration of a motor drive device according to the first embodiment. 実施の形態1におけるロータ回転位置と位置検出信号の関係を示す図FIG. 4 is a diagram illustrating a relationship between a rotor rotation position and a position detection signal according to the first embodiment. 実施の形態1におけるインバータ制御部の構成を示すブロック図Block diagram showing a configuration of an inverter control unit according to the first embodiment. 実施の形態1における位置検出信号とモータ回転数推定値の関係を示す図FIG. 4 is a diagram illustrating a relationship between a position detection signal and a motor rotation speed estimated value according to the first embodiment. 実施の形態1におけるモータ回転数推定値とロータ回転位置推定値の関係を示す図FIG. 4 is a diagram illustrating a relationship between a motor rotation speed estimated value and a rotor rotation position estimated value according to the first embodiment. 実施の形態1におけるモータ電流とpq軸電流の関係を示す図FIG. 5 is a diagram showing a relationship between a motor current and a pq-axis current according to the first embodiment. 実施の形態1におけるモータ電流とインバータ出力電圧の関係を示す図FIG. 6 shows a relationship between a motor current and an inverter output voltage in the first embodiment. 実施の形態1におけるスイッチング素子駆動信号生成部の動作説明に供するタイムチャートTime chart for explaining the operation of the switching element drive signal generation unit according to the first embodiment 実施の形態1におけるモータ駆動装置の応用例として電気掃除機の構成の一例を示す図FIG. 4 illustrates an example of a configuration of a vacuum cleaner as an application example of the motor drive device in Embodiment 1. 実施の形態1におけるモータ駆動装置の他の応用例としてハンドドライヤーの構成の一例を示す図The figure which shows an example of a structure of a hand dryer as another application example of the motor drive device in Embodiment 1. 実施の形態1の制御における風量Qと有効電力Pの関係を示す図The figure which shows the relationship between the air volume Q and active power P in the control of Embodiment 1. 実施の形態1の制御においてq軸電流指令値を0以外に制御する場合の一例を示す図FIG. 4 is a diagram showing an example of a case where the q-axis current command value is controlled to a value other than 0 in the control of the first embodiment 実施の形態2におけるインバータ制御部の構成を示すブロック図Block diagram showing a configuration of an inverter control unit according to the second embodiment. 実施の形態2におけるp軸電流とp軸電流補正量との関係を説明するための図FIG. 10 is a diagram for explaining a relationship between a p-axis current and a p-axis current correction amount according to the second embodiment. 実施の形態3におけるインバータ制御部の構成を示すブロック図Block diagram showing a configuration of an inverter control unit according to the third embodiment. 瞬時有効電力Pと風量指令値補正量ΔQ*の波形の一例を示す図Illustrates an example of the instantaneous active power P a and the air volume command value correcting amount Delta] Q * of the waveform

以下に、本発明の実施の形態に係るモータ駆動装置、電気掃除機およびハンドドライヤーを図面に基づいて詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。   Hereinafter, a motor drive device, a vacuum cleaner, and a hand dryer according to an embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not limited by the following embodiments.

実施の形態1.
図1は、実施の形態1におけるモータ駆動装置の構成を示す図である。実施の形態1におけるモータ駆動装置100は、単相PMモータ3を具備する負荷を駆動するモータ駆動装置であり、直流電源1、単相インバータ2、インバータ制御部4、モータ電流検出部5、直流電源電圧検出部6およびロータ位置検出部7を備えて構成される。単相PMモータ3を具備する負荷としては、電動送風機を備えた電気掃除機、ハンドドライヤーが例示される。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration of a motor drive device according to the first embodiment. The motor driving device 100 according to the first embodiment is a motor driving device that drives a load including the single-phase PM motor 3, and includes a DC power supply 1, a single-phase inverter 2, an inverter control unit 4, a motor current detection unit 5, a DC current A power supply voltage detector 6 and a rotor position detector 7 are provided. Examples of the load including the single-phase PM motor 3 include a vacuum cleaner equipped with an electric blower and a hand dryer.

直流電源1は、単相インバータ2に直流電力を供給する。単相インバータ2は、スイッチング素子211〜214およびスイッチング素子211〜214のそれぞれに逆並列に接続されるダイオード221〜224を具備し、単相PMモータ3に交流電圧を印加する。インバータ制御部4は、単相インバータ2のスイッチング素子211〜214への駆動信号S1〜S4を出力する。ロータ位置検出部7は、単相PMモータ3のロータ3aの回転位置であるロータ回転位置θに応じた信号である位置検出信号S_rotationをインバータ制御部4へ出力する。モータ電流検出部5は、単相PMモータ3に流れるモータ電流Iに応じた信号をインバータ制御部4へ出力する。直流電源電圧検出部6は、直流電源1の電圧である直流電圧Vdcを検出する。駆動信号S1〜S4は、ロータ回転位置θmおよびモータ電流Iに基づいて生成されたパルス幅変調(Pulse Width Modulation:以下「PWM」と表記)信号である。単相インバータ2のスイッチング素子211〜214をPWM信号である駆動信号S1〜S4で駆動することにより、任意の電圧を単相PMモータ3に印加することができる。 DC power supply 1 supplies DC power to single-phase inverter 2. The single-phase inverter 2 includes switching elements 211 to 214 and diodes 221 to 224 connected in anti-parallel to the switching elements 211 to 214, respectively, and applies an AC voltage to the single-phase PM motor 3. The inverter control unit 4 outputs drive signals S1 to S4 to the switching elements 211 to 214 of the single-phase inverter 2. Rotor position detector 7 outputs the position detection signal S_ rotation is a signal corresponding to the rotor rotational position theta m is the rotational position of the single-phase PM motor 3 of the rotor 3a to the inverter control unit 4. Motor current detector 5 outputs a signal corresponding to the motor current I m flowing through the single-phase PM motor 3 to the inverter control unit 4. The DC power supply voltage detector 6 detects a DC voltage Vdc , which is a voltage of the DC power supply 1. Drive signals S1~S4 the rotor rotational position θm and the motor current pulse width modulation that is generated based on the I m: is (Pulse Width Modulation hereinafter referred to as "PWM") signal. By driving the switching elements 211 to 214 of the single-phase inverter 2 with the drive signals S1 to S4, which are PWM signals, an arbitrary voltage can be applied to the single-phase PM motor 3.

なお、直流電源1は交流電源からの交流電圧をダイオードブリッジ等で整流し且つ平滑して直流電圧を生成する直流電源でも問題なく、太陽電池、バッテリーなどに代表される直流電源を用いても何ら問題ない。また単相インバータ2のスイッチング素子は、トランジスタやIGBT(Insulated Gate Bipolar Transistor)、MOS−FET(Metal Oxide Semiconductor−Field Effect Transistor)、サイリスタ、GTO(Gate Turn−Off Thyristor)など、いずれのスイッチング素子であっても問題ない。また、前述のようなスイッチング素子の半導体素材として主流であるSiのみならず、ワイドバンドギャップ半導体と称されるSiC、GaNなど、いずれの半導体素材を使用しても問題はない。   The DC power supply 1 may be a DC power supply that rectifies and smoothes an AC voltage from an AC power supply with a diode bridge or the like and generates a DC voltage without any problem. no problem. The switching element of the single-phase inverter 2 is a transistor, an IGBT (Insulated Gate Bipolar Transistor), a MOS-FET (Metal Oxide Semiconductor-Field Effect Transistor), a thyristor, or a GTO (Gate Turn-Off element). There is no problem even if there is. Further, there is no problem in using any semiconductor material such as SiC and GaN, which are called wide band gap semiconductors, as well as the mainstream Si as the semiconductor material of the switching element as described above.

ロータ位置検出部7は、例えば図2に示すようなモータのロータ回転位置θに応じた位置検出信号S_rotationを生成してインバータ制御部4に出力する。図2の場合には、ホールセンサ等の磁気センサを用いてロータ回転位置θに応じたパルス状の電圧信号である位置検出信号S_rotationを出力する場合を想定しており、0≦θ<πでは、S_rotation=“Highレベル”、π≦θ<2πでは、S_rotation=“Lowレベル”を例として記載している。ただし、ホールセンサに限らず、エンコーダ、レゾルバなどの位置検出センサを用いても何ら問題ない。 Rotor position detector 7 outputs for example, generates a position detection signal S_ rotation corresponding to the rotor rotational position theta m of the motor shown in FIG. 2 to the inverter control unit 4. In the case of Figure 2 assumes the case of outputting a position detection signal S_ rotation the pulse-like voltage signal corresponding to the rotor rotational position theta m using a magnetic sensor such as a Hall sensor, 0 ≦ theta m <in π, S_ rotation = "High level", the π ≦ θ m <2π, is described as an example S_ rotation = "Low level". However, there is no problem in using a position detection sensor such as an encoder or a resolver without being limited to the Hall sensor.

図3は、実施の形態1におけるインバータ制御部4の構成を示すブロック図である。インバータ制御部4は、p軸電流Iを制御する第1の電流制御部411、q軸電流Iを制御する第2の電流制御部412、風量推定値Q^を制御する風量制御部42、単相交流での表記からp軸およびq軸(以下「pq軸」と称する)への座標変換を行う第1の座標変換部431、pq軸での表記から単相交流での表記への変換を行う第2の座標変換部432、位置検出信号S_rotationに応じてロータ回転位置推定値θ^およびモータ回転数推定値ω^を検出するモータ位置・回転数検出部44、風量推定値Q^の推定を行う風量推定部45、インバータ出力電圧指令値V*よりスイッチング素子駆動信号S1〜S4を生成するスイッチング素子駆動信号生成部46、風量指令値Q*を生成する風量指令値生成部47、および、q軸電流指令値I*を生成するq軸電流指令値生成部48を備えて構成されており、以下に各部の詳細を説明する。なお、「θ^」、「Q^」等における「^」の表記であるが、本来であれば「θ」または「Q」の文字の上部に「^」の記号を付すべきところであるが、その表記ができない。このため本明細書では、イメージで挿入する数式部分を除き、該当文字または文字列の後に「^」の文字を付して表記する。 FIG. 3 is a block diagram illustrating a configuration of the inverter control unit 4 according to the first embodiment. The inverter control unit 4 includes a first current control unit 411 for controlling the p-axis current Ip , a second current control unit 412 for controlling the q-axis current Iq, and an airflow control unit 42 for controlling the estimated airflow value Q ^. , A first coordinate conversion unit 431 that performs coordinate conversion from a notation in a single-phase AC to a p-axis and a q-axis (hereinafter, referred to as “pq-axis”), from a notation in the pq-axis to a notation in a single-phase AC second coordinate conversion unit 432, a position detection signal S_ motor position and rotation speed detector 44 that detects a rotor rotational position estimate theta m ^ and the motor rotation speed estimation value omega m ^ in response to rotation for conversion, air volume estimation air amount estimating unit 45 for the value Q ^ of the estimated switching element drive signal generating unit 46 from the inverter output voltage command value V m * generates switching element driving signals S1 to S4, air amount command value for generating the air amount command value Q * Generation unit 47, and Are configured with a q-axis current command value generating unit 48 that generates a q-axis current command value I q *, each part will be described in detail below. Note that the notation of “^” in “θ m ^”, “Q ^”, etc. should be attached to the upper part of the character of “θ” or “Q”. , The notation can not be. For this reason, in this specification, except for the mathematical expression part to be inserted in the image, the character or character string is indicated by adding a character of “^”.

まず、モータ位置・回転数検出部44の詳細動作に関して説明する。前述の通り、ロータ位置検出部7は、図2に示すような位置検出信号S_rotationを生成してモータ位置・回転数検出部44に出力している。図4は、実施の形態1における位置検出信号S_rotationとモータ回転数推定値ω^との関係を示す図である。モータ位置・回転数検出部44は、位置検出信号S_rotationの周期T_rotationを用いて以下の(1)式に示す計算式によりモータ回転数推定値ω^を検出することができる。なお、実施の形態1ではモータの極対数PをP=1として説明するが、無論P≠1であっても構わない。ただし、P≠1の場合には、電気角回転数ωと機械角回転数であるモータ回転数ωとの間には、ω=P×ωとの関係がある。 First, the detailed operation of the motor position / rotational speed detector 44 will be described. As described above, the rotor position detecting unit 7, and outputs to the motor position and rotation speed detector 44 generates a position detection signal S_ rotation as shown in FIG. Figure 4 is a diagram showing a position detection signal S_ rotation and the motor rotation speed estimation value omega m ^ and the relationship in the first embodiment. Motor position and speed detecting section 44 can detect the motor rotation speed estimation value omega m ^ by a calculation formula shown in the position detection signal S_ period T_ following (1) equation using the rotation of the rotation. Although describing the pole pairs P m of the motor in the first embodiment as P m = 1, may be a course P m ≠ 1. However, in the case of P m ≠ 1, there is a relation of ω e = P m × ω m between the electric angular rotational speed ω e and the motor rotational speed ω m which is a mechanical angular rotational speed.

Figure 2020043758
Figure 2020043758

図5は、実施の形態1におけるモータ回転数推定値ω^とロータ回転位置推定値θ^との関係を示す図である。図5および以下の(2)式に示すように、ロータ回転位置推定値θ^は、モータ回転数推定値ω^を積分することで算出可能である。ただし、図5の例では、制御周期Tcntでの離散制御系を想定した記載であり、制御タイミングnにおけるロータ回転位置推定値をθ^[n]と記載している。 FIG. 5 is a diagram showing the relationship between the estimated motor rotation speed ω m ^ and the estimated rotor rotation position θ m ^ in the first embodiment. As shown in FIG. 5 and the following equation (2), the rotor rotational position estimated value θ m ^ can be calculated by integrating the motor rotational speed estimated value ω m ^. However, in the example of FIG. 5, the description assumes a discrete control system in the control cycle Tcnt , and the rotor rotational position estimation value at the control timing n is described as θ m ^ [n].

Figure 2020043758
Figure 2020043758

以上より、(1)式および(2)式を用いることで、位置検出信号S_rotationからモータ回転数推定値ω^およびロータ回転位置推定値θ^を算出することができる。なお、位置検出信号S_rotationの周期T_rotationよりモータ回転数推定値ω^およびロータ回転位置推定値θ^を算出する上記の手法はあくまで一例であり、他の手法を採用しても問題ないことは言うまでもない。 Thus, (1) by using the formula and (2), it is possible to calculate the motor speed estimated value omega m ^ and the rotor rotational position estimate theta m ^ from the position detection signal S_ rotation. The above-described method of calculating the motor rotation speed estimation value omega m ^ and the rotor rotational position estimate theta m ^ than the period T_ rotation position detection signal S_ rotation is only an example, it is employed other methodological issues Needless to say, there is nothing.

次に、単相交流での表記からpq軸への座標変換を行う第1の座標変換部431に関して説明する。図6は、実施の形態1におけるモータ電流Iとp軸電流Iおよびq軸電流Iとの関係を示す図である。単相交流を表すモータ電流Iを直交した2つの座標軸であるp軸およびq軸において、極座標系でベクトル量として捉えたとき、p軸成分およびq軸成分は以下の(3−1)式および(3−2)式で表すことができる。 Next, a description will be given of the first coordinate conversion unit 431 that performs coordinate conversion from the representation in single-phase AC to the pq axis. FIG. 6 is a diagram illustrating a relationship between the motor current Im , the p-axis current Ip, and the q-axis current Iq in the first embodiment. In p-axis and q-axis are two axes that are orthogonal to the motor current I m which represents the single-phase AC, when regarded as a vector quantity in a polar coordinate system, p-axis component and q-axis component the following equation (3-1) And (3-2).

Figure 2020043758
Figure 2020043758

ここで、モータ電流Iの瞬時値を以下の(4―1)式で定義し、インバータ出力電圧指令値V*の瞬時値を以下の(4―2)式で定義する。(4―1)式において、I_rmsは、モータ電流Iの実効値であり、(4―2)式において、V_rms*は、インバータ出力電圧指令値V*の実効値である。モータ電流Iとインバータ出力電圧指令値V*との関係は、図7に示す通りであり、インバータ出力電圧指令値V*とモータ電流Iとの間の位相差をΦで表している。なお、(4−1)式および(4−2)式ならびに図7では、インバータ出力電圧指令値V*に対してモータ電流Iが進み位相である場合を正として定義している。 Here, the instantaneous value of the motor current I m is defined by the following (4-1) equation, it defines the instantaneous value of the inverter output voltage command value V m * in the following (4-2) equation. In (4-1) equation, I m _ rms is the effective value of the motor current I m, in (4-2) equation, V m _ rms *, the inverter output voltage command value V m * rms It is. The relationship between the motor current I m and the inverter output voltage command value V m * is as shown in FIG. 7, represents the phase difference between the inverter output voltage command value V m * and the motor current I m by Φ I have. Note that, in the expressions (4-1) and (4-2) and FIG. 7, the case where the motor current Im is in the leading phase with respect to the inverter output voltage command value Vm * is defined as positive.

Figure 2020043758
Figure 2020043758

(4−1)式および(4−2)式を用いると、単相瞬時電力Pは、以下の(5)式で表される。 Using the expressions (4-1) and (4-2), the single-phase instantaneous power Pm is expressed by the following expression (5).

Figure 2020043758
Figure 2020043758

また、(5)式を加法定理により式展開とすると、以下の(6)式で表される。   Also, when formula (5) is expanded into a formula by the addition theorem, it is expressed by the following formula (6).

Figure 2020043758
Figure 2020043758

さらに、(6)式を(3−1)式および(3−2)式を用いて変形すると、以下の(7)式の形に変形できる。ただし、θ=θ^としている。 Further, when the equation (6) is transformed using the equations (3-1) and (3-2), the following equation (7) can be transformed. Here, θ m = θ m ^.

Figure 2020043758
Figure 2020043758

(7)式は瞬時電力を表す式であるが、特に第1項は有効電力瞬時値を示しており、(3−1)式に示したp軸電流Iにより表現される。また(7)式の第2項は無効電力瞬時値を示しており、(3−2)式に示したq軸電流Iにより表現される。したがって、(7)式を用いた制御、具体的には、モータ電流Iを座標変換してp軸電流Iとq軸電流Iとに分離し、分離したp軸電流Iおよびq軸電流Iをそれぞれ個別に制御することで、有効電力および無効電力の制御が可能となる。 (7) is an equation representing the instantaneous power, in particular the first term indicates the active power instantaneous value, represented by p-axis current I p as shown in equation (3-1). The (7) The second term of the shows the reactive power instantaneous value, represented by q-axis current I q as shown in (3-2) below. Therefore, the control using the equation (7), specifically, the motor current Im is coordinate-transformed and separated into the p-axis current Ip and the q-axis current Iq, and the separated p-axis currents Ip and q are separated. By individually controlling the shaft currents Iq , it is possible to control the active power and the reactive power.

なお、ここまでの第1の座標変換部431の説明に際し、(3−1)式、(3−2)式、(4−1)式および(4−2)式、ならびに図7に示すような定義を行った上で式展開の説明を行ったが、これらの定義および図示はあくまで説明の便宜上、設定したものであり、定義自体は発明の本質的事項ではない。   In the description of the first coordinate transformation unit 431 so far, as shown in the expressions (3-1), (3-2), (4-1) and (4-2), and FIG. Although the description of the formula expansion was made after making the above definitions, these definitions and illustrations are set for the sake of convenience of the description, and the definitions themselves are not essential matters of the invention.

次に、pq軸での表記から単相交流での表記への変換を行う第2の座標変換部432に関して説明する。第2の座標変換部432は、以下の(8)式に基づき、p軸電圧指令値V*およびq軸電圧指令値V*を用いて交流電圧であるインバータ出力電圧指令値V*に変換する。なお、(8)式は、インバータ出力電圧指令値V*への座標変換式の一例であり、前述した第1の座標変換部431における定義などにより(8)式で表される式も変化することは言うまでもない。 Next, the second coordinate conversion unit 432 that performs conversion from the notation on the pq axis to the notation on the single-phase AC will be described. The second coordinate conversion unit 432 uses the p-axis voltage command value Vp * and the q-axis voltage command value Vq * to generate an inverter output voltage command value Vm * that is an AC voltage based on the following equation (8). Convert to The expression (8) is an example of a coordinate conversion expression to the inverter output voltage command value V m *, and the expression expressed by the expression (8) also changes according to the definition in the first coordinate conversion unit 431 described above. Needless to say.

Figure 2020043758
Figure 2020043758

次に、第1の電流制御部411および第2の電流制御部412に関して説明する。第1の電流制御部411は、前述したp軸電流Iがp軸電流指令値I*に一致するように制御するフィードバック制御器であり、第2の電流制御部412は、前述したq軸電流Iがq軸電流指令値I*に一致するように制御するフィードバック制御器である。第1の電流制御部411および第2の電流制御部412の何れも、例えば以下の(9)式に示すような伝達関数を具備するPID制御系などを採用することができる。(9)式において、Kは比例ゲイン、Kは積分ゲイン、Kは微分ゲイン、sはラプラス演算子を表している。なお、PID制御である点、フィードバック制御である点などは本明細書における説明例として挙げた制御方式の一例であることは言うまでもない。 Next, the first current controller 411 and the second current controller 412 will be described. The first current control unit 411 is a feedback controller that controls the above-described p-axis current I p to match the p-axis current command value I p *, and the second current control unit 412 performs the above-described q axis current I q is a feedback controller for controlling so as to coincide with the q-axis current command value I q *. Each of the first current control unit 411 and the second current control unit 412 can employ, for example, a PID control system having a transfer function as shown in the following equation (9). (9) In the equation, K p is a proportional gain, K I is an integral gain, K d is the differential gain, s represents the Laplace operator. Needless to say, PID control, feedback control, and the like are examples of the control method described as an example in this specification.

Figure 2020043758
Figure 2020043758

次に、風量制御部42に関して説明する。風量制御部42は、風量推定値Q^が風量指令値Q*に一致するように制御するフィードバック制御器であり、第1の電流制御部411または第2の電流制御部412と同様なPID制御などを採用することができる。なお、PID制御である点、またフィードバック制御である点などは、電流制御部411および412と同様に制御方式の一例であることは言うまでもない。   Next, the air volume control unit 42 will be described. The air volume control unit 42 is a feedback controller that controls the air volume estimated value Q ^ to match the air volume command value Q *, and performs PID control similar to the first current control unit 411 or the second current control unit 412. Etc. can be adopted. Needless to say, PID control, feedback control, and the like are examples of a control method similar to the current control units 411 and 412.

次に、風量推定部45に関して説明する。先行技術文献に列挙した非特許文献1の2/6ページにおける(9)式には、以下に示すような関係式が記載されている。   Next, the air volume estimating unit 45 will be described. Equation (9) on page 2/6 of Non-Patent Document 1 listed in the prior art document describes the following relational expression.

Figure 2020043758
Figure 2020043758

上記(10)式において、Nは回転数、Iは電流である。上記(10)式を本実施の形態に置き換えると、本実施の形態における風量推定値Q^は、以下の(11)式で表すことができる。   In the above equation (10), N is the number of revolutions, and I is the current. When the above equation (10) is replaced with the present embodiment, the estimated airflow value Q ^ in the present embodiment can be expressed by the following equation (11).

Figure 2020043758
Figure 2020043758

ただし、先行技術文献にも記載の通り、風量Qを表す関数fは、ファン径、圧損条件などにも依存する関数であるため、例えばテーブルデータとしてインバータ制御部4の中に備えるなどの手法を採用してもよい。すなわち、風量推定値Q^を求める実現手法は何れの手法でも構わない。   However, as described in the prior art document, the function f representing the air volume Q is a function that also depends on the fan diameter, the pressure loss condition, and the like. May be adopted. That is, any method may be used to determine the estimated airflow value Q ^.

次にスイッチング素子駆動信号生成部46に関して説明する。図8は、実施の形態1におけるスイッチング素子駆動信号生成部46の動作説明に供するタイムチャートである。図8の上段部において、細線はキャリア波形を示し、太線はインバータ出力電圧指令値の波形を示している。なお、図8の例では、キャリア周期Tに対し、制御周期Tcntをキャリア周期Tの1/2に設定している。また、図8の下段部では、スイッチング素子211〜214を駆動する駆動信号S1〜S4の波形を示している。 Next, the switching element drive signal generator 46 will be described. FIG. 8 is a time chart for explaining the operation of switching element drive signal generation section 46 according to the first embodiment. In the upper part of FIG. 8, a thin line shows a carrier waveform, and a thick line shows a waveform of an inverter output voltage command value. In the example of FIG. 8, with respect to the carrier period T c, and setting the control period T cnt to 1/2 of carrier period T c. The lower part of FIG. 8 shows the waveforms of the drive signals S1 to S4 for driving the switching elements 211 to 214.

上述した制御周期Tcntによる離散制御系を想定した場合、インバータ出力電圧指令値V*は、離散的に値が変更される。例えば、制御タイミングnに着目した場合、制御タイミングnにおけるインバータ出力電圧指令値V*[n]とキャリアの大小関係によりスイッチング素子駆動信号S1〜S4のハイレベルおよびローレベルを決定する。このとき、S1とS4、S2とS3は同一の信号であり、またS2,S3はS1,S4に対して反転した波形である。ここで、スイッチング素子には立上り時間および立下り時間などの、スイッチング素子固有の遅れ時間が存在するため、一般的に短絡防止時間(デッドタイム)を設ける場合が多い。図8ではデッドタイムは0として記載しているが、デッドタイム≠0であっても問題はない。なお、図8におけるスイッチング素子駆動信号S1〜S4の生成方式はあくまで一例であり、PWM信号を生成する手法であれば、何れの手法を用いても問題ない。 Assuming a discrete control system based on the control cycle Tcnt described above, the inverter output voltage command value Vm * has discretely changed values. For example, when focusing on the control timing n, the high level and the low level of the switching element drive signals S1 to S4 are determined based on the magnitude relationship between the inverter output voltage command value Vm * [n] and the carrier at the control timing n. At this time, S1 and S4 are the same signal, S2 and S3 are the same signal, and S2 and S3 are waveforms inverted with respect to S1 and S4. Here, since a switching element has a delay time such as a rise time and a fall time inherent to the switching element, a short circuit prevention time (dead time) is generally provided in many cases. In FIG. 8, the dead time is described as 0, but there is no problem even if dead time ≠ 0. Note that the generation method of the switching element drive signals S1 to S4 in FIG. 8 is merely an example, and any method may be used as long as it generates a PWM signal.

次に、風量指令値生成部47に関して説明する。図9は、実施の形態1におけるモータ駆動装置の応用例として電気掃除機の構成の一例を示す図である。図9において、電気掃除機8は、バッテリーなどの直流電源1、上述した単相PMモータ3により駆動される電動送風機81を備え、さらに集塵室82、センサ83、吸込口体84、延長管85および操作部86を備えて構成される。   Next, the air volume command value generation unit 47 will be described. FIG. 9 is a diagram illustrating an example of a configuration of a vacuum cleaner as an application example of the motor driving device according to the first embodiment. 9, the vacuum cleaner 8 includes a DC power supply 1 such as a battery, an electric blower 81 driven by the above-described single-phase PM motor 3, and further includes a dust collection chamber 82, a sensor 83, a suction port 84, an extension pipe. 85 and an operation unit 86.

電気掃除機8は、直流電源1を電源として単相PMモータ3を駆動し、吸込口体84から吸込みを行い、延長管85を介して集塵室82へごみを吸引する。使用の際は操作部86を持ち、電気掃除機8を操作する。   The vacuum cleaner 8 drives the single-phase PM motor 3 using the DC power supply 1 as a power supply, performs suction from the suction port body 84, and sucks dust into the dust collection chamber 82 via the extension pipe 85. In use, the user holds the operation unit 86 and operates the vacuum cleaner 8.

操作部86には、電気掃除機8の吸込み量を調節するための操作スイッチ86aが設けられている。電気掃除機8の使用者は、操作スイッチ86aを操作して、任意に電気掃除機8の吸込み量を調節する。操作部86で設定された吸込み量は、風量指令値生成部47(図3参照)に付与する風量設定値Q**となる。風量設定値Q**は風量指令値生成部47に入力され、風量指令値生成部47からは風量指令値Q*が出力される。なお、操作部86により風量設定値Q**を設定する手法は本実施の形態における一例であり、他の手法を用いてもよい。例えば、センサ83に応じて風量設定値Q**を自動設定する手法などを用いてもよく、何れの方式であってもよい。   The operation unit 86 is provided with an operation switch 86 a for adjusting the suction amount of the vacuum cleaner 8. The user of the vacuum cleaner 8 operates the operation switch 86a to arbitrarily adjust the suction amount of the vacuum cleaner 8. The suction amount set by the operation unit 86 is the air volume setting value Q ** to be given to the air volume command value generation unit 47 (see FIG. 3). The air volume setting value Q ** is input to the air volume command value generation unit 47, and the air volume command value generation unit 47 outputs the air volume command value Q *. Note that the method of setting the air volume setting value Q ** by the operation unit 86 is an example in the present embodiment, and another method may be used. For example, a method of automatically setting the air volume setting value Q ** according to the sensor 83 may be used, and any method may be used.

図10は、実施の形態1におけるモータ駆動装置の他の応用例としてハンドドライヤーの構成の一例を示す図である。図10において、ハンドドライヤー90は、ケーシング91、手検知センサ92、水受け部93、ドレン容器94、カバー96、センサ97および吸気口98を備える。ケーシング91内には、実施の形態1のモータ駆動装置によって駆動される図示しない電動送風機が設けられている。ハンドドライヤー90では、水受け部93の上部にある手挿入部99に手を挿入することで電動送風機による送風で水を吹き飛ばし、水受け部93からドレン容器94へと水を溜めこむ構造となっている。センサ97は、ジャイロセンサおよび人感センサのいずれかであり、センサ97に応じて風量設定値Q**を自動設定するようにインバータ制御部4の制御系を構成すればよい。   FIG. 10 is a diagram illustrating an example of a configuration of a hand dryer as another application example of the motor driving device according to the first embodiment. 10, the hand dryer 90 includes a casing 91, a hand detection sensor 92, a water receiving section 93, a drain container 94, a cover 96, a sensor 97, and an air inlet 98. An electric blower (not shown) driven by the motor driving device of the first embodiment is provided in the casing 91. The hand dryer 90 has a structure in which water is blown off by blowing with an electric blower by inserting a hand into a hand insertion portion 99 above the water receiving portion 93, and water is stored from the water receiving portion 93 to the drain container 94. ing. The sensor 97 is either a gyro sensor or a human sensor, and the control system of the inverter control unit 4 may be configured to automatically set the air volume setting value Q ** according to the sensor 97.

以上により、風量設定値Q**により風量指令値Q*が設定され、風量指令値Q*に応じて風量推定値Q^が制御され、また、風量推定値Q^に応じてp軸電流Iが制御されるため、最終的には風量Qに応じて有効電力Pが制御されることとなる。ここで、風量Qと有効電力Pの関係を図11に示す。図11の上段部に示すように、第1の期間における風量をQ1、第2の期間における風量をQ2、第3の期間における風量をQ3としている。また、図11の下段部に示すように、第1の期間の有効電力をP1、第2の期間における有効電力をP2、第3の期間における有効電力をP3としている。これらの各期間において、風量設定値Q**に対して風量Qが一致していると仮定したとき、図11では、風量Q1に対して風量Q2の方が大きく、それに応じて有効電力P1より有効電力P2が大きくなるように制御している。また風量Q1に対して風量Q3の方が小さいため、有効電力P1に対して有効電力P3の方が小さくなるように制御する。このように風量Qに応じて有効電力Pを制御するように、制御系が動作する。 As described above, the air volume command value Q * is set by the air volume set value Q **, the air volume estimated value Q ^ is controlled according to the air volume command value Q *, and the p-axis current I Since p is controlled, the effective power P is finally controlled according to the air volume Q. Here, the relationship between the air volume Q and the active power P is shown in FIG. As shown in the upper part of FIG. 11, the air volume in the first period is Q1, the air volume in the second period is Q2, and the air volume in the third period is Q3. Further, as shown in the lower part of FIG. 11, the active power in the first period is P1, the active power in the second period is P2, and the active power in the third period is P3. In each of these periods, when it is assumed that the air volume Q matches the air volume set value Q **, the air volume Q2 is larger than the air volume Q1 in FIG. Control is performed so that the active power P2 increases. Further, since the air volume Q3 is smaller than the air volume Q1, the control is performed such that the active power P3 is smaller than the active power P1. As described above, the control system operates so as to control the active power P according to the air volume Q.

次に、q軸電流指令値生成部48に関して説明する。q軸電流指令値生成部48にはモータ位置・回転数検出部44が生成したモータ回転数推定値ω^が入力され、q軸電流指令値生成部48からはq軸電流指令値I*が出力される。q軸電流Iは、前述の通り無効電力を制御する操作量になる。無効電力は実際の仕事量に寄与しない電力である。ただし、無効電力が増加するとモータ電流Iが増加するので効率が悪化する。このため、通常は、q軸電流指令値I*=0となるように設定する。ただし、弱め界磁などの制御手法を併用する場合には、回転数の増加に応じて無効電力をゼロ以外に制御することもあり得る。 Next, the q-axis current command value generator 48 will be described. The q-axis current command value generation unit 48 receives the motor rotation speed estimation value ω m ^ generated by the motor position / rotation speed detection unit 44, and the q-axis current command value generation unit 48 supplies the q-axis current command value I q * Is output. The q-axis current Iq is an operation amount for controlling the reactive power as described above. Reactive power is power that does not contribute to the actual work load. However, when the reactive power increases, the motor current Im increases, so that the efficiency deteriorates. For this reason, usually, it is set so that the q-axis current command value I q * = 0. However, when a control method such as a field weakening is also used, the reactive power may be controlled to a value other than zero in accordance with an increase in the rotation speed.

図12は、実施の形態1の制御においてq軸電流指令値I*を0以外に制御する場合の一例を示す図である。図12に示すように、特定の回転数ω1以上でq軸電流指令値I*を変化させるようにしてもよい。このような制御は、図12の曲線に合わせたテーブルデータをq軸電流指令値生成部48に保持することにより実現可能である。なお、図12では、回転数に応じてq軸電流指令値I*を変化させているが、単相PMモータの駆動状態に応じてq軸電流指令値I*を決定する場合には、回転数に限らず、風量指令値Q*、p軸電流I、p軸電流指令値I*、モータ電流Iなどを決定指標として設定しても問題はない。回転数以外を決定指標とした場合には、当該決定指標をq軸電流指令値生成部48の入力信号とする制御系を構成することは言うまでもない。 FIG. 12 is a diagram illustrating an example of a case where the q-axis current command value I q * is controlled to a value other than 0 in the control according to the first embodiment. As shown in FIG. 12, the q-axis current command value Iq * may be changed at a specific rotation speed ω1 or more. Such control can be realized by holding the table data corresponding to the curve in FIG. 12 in the q-axis current command value generation unit 48. In FIG. 12, the q-axis current command value I q * is changed according to the rotation speed. However, when the q-axis current command value I q * is determined according to the driving state of the single-phase PM motor, There is no problem if the airflow command value Q *, the p-axis current Ip , the p-axis current command value Ip *, the motor current Im, and the like are set as the determination indexes without being limited to the rotation speed. When a determination index other than the rotation speed is used as a determination index, a control system using the determination index as an input signal of the q-axis current command value generator 48 is, of course, configured.

以上の構成により、風量推定値Q^が風量指令値Q*に一致するようにp軸電流Iにより有効電力を制御することができる。また、同時に無効電力をq軸電流Iにより制御することも可能であり、モータ駆動時の力率を制御することも可能である。これらの制御により、例えば無効電力がゼロとなるように制御することで、モータ電流を有効電力にのみ関係する分だけに抑制することができる。その結果、モータ電流を最小に制御し、モータの銅損(巻線抵抗などにおける損失)、インバータの導通損失(スイッチング素子におけるオン抵抗やオン電圧による損失)、スイッチング損失(スイッチング素子がオンオフするときの損失)を抑制することができるので、モータ駆動装置を適用した応用製品の高効率化を実現できる。 With the above structure, it is possible that the air volume estimate Q ^ controls the active power in the p-axis current I p to match the air flow rate command value Q *. At the same time, the reactive power can be controlled by the q-axis current Iq , and the power factor at the time of driving the motor can be controlled. By performing such control, for example, by controlling the reactive power to be zero, the motor current can be suppressed only to the extent related to the active power. As a result, the motor current is controlled to a minimum, and the copper loss of the motor (loss in winding resistance, etc.), the conduction loss of the inverter (loss due to on-resistance and on-voltage in the switching element), and the switching loss (when the switching element turns on and off) Loss) can be suppressed, so that the efficiency of applied products to which the motor drive device is applied can be improved.

以上説明したように、実施の形態1に係るモータ駆動装置によれば、単相インバータが単相PMモータに供給する有効電力を増減させることによってモータ駆動装置が駆動する電動送風機の風量を変化させるので、単相瞬時電力の脈動に対応した風量制御を行うことが可能となる。   As described above, according to the motor drive device according to the first embodiment, the airflow of the electric blower driven by the motor drive device is changed by increasing or decreasing the active power supplied to the single-phase PM motor by the single-phase inverter. Therefore, it is possible to perform the air volume control corresponding to the pulsation of the single-phase instantaneous power.

実施の形態2.
図13は、実施の形態2におけるインバータ制御部4の構成を示すブロック図である。実施の形態2のインバータ制御部4では、図13に示すように、図3に示す構成から、pq軸電流補正部49が追加されている点が相違点である。pq軸電流補正部49には、第1の座標変換部431の出力であるp軸電流Iおよびq軸電流Iと、モータ位置・回転数検出部44の出力であるロータ回転位置推定値θ^とが入力され、これらの入力に基づいてp軸電流Iおよびq軸電流Iにおける電流脈動を抑制するための補正値であるp軸電流補正量ΔIおよびq軸電流補正量ΔIを生成する。p軸電流補正量ΔIおよびq軸電流補正量ΔIは、それぞれp軸電流Iおよびq軸電流Iに加算され、それぞれの電流制御部である第1の電流制御部411および第2の電流制御部412に入力される構成である。なお、その他の構成については、図3に示す構成と同一または同等であり、同一または同等の構成部については同一符号を付して重複する説明は省略する。
Embodiment 2 FIG.
FIG. 13 is a block diagram illustrating a configuration of the inverter control unit 4 according to the second embodiment. The inverter control unit 4 according to the second embodiment is different from the configuration shown in FIG. 3 in that a pq-axis current correction unit 49 is added as shown in FIG. The pq-axis current correction unit 49 includes a p-axis current I p and a q-axis current I q output from the first coordinate conversion unit 431, and a rotor rotation position estimated value output from the motor position / rotation speed detection unit 44. θ m ^ are input, and a p-axis current correction amount ΔI p and a q-axis current correction amount which are correction values for suppressing current pulsation in the p-axis current I p and the q-axis current I q based on these inputs. Generate ΔI q . The p-axis current correction amount ΔI p and the q-axis current correction amount ΔI q are added to the p-axis current I p and the q-axis current I q respectively, and the first current control unit 411 and the second current control unit Is input to the current control unit 412. The other configuration is the same as or equivalent to the configuration shown in FIG. 3, and the same or equivalent components are denoted by the same reference numerals and overlapping description will be omitted.

つぎに、pq軸電流補正部49の動作について説明する。まず、モータ電流Iからp軸電流Iへの座標変換を行う第1の座標変換部431における変換式((3−1)式)を再掲する。 Next, the operation of the pq-axis current correction unit 49 will be described. First, the conversion equation (Equation (3-1)) in the first coordinate conversion unit 431 that performs the coordinate conversion from the motor current Im to the p-axis current Ip will be described again.

Figure 2020043758
Figure 2020043758

ここで、モータ電流Iは、上記したように(4−1)式と定義しており、この(4−1)式を(3−1)式に代入して式変形すると、以下の(13)式が得られる。 Here, the motor current Im is defined as the equation (4-1) as described above. By substituting the equation (4-1) into the equation (3-1) and transforming the equation, the following equation is obtained. 13) Equation is obtained.

Figure 2020043758
Figure 2020043758

同様に、モータ電流Iからq軸電流Iへの座標変換を行う第2の座標変換部432における変換式((3−2)式)を再掲する。 Similarly, the conversion equation (Equation (3-2)) in the second coordinate conversion unit 432 that performs the coordinate conversion from the motor current Im to the q-axis current Iq is shown again.

Figure 2020043758
Figure 2020043758

p軸電流Iと同様に、(4−1)式を(3−2)式に代入して式変形すると、以下の(15)式が得られる。 Similarly to the p-axis current Ip , the following equation (15) is obtained by substituting equation (4-1) into equation (3-2) and deforming the equation.

Figure 2020043758
Figure 2020043758

上記(13)式および(15)式により、p軸電流Iおよびq軸電流Iは、モータ回転数ωに対して2倍の周波数で変動することが分かる。ここでp軸電流Iにおける(13)式の第1項は直流成分であり、時間平均における有効電力を決定する。一方で、第2項は時間平均すると0になるため、時間平均の有効電力には寄与しない。 The above (13) and (15), p-axis current I p and the q-axis current I q is seen to vary at twice the frequency for the motor rotational speed omega m. Here, the first term of the expression (13) in the p-axis current Ip is a DC component, and determines the active power in time average. On the other hand, since the second term becomes 0 when time averaged, it does not contribute to the time average active power.

以上の説明のように、p軸電流Iおよびq軸電流Iは、(13)式または(15)式に従って変動する。この変動により、p軸電圧指令値V*およびq軸電圧指令値V*も同様の成分で変動するため、モータ電流Iにも電流の変動、すなわち電流脈動が発生する。また、モータの出力トルクはモータ電流Iに比例し、モータ電流Iが脈動することでモータ回転数ωも脈動するため、単相PMモータ3に騒音が発生する。 As described above, the p-axis current Ip and the q-axis current Iq fluctuate according to the equation (13) or (15). Due to this fluctuation, the p-axis voltage command value Vp * and the q-axis voltage command value Vq * also fluctuate with the same components, so that the motor current Im also fluctuates, that is, current pulsation occurs. Further, the output torque of the motor is proportional to the motor current I m, for pulsation motor rotational speed omega m by the motor current I m pulsates, noise is generated in the single-phase PM motor 3.

図14は、実施の形態2におけるp軸電流Iとp軸電流補正量ΔIとの関係を説明するための図である。図14において、実線は(13)式に示される波形(ただし、図14では、係数である√(2)I_rms=1としている)である。また、破線は実線の波形に含まれる脈動成分を打ち消すための補正成分、すなわちp軸電流補正量ΔIの波形を示したものであり、p軸電流補正量ΔIが以下の(16)式(ただし、図14では、係数である√(2)I_rms=1としている)となるように設定している。 Figure 14 is a diagram for explaining a relationship between a p-axis current I p and p-axis current correction amount [Delta] I p in the second embodiment. 14, the solid line is (13) waveform shown in formula (However, in FIG. 14, is set to √ (2) I m _ rms = 1 is a coefficient). The correction component for broken lines to cancel the pulsating component contained in the solid line waveform, that is, shows the p-axis current correction amount [Delta] I p of the waveform, p-axis current correction amount [Delta] I p the following (16) (However, in FIG. 14 is a coefficient √ (2) is set to I m _ rms = 1) is set to be.

Figure 2020043758
Figure 2020043758

補正前のp軸電流Iを表す(13)式とp軸電流補正量ΔIを表す(16)式とを加算することにより、加算後の値は、“√(2)I_rms/2”となり、モータ電流Iの有効電力成分の瞬時値が一定に制御され、p軸電流Iの脈動成分が除去される。すなわち、補正後のp軸電流I'を用いて制御することにより、電流脈動を抑制することができるため、p軸電圧指令V*の電圧脈動を抑制することができ、p軸電圧指令V*の歪みを抑制することができる。なお、同様な制御系をq軸についても適用することにより、q軸電流Iの脈動に対してもΔIを設定することができ、モータ電流Iの無効電力成分の瞬時値を一定に制御することでq軸電流Iの脈動成分を除去することができ、q軸電圧指令V*の脈動および歪みを抑制することができる。 By adding the pre-correction represents a p-axis current I p (13) indicating the type and p-axis current correction amount [Delta] I p (16) equation, the value after the addition, "√ (2) I m _ rms / 2 ", and the instantaneous value of the active power component of the motor current I m is controlled to be constant, pulsating component of p-axis current I p is removed. That is, current pulsation can be suppressed by controlling using the corrected p-axis current I p ′, so that the voltage pulsation of the p-axis voltage command V p * can be suppressed and the p-axis voltage command V p * distortion can be suppressed. Incidentally, the same control system by applying also the q-axis, it is possible to set the [Delta] I q with respect to the pulsation of the q-axis current I q, a constant instantaneous value of the reactive power component of the motor current I m By performing the control, the pulsation component of the q-axis current Iq can be removed, and the pulsation and distortion of the q-axis voltage command Vq * can be suppressed.

なお、同様な機能を、ローパスフィルタを用いて実施することは可能であるが、ローパスフィルタには遅れ時間があり、当該遅れ時間によって電流制御器の応答速度に制限が生じる。一方、実施の形態2に係る手法によれば、電流の脈動成分を制御の都度、逐次除去することができるため、ローパスフィルタを用いた場合に対して遅れ時間が短く、電流制御器をより高応答にすることが可能となり、制御性の向上が期待できる。   Note that the same function can be implemented using a low-pass filter, but the low-pass filter has a delay time, and the delay time limits the response speed of the current controller. On the other hand, according to the method according to the second embodiment, the pulsating component of the current can be successively removed each time the control is performed. Therefore, the delay time is shorter than the case where the low-pass filter is used, and the current controller is higher. A response can be obtained, and improvement in controllability can be expected.

実施の形態3.
図15は、実施の形態3におけるインバータ制御部4の構成を示すブロック図である。実施の形態3のインバータ制御部4では、図15に示すように、図3に示す構成から、風量指令値補正部50が追加されている点が相違点である。風量指令値補正部50には、モータ電流Iと、第2の座標変換部432の出力であるインバータ出力電圧指令値V*と、モータ位置・回転数検出部44の出力であるロータ回転位置推定値θ^と、風量推定部45の出力である風量推定値Q^とが入力され、これらの入力に基づいて瞬時有効電力Pにおける脈動を抑制するための補正量である風量指令値補正量ΔQ*を生成する。風量指令値補正量ΔQ*は、まずは風量指令値Q*に加算され、次に風量推定値Q^との間で差分がとられ、当該差分値が風量制御部42に入力される構成である。なお、その他の構成については、図3に示す構成と同一または同等であり、同一または同等の構成部については同一符号を付して重複する説明は省略する。
Embodiment 3 FIG.
FIG. 15 is a block diagram showing a configuration of the inverter control unit 4 according to the third embodiment. The inverter control unit 4 of the third embodiment differs from the configuration shown in FIG. 3 in that an air flow command value correction unit 50 is added as shown in FIG. The wind amount command value correcting unit 50 includes a motor current I m, the inverter output voltage command value V m * is the output of the second coordinate conversion unit 432, the rotor rotation, which is the output of the motor position and rotation speed detector 44 a position estimate theta m ^, and the air volume estimate Q ^ is the output of the air flow estimation unit 45 is input, air amount command is a correction quantity for suppressing the pulsation in instantaneous active power P m based on these inputs A value correction amount ΔQ * is generated. The airflow command value correction amount ΔQ * is first added to the airflow command value Q *, then a difference is obtained from the estimated airflow value Q ^, and the difference value is input to the airflow control unit 42. . The other configuration is the same as or equivalent to the configuration shown in FIG. 3, and the same or equivalent components are denoted by the same reference numerals and overlapping description will be omitted.

つぎに、風量指令値補正部50の動作について説明する。まず、単相瞬時電力Pにおける(7)式に関して再考する。(7)式におけるp軸電流Iおよびq軸電流Iの項に、(13)式および(15)式を代入すると、以下の(17)式が得られる。 Next, the operation of the airflow command value correction unit 50 will be described. First, reconsider respect (7) in a single-phase instantaneous power P m. By substituting the equations (13) and (15) into the terms of the p-axis current I p and the q-axis current I q in the equation (7), the following equation (17) is obtained.

Figure 2020043758
Figure 2020043758

前述の通り、(17)式の第1項は瞬時有効電力を表し、第2項は瞬時無効電力を表している。以下、第1項の瞬時有効電力をPと表記し、第2項の瞬時無効電力をPnと表記する。(17)式から明らかなように、瞬時有効電力Pは、“cos(2θ^)”で脈動している。 As described above, the first term of the equation (17) represents instantaneous active power, and the second term represents instantaneous reactive power. Hereinafter, the instantaneous active power of the first term is denoted by P a, the instantaneous reactive power of the second term is expressed as Pn. (17) As is clear from the equation, the instantaneous active power P a is pulsating with "cos (2θ m ^)" .

また、単相PMモータ3における機械出力Pは、以下の(18)式で表される。 Further, the mechanical output P M of the single-phase PM motor 3 is expressed by the following equation (18).

Figure 2020043758
Figure 2020043758

上記(18)式において、“τ”はモータトルクである。瞬時有効電力Paは、単相PMモータ3の回転に寄与する成分であるため、瞬時有効電力Pの脈動は、トルクτもしくは回転数ωの脈動となる。 In the above equation (18), “τ m ” is a motor torque. Instantaneous active power Pa are the component that contributes to the rotation of the single-phase PM motor 3, the pulsation of the instantaneous active power P a is a pulsation of torque tau m or rotational speed omega m.

そこで、風量指令値補正部50は、瞬時有効電力Pの脈動に対応した補償制御を行う。図16は、瞬時有効電力Pと風量指令値補正量ΔQ*の波形の一例を示す図である。前述のように、風量指令値補正部50には、モータ電流I、インバータ出力電圧指令値V*、風量推定値Q^およびロータ回転位置推定値θ^が入力される。風量指令値補正部50は、モータ電流I、インバータ出力電圧指令値V*およびロータ回転位置推定値θ^により、上記した(17)式を用いて瞬時有効電力Pを算出する。瞬時有効電力Pの波形の一例は、図16の上段部に示す通りである。 Therefore, air amount command value correcting unit 50 performs compensation control corresponding to the pulsation of the instantaneous active power P a. Figure 16 is a diagram showing an example of the instantaneous active power P a and the air volume command value correcting amount Delta] Q * of the waveform. As described above, the air amount command value correcting unit 50, the motor current I m, * the inverter output voltage command value V m, the air volume estimate Q ^ and the rotor rotational position estimate theta m ^ is input. Air amount command value correcting unit 50, the motor current I m, the inverter output voltage command value V m * and the rotor rotational position estimate theta m ^, calculates the instantaneous active power P a with the above equation (17). An example of the instantaneous active power P a of the waveform is as shown in the upper portion of FIG. 16.

また、風量指令値補正部50は、以下の(19)式を用いて風量指令値補正量ΔQ*を生成する。   Further, the air volume command value correction unit 50 generates the air volume command value correction amount ΔQ * using the following equation (19).

Figure 2020043758
Figure 2020043758

上記(19)式において、Q*aveは風量指令値Q*の時間平均値を表している。風量指令値補正量ΔQ*の波形の一例は、図16の下段部に示す通りである。 In the above equation (19), Q * ave represents a time average value of the airflow command value Q *. An example of the waveform of the airflow command value correction amount ΔQ * is as shown in the lower part of FIG.

(19)式および図16では、瞬時有効電力Pの脈動に対して逆相となるように風量指令値補正量ΔQ*を生成しており、風量指令値Q*を風量指令値補正量ΔQ*で補正した補正風量指令値Q*’に基づき、風量Qおよびp軸電流Iを制御する。この制御により、瞬時有効電力Pの脈動を相殺するように実際の風量Qが制御され、瞬時有効電力Pの脈動が抑制される。その結果、モータの回転数およびトルクの脈動が同時に抑制されるので、モータ駆動装置を適用した応用製品の低騒音化を図ることができる。 (19) In equation and FIG. 16, the instantaneous active and generates an air flow command value correction amount Delta] Q * such that the phase opposite to the pulsation of the power P a, air amount command value Q * air volume command value correcting amount Delta] Q The air volume Q and the p-axis current Ip are controlled based on the corrected air volume command value Q * 'corrected by *. This control instantaneous active power P a real air quantity Q so as to cancel the pulsation of the control, pulsation of the instantaneous active power P a can be suppressed. As a result, the pulsation of the rotational speed of the motor and the pulsation of the torque are suppressed at the same time, so that it is possible to reduce the noise of the applied product to which the motor driving device is applied.

なお、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。   It should be noted that the configuration shown in the above-described embodiment is an example of the content of the present invention, and can be combined with another known technology, and the configuration is not deviated from the gist of the present invention. Can be omitted or changed.

1 直流電源、2 単相インバータ、3 単相PMモータ、3a ロータ、4 インバータ制御部、5 モータ電流検出部、6 直流電源電圧検出部、7 ロータ位置検出部、8 電気掃除機、42 風量制御部、44 モータ位置・回転数検出部、45 風量推定部、46 スイッチング素子駆動信号生成部、47 風量指令値生成部、48 q軸電流指令値生成部、49 pq軸電流補正部、50 風量指令値補正部、81 電動送風機、82 集塵室、83 センサ、84 吸込口体、85 延長管、86 操作部、86a 操作スイッチ、90 ハンドドライヤー、91 ケーシング、92 手検知センサ、93 水受け部、94 ドレン容器、96 カバー、97 センサ、98 吸気口、99 手挿入部、100 モータ駆動装置、211〜214 スイッチング素子、221〜224 ダイオード、411 第1の電流制御部、412 第2の電流制御部、431 第1の座標変換部、432 第2の座標変換部。   Reference Signs List 1 DC power supply, 2 single-phase inverter, 3 single-phase PM motor, 3a rotor, 4 inverter control section, 5 motor current detection section, 6 DC power supply voltage detection section, 7 rotor position detection section, 8 vacuum cleaner, 42 air volume control Unit, 44 motor position / rotation speed detection unit, 45 air volume estimation unit, 46 switching element drive signal generation unit, 47 air volume command value generation unit, 48 q-axis current command value generation unit, 49 pq axis current correction unit, 50 air volume command Value correction unit, 81 electric blower, 82 dust collection chamber, 83 sensor, 84 suction port body, 85 extension tube, 86 operation unit, 86a operation switch, 90 hand dryer, 91 casing, 92 hand detection sensor, 93 water receiving unit, 94 drain container, 96 cover, 97 sensor, 98 air inlet, 99 hand insertion part, 100 motor drive device, 211-214 switch Switching element, 221-224 diode, 411 first current controller, 412 second current controller, 431 first coordinate converter, 432 second coordinate converter.

Claims (12)

単相永久磁石同期モータを具備する電動送風機を駆動するモータ駆動装置であって、
複数のスイッチング素子を具備し、前記単相永久磁石同期モータに交流電圧を印加する単相インバータと、
前記単相永久磁石同期モータに流れるモータ電流に応じた信号を出力する電流検出部と、
前記単相インバータに電力を供給する直流電源の電圧を検出する直流電源電圧検出部と、
前記モータ電流が入力され、前記単相インバータの前記スイッチング素子への駆動信号を出力するインバータ制御部と、
を備え、
前記単相インバータは、前記単相永久磁石同期モータに供給する有効電力または無効電力を増減させ、前記有効電力または前記無効電力の増減によって前記モータの回転数を変化させるモータ駆動装置。
A motor drive device for driving an electric blower including a single-phase permanent magnet synchronous motor,
A single-phase inverter that includes a plurality of switching elements and applies an AC voltage to the single-phase permanent magnet synchronous motor;
A current detection unit that outputs a signal corresponding to a motor current flowing through the single-phase permanent magnet synchronous motor,
A DC power supply voltage detection unit that detects a voltage of a DC power supply that supplies power to the single-phase inverter;
An inverter control unit that receives the motor current and outputs a drive signal to the switching element of the single-phase inverter,
With
The motor drive device, wherein the single-phase inverter increases / decreases active power or reactive power supplied to the single-phase permanent magnet synchronous motor, and changes the rotation speed of the motor by increasing / decreasing the active power or the reactive power.
単相永久磁石同期モータを具備する電動送風機を駆動するモータ駆動装置であって、
複数のスイッチング素子を具備し、前記単相永久磁石同期モータに交流電圧を印加することで前記単相永久磁石同期モータのロータを回転させる単相インバータと、
前記単相永久磁石同期モータに流れるモータ電流に応じた信号を出力する電流検出部と、
前記モータ電流が入力され、前記単相インバータの前記スイッチング素子への駆動信号を出力するインバータ制御部と、
を備え、
前記インバータ制御部は、前記モータ電流の有効電力成分または無効電力成分を増減させ、前記有効電力成分または前記無効電力成分の増減によって前記モータの回転数を変化させる
モータ駆動装置。
A motor drive device for driving an electric blower including a single-phase permanent magnet synchronous motor,
A single-phase inverter that includes a plurality of switching elements and rotates a rotor of the single-phase permanent magnet synchronous motor by applying an AC voltage to the single-phase permanent magnet synchronous motor,
A current detection unit that outputs a signal corresponding to a motor current flowing through the single-phase permanent magnet synchronous motor,
An inverter control unit that receives the motor current and outputs a drive signal to the switching element of the single-phase inverter,
With
The motor drive device, wherein the inverter control unit increases or decreases the active power component or the reactive power component of the motor current, and changes the rotation speed of the motor by increasing or decreasing the active power component or the reactive power component.
前記インバータは、直流電源電圧検出部を備える
請求項1または2に記載のモータ駆動装置。
The motor drive device according to claim 1, wherein the inverter includes a DC power supply voltage detection unit.
前記インバータ制御部は、
前記モータ電流を有効電力成分と無効電力成分とに座標変換を行う座標変換部と、
前記モータ電流の有効電力成分を制御する第1の電流制御部と、
を備え、
風量に応じて前記モータ電流の有効電力成分を制御する
請求項1から3の何れか1項に記載のモータ駆動装置。
The inverter control unit includes:
A coordinate conversion unit that performs coordinate conversion of the motor current into an active power component and a reactive power component,
A first current control unit that controls an active power component of the motor current;
With
The motor drive device according to any one of claims 1 to 3, wherein an active power component of the motor current is controlled according to an air volume.
前記インバータ制御部は、
前記モータ電流を有効電力成分と無効電力成分とに座標変換を行う座標変換部と、
前記モータ電流の無効電力成分を制御する第2の電流制御部と、
を備え、
前記単相永久磁石同期モータの駆動状態に応じて前記モータ電流の無効電力成分を制御する
請求項1から3の何れか1項に記載のモータ駆動装置。
The inverter control unit includes:
A coordinate conversion unit that performs coordinate conversion of the motor current into an active power component and a reactive power component,
A second current control unit that controls a reactive power component of the motor current;
With
The motor drive device according to any one of claims 1 to 3, wherein a reactive power component of the motor current is controlled according to a drive state of the single-phase permanent magnet synchronous motor.
前記単相永久磁石同期モータの駆動状態とは、前記単相永久磁石同期モータに流れるモータ電流である請求項5に記載のモータ駆動装置。   The motor drive device according to claim 5, wherein the driving state of the single-phase permanent magnet synchronous motor is a motor current flowing through the single-phase permanent magnet synchronous motor. 前記単相永久磁石同期モータの駆動状態とは、前記単相永久磁石同期モータの回転数である請求項5に記載のモータ駆動装置。   The motor drive device according to claim 5, wherein the driving state of the single-phase permanent magnet synchronous motor is a rotation speed of the single-phase permanent magnet synchronous motor. 前記インバータ制御部は、前記モータ電流の有効電力成分と前記モータ電流の無効電力成分を補正する電流補正部を備え、
前記電流補正部は、前記モータ電流と前記単相永久磁石同期モータのロータ回転位置に応じて前記有効電力成分および前記無効電力成分のうちの少なくとも1つを補正する
請求項1から7の何れか1項に記載のモータ駆動装置。
The inverter control unit includes a current correction unit that corrects the active power component of the motor current and the reactive power component of the motor current,
The current correction unit corrects at least one of the active power component and the reactive power component according to the motor current and a rotor rotation position of the single-phase permanent magnet synchronous motor. 2. The motor drive device according to claim 1.
前記インバータ制御部は、前記モータ電流の有効電力成分の瞬時値および前記モータ電流の無効電力成分の瞬時値のうちの少なくとも1つが一定となるように制御する
請求項8に記載のモータ駆動装置。
The motor drive device according to claim 8, wherein the inverter control unit controls at least one of an instantaneous value of an active power component of the motor current and an instantaneous value of a reactive power component of the motor current to be constant.
前記インバータ制御部は、風量指令値を生成する風量指令値生成部を備え、
前記風量指令値生成部は、前記単相永久磁石同期モータに供給する有効電力の瞬時値に応じて風量指令値を生成する
請求項1から7の何れか1項に記載のモータ駆動装置。
The inverter control unit includes an air volume command value generation unit that generates an air volume command value,
The motor drive device according to any one of claims 1 to 7, wherein the air volume command value generation unit generates an air volume command value according to an instantaneous value of active power supplied to the single-phase permanent magnet synchronous motor.
請求項1から10の何れか1項に記載のモータ駆動装置を搭載した電気掃除機。   An electric vacuum cleaner equipped with the motor drive device according to claim 1. 請求項1から10の何れか1項に記載のモータ駆動装置を搭載したハンドドライヤー。   A hand dryer equipped with the motor drive device according to claim 1.
JP2019211277A 2019-11-22 2019-11-22 Motor drive, vacuum cleaner and hand dryer Active JP6815470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019211277A JP6815470B2 (en) 2019-11-22 2019-11-22 Motor drive, vacuum cleaner and hand dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019211277A JP6815470B2 (en) 2019-11-22 2019-11-22 Motor drive, vacuum cleaner and hand dryer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018209809A Division JP6622887B2 (en) 2018-11-07 2018-11-07 Motor drive, vacuum cleaner and hand dryer

Publications (2)

Publication Number Publication Date
JP2020043758A true JP2020043758A (en) 2020-03-19
JP6815470B2 JP6815470B2 (en) 2021-01-20

Family

ID=69798907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019211277A Active JP6815470B2 (en) 2019-11-22 2019-11-22 Motor drive, vacuum cleaner and hand dryer

Country Status (1)

Country Link
JP (1) JP6815470B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155299A (en) * 1996-11-22 1998-06-09 Matsushita Electric Ind Co Ltd Power generating device and cleaner utilizing the device
JP2003204694A (en) * 2001-03-02 2003-07-18 Matsushita Electric Ind Co Ltd Motor controller
JP2005013460A (en) * 2003-06-26 2005-01-20 Matsushita Electric Ind Co Ltd Rechargeable vacuum cleaner
JP2009044873A (en) * 2007-08-09 2009-02-26 Mitsubishi Electric Corp Electric motor driver, compressor drive device, and compressor
JP2014211877A (en) * 2013-04-19 2014-11-13 ダイソン テクノロジー リミテッド Air moving electrical appliance with on-board diagnostics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155299A (en) * 1996-11-22 1998-06-09 Matsushita Electric Ind Co Ltd Power generating device and cleaner utilizing the device
JP2003204694A (en) * 2001-03-02 2003-07-18 Matsushita Electric Ind Co Ltd Motor controller
JP2005013460A (en) * 2003-06-26 2005-01-20 Matsushita Electric Ind Co Ltd Rechargeable vacuum cleaner
JP2009044873A (en) * 2007-08-09 2009-02-26 Mitsubishi Electric Corp Electric motor driver, compressor drive device, and compressor
JP2014211877A (en) * 2013-04-19 2014-11-13 ダイソン テクノロジー リミテッド Air moving electrical appliance with on-board diagnostics

Also Published As

Publication number Publication date
JP6815470B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
JP6434647B2 (en) Motor drive, vacuum cleaner and hand dryer
CN106505527A (en) Motor drive protection device, over-voltage protection method and transducer air conditioning
JP4983322B2 (en) Motor drive device
JP7213196B2 (en) MOTOR DRIVE DEVICE, OUTDOOR UNIT OF AIR CONDITIONER USING THE SAME, MOTOR DRIVE CONTROL METHOD
JP6374662B2 (en) Motor equipment
JP2010068581A (en) Electric motor drive unit
JP6577665B2 (en) Motor drive device, vacuum cleaner and hand dryer
JP6896032B2 (en) Motor drive, vacuum cleaner and hand dryer
JP2010098854A (en) Controller of motor, and refrigeration apparatus and air conditioner using the same
JP2013126284A (en) Electric motor drive apparatus
WO2020095377A1 (en) Load driving device, refrigeration cycle device, and air conditioner
JP2003111480A (en) Electric motor driving device
JP6622887B2 (en) Motor drive, vacuum cleaner and hand dryer
JP6815470B2 (en) Motor drive, vacuum cleaner and hand dryer
JP5078925B2 (en) Electric motor drive device and equipment
JP6490540B2 (en) Rotation position detection device, air conditioner, and rotation position detection method
JP2019057979A (en) Motor control device and air conditioner
CN108736754B (en) Power conversion device and air conditioner
WO2023095311A1 (en) Power conversion device, electric motor drive device, and refrigeration-cycle-applicable apparatus
WO2023105689A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle application device
WO2023105761A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle-applicable apparatus
WO2024069811A1 (en) Motor drive device and refrigeration cycle instrument
WO2023047486A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle-applicable apparatus
KR20090049854A (en) Motor controller of air conditioner
JP2010288348A (en) Controller for synchronous motor, and freezer and air conditioner using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201222

R150 Certificate of patent or registration of utility model

Ref document number: 6815470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250