JP2020041966A - Steel plate quality evaluation method - Google Patents

Steel plate quality evaluation method Download PDF

Info

Publication number
JP2020041966A
JP2020041966A JP2018171217A JP2018171217A JP2020041966A JP 2020041966 A JP2020041966 A JP 2020041966A JP 2018171217 A JP2018171217 A JP 2018171217A JP 2018171217 A JP2018171217 A JP 2018171217A JP 2020041966 A JP2020041966 A JP 2020041966A
Authority
JP
Japan
Prior art keywords
steel plate
thick steel
joined
joining member
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018171217A
Other languages
Japanese (ja)
Other versions
JP7119805B2 (en
Inventor
鉄平 大川
Teppei Okawa
鉄平 大川
祐介 島田
Yusuke Shimada
祐介 島田
直樹 小田
Naoki Oda
直樹 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018171217A priority Critical patent/JP7119805B2/en
Publication of JP2020041966A publication Critical patent/JP2020041966A/en
Application granted granted Critical
Publication of JP7119805B2 publication Critical patent/JP7119805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

To provide a method for evaluating the quality of steel plate simply with high accuracy.SOLUTION: Provided is a method for evaluating the quality of steel plate used in a welded structure 10, the welded structure 10 including a T joint part where, while the end face 11c of a joint member 11 is in contact with the face 12a to which to be jointed of a member 12 to which to be jointed, the joint member 11 is penetration welded for both ends into the member 12 to which to be jointed. The steel plate quality evaluation method includes: sampling, from a steel plate in thickness of 50 mm or more that constitutes the joint member 11 or the member 12 to which to be jointed, a tabular test piece the thickness direction of which matches the plate thickness direction of the steel plate and which includes a portion of region from the surface of the steel plate to a depth of 5 mm; measuring a nil-ductility transition temperature by an NRL drop test using the tabular test piece; and determining the brittle crack arrest characteristic of the steel plate that constitutes the joint member 11 or the member 12 to which to be jointed, on the basis of the nil-ductility transition temperature.SELECTED DRAWING: Figure 4

Description

本発明は、厚鋼板の品質評価方法に係り、特に、コンテナ船等に利用される溶接構造体用の厚鋼板の品質評価方法に関する。   The present invention relates to a method for evaluating the quality of a thick steel plate, and more particularly to a method for evaluating the quality of a thick steel plate for a welded structure used for a container ship or the like.

大量の貨物を搭載する大型のコンテナ船においては、アッパーデッキ(上甲板)に、貨物の積み下ろしを行うための大きな開口部(ハッチ)が形成されている。また、アッパーデッキ上には、海水の流入防止等のために、ハッチを囲むようにハッチサイドコーミングが設けられている。アッパーデッキおよびハッチサイドコーミングはそれぞれ、複数の鋼板を溶接して構成されている。また、ハッチサイドコーミングは、アッパーデッキ上に溶接されている。   In a large container ship carrying a large amount of cargo, a large opening (hatch) for loading and unloading cargo is formed in the upper deck (upper deck). A hatch side combing is provided on the upper deck so as to surround the hatch in order to prevent inflow of seawater and the like. Each of the upper deck and the hatch side combing is configured by welding a plurality of steel plates. The hatch side combing is welded on the upper deck.

上記のような大型のコンテナ船が海上を航行する際には、波浪によって、船体全体を曲げるような荷重(縦曲げ荷重)が船体に付加される。このような荷重に対して、船体の強度(縦曲げ強度)を十分に確保するために、アッパーデッキおよびハッチサイドコーミングには、高強度の厚肉鋼板が利用されている。   When a large container ship as described above sails on the sea, a load (longitudinal bending load) that bends the entire hull is applied to the hull by waves. In order to sufficiently secure the strength (longitudinal bending strength) of the hull against such a load, a high-strength thick steel plate is used for the upper deck and the hatch side combing.

また、上述のように、ハッチサイドコーミングおよびアッパーデッキはそれぞれ、複数の鋼板を溶接した構成を有している。言い換えると、ハッチサイドコーミングおよびアッパーデッキには、鋼板同士を溶接するための複数の溶接部が形成されている。溶接部で発生したき裂は、溶接部に沿って伝播しやすい。   As described above, each of the hatch side combing and the upper deck has a configuration in which a plurality of steel plates are welded. In other words, a plurality of welds for welding steel plates are formed in the hatch side combing and the upper deck. Cracks generated at the weld are likely to propagate along the weld.

このため、例えば、ハッチサイドコーミングの溶接部においてき裂が発生した場合、そのき裂が溶接部に沿ってアッパーデッキ側に向かって伝播し、伝播したき裂がアッパーデッキの溶接部に進展する場合がある。また、上記の例だけでなく、き裂がアッパーデッキから発生しハッチサイドコーミング側に向かって伝播する可能性もある。   For this reason, for example, when a crack occurs at the welded portion of the hatch side combing, the crack propagates along the welded portion toward the upper deck, and the propagated crack propagates to the welded portion of the upper deck. There are cases. Further, in addition to the above example, a crack may be generated from the upper deck and propagated toward the hatch side combing side.

したがって、船体の強度を十分に向上させるためには、ハッチサイドコーミングおよびアッパーデッキが、上記のようなき裂の進展を停止させることができる特性(脆性き裂伝播停止特性)を有する必要がある。   Therefore, in order to sufficiently improve the strength of the hull, it is necessary that the hatch side combing and the upper deck have a characteristic capable of stopping the growth of a crack as described above (brittle crack propagation stopping characteristic).

従来、ハッチサイドコーミングおよびアッパーデッキに用いられる厚鋼板の脆性き裂伝播停止特性を評価する場合には、ESSO試験(脆性破壊伝播停止試験:試験片に脆性き裂を人為的に発生させ、脆性き裂を停止させる性能を評価する試験)などの大型試験が実施されていた。   Conventionally, when evaluating the brittle crack propagation arresting property of a thick steel plate used for hatch side combing and upper deck, an ESSO test (brittle fracture arresting test: a brittle crack is artificially generated in a test piece and the brittle A large-scale test such as a test for evaluating the ability to stop a crack was conducted.

しかしながら、大型試験を実施するためには、多くの時間と費用とを必要とするため、脆性き裂伝播停止特性の評価が容易でないという問題があった。そのようなことを背景として、例えば、特許文献1および2には、小型試験片を用いた脆性き裂伝播停止特性の評価方法が提案されている。   However, there is a problem that it is not easy to evaluate brittle crack propagation arresting characteristics because a large amount of time and cost are required to perform a large-scale test. Against this background, for example, Patent Literatures 1 and 2 propose a method for evaluating brittle crack propagation arrestability using a small test piece.

特開2012−52873号公報JP 2012-52873 A 国際公開第2014/208072号International Publication No. 2014/208072

しかしながら、特許文献1に記載される方法では、厚鋼板の板厚方向の各位置から試験片を採取し、シャルピー衝撃試験を実施する必要があるため、簡便さの点において不十分である。また、特許文献2に記載される方法では、厚鋼板の板厚中心部から採取した試験片により評価を行うため、正確に脆性き裂伝播停止特性を評価することができないという問題がある。   However, the method described in Patent Literature 1 is insufficient in terms of simplicity because it is necessary to collect a test piece from each position in the thickness direction of a thick steel plate and perform a Charpy impact test. Further, in the method described in Patent Document 2, since evaluation is performed using a test piece taken from the central part of the thickness of a thick steel plate, there is a problem that the brittle crack propagation stopping characteristics cannot be accurately evaluated.

本発明は、このような問題を解決するためになされたものであり、高精度かつ簡便に厚鋼板の品質を評価する方法を提供することを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a method for evaluating the quality of a thick steel plate with high accuracy and ease.

本発明は、下記の厚鋼板の品質評価方法を要旨とする。   The gist of the present invention is the following method for evaluating the quality of a thick steel plate.

(1)溶接構造体に用いられる厚鋼板の品質評価方法であって、
前記溶接構造体は、板状の接合部材の端面が板状の被接合部材の被接合面に当接した状態で、前記接合部材が前記被接合部材に両側部分溶込み溶接されたT継手部を有するものであり、
前記接合部材または前記被接合部材となる板厚50mm以上の厚鋼板から、前記厚鋼板の板厚方向と厚さ方向が一致し、かつ前記厚鋼板の表面から5mm深さまでの領域の一部を含む板状試験片を採取し、
前記板状試験片を用いて、NRL落重試験による無延性遷移温度を測定し、
前記無延性遷移温度に基づいて、前記接合部材または前記被接合部材となる前記厚鋼板の脆性き裂伝播停止特性を判定する、
厚鋼板の品質評価方法。
(1) A quality evaluation method for a thick steel plate used for a welded structure,
The welding structure includes a T-joint portion in which the joining member is partially penetrated and welded to the joined member in a state where an end surface of the plate-shaped joining member is in contact with the joined surface of the plate-shaped joined member. Which has
From a thick steel plate having a thickness of 50 mm or more serving as the joining member or the member to be joined, a part of a region in which the thickness direction of the thick steel plate coincides with the thickness direction and a depth of 5 mm from the surface of the thick steel plate. Take a plate-like test piece containing
Using the plate-shaped test piece, measure the non-ductile transition temperature by the NRL drop weight test,
Based on the non-ductile transition temperature, determine the brittle crack propagation arresting property of the thick steel plate to be the joining member or the member to be joined,
Quality evaluation method for thick steel plates.

(2)前記接合部材となる前記厚鋼板の品質評価方法であって、
前記板状試験片は、前記接合部材となる前記厚鋼板の板厚方向と直交する一表面から5mm深さまでの領域の一部を含むように採取され、
NRL落重試験により測定された前記無延性遷移温度をNDTT(℃)とし、前記両側部分溶込み溶接によって前記一表面側に形成される溶接部の熱影響部の最頂点と前記一表面との前記接合部材の板厚方向の距離をh(mm)とした場合に、
下記(i)式および(ii)式を満足する場合に、前記接合部材となる前記厚鋼板が脆性き裂伝播停止特性に優れると判定する、
上記(1)に記載の厚鋼板の品質評価方法。
NDTT≦−60 ・・・(i)
NDTT≦−30.5×ln(h)−14.0 ・・・(ii)
(2) A method for evaluating the quality of the steel plate serving as the joining member,
The plate-shaped test piece is collected so as to include a part of a region from one surface orthogonal to a thickness direction of the thick steel plate to be the joining member to a depth of 5 mm,
The non-ductility transition temperature measured by the NRL drop weight test is defined as NDTT (° C.), and the highest point of the heat-affected zone of the welded portion formed on the one surface side by the both-side partial penetration welding and the one surface. When the distance in the thickness direction of the joining member is h (mm),
When satisfying the following formulas (i) and (ii), it is determined that the thick steel plate serving as the joining member has excellent brittle crack propagation stopping characteristics.
The quality evaluation method of a thick steel plate according to the above (1).
NDTT ≦ −60 (i)
NDTT ≦ −30.5 × ln (h) −14.0 (ii)

(3)前記被接合部材となる前記厚鋼板の品質評価方法であって、
前記板状試験片は、前記被接合部材となる前記厚鋼板の前記被接合面に対応する一表面から5mm深さまでの領域の一部を含むように採取され、
NRL落重試験により測定された前記無延性遷移温度をNDTT(℃)とし、前記接合部材の前記端面に垂直な方向における長さをH(mm)、予め設定される前記接合部材の許容応力をσ(N/mm)とした場合に、
下記(iii)式を満足する場合に、前記被接合部材となる前記厚鋼板が脆性き裂伝播停止特性に優れると判定する、
上記(1)に記載の厚鋼板の品質評価方法。
NDTT≦360.4−46.8×ln{σ(πH)0.5} ・・・(iii)
(3) A quality evaluation method of the thick steel plate to be the member to be joined,
The plate-shaped test piece is collected so as to include a part of a region from one surface corresponding to the surface to be joined of the thick steel plate to be the member to be joined to a depth of 5 mm,
The non-ductility transition temperature measured by the NRL drop weight test is NDTT (° C.), the length of the joining member in a direction perpendicular to the end face is H (mm), and a predetermined allowable stress of the joining member is σ (N / mm 2 ),
When satisfying the following formula (iii), it is determined that the thick steel plate as the member to be joined is excellent in brittle crack propagation arresting properties,
The quality evaluation method of a thick steel plate according to the above (1).
NDTT ≦ 360.4−46.8 × ln {σ (πH) 0.5 } (iii)

本発明によれば、脆性き裂伝播停止特性に優れた溶接構造体を得るために必要な厚鋼板の品質を、高精度かつ簡便に評価することが可能である。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to evaluate the quality of the thick steel plate required for obtaining the welded structure excellent in brittle crack propagation stopping characteristics with high accuracy and simply.

本発明の一実施形態に係る品質評価の対象となる厚鋼板によって構成される溶接構造体を示す斜視図である。It is a perspective view showing the welding structure constituted by the thick steel plate used as the object of quality evaluation concerning one embodiment of the present invention. 本発明の一実施形態に係る品質評価の対象となる厚鋼板によって構成される他の溶接構造体を示す斜視図である。It is a perspective view which shows the other welding structure comprised by the thick steel plate used as the object of quality evaluation which concerns on one Embodiment of this invention. 本発明の一実施形態に係る品質評価の対象となる厚鋼板によって構成される他の溶接構造体を示す斜視図である。It is a perspective view which shows the other welding structure comprised by the thick steel plate used as the object of quality evaluation which concerns on one Embodiment of this invention. 溶接構造体の断面図である。It is sectional drawing of a welding structure. 実施例1における構造モデルアレスト試験体の形状を説明するための図である。FIG. 3 is a view for explaining the shape of a structural model arrest specimen in Example 1. 実施例2における構造モデルアレスト試験体の形状を説明するための図である。FIG. 9 is a view for explaining the shape of a structural model arrest specimen in Example 2.

本発明者らが上記の課題を解決するために検討を行った結果、以下の知見を得るに至った。   The present inventors have conducted studies to solve the above problems, and as a result, have obtained the following knowledge.

ハッチサイドコーミングからアッパーデッキ側に向かってき裂が伝播する場合においては、アッパーデッキ(被接合部材)に脆性き裂伝播停止特性が求められる。そして、被接合部材の全厚にわたって脆性き裂伝播停止特性を向上させるためには、例えば、脆性き裂伝播停止特性の指標である−10℃におけるKca値が6000N/mm1.5以上の鋼板を被接合部材として用いる必要がある。Kca値はESSO試験により評価される厚鋼板の全厚の脆性き裂伝播停止特性の指標である。 When a crack propagates from the hatch side combing toward the upper deck, the upper deck (member to be joined) is required to have brittle crack propagation stopping characteristics. In order to improve the brittle crack propagation arresting property over the entire thickness of the member to be joined, for example, a steel sheet having a Kca value at −10 ° C. which is an index of the brittle crack arresting property is 6000 N / mm 1.5 or more. Must be used as a member to be joined. The Kca value is an index of the brittle crack propagation arresting property of the entire thickness of the thick steel plate evaluated by the ESSO test.

さらに、アッパーデッキからハッチサイドコーミング側に向かってき裂が伝播する場合においては、ハッチサイドコーミング(接合部材)には、Kca値が8000N/mm1.5以上の鋼板を用いる必要がある。しかしながら、6000N/mm1.5以上または8000N/mm1.5以上といったKca値を有する厚鋼板の製造は容易ではなく、厚鋼板の製造コストが高くなるという問題がある。 Furthermore, when a crack propagates from the upper deck toward the hatch side combing side, it is necessary to use a steel plate having a Kca value of 8000 N / mm 1.5 or more for the hatch side combing (joining member). However, the manufacture of thick steel plate having a Kca value say 6000 N / mm 1.5 or more, or 8000 N / mm 1.5 or more is not easy, there is a problem that the manufacturing cost of the steel plate is increased.

そこで本発明者らが検討を重ねた結果、き裂の突入領域である厚鋼板の表層領域における脆性き裂伝播停止特性を向上させることによって、接構造体全体での脆性き裂伝播停止特性を低コストで向上させることが可能になることが分かった。   Therefore, as a result of repeated studies by the present inventors, by improving the brittle crack propagation arresting property in the surface layer region of the thick steel plate, which is the crack intrusion area, the brittle crack propagation arresting property of the entire contact structure is improved. It has been found that it can be improved at low cost.

言い換えれば、厚鋼板の全厚ではなく、表層部における脆性き裂伝播停止特性の評価のみを行うことによって、溶接構造体に用いられる厚鋼板の品質を高精度かつ簡便に評価することが可能となる。   In other words, it is possible to evaluate the quality of the thick steel plate used for the welded structure with high precision and ease by performing only the evaluation of the brittle crack propagation arresting property in the surface layer, not the total thickness of the thick steel plate. Become.

本発明は上記の知見に基づいてなされたものである。以下、本発明の一実施形態に係る厚鋼板の品質評価方法について説明する。   The present invention has been made based on the above findings. Hereinafter, a method for evaluating the quality of a thick steel plate according to an embodiment of the present invention will be described.

1.溶接構造体の構成
本発明は、溶接構造体に用いられる厚鋼板の品質評価方法に関するものである。図1は、本発明の一実施形態に係る品質評価の対象となる厚鋼板によって構成される溶接構造体を示す斜視図である。溶接構造体10は、接合部材11および被接合部材12を備えている。接合部材11は板状であり、板厚方向に直交する一対の表面11a,11bを有する。また、被接合部材12は板状であり、接合部材11の端面11cが当接される被接合面12aを有する。
1. TECHNICAL FIELD The present invention relates to a method for evaluating the quality of a thick steel plate used for a welded structure. FIG. 1 is a perspective view showing a welded structure constituted by a thick steel plate to be subjected to quality evaluation according to one embodiment of the present invention. The welded structure 10 includes a joining member 11 and a joined member 12. The joining member 11 is plate-shaped, and has a pair of surfaces 11a and 11b orthogonal to the plate thickness direction. The member to be joined 12 has a plate shape, and has a surface to be joined 12a with which the end face 11c of the joining member 11 is brought into contact.

そして、図1に示すように、溶接構造体10は、端面11cが被接合面12aに当接した状態で、接合部材11が被接合部材12に両側部分溶込み溶接されたT継手部を有する。なお、上記のT継手部を有する溶接構造体には、図1に示すようなT字状の構造体に加えて、例えば、図2および3に示す形状の構造体も含まれる。   Then, as shown in FIG. 1, the welded structure 10 has a T-joint portion in which the joining member 11 is partially penetrated and welded to the joined member 12 in a state where the end face 11c is in contact with the joined surface 12a. . In addition, in addition to the T-shaped structure as shown in FIG. 1, the welded structure having the T-joint includes, for example, a structure having a shape shown in FIGS.

また、接合部材11と被接合部材12とが、隅肉溶接によって接合されるものであってもよいし、接合強度の観点から、接合部材11に開先を設け、開先溶接によって接合されるものであってもよい。図1〜3に示すように、溶接構造体10には、表面11a,11bのそれぞれの側に溶接部13a,13bが形成される。   Further, the joining member 11 and the member to be joined 12 may be joined by fillet welding, or from the viewpoint of joining strength, a groove is provided in the joining member 11 and joined by groove welding. It may be something. As shown in FIGS. 1 to 3, the welded structure 10 has welds 13 a and 13 b formed on respective sides of the surfaces 11 a and 11 b.

本発明においては、接合部材11または被接合部材12となる厚鋼板の品質評価を行う。以下、各工程について詳しく説明する。なお、本発明において、厚鋼板とは、板厚が50mm以上である鋼板を意味する。   In the present invention, quality evaluation of a thick steel plate to be the joining member 11 or the member to be joined 12 is performed. Hereinafter, each step will be described in detail. In addition, in this invention, a thick steel plate means the steel plate whose board thickness is 50 mm or more.

2.試験片採取工程
まず、接合部材11または被接合部材12となる厚鋼板から、板状試験片を採取する。板状試験片は、厚鋼板の表層部から採取する。具体的には、厚鋼板の板厚方向と厚さ方向が一致し、かつ厚鋼板の表面から5mm深さまでの領域の一部を含むように採取する必要がある。
2. Test Piece Sampling Step First, a plate-shaped test piece is sampled from a thick steel plate to be the joining member 11 or the member to be joined 12. The plate-shaped test piece is collected from the surface layer of a thick steel plate. Specifically, it is necessary to collect the thick steel plate so that the thickness direction of the thick steel plate coincides with the thickness direction and includes a part of a region from the surface of the thick steel plate to a depth of 5 mm.

また、後述するように、本発明に係る方法においては、板状試験片の長手方向と垂直な面においてき裂が発生するように試験を行う。溶接構造体において、き裂は溶接部13a,13bの延伸方向(図1に示されるY方向)と垂直な面において発生する。そのため、板状試験片は、その長手方向が溶接構造体のY方向となる方向と一致するように採取することが好ましい。   Further, as described later, in the method according to the present invention, the test is performed such that a crack is generated on a plane perpendicular to the longitudinal direction of the plate-shaped test piece. In the welded structure, cracks occur in a plane perpendicular to the direction of extension of the welds 13a and 13b (the Y direction shown in FIG. 1). Therefore, it is preferable that the plate-shaped test piece is collected so that its longitudinal direction coincides with the direction in which the Y direction of the welded structure is provided.

試験片の形状および寸法について、特に制限は設けないが、ASTM E208に規定されるタイプP1〜P3試験片を採用することが好ましい。なかでも、最も小型なタイプP3試験片を採用することが好ましい。タイプP3試験片とは、長さ130mm、幅50mm、厚さ16mmの試験片である。   There is no particular limitation on the shape and dimensions of the test piece, but it is preferable to use type P1 to P3 test pieces specified in ASTM E208. Among them, it is preferable to use the smallest type P3 test piece. The type P3 test piece is a test piece having a length of 130 mm, a width of 50 mm, and a thickness of 16 mm.

例えば、上記のタイプP3試験片を採取するに際しては、上述のように、厚鋼板の板厚方向と厚さ方向が一致し、かつ厚鋼板の表面から5mm深さまでの領域の一部を含む限り、どの位置から採取してもよい。例えば、厚鋼板の表面から16mm深さ位置までの領域において採取してもよい。または、厚鋼板の表面を1mm削り取った後、1mm深さ位置から17mm深さ位置までの領域において採取してもよい。   For example, when collecting the above type P3 test piece, as described above, as long as the thickness direction of the thick steel plate coincides with the thickness direction and includes a part of the region from the surface of the thick steel plate to a depth of 5 mm. , From any location. For example, it may be collected in a region from the surface of the thick steel plate to a depth of 16 mm. Alternatively, after the surface of the thick steel plate is shaved by 1 mm, the steel plate may be sampled in a region from a depth of 1 mm to a depth of 17 mm.

接合部材11となる厚鋼板の品質評価を行う場合においては、接合部材11となる厚鋼板の板厚方向と直交する一表面から5mm深さまでの領域の一部を含むように、板状試験片を採取する。接合部材11となる厚鋼板の板厚方向と直交する一表面とは、上述した接合部材11が有する表面11a,11bのいずれか一方に対応する面である。   In the case where the quality evaluation of the thick steel plate to be the joining member 11 is performed, the plate-shaped test piece is included so as to include a part of a region from one surface orthogonal to the thickness direction of the thick steel plate to be the joining member 11 to a depth of 5 mm. Collect. The one surface orthogonal to the thickness direction of the thick steel plate serving as the joining member 11 is a surface corresponding to one of the surfaces 11a and 11b of the joining member 11 described above.

一方、被接合部材12となる厚鋼板の品質評価を行う場合においては、被接合部材12となる厚鋼板の被接合面12aに対応する一表面から5mm深さまでの領域の一部を含むように、板状試験片を採取する。   On the other hand, in the case where the quality evaluation of the thick steel plate serving as the member to be joined 12 is performed, a part of a region from one surface corresponding to the surface 12a to be joined of the thick steel plate serving as the member to be joined 12 to a depth of 5 mm is included. Then, a plate-shaped test piece is collected.

3.無延性遷移温度測定工程
次に、上記の板状試験片を用いて無延性遷移温度NDTT(℃)を測定する。本発明において、無延性遷移温度NDTT(℃)は、ASTM E208に準拠したNRL落重試験を実施することにより測定する。NRL落重試験について詳しく説明する。
3. Next, a non-ductile transition temperature NDTT (° C.) is measured using the above-described plate-shaped test piece. In the present invention, the non-ductile transition temperature NDTT (° C.) is measured by performing an NRL drop weight test based on ASTM E208. The NRL drop weight test will be described in detail.

まず、上記板状試験片の厚さ方向に垂直な面であって、厚鋼板の表面側であった面上に、板状試験片の長手方向に平行な方向に延びる溶接ビードを形成する。その際、溶接材料はASTM E208に規定される靱性の低い溶接材料を使用する。溶接ビードの長さは60〜70mm、幅は12〜16mmの範囲となるよう調整する。そして、溶接ビード上に板状試験片の幅方向に平行な切欠きを形成する。この時、切欠きの幅は1.5mm以下とし、切欠きの溝底と板状試験片との距離が1.8〜2.0mmの範囲となるよう調整する。   First, a weld bead extending in a direction parallel to the longitudinal direction of the plate-shaped test piece is formed on a surface perpendicular to the thickness direction of the plate-shaped test piece, which is a surface side of the thick steel plate. At that time, a welding material having low toughness specified in ASTM E208 is used. The length of the weld bead is adjusted to be in the range of 60 to 70 mm, and the width is adjusted to be in the range of 12 to 16 mm. Then, a notch parallel to the width direction of the plate-shaped test piece is formed on the weld bead. At this time, the width of the notch is 1.5 mm or less, and the distance between the groove bottom of the notch and the plate-shaped test piece is adjusted to be in a range of 1.8 to 2.0 mm.

そして、上記板状試験片の溶接ビードを形成した面を下側に向け、長さ方向の両端部を支持した後、溶接ビードを形成したのと反対側の面に対して、落重による衝撃曲げ荷重を加える。その後、切欠きから発生した脆性き裂が試験片を伝播した状態を調べることで、Break(き裂伝播あり)またはNo Break(き裂伝播なし)を判定する。切欠から発生した脆性き裂が試験片の表面を試験片幅方向に伝播してその端部まで進行した場合、試験結果はBreak(き裂伝播あり)と判定される。幅方向の端部にき裂が達しなかった場合、試験結果はNo Break(き裂伝播なし)と判定される。   Then, after the surface on which the weld bead is formed of the plate-shaped test piece is directed downward and both ends in the longitudinal direction are supported, the impact due to the falling load is applied to the surface on the opposite side of the plate where the weld bead is formed. Apply bending load. Thereafter, Break (no crack propagation) or No Break (no crack propagation) is determined by examining the state in which the brittle crack generated from the notch has propagated through the test piece. If the brittle crack generated from the notch propagates on the surface of the test piece in the width direction of the test piece and proceeds to the end, the test result is determined to be Break (crack propagation). If no crack reaches the end in the width direction, the test result is determined to be No Break (no crack propagation).

上記の落重試験の結果から無延性遷移温度を特定する方法については、特に制限する必要はない。例えば、2個ずつの板状試験片を用いて、−100℃の条件から開始して、5℃間隔で試験温度を変化させながら(No Breakの場合は5℃低下、Breakの場合は5℃上昇)、2個の板状試験片ともにNo Breakが得られた最も低い試験温度から5℃低い温度を無延性遷移温度とすることができる。   There is no need to particularly limit the method of specifying the non-ductile transition temperature from the results of the above-mentioned drop test. For example, using two plate-shaped test pieces, starting from the condition of −100 ° C., changing the test temperature at 5 ° C. intervals (5 ° C. decrease for No Break, 5 ° C. for Break) Ascending) For both of the two plate-shaped test pieces, a temperature lower by 5 ° C. than the lowest test temperature at which No Break was obtained can be set as the non-ductile transition temperature.

4.脆性き裂伝播停止特性判定工程
以上の工程によって得られた無延性遷移温度に基づいて、厚鋼板が脆性き裂伝播停止特性に優れるか否かの判定を行う。具体的な判定方法については特に制限はないが、例えば、接合部材となる厚鋼板の品質評価を行う場合、または被接合部材となる厚鋼板の品質評価を行う場合のそれぞれにおいて、以下のように判定することができる。
4. Brittle Crack Propagation Stopping Characteristic Determination Step Based on the non-ductile transition temperature obtained by the above steps, it is determined whether or not a thick steel plate has excellent brittle crack propagation stopping properties. Although there is no particular limitation on the specific determination method, for example, in the case of performing quality evaluation of a thick steel plate serving as a joining member, or in the case of performing quality evaluation of a thick steel plate serving as a member to be joined, respectively, as follows: Can be determined.

4−1.接合部材となる厚鋼板の品質評価を行う場合について
き裂が被接合部材から接合部材側に向かって伝播する場合において、き裂が突入する領域の深さは、接合部材および被接合部材の接合箇所の構造に大きく依存する。
4-1. Regarding quality evaluation of thick steel plate as a joining member When a crack propagates from a member to be joined toward the joining member, the depth of the area where the crack enters is determined by the joining of the joining member and the joining member. It largely depends on the structure of the part.

図4を用いて、接合部材の表層部の構造について詳しく説明する。図4は、溶接構造体10の、表面11aおよび被接合面12aに垂直な断面図である。図4においては、図面が煩雑になることを避けるため、ハッチングは付していない。   The structure of the surface portion of the joining member will be described in detail with reference to FIG. FIG. 4 is a cross-sectional view of the welded structure 10 perpendicular to the surface 11a and the surface 12a to be joined. In FIG. 4, hatching is not used to avoid complicating the drawing.

図1および図4に示すように、接合部材11および被接合部材12の接合箇所の表面11a側には、溶接金属14aが形成されている。そして、溶接金属14aと接合部材11および被接合部材12との境界部には、熱影響部15aが形成されている。本願明細書において、溶接金属14aと熱影響部15aとを合わせた領域が溶接部13aである。   As shown in FIGS. 1 and 4, a weld metal 14 a is formed on the surface 11 a side of the joint between the joining member 11 and the member to be joined 12. A heat affected zone 15a is formed at the boundary between the weld metal 14a and the joining member 11 and the joined member 12. In the specification of the present application, a region where the weld metal 14a and the heat-affected zone 15a are combined is a welded zone 13a.

ここで、被接合部材12から発生し、接合部材11に伝播するき裂の突入領域は、表面11aから溶接部13aの熱影響部15aの最頂点までの深さに依存する。すなわち、接合部材の表層部における無延性遷移温度を、表面11aから溶接部13aの熱影響部15aの最頂点までの深さに応じて制御することによって、き裂の進展を停止することが可能になる。具体的には、表面11aから溶接部13aの熱影響部15aの最頂点までの深さが大きいほど、き裂が進展しやすくなるため、表層部における無延性遷移温度が低い厚鋼板が要求される。   Here, the intrusion region of the crack generated from the member to be joined 12 and propagated to the joint member 11 depends on the depth from the surface 11a to the highest point of the heat affected zone 15a of the welded portion 13a. That is, the crack propagation can be stopped by controlling the non-ductile transition temperature in the surface layer portion of the joining member according to the depth from the surface 11a to the highest point of the heat-affected zone 15a of the welded portion 13a. become. Specifically, as the depth from the surface 11a to the highest point of the heat-affected zone 15a of the welded portion 13a is larger, the crack is more likely to propagate, so a thick steel plate having a low non-ductile transition temperature in the surface layer is required. You.

したがって、接合部材となる厚鋼板の品質評価を行う場合においては、NRL落重試験により測定された無延性遷移温度をNDTT(℃)とし、表面11aから溶接部13aの熱影響部15aの最頂点までの接合部材11の板厚方向の距離をh(mm)とした場合に、下記(i)式および(ii)式を満足する場合に、接合部材となる厚鋼板が脆性き裂伝播停止特性に優れると判定することができる。
NDTT≦−60 ・・・(i)
NDTT≦−30.5×ln(h)−14.0 ・・・(ii)
Therefore, when quality evaluation of a thick steel plate as a joining member is performed, the non-ductile transition temperature measured by the NRL drop weight test is set to NDTT (° C.), and the top of the heat-affected zone 15a of the welded portion 13a from the surface 11a. When the distance (h) in the thickness direction of the joining member 11 is defined as h (mm) and the following formulas (i) and (ii) are satisfied, the thick steel plate serving as the joining member has a brittle crack propagation stopping property. Can be determined to be excellent.
NDTT ≦ −60 (i)
NDTT ≦ −30.5 × ln (h) −14.0 (ii)

なお、熱影響部15aの最頂点とは、熱影響部15aの板厚方向における先端を意味する。また、図4に示すように、距離hは、表面11aと、表面11aと平行でかつ熱影響部15aの板厚方向における先端を通る仮想的な面11dとの距離である。熱影響部15aの先端位置については、ナイタール腐食により現出させることで容易に判別することが可能である。   The highest point of the heat-affected zone 15a means the tip of the heat-affected zone 15a in the thickness direction. Further, as shown in FIG. 4, the distance h is a distance between the surface 11a and a virtual surface 11d that is parallel to the surface 11a and passes through the front end of the heat-affected zone 15a in the thickness direction. The position of the tip of the heat-affected zone 15a can be easily determined by exposing it by nital corrosion.

4−2.被接合部材となる厚鋼板の品質評価を行う場合について
き裂が接合部材から被接合部材側に向かって伝播する場合においては、被接合部材の接合部材側の表層部における脆性き裂伝播停止特性を、接合部材の高さおよび想定される許容応力に応じて向上させることによって、き裂の進展を停止することが可能になる。
4-2. About quality evaluation of thick steel plate as a member to be joined When a crack propagates from the joint member to the member to be joined, the brittle crack propagation arresting property at the surface layer on the joint member side of the member to be joined Is improved according to the height of the joining member and the assumed allowable stress, thereby making it possible to stop the growth of the crack.

すなわち、被接合部材の表層部における無延性遷移温度を、接合部材の高さおよび予め設定される接合部材の許容応力に応じて制御することによって、き裂の進展を停止することが可能になる。具体的には、接合部材の高さが高いほど、また、接合部材の許容応力が高いほど、き裂が進展しやすくなるため、表層部における無延性遷移温度を低くする必要がある。   That is, by controlling the non-ductile transition temperature in the surface layer portion of the member to be joined in accordance with the height of the joining member and a preset allowable stress of the joining member, it becomes possible to stop the growth of the crack. . Specifically, the higher the height of the joining member and the higher the allowable stress of the joining member, the more easily the crack is likely to propagate. Therefore, it is necessary to lower the non-ductile transition temperature in the surface layer.

したがって、被接合部材となる厚鋼板の品質評価を行う場合においては、NRL落重試験により測定された無延性遷移温度をNDTT(℃)とし、接合部材の端面に垂直な方向における長さをH(mm)、予め設定される接合部材の許容応力をσ(N/mm)とした場合に、下記(iii)式を満足する場合に、被接合部材となる厚鋼板が脆性き裂伝播停止特性に優れると判定することができる。
NDTT≦360.4−46.8×ln{σ(πH)0.5} ・・・(iii)
Therefore, when performing quality evaluation of a thick steel plate as a member to be joined, the non-ductile transition temperature measured by the NRL drop weight test is set to NDTT (° C.), and the length in a direction perpendicular to the end face of the joint member is set to H. (Mm), when the predetermined allowable stress of the joining member is σ (N / mm 2 ), and when the following formula (iii) is satisfied, the thick steel plate as the member to be joined stops brittle crack propagation. It can be determined that the characteristics are excellent.
NDTT ≦ 360.4−46.8 × ln {σ (πH) 0.5 } (iii)

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.

表1に示す板厚を有する各種鋼板を用意した後、それぞれの鋼板について、一方側の面の表層部における無延性遷移温度を調査した。具体的には、表面を1mm削り取った後、試験片の厚さ方向が、上記鋼板の板厚方向と一致するように、ASTM E208に規定されるタイプP3試験片を採取した。そして、当該試験片を用いて、ASTM E208に準拠したNRL落重試験を実施し、無延性遷移温度NDTT(℃)を求めた。   After preparing various steel plates having the plate thicknesses shown in Table 1, for each steel plate, the non-ductile transition temperature in the surface layer on one side was investigated. Specifically, after shaving the surface by 1 mm, a type P3 test piece specified by ASTM E208 was sampled so that the thickness direction of the test piece coincided with the thickness direction of the steel sheet. Then, an NRL drop weight test based on ASTM E208 was performed using the test piece to determine a non-ductile transition temperature NDTT (° C.).

その後、上記の各種鋼板を試験板(接合部材11)とし、図5に示す構造モデルアレスト試験体を作製して試験を実施した。板厚100mmの鋼板をCO溶接により接合した溶接継手を助走溶接継手(被接合部材12)とし、表1に示す条件でCO溶接または被覆アーク溶接(SMAW)により溶接構造体10を作製した。 After that, the above various steel plates were used as test plates (joining members 11), and a structural model arrest test body shown in FIG. 5 was prepared and tested. A welded joint obtained by joining a steel plate having a thickness of 100 mm by CO 2 welding was used as an approaching welded joint (member 12 to be joined), and a welded structure 10 was produced by CO 2 welding or covered arc welding (SMAW) under the conditions shown in Table 1. .

その後、溶接構造体10のフュージョンライン部16aにノッチ16bを導入した。そして、溶接構造体10を船舶設計温度である−10℃に冷却し、EH40の設計応力に相当する257MPaの試験応力を負荷し、ノッチ部近傍だけを−50℃程度に急冷し、ノッチ部に楔を介して打撃を加えて脆性き裂を発生、伝播させた。   Thereafter, a notch 16b was introduced into the fusion line portion 16a of the welded structure 10. Then, the welded structure 10 is cooled to the ship design temperature of −10 ° C., a test stress of 257 MPa corresponding to the design stress of EH40 is applied, and only the vicinity of the notch is rapidly cooled to about −50 ° C. An impact was applied through a wedge to generate and propagate a brittle crack.

試験後の構造モデルアレスト試験体を使用し、試験体長手方向の中心位置から左右に250mm離れた位置において、接合部材と被接合部材との一方側の溶接部の断面を切り出した。その後、研磨して、ナイタール腐食を施すことで溶接金属部と溶接熱影響部(溶接時にAc変態点以上に加熱された領域)を現出させた。これらの2カ所の溶接継手断面の写真をデジタルカメラによりそれぞれ撮影し、写真画像から溶接部形状を測定し、2カ所の測定結果の平均値を使用した。 Using the structural model arrest specimen after the test, a cross section of one welded portion between the joining member and the member to be joined was cut out at a position 250 mm left and right from the center in the longitudinal direction of the specimen. Thereafter, the resultant was polished and subjected to nital corrosion to reveal a weld metal portion and a weld heat affected zone (a region heated to an Ac 1 transformation point or higher during welding). The photographs of the cross sections of these two welded joints were respectively taken with a digital camera, the shape of the welded portion was measured from the photographic images, and the average value of the measurement results at the two places was used.

そして、得られた無延性遷移温度NDTT(℃)と、溶接部の熱影響部の最頂点と上記の表面との接合部材の板厚方向の距離h(mm)に基づいて、接合部材として用いた厚鋼板が脆性き裂伝播停止特性に優れるか否かの判定を行った。   Then, based on the obtained non-ductile transition temperature NDTT (° C.) and the distance h (mm) in the thickness direction of the joining member between the uppermost point of the heat-affected zone of the welded portion and the above-mentioned surface, it is used as a joining member. It was determined whether or not the thick steel plate had excellent brittle crack arrestability.

また、構造モデルアレスト試験体を用いた試験の結果については、脆性き裂が試験板で停止した場合は停止、試験板を破断した場合は伝播と判定した。それらの結果を表1にまとめて示す。   In addition, regarding the results of the test using the structural model arrest specimen, it was determined that when the brittle crack stopped at the test plate, the test was stopped, and when the test plate was broken, the propagation was determined. The results are summarized in Table 1.

Figure 2020041966
Figure 2020041966

表1から明らかなように、本発明の評価方法によって良好と判定された厚鋼板を接合部材として用いた場合には、脆性き裂が試験板で停止したのに対して、不良と判定された厚鋼板を用いた場合には、脆性き裂が接合部材まで伝播する結果となった。   As is clear from Table 1, when the thick steel sheet determined to be good by the evaluation method of the present invention was used as a joining member, the brittle crack stopped at the test plate, but was determined to be poor. When a thick steel plate was used, the result was that the brittle crack propagated to the joining member.

表2に示す板厚を有する各種鋼板を用意した後、それぞれの鋼板について、一方側の面(被接合面)の表層部における無延性遷移温度を調査した。具体的には、被接合面を1mm削り取った後、試験片の厚さ方向が、上記鋼板の板厚方向と一致するように、ASTM E208に規定されるタイプP3試験片を採取した。そして、当該試験片を用いて、ASTM E208に準拠したNRL落重試験を実施し、無延性遷移温度NDTT(℃)を求めた。   After preparing various steel plates having the plate thicknesses shown in Table 2, with respect to each steel plate, the non-ductile transition temperature in the surface layer of one surface (the surface to be joined) was examined. Specifically, after the surface to be joined was shaved off by 1 mm, a type P3 test piece specified by ASTM E208 was sampled so that the thickness direction of the test piece matched the thickness direction of the steel sheet. Then, an NRL drop weight test based on ASTM E208 was performed using the test piece to determine a non-ductile transition temperature NDTT (° C.).

その後、上記の各種鋼板を試験板(被接合部材12)とし、図6に示す構造モデルアレスト試験体を作製して試験を実施した。表2に示す高さH(mm)を有し、板厚100mmの鋼板をCO溶接により接合した溶接継手を助走溶接継手(接合部材11)とし、表2に示す条件でCO溶接または被覆アーク溶接(SMAW)により溶接構造体10を作製した。その際、接合部材11に板厚の1/3の深さの両側開先を設け、接合部材11と被接合部材12とを開先溶接により接合した。 Thereafter, the above various steel plates were used as test plates (members to be joined 12), and a structural model arrest test body shown in FIG. 6 was prepared and tested. A welding joint having a height H (mm) shown in Table 2 and a steel plate having a thickness of 100 mm joined by CO 2 welding is referred to as a run-up welding joint (joining member 11), and is subjected to CO 2 welding or coating under the conditions shown in Table 2. The welded structure 10 was produced by arc welding (SMAW). At this time, both sides of the groove having a depth of 1/3 of the plate thickness were provided on the joining member 11, and the joining member 11 and the member to be joined 12 were joined by groove welding.

その後、溶接構造体10のフュージョンライン部16aにノッチ16bを導入した。そして、溶接構造体10を船舶設計温度である−10℃に冷却し、表2に示す接合部材11の許容応力σに相当する試験応力を負荷し、ノッチ部近傍だけを−50℃程度に急冷し、ノッチ部に楔を介して打撃を加えて脆性き裂を発生、伝播させた。   Thereafter, a notch 16b was introduced into the fusion line portion 16a of the welded structure 10. Then, the welded structure 10 is cooled to a ship design temperature of −10 ° C., and a test stress corresponding to the allowable stress σ of the joining member 11 shown in Table 2 is applied, and only the vicinity of the notch portion is rapidly cooled to about −50 ° C. Then, the notch was hit through a wedge to generate and propagate a brittle crack.

そして、得られた無延性遷移温度NDTT(℃)と、接合部材の高さH(mm)および許容応力σに基づいて、被接合部材として用いた厚鋼板が脆性き裂伝播停止特性に優れるか否かの判定を行った。   Then, based on the obtained non-ductile transition temperature NDTT (° C.), the height H (mm) of the joining member and the allowable stress σ, whether the thick steel plate used as the member to be joined has excellent brittle crack propagation stopping characteristics It was determined whether or not.

また、構造モデルアレスト試験体を用いた試験の結果については、脆性き裂が試験板で停止した場合は停止、試験板を破断した場合は伝播と判定した。それらの結果を表2にまとめて示す。   In addition, regarding the results of the test using the structural model arrest specimen, it was determined that when the brittle crack stopped at the test plate, the test was stopped, and when the test plate was broken, the propagation was determined. Table 2 summarizes the results.

Figure 2020041966
Figure 2020041966

表2から明らかなように、本発明の評価方法によって良好と判定された厚鋼板を被接合部材として用いた場合には、脆性き裂が試験板で停止したのに対して、不良と判定された厚鋼板を用いた場合には、脆性き裂が被接合部材まで伝播する結果となった。   As is clear from Table 2, when a thick steel plate determined to be good according to the evaluation method of the present invention was used as a member to be joined, the brittle crack stopped at the test plate, but was determined to be defective. When a thick steel plate was used, the result was that the brittle crack propagated to the member to be joined.

以上のように、本発明によれば、脆性き裂伝播停止特性に優れた溶接構造体を得るために必要な厚鋼板の品質を、高精度かつ簡便に評価することが可能である。   As described above, according to the present invention, it is possible to easily and accurately evaluate the quality of a thick steel plate required to obtain a welded structure having excellent brittle crack arrestability.

10 溶接構造体
11 接合部材
11a,11b 表面
11c 端面
11d 仮想的な面
12 被接合部材
12a 被接合面
13a,13b 溶接部
14a,14b 溶接金属
15a,15b 熱影響部
16a フュージョンライン部
16b ノッチ
DESCRIPTION OF SYMBOLS 10 Welded structure 11 Joining member 11a, 11b Surface 11c End face 11d Virtual surface 12 Member to be joined 12a Joined surface 13a, 13b Welded part 14a, 14b Weld metal 15a, 15b Heat affected part 16a Fusion line part 16b Notch

Claims (3)

溶接構造体に用いられる厚鋼板の品質評価方法であって、
前記溶接構造体は、板状の接合部材の端面が板状の被接合部材の被接合面に当接した状態で、前記接合部材が前記被接合部材に両側部分溶込み溶接されたT継手部を有するものであり、
前記接合部材または前記被接合部材となる板厚50mm以上の厚鋼板から、前記厚鋼板の板厚方向と厚さ方向が一致し、かつ前記厚鋼板の表面から5mm深さまでの領域の一部を含む板状試験片を採取し、
前記板状試験片を用いて、NRL落重試験による無延性遷移温度を測定し、
前記無延性遷移温度に基づいて、前記接合部材または前記被接合部材となる前記厚鋼板の脆性き裂伝播停止特性を判定する、
厚鋼板の品質評価方法。
A quality evaluation method for a thick steel plate used for a welded structure,
The welding structure includes a T-joint portion in which the joining member is partially penetrated and welded to the joined member in a state where an end surface of the plate-shaped joining member is in contact with the joined surface of the plate-shaped joined member. Which has
From a thick steel plate having a thickness of 50 mm or more serving as the joining member or the member to be joined, a part of a region in which the thickness direction of the thick steel plate coincides with the thickness direction and a depth of 5 mm from the surface of the thick steel plate. Take a plate-like test piece containing
Using the plate-shaped test piece, measure the non-ductile transition temperature by the NRL drop weight test,
Based on the non-ductile transition temperature, determine the brittle crack propagation arresting property of the thick steel plate to be the joining member or the member to be joined,
Quality evaluation method for thick steel plates.
前記接合部材となる前記厚鋼板の品質評価方法であって、
前記板状試験片は、前記接合部材となる前記厚鋼板の板厚方向と直交する一表面から5mm深さまでの領域の一部を含むように採取され、
NRL落重試験により測定された前記無延性遷移温度をNDTT(℃)とし、前記両側部分溶込み溶接によって前記一表面側に形成される溶接部の熱影響部の最頂点と前記一表面との前記接合部材の板厚方向の距離をh(mm)とした場合に、
下記(i)式および(ii)式を満足する場合に、前記接合部材となる前記厚鋼板が脆性き裂伝播停止特性に優れると判定する、
請求項1に記載の厚鋼板の品質評価方法。
NDTT≦−60 ・・・(i)
NDTT≦−30.5×ln(h)−14.0 ・・・(ii)
A method for evaluating the quality of the thick steel plate serving as the joining member,
The plate-shaped test piece is collected so as to include a part of a region from one surface orthogonal to a thickness direction of the thick steel plate to be the joining member to a depth of 5 mm,
The non-ductile transition temperature measured by the NRL drop weight test is defined as NDTT (° C.), and the highest point of the heat-affected zone of the welded portion formed on the one surface side by the both-side partial penetration welding and the one surface When the distance in the thickness direction of the joining member is h (mm),
When the following formulas (i) and (ii) are satisfied, it is determined that the thick steel plate serving as the joining member has excellent brittle crack propagation stopping characteristics.
The quality evaluation method for a thick steel plate according to claim 1.
NDTT ≦ −60 (i)
NDTT ≦ −30.5 × ln (h) −14.0 (ii)
前記被接合部材となる前記厚鋼板の品質評価方法であって、
前記板状試験片は、前記被接合部材となる前記厚鋼板の前記被接合面に対応する一表面から5mm深さまでの領域の一部を含むように採取され、
NRL落重試験により測定された前記無延性遷移温度をNDTT(℃)とし、前記接合部材の前記端面に垂直な方向における長さをH(mm)、予め設定される前記接合部材の許容応力をσ(N/mm)とした場合に、
下記(iii)式を満足する場合に、前記被接合部材となる前記厚鋼板が脆性き裂伝播停止特性に優れると判定する、
請求項1に記載の厚鋼板の品質評価方法。
NDTT≦360.4−46.8×ln{σ(πH)0.5} ・・・(iii)
A quality evaluation method of the thick steel plate to be the member to be joined,
The plate-shaped test piece is collected so as to include a part of a region from one surface corresponding to the surface to be joined of the thick steel plate to be the member to be joined to a depth of 5 mm,
The non-ductile transition temperature measured by the NRL drop test is NDTT (° C.), the length in the direction perpendicular to the end face of the bonding member is H (mm), and the allowable stress of the bonding member set in advance is H σ (N / mm 2 ),
When satisfying the following formula (iii), it is determined that the thick steel plate as the member to be joined is excellent in brittle crack propagation arresting properties,
The quality evaluation method for a thick steel plate according to claim 1.
NDTT ≦ 360.4−46.8 × ln {σ (πH) 0.5 } (iii)
JP2018171217A 2018-09-13 2018-09-13 Thick steel plate quality evaluation method Active JP7119805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018171217A JP7119805B2 (en) 2018-09-13 2018-09-13 Thick steel plate quality evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018171217A JP7119805B2 (en) 2018-09-13 2018-09-13 Thick steel plate quality evaluation method

Publications (2)

Publication Number Publication Date
JP2020041966A true JP2020041966A (en) 2020-03-19
JP7119805B2 JP7119805B2 (en) 2022-08-17

Family

ID=69798094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018171217A Active JP7119805B2 (en) 2018-09-13 2018-09-13 Thick steel plate quality evaluation method

Country Status (1)

Country Link
JP (1) JP7119805B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112577820A (en) * 2020-11-24 2021-03-30 江苏科技大学 Tensile test method for T-shaped welding joint
WO2023007860A1 (en) * 2021-07-26 2023-02-02 日本製鉄株式会社 Welding structure, method for designing same, and method for constructing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543273B1 (en) * 1999-08-17 2003-04-08 The United States Of America As Represented By The Secretary Of The Navy Efficient use of metallic materials for dynamic tear testing
JP2008212992A (en) * 2007-03-05 2008-09-18 Kobe Steel Ltd T-welded joint structure having excellent fragility fracture resistance crack propagation stopping characteristics
JP2009063320A (en) * 2007-09-04 2009-03-26 Nippon Steel Corp Judge method of brittle crack propagation stopping characteristics of thick steel plate
JP2010230666A (en) * 2009-03-04 2010-10-14 Nippon Steel Corp Method for determining brittle crack propagation inhibiting performance of high-strength steel plate
JP2012052873A (en) * 2010-08-31 2012-03-15 Jfe Steel Corp Method for managing quality of thick steel plate for crack arrestor
JP2015135324A (en) * 2013-12-20 2015-07-27 新日鐵住金株式会社 Determination method of brittle crack arrest property of high strength thick steel plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543273B1 (en) * 1999-08-17 2003-04-08 The United States Of America As Represented By The Secretary Of The Navy Efficient use of metallic materials for dynamic tear testing
JP2008212992A (en) * 2007-03-05 2008-09-18 Kobe Steel Ltd T-welded joint structure having excellent fragility fracture resistance crack propagation stopping characteristics
JP2009063320A (en) * 2007-09-04 2009-03-26 Nippon Steel Corp Judge method of brittle crack propagation stopping characteristics of thick steel plate
JP2010230666A (en) * 2009-03-04 2010-10-14 Nippon Steel Corp Method for determining brittle crack propagation inhibiting performance of high-strength steel plate
JP2012052873A (en) * 2010-08-31 2012-03-15 Jfe Steel Corp Method for managing quality of thick steel plate for crack arrestor
JP2015135324A (en) * 2013-12-20 2015-07-27 新日鐵住金株式会社 Determination method of brittle crack arrest property of high strength thick steel plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112577820A (en) * 2020-11-24 2021-03-30 江苏科技大学 Tensile test method for T-shaped welding joint
WO2023007860A1 (en) * 2021-07-26 2023-02-02 日本製鉄株式会社 Welding structure, method for designing same, and method for constructing same
JP7299554B1 (en) * 2021-07-26 2023-06-28 日本製鉄株式会社 Welded structures and their design and construction methods

Also Published As

Publication number Publication date
JP7119805B2 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
Remes et al. Statistics of weld geometry for laser-hybrid welded joints and its application within notch stress approach
JP2020041966A (en) Steel plate quality evaluation method
JP6197391B2 (en) Fatigue life evaluation method for structures
Lillemäe-Avi et al. Benchmark study on considering welding-induced distortion in structural stress analysis of thin-plate structures
KR102105614B1 (en) Welding structure
JP2007098441A (en) Welded structure excellent in brittle crack propagation resistance
JP7288197B2 (en) Welded structure
JP2006088184A (en) High heat input butt-welded joint having excellent brittle fracture generation resisting property and method for verifying brittle fracture generation resisting property of high heat input butt-welded joint
JP7288196B2 (en) Welded structure
JPWO2012008056A1 (en) Welded structure with brittle crack propagation resistance
JP6562190B1 (en) Welded structure
KR102119175B1 (en) Welding structure
JP7299554B1 (en) Welded structures and their design and construction methods
KR101032542B1 (en) High heat input butt-welded joint excelling in brittle fracturing resisting performance and method of verifying brittle fracturing resisting performance of high heat input butt-welded joint
Lukács et al. Fatigue curves for aluminium alloys and their welded joints used in automotive industry
Jeyakumar et al. Defect assessment of welded specimen considering weld induced residual stresses using SINTAP procedure and FEA
JP6686951B2 (en) Evaluation method for brittle crack propagation arresting performance of thick steel plate
JP5197496B2 (en) Quality control method for brittle crack propagation stopping performance of T-shaped full penetration welded structure
JP2012052873A (en) Method for managing quality of thick steel plate for crack arrestor
JP2009180646A (en) Evaluating method of partial penetration welding in fatigue-resistant steel
Ye et al. Fatigue and static behaviour of aluminium box-stiffener lap joints
Harati Fatigue strength of welds in 800 MPa yield strength steels: Effects of weld toe geometry and residual stress
KR102047284B1 (en) Method for quantifiable test of tenacity of welded part of steel plate having taper and welding structure for quantifiable test of steel plate having taper
Mobark et al. Efficient application of S690QL type high strength steel for cyclic loaded welded structures
Burzić et al. Fatigue of high strength steel weldment in pressure vessels application, 9

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220718

R151 Written notification of patent or utility model registration

Ref document number: 7119805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151