JP2015135324A - Determination method of brittle crack arrest property of high strength thick steel plate - Google Patents

Determination method of brittle crack arrest property of high strength thick steel plate Download PDF

Info

Publication number
JP2015135324A
JP2015135324A JP2014257664A JP2014257664A JP2015135324A JP 2015135324 A JP2015135324 A JP 2015135324A JP 2014257664 A JP2014257664 A JP 2014257664A JP 2014257664 A JP2014257664 A JP 2014257664A JP 2015135324 A JP2015135324 A JP 2015135324A
Authority
JP
Japan
Prior art keywords
test
steel
temperature
brittle
brittle crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014257664A
Other languages
Japanese (ja)
Other versions
JP6341082B2 (en
Inventor
鉄平 大川
Teppei Okawa
鉄平 大川
白幡 浩幸
Hiroyuki Shirahata
浩幸 白幡
中島 清孝
Kiyotaka Nakajima
清孝 中島
浩司 石田
Koji Ishida
浩司 石田
和寿 柳田
Kazutoshi Yanagita
和寿 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014257664A priority Critical patent/JP6341082B2/en
Publication of JP2015135324A publication Critical patent/JP2015135324A/en
Application granted granted Critical
Publication of JP6341082B2 publication Critical patent/JP6341082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of determining a brittle crack arrest property of a high strength thick steel plate by a simple and rational method.SOLUTION: A determination method of a brittle crack arrest property of a high strength thick steel plate is provided that includes: a step of performing a brittle fracture arrest test and a complex miniature test using a plurality of standard steels; a step of calculating a correlation model of a Kca value actually measured by the brittle fracture arrest test and a result (NDT temperature and fracture surface transition temperature or energy transition temperature) of the complex miniature test; a step of deciding an arrest property determination criteria for each plate thickness based on the brittle fracture arrest test, a result of the complex miniature test, and the correlation model; a step of performing the complex miniature test using a sample steel; and a step of determining the arrest property of a sample plate based on the result of the complex miniature test of the sample steel and the determination criteria.

Description

本発明は、高強度厚鋼板の脆性き裂伝播停止特性の判定方法に関し、特に、脆性き裂の伝播で起きる大規模な損傷や損壊を防止する必要がある構造物の建造に使用する高強度厚鋼板の脆性き裂伝播停止特性を、簡便でかつ合理的な手法で判定する方法に関するものである。   The present invention relates to a method for determining brittle crack propagation stopping characteristics of a high-strength thick steel plate, and in particular, high-strength used for construction of a structure that needs to prevent large-scale damage or damage caused by brittle crack propagation. The present invention relates to a method for judging the brittle crack propagation stop characteristic of a thick steel plate by a simple and rational method.

溶接構造体であるコンテナ船やバルクキャリアーは、タンカーと異なり、船倉内の仕切り壁が少なく、船の上部が大きく開口している。逆に、タンカーは、油槽により内部が細かく仕切られていて、内部壁や上甲板も船殻強度を担う構造となっている。   Unlike tankers, container ships and bulk carriers, which are welded structures, have few partition walls in the hold and a large opening at the top of the ship. On the contrary, the tanker is finely partitioned by the oil tank, and the inner wall and upper deck also have a structure that bears the hull strength.

このため、コンテナ船では、船殻構造の強度を確保するため、特に、船体外板として高強度鋼板を使用する必要がある。   For this reason, in a container ship, in order to ensure the strength of a hull structure, it is especially necessary to use a high-strength steel plate as a hull outer plate.

近年、コンテナ船は大型化し、6000〜20000TEU(Twenty feet Equivalent Unit)の大型コンテナ船が建造され、また、計画されている。これに伴い、船体外板用の鋼板は、厚肉化するとともに、高強度化し、板厚50mm〜250mmで、降伏強度が390N/mm級、さらには470N/mm級の厚肉の鋼板(厚鋼板)が用いられるようになってきた。 In recent years, container ships have become larger, and large container ships of 6000 to 20000 TEU (Twenty Fee Equivalent Unit) have been built and planned. Accordingly, the steel plate for the outer hull plate, with thickened, and high strength, with a thickness 50Mm~250mm, steel yield strength 390 N / mm 2 grade, more 470N / mm 2 class thick (Thick steel plate) has come to be used.

なお、TEUは、コンテナ船の積載能力を示す指標で、長さ20フィートのコンテナに換算した場合のコンテナの個数で表示する。   The TEU is an index indicating the loading capacity of the container ship, and is displayed as the number of containers when converted into a container having a length of 20 feet.

上記のように船舶等に用いられる高強度厚鋼板において、脆性き裂伝播停止特性(以下「アレスト性能」ということがある)は、高強度厚鋼板の安全性を評価する上で非常に重要な特性となる。
他にも、水力発電用の水圧鉄管(ペンストック)に用いる高強度鋼材でも、アレスト性能に対する要求が高まっている。
As described above, in high-strength thick steel plates used in ships and the like, brittle crack propagation stopping characteristics (hereinafter sometimes referred to as “arrest performance”) are very important in evaluating the safety of high-strength thick steel plates. It becomes a characteristic.
In addition, there is an increasing demand for arrest performance even in high-strength steel materials used for hydraulic iron pipes (penstock) for hydropower generation.

このアレスト性能の向上を図るため、様々な成分組成や、製造工程を伴う鋼材、あるいは、種々の大型溶接構造体等が開発され、製造されている。これら新規に開発された鋼材のアレスト性能を定量的に評価するには、ESSO試験(脆性破壊伝播停止試験:試験片に脆性き裂を人為的に発生させ、脆性き裂を停止させる性能を評価する試験)や、二重引張試験等の大型試験などが実施される。例えば、脆性破壊伝播停止試験の場合、寸法が500mm×500mm×板厚程度の全厚大型試験片を作製し、この試験片の端部にV切欠を形成する。試験片には温度勾配を付与し、V切欠に、楔を介して衝撃荷重を負荷していき、脆性き裂を人為的に発生させる。試験体に付加された応力と、脆性き裂の伝播が停止した位置での温度(以下、「き裂停止温度」と称することもある)と、き裂の長さに基づいてKca値(破壊靭性値)を算出する。   In order to improve the arrest performance, various component compositions, steel materials with manufacturing processes, various large welded structures, and the like have been developed and manufactured. To quantitatively evaluate the arrest performance of these newly developed steel materials, the ESSO test (Brittle Fracture Propagation Stop Test: evaluates the ability to artificially generate a brittle crack in a specimen and stop the brittle crack. Large-scale tests such as a double tensile test and the like. For example, in the case of the brittle fracture propagation stop test, a full-sized large-sized test piece having dimensions of about 500 mm × 500 mm × plate thickness is produced, and a V-notch is formed at the end of the test piece. A temperature gradient is applied to the test piece, and an impact load is applied to the V notch through a wedge to artificially generate a brittle crack. The Kca value (fracture) based on the stress applied to the specimen, the temperature at which the propagation of the brittle crack stopped (hereinafter also referred to as “crack stop temperature”), and the crack length. Toughness value) is calculated.

温度勾配条件及び負荷荷重条件を変えて試験を行い、き裂停止温度とKca値の関係を求め、任意温度におけるアレスト性能をKca値で評価する。また、アレスト性能の指標として、所定のKcaを確保し得る限界温度(最低温度)を目標Kca限界温度と呼び、「TKca」と表記する。
具体的には、例えば、目標とするKca値が6000N/mm1.5である場合の目標Kca限界温度は、TKca6000と表記される。
鋼板をコンテナ船などの鋼構造物に使用する場合には、その鋼構造物の設計温度または最低使用温度が定められている。所定の鋼板について測定または推算したTKca6000がその設計温度以下の温度であれば、この設計温度において、上記の鋼板は、十分なアレスト性能を確保することができると評価する。
The test is performed by changing the temperature gradient condition and the load load condition, the relationship between the crack stop temperature and the Kca value is obtained, and the arrest performance at an arbitrary temperature is evaluated by the Kca value. Further, as an index of arrest performance, a limit temperature (minimum temperature) at which a predetermined Kca can be secured is called a target Kca limit temperature and expressed as “TKca”.
Specifically, for example, the target Kca limit temperature when the target Kca value is 6000 N / mm 1.5 is expressed as TKca6000.
When a steel plate is used for a steel structure such as a container ship, a design temperature or a minimum use temperature of the steel structure is determined. If TKca6000 measured or estimated about a predetermined steel plate is the temperature below the design temperature, it will evaluate that said steel plate can ensure sufficient arrest performance in this design temperature.

しかし、Kca値を実測するには、大型試験片と大型試験機を必要とし、試験結果を得るまで、多くの手数と時間が必要である。特に、板厚50mm以上の厚鋼板の大型試験には、1000トン以上の引張荷重を付加することが可能な大型試験機が必要とされていた。そこで、従来の鋼板の性能検査または品質管理では、厚鋼板全体のアレスト性能と、厚鋼板から採取した小型試験片を用いた簡易な小型試験結果と、の相関関係を予め求めておく必要があった(例えば、特許文献1および非特許文献1から3を参照)。そして、その事前の検討結果を用いて、必要なアレスト性能から算出される小型試験の要求値を元に、製鐵所などで製造される鋼板に小型試験を行い、その試験結果が小型試験の要求値を満たしているか否かを判定する方法で、鋼板の性能検査または品質管理が行われてきた。   However, in order to actually measure the Kca value, a large test piece and a large test machine are required, and a lot of work and time are required until a test result is obtained. In particular, a large-scale testing machine capable of applying a tensile load of 1000 tons or more is required for a large-scale test of a thick steel plate having a thickness of 50 mm or more. Therefore, in conventional performance inspection or quality control of steel plates, it is necessary to obtain in advance a correlation between the arrest performance of the entire thick steel plate and a simple small test result using a small test piece taken from the thick steel plate. (See, for example, Patent Document 1 and Non-Patent Documents 1 to 3). Then, based on the preliminary examination results, based on the required value of the small test calculated from the required arrest performance, a small test is performed on a steel plate manufactured at a steelworks, etc. Performance inspection or quality control of steel sheets has been performed by a method for determining whether or not a required value is satisfied.

非特許文献1には、板厚16mm程度の低温用鋼のアレスト性能と小型試験の相関関係が記載されている。非特許文献2には、鋼板表層部に特殊な超細粒組織を有する複層構造の鋼板のアレスト性能の簡易評価法が記載されている。非特許文献3には、極厚高強度790N/mm級鋼板で板厚の中心部、板厚の1/4及び鋼板表面下2mmそれぞれの位置におけるシャルピー衝撃試験で求められた破面遷移温度からアレスト性能を簡易評価する方法が記載されている。 Non-Patent Document 1 describes the correlation between the arrest performance of a low-temperature steel having a thickness of about 16 mm and a small test. Non-Patent Document 2 describes a simple evaluation method for arrest performance of a steel sheet having a multi-layer structure having a special ultrafine grain structure in the steel sheet surface layer. Non-Patent Document 3 describes a fracture surface transition temperature obtained by a Charpy impact test at an extremely thick high strength 790 N / mm grade 2 steel plate at the center of the plate thickness, 1/4 of the plate thickness, and 2 mm below the surface of the steel plate. Describes a method for simple evaluation of arrest performance.

特開2007−302993号公報JP 2007-302993 A 特許第4795487号公報Japanese Patent No. 4795487

鉄鋼協会講演概要、CAMP−ISIJ Vol.4(1991)−918、「Kcaと小型アレスト試験法との相関とアレスト性能支配因子」(鋼板のアレスト性能の検討(5))Steel Society Presentation Summary, CAMP-ISIJ Vol. 4 (1991) -918, “Correlation between Kca and small arrest test method and factors controlling arrest performance” (Examination of arrest performance of steel sheet (5)) 西部造船会会報第106号(平成15年8月)、P275−280、「表層超細粒鋼板のアレスト性能簡易評価法(その1)−アレスト性能推定式の確立−」Western Shipbuilding Association Bulletin No. 106 (August 2003), P275-280, “Easy Evaluation Method for Arrest Performance of Surface Superfine-Grained Steel Sheet (Part 1) —Establishment of Arrest Performance Estimation Formula” 溶接学会全国大会講演概要、第49集(1991年8月25日発行)、P108〜109、「極厚HT790のアレスト性に及ぼす板厚と板圧方向靱性分布の影響」Summary of National Welding Society Conference Lecture, No. 49 (issued on August 25, 1991), P108-109, “Effects of plate thickness and plate thickness direction toughness distribution on the arrestability of extra-thick HT790”

大型コンテナ船の安全性確保のため、例えば、使用される板厚50mm〜100mmで、降伏強度390N/mm級、470N/mm級の厚肉の鋼板(厚鋼板)には、−10℃で4000N/mm1.5から6000N/mm1.5程度のアレスト性能が非常に重要なことが判ってきた。このアレスト性要求に応えるために、高アレスト性能を有する鋼板が開発されてきたが、全ての鋼板に対して4000N/mm1.5から6000N/mm1.5程度のアレスト性能が具備されているかを確認する必要が生じた。このため、製鐵所で鋼板の出荷試験などでアレスト性能を確認することが求められるようになってきた。しかしながら、前記のように、全ての鋼板に対し脆性破壊伝播停止試験などの大型試験を行うことは困難である。また、上記大型試験でのアレスト性能と小型試験結果の相関には大きなバラツキがあり、バラツキを考慮すると、製鐵所で安定して製造できないような非常に厳しい小型試験要求値とならざるを得なかった。このため、前記板厚50mm〜100mmで、降伏強度390N/mm級、470N/mm級の厚肉の鋼板に対して、アレスト性能を小型試験を用いて簡易かつ高精度に評価する方法が求められてきた。
そこで、本発明者らは、厚鋼板全体のアレスト性能と、厚鋼板から採取した小型試験片を用いた簡易な小型試験結果と、の相関関係をこれまでよりも簡易かつ高精度に求める方法を検討した。
For safety large container ships, for example, in thickness 50mm~100mm used, yield strength 390 N / mm 2 grade, the 470N / mm 2 class of thick steel plate (steel plate) is, -10 ° C. arrest the performance of in the order of 6000N / mm 1.5 from 4000N / mm 1.5 has been found to be very important. Is this in order to meet the arrestability request, but steel sheet having a high arrest performance have been developed, arrest performance of about 6000 N / mm 1.5 from 4000 N / mm 1.5 is for all of the steel sheet is provided It became necessary to confirm. For this reason, it has come to be required to confirm the arrest performance by a steel sheet shipping test at a steelworks. However, as described above, it is difficult to perform a large-scale test such as a brittle fracture propagation stop test on all steel plates. In addition, there is a large variation in the correlation between the arrest performance in the large test and the small test result, and taking into account the variation, it is necessary to have extremely strict requirements for small test that cannot be stably manufactured at the steelworks. There wasn't. Therefore, in the thickness 50 to 100 mm, the yield strength 390 N / mm 2 class, with respect to the steel plate of 470N / mm 2 class thick, a method of assessing easily and accurately using a small test arrest performance It has been sought.
Accordingly, the present inventors have developed a method for obtaining a correlation between the arrest performance of the entire thick steel plate and a simple small test result using a small test piece collected from the thick steel plate more easily and more accurately than before. investigated.

本発明者らは、まず、複数の組成・製法で高強度厚鋼板を製造し、非特許文献1及び2に開示されている手法により、脆性破壊伝播停止試験で高強度厚鋼板のKca値を求めた。また、上記の厚鋼板から小型試験片を採取し、これに対して、各種の小型試験(Vノッチシャルピー衝撃試験、落重試験等)を行って小型試験片の特性値を求めた。その上で、得られた大型試験の結果であるKca値と、小型試験片の特性値との対応関係を調査した。上述したように、板厚20mm程度の鋼板に係る相関関係を求める既存の手法で、小型試験で求めた特性値とアレスト性能を関係付けた場合、両者の相関にはバラつきがあり、十分な精度での相関関係が得られないことが判明した。   The inventors first manufactured high-strength thick steel plates with a plurality of compositions and manufacturing methods, and obtained the Kca value of the high-strength thick steel plates in a brittle fracture propagation stop test using the methods disclosed in Non-Patent Documents 1 and 2. Asked. Moreover, a small test piece was sampled from the above-mentioned thick steel plate, and various small tests (V-notch Charpy impact test, drop weight test, etc.) were performed on the small test piece to determine the characteristic value of the small test piece. Then, the correspondence relationship between the Kca value, which is the result of the large test obtained, and the characteristic value of the small test piece was investigated. As described above, when the correlation between the characteristic value obtained in the small test and the arrest performance is related with the existing method for obtaining the correlation related to the steel sheet having a thickness of about 20 mm, the correlation between the two varies and sufficient accuracy is obtained. It was found that no correlation was obtained.

そこで、本発明は、このような事情を背景としてなされたもので、小型試験法およびその評価方法を大幅に改善し、脆性破壊伝播停止試験等の大型試験を行うことなく、高強度厚鋼板のアレスト性能を簡便な手法で判定する方法を提供することを課題とする。   Therefore, the present invention was made against the background of such circumstances, greatly improved the small test method and its evaluation method, without performing a large-scale test such as a brittle fracture propagation stop test of high strength thick steel plate It is an object to provide a method for determining arrest performance by a simple method.

本発明者は、上述の課題を解決するため、大型試験でのアレスト性能と小型試験結果との間で十分な整合性が取れない要因について検討したところ、厚鋼板のアレスト性能に対し、従来では考慮されていなかった鋼板板厚が大きな影響を及ぼしていることを見出した。つまり、既存の手法を用いて大型試験でのアレスト性能と小型試験結果との相関関係を導出した場合、板厚を考慮されていなかったために、両者の相関にバラツキが生じていたと考えられる。   In order to solve the above-mentioned problems, the present inventor examined the factors that do not provide sufficient consistency between the arrest performance in the large test and the small test result. It was found that the steel plate thickness that was not taken into account had a great influence. In other words, when the correlation between the arrest performance in the large test and the small test result was derived using the existing method, the plate thickness was not taken into account, and thus the correlation between the two was considered to have varied.

したがって本発明の要旨とするところは、下記の通りである。
[1] 厚鋼板の脆性き裂伝播停止特性を判定する方法であって、
板厚の異なる複数の標準鋼を用いて脆性破壊伝播停止試験を行う工程と、
前記標準鋼を用いて複合小型試験を行う工程と、
前記脆性破壊伝播停止試験により実測される脆性き裂伝播停止特性Kca値と前記複合小型試験の結果との相関モデルを算出する工程と、
前記脆性破壊伝播停止試験、前記複合小型試験の結果及び前記相関モデルに基づき、板厚毎の脆性き裂伝播停止特性判定基準を決定する工程と、
サンプル鋼を用いて前記複合小型試験を行う工程と、
前記サンプル鋼の前記複合小型試験の結果及び前記脆性き裂伝播停止特性判定基準に基づき、前記サンプル鋼の脆性き裂伝播停止特性を判定する工程と、
を含み、
前記標準鋼を用いて前記複合小型試験を行う工程、及び前記サンプル鋼を用いて前記複合小型試験を行う工程はともに、
(a)鋼板表層部を含む表層小型試験片を採取する工程と、
(b)鋼板表層部を含まない一箇所または二箇所以上の内部領域からそれぞれ内部小型試験片を採取する工程と、
(c)前記表層小型試験片を用いて、ASTM E208−06に規定されたNRL落重試験法に準拠して落重試験を行い、NDT温度を求める工程と、
(d)前記内部小型試験片を用いて、脆性破面率または吸収エネルギーを測定する小型試験を行い、破面遷移温度またはエネルギー遷移温度を求める工程と、
を含み、
前記脆性き裂伝播停止特性Kca値において、所定のKca値を確保し得る限界温度である目標Kca限界温度TKcaを目的変数、前記標準鋼の前記NDT温度を第1の説明変数X、前記標準鋼の前記破面遷移温度またはエネルギー遷移温度を第2の説明変数Y、前記標準鋼の板厚を第3の説明変数Zとし、a、b、c及びdを係数とすると、前記相関モデルは、下記式(1)であり、
a・X+b・Y+c・Z+d=TKca ・・・ (1)
前記脆性き裂伝播停止特性判定基準を決定する工程では、
前記標準鋼の前記NDT温度と、前記破面遷移温度またはエネルギー遷移温度と、TKcaを、前記標準鋼が所定のKca値を備えていることを保証する最低の温度である保証温度とした上記式(1)との相関関係を、板厚ごとに求める工程と、
前記相関関係に基づき、前記標準鋼の前記TKcaの値が前記保証温度以下を示す領域を決定し、当該領域を表すための前記標準鋼の前記NDT温度と前記破面遷移温度またはエネルギー遷移温度について、板厚毎に纏める工程と、
を含むことを特徴とする高強度厚鋼板の脆性き裂伝播停止特性の判定方法。
[2] 前記脆性き裂伝播停止特性判定基準を決定する工程において、前記相関関係に基づき、前記標準鋼の前記TKcaの値が前記保証温度以下を示す領域を決定する際、板厚の相違に因らず、前記領域を表すための前記破面遷移温度またはエネルギー遷移温度を一定として、前記領域を表すための前記標準鋼の前記NDT温度を決定することを特徴とする上記[1]に記載の高強度厚鋼板の脆性き裂伝播停止特性の判定方法。
[3]前記第3の説明変数Zを、前記標準鋼の板厚をt、nを0.01〜1の係数とし、下記式(2)とすることを特徴とする上記[1]又は[2]に記載の高強度厚鋼板の脆性き裂伝播停止特性の判定方法。
Z=t ・・・ (2)
Therefore, the gist of the present invention is as follows.
[1] A method for determining brittle crack propagation stopping characteristics of a thick steel plate,
A process of performing a brittle fracture propagation stop test using a plurality of standard steels having different thicknesses;
Performing a composite compact test using the standard steel;
Calculating a correlation model between a brittle crack propagation stop characteristic Kca value measured by the brittle fracture propagation stop test and a result of the composite small test;
Based on the results of the brittle fracture propagation stop test, the composite small test and the correlation model, determining a criterion for determining the brittle crack propagation stop characteristics for each plate thickness;
Performing the composite compact test using sample steel;
Based on the result of the composite small test of the sample steel and the criterion for determining the brittle crack propagation stop property, determining the brittle crack propagation stop property of the sample steel;
Including
Both the step of performing the composite compact test using the standard steel and the step of performing the composite compact test using the sample steel,
(A) a step of collecting a surface layer small test piece including a steel sheet surface layer portion;
(B) a step of collecting internal small test pieces from one or two or more internal regions not including the steel sheet surface layer portion;
(C) A step of performing a drop weight test in accordance with the NRL drop weight test method defined in ASTM E208-06 using the surface layer small test piece, and obtaining an NDT temperature;
(D) performing a small test to measure the brittle fracture surface rate or absorbed energy using the internal small test piece, and obtaining a fracture surface transition temperature or an energy transition temperature;
Including
In the brittle crack propagation stop characteristic Kca value, the target Kca limit temperature TKca, which is the limit temperature at which a predetermined Kca value can be secured, is the objective variable, the NDT temperature of the standard steel is the first explanatory variable X, and the standard steel Where the fracture surface transition temperature or energy transition temperature is a second explanatory variable Y, the thickness of the standard steel is a third explanatory variable Z, and a, b, c, and d are coefficients, It is following formula (1),
a · X + b · Y + c · Z + d = TKca (1)
In the step of determining the brittle crack propagation stop property criteria,
The NDT temperature of the standard steel, the fracture surface transition temperature or energy transition temperature, and TKca are the above-mentioned formulas that are guaranteed temperatures that are the lowest temperatures that guarantee that the standard steel has a predetermined Kca value. A step of obtaining a correlation with (1) for each plate thickness;
Based on the correlation, a region in which the value of the TKca of the standard steel indicates the guaranteed temperature or less is determined, and the NDT temperature and the fracture surface transition temperature or energy transition temperature of the standard steel for representing the region. , The process of summarizing every thickness,
A method for determining brittle crack propagation stopping characteristics of a high-strength thick steel plate characterized by comprising:
[2] In the step of determining the criterion for determining the brittle crack propagation stop property, when determining the region where the value of the TKca of the standard steel is equal to or lower than the guaranteed temperature based on the correlation, Regardless, the NDT temperature of the standard steel for representing the region is determined with the fracture surface transition temperature or energy transition temperature for representing the region being constant. Method for determining brittle crack propagation stopping properties of high-strength thick steel plates.
[3] The above-mentioned [1] or [3], wherein the third explanatory variable Z is expressed by the following formula (2), where the thickness of the standard steel is t and n is a coefficient of 0.01 to 1. 2] The determination method of the brittle crack propagation stop characteristic of the high-strength thick steel plate according to [2].
Z = t n (2)

本発明の高強度厚鋼板の脆性き裂伝播停止特性の判定方法によれば、脆性破壊伝播停止試験等の大型試験を行うことなく、高強度厚鋼板のアレスト性能を簡便な手法で判定する方法を提供することができる。
特に、本発明の高強度厚鋼板の脆性き裂伝播停止特性の判定方法によれば、大型溶接構造物に使用する高強度厚鋼板のアレスト性能を判定するに際して、製造される各ロットの鋼片ごとに脆性破壊伝播停止試験用の試験片のような大型試験片や、1000トン以上の大型破壊試験機を用いる必要がない。つまり、高強度厚鋼板が大型溶接構造体を破壊するような致命的大規模損傷や損壊を防止し得るかどうかを、簡便な手法で、迅速、適確に評価することができる。
従って、本発明の方法は、例えば大型溶接構造物に使用する高強度厚鋼板の生産時の品質管理に、有効に適用できる。
According to the method for determining the brittle crack propagation stop property of the high-strength thick steel plate of the present invention, a method for determining the arrest performance of the high-strength thick steel plate by a simple method without performing a large-scale test such as a brittle fracture propagation stop test. Can be provided.
In particular, according to the method for determining the brittle crack propagation stopping property of the high strength thick steel plate of the present invention, when determining the arrest performance of the high strength thick steel plate used for a large welded structure, the steel pieces of each lot to be manufactured It is not necessary to use a large-sized test piece such as a test piece for brittle fracture propagation stop test or a large-scale destructive testing machine of 1000 tons or more. That is, it is possible to quickly and accurately evaluate whether a high-strength thick steel plate can prevent a fatal large-scale damage or damage that destroys a large welded structure by a simple method.
Therefore, the method of the present invention can be effectively applied to quality control at the time of production of a high-strength thick steel plate used for a large welded structure, for example.

厚鋼板から小型試験片を採取する位置を示す図である。It is a figure which shows the position which extract | collects a small test piece from a thick steel plate. 厚鋼板から小型試験片を採取する位置を示す図である。It is a figure which shows the position which extract | collects a small test piece from a thick steel plate. 高強度厚鋼板から内部小型試験片及び表層小型試験片を採取する位置及び向きを説明するための模式図である。It is a schematic diagram for demonstrating the position and direction which extract | collect an internal small test piece and a surface layer small test piece from a high strength thick steel plate. 落重試験の試験機および小型試験片の配置を示す概略模式図である。It is a schematic diagram which shows arrangement | positioning of the test machine of a drop weight test, and a small test piece. 落重試験の試験結果の判定方法を示す概略模式図である。It is a schematic diagram which shows the determination method of the test result of a drop weight test. 小型試験片の形状を示す図であり、落重試験片を示す。図中の数値は寸法(単位:mm)を示す。It is a figure which shows the shape of a small test piece, and shows a falling weight test piece. The numerical value in a figure shows a dimension (unit: mm). 小型試験片の形状を示す図であり、Vノッチシャルピー衝撃試験片を示す、概略側面および正面図である。It is a figure which shows the shape of a small test piece, and is a schematic side view and front view showing a V-notch Charpy impact test piece. 小型試験片の形状を示す図であり、1面シャープノッチシャルピー衝撃試験片を示す。図中の数値は寸法(単位:mm)を示す。It is a figure which shows the shape of a small test piece, and shows a 1-side sharp notch Charpy impact test piece. The numerical value in a figure shows a dimension (unit: mm). 小型試験片の形状を示す図であり、3面シャープノッチシャルピー衝撃試験片を示す。図中の数値は寸法(単位:mm)を示す。It is a figure which shows the shape of a small test piece, and shows a 3 surface sharp notch Charpy impact test piece. The numerical value in a figure shows a dimension (unit: mm). 小型試験片の形状を示す図であり、シェブロンノッチシャルピー衝撃試験片の形状を示す。It is a figure which shows the shape of a small test piece, and shows the shape of a chevron notch Charpy impact test piece. 表層超細粒鋼の落重試験の破面の模式図である。It is a schematic diagram of the fracture surface of the drop weight test of surface superfine-grained steel. 一般鋼の落重試験の破面の模式図である。It is a schematic diagram of the fracture surface of the drop weight test of general steel. 本実施例における、脆性破壊伝播停止試験におけるTKca6000の実測値と、相関モデルの式によるTKca6000の推定値との関係を示すグラフである。It is a graph which shows the relationship between the actual value of TKca6000 in a brittle fracture propagation stop test in a present Example, and the estimated value of TKca6000 by the formula of a correlation model. 本実施例による、落重試験、Vノッチシャルピー衝撃試験の結果より、板厚65mmにおける、NDT温度とvTrsとの関係を示すグラフである。It is a graph which shows the relationship between NDT temperature and vTrs in plate | board thickness 65mm from the result of a drop weight test and a V notch Charpy impact test by a present Example. 本実施例による、落重試験、Vノッチシャルピー衝撃試験の結果より、板厚70mmにおける、NDT温度とvTrsとの関係を示すグラフである。It is a graph which shows the relationship between NDT temperature and vTrs in plate | board thickness 70mm from the result of a drop weight test and a V notch Charpy impact test by a present Example. 本実施例による、落重試験、Vノッチシャルピー衝撃試験の結果より、板厚80mmにおける、NDT温度とvTrsとの関係を示すグラフである。It is a graph which shows the relationship between NDT temperature and vTrs in plate | board thickness 80mm from the result of a drop weight test and a V notch Charpy impact test by a present Example. 本実施例による、落重試験、Vノッチシャルピー衝撃試験の結果より、板厚100mmにおける、NDT温度とvTrsとの関係を示すグラフである。It is a graph which shows the relationship between NDT temperature and vTrs in plate | board thickness 100mm from the result of a drop weight test and a V notch Charpy impact test by a present Example. 本実施例による、落重試験、Vノッチシャルピー衝撃試験の結果より、板厚150mmにおける、NDT温度とvTrsとの関係を示すグラフである。It is a graph which shows the relationship between NDT temperature and vTrs in plate | board thickness 150mm from the result of a drop weight test and a V notch Charpy impact test by a present Example. 本実施例による、落重試験、Vノッチシャルピー衝撃試験の結果より、板厚200mmにおける、NDT温度とvTrsとの関係を示すグラフである。It is a graph which shows the relationship between NDT temperature and vTrs in plate | board thickness 200mm from the result of a drop weight test and a V notch Charpy impact test by a present Example. 本実施例による、落重試験、Vノッチシャルピー衝撃試験の結果より、板厚250mmにおける、NDT温度とvTrsとの関係を示すグラフである。It is a graph which shows the relationship between NDT temperature and vTrs in plate | board thickness 250mm from the result of a drop weight test and a V notch Charpy impact test by a present Example.

以下、本発明の第1の実施形態に係る高強度厚鋼板の脆性き裂伝播停止特性の判定方法を、図面に基づいて説明する。なお、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。   Hereinafter, a method for determining brittle crack propagation stopping characteristics of a high-strength thick steel plate according to a first embodiment of the present invention will be described with reference to the drawings. In addition, in the drawings used in the following description, in order to make the features of the present invention easier to understand, the portions that become the features may be shown in an enlarged manner for convenience, and the dimensional ratios of the respective components are the same as the actual ones Not necessarily.

本実施形態に係る高強度厚鋼板の脆性き裂伝播停止特性を判定する方法は、板厚の異なる複数の標準鋼を用いて脆性破壊伝播停止試験を行う工程と、前記標準鋼を用いて複合小型試験を行う工程と、前記脆性破壊伝播停止試験により実測される脆性き裂伝播停止特性Kca値と前記複合小型試験の結果との相関モデルを算出する工程と、前記脆性破壊伝播停止試験、前記複合小型試験の結果及び前記相関モデルに基づき、板厚毎の脆性き裂伝播停止特性判定基準を決定する工程と、サンプル鋼を用いて前記複合小型試験を行う工程と、前記サンプル鋼の前記複合小型試験の結果及び前記脆性き裂伝播停止特性判定基準に基づき、前記サンプル鋼の脆性き裂伝播停止特性を判定する工程と、を含み、
前記標準鋼を用いて前記複合小型試験を行う工程、及び前記サンプル鋼を用いて前記複合小型試験を行う工程はともに、
(a)鋼板表層部を含む表層小型試験片を採取する工程と、
(b)鋼板表層部を含まない一箇所または二箇所以上の内部領域からそれぞれ内部小型試験片を採取する工程と、
(c)前記表層小型試験片を用いて、ASTM E208−06に規定されたNRL落重試験法に準拠して落重試験を行い、NDT温度を求める工程と、
(d)前記内部小型試験片を用いて、脆性破面率または吸収エネルギーを測定する小型試験を行い、破面遷移温度またはエネルギー遷移温度を求める工程と、
を含み、
前記脆性き裂伝播停止特性Kca値において、所定のKca値を確保し得る限界温度である目標Kca限界温度TKcaを目的変数、前記標準鋼の前記NDT温度を第1の説明変数X、前記標準鋼の前記破面遷移温度またはエネルギー遷移温度を第2の説明変数Y、前記標準鋼の板厚を第3の説明変数Zとし、a、b、c及びdを係数とすると、前記相関モデルは、下記式(1)であり、
a・X+b・Y+c・Z+d=TKca ・・・ (1)
前記脆性き裂伝播停止特性判定基準を決定する工程では、
前記標準鋼の前記NDT温度と、前記破面遷移温度またはエネルギー遷移温度と、TKcaを、前記標準鋼が所定のKca値を備えていることを保証する最低の温度である保証温度とした上記式(1)との相関関係を、板厚ごとに求める工程と、前記相関関係に基づき、前記標準鋼の前記TKcaの値が前記保証温度以下を示す領域を決定し、当該領域を表すための前記標準鋼の前記NDT温度と前記破面遷移温度またはエネルギー遷移温度について、板厚毎に纏める工程と、を含むことを特徴とする。
以下、各工程について詳細に説明する。
The method for determining the brittle crack propagation stop property of the high-strength thick steel plate according to the present embodiment includes a step of performing a brittle fracture propagation stop test using a plurality of standard steels having different thicknesses, and a composite using the standard steel. A step of performing a small test, a step of calculating a correlation model between a brittle crack propagation stop characteristic Kca value measured by the brittle fracture propagation stop test and a result of the composite small test, the brittle fracture propagation stop test, Based on the result of the composite small test and the correlation model, a step of determining a brittle crack propagation stop property judgment criterion for each plate thickness, a step of performing the composite small test using sample steel, and the composite of the sample steel A step of determining the brittle crack propagation stop property of the sample steel based on a result of a small test and the criteria for determining the brittle crack propagation stop property, and
Both the step of performing the composite compact test using the standard steel and the step of performing the composite compact test using the sample steel,
(A) a step of collecting a surface layer small test piece including a steel sheet surface layer portion;
(B) a step of collecting internal small test pieces from one or two or more internal regions not including the steel sheet surface layer portion;
(C) A step of performing a drop weight test in accordance with the NRL drop weight test method defined in ASTM E208-06 using the surface layer small test piece, and obtaining an NDT temperature;
(D) performing a small test to measure the brittle fracture surface rate or absorbed energy using the internal small test piece, and obtaining a fracture surface transition temperature or an energy transition temperature;
Including
In the brittle crack propagation stop characteristic Kca value, the target Kca limit temperature TKca, which is the limit temperature at which a predetermined Kca value can be secured, is the objective variable, the NDT temperature of the standard steel is the first explanatory variable X, and the standard steel Where the fracture surface transition temperature or energy transition temperature is a second explanatory variable Y, the thickness of the standard steel is a third explanatory variable Z, and a, b, c, and d are coefficients, It is following formula (1),
a · X + b · Y + c · Z + d = TKca (1)
In the step of determining the brittle crack propagation stop property criteria,
The NDT temperature of the standard steel, the fracture surface transition temperature or energy transition temperature, and TKca are the above-mentioned formulas that are guaranteed temperatures that are the lowest temperatures that guarantee that the standard steel has a predetermined Kca value. The step of obtaining the correlation with (1) for each plate thickness, and determining the region where the value of the TKca of the standard steel indicates the guaranteed temperature or less based on the correlation, and representing the region The NDT temperature of the standard steel and the fracture surface transition temperature or the energy transition temperature are summarized for each plate thickness.
Hereinafter, each step will be described in detail.

まず、板厚の異なる複数の標準鋼を用い、鋼板の保証温度をとして脆性破壊伝播停止試験を行う工程と、前記標準鋼を用いて複合小型試験を行う工程についての説明を行う。なお、本実施形態の判定方法の対象とする高強度厚鋼板は、例えば、大型船体や水圧鉄管等の構造物の建造用の厚鋼板であり、板厚が50mm以上、降伏強度が、240〜1000N/mmであるものが好ましい。
まず、所定の組成・製法により、板厚の異なる複数の標準鋼(高強度厚鋼板)を複数枚(例えば10〜100枚)製造し、非特許文献1及び2に開示されている手法により、脆性き裂伝播停止試験で高強度厚鋼板のKca値を求める。
First, a description will be given of a step of performing a brittle fracture propagation stop test using a plurality of standard steels having different thicknesses and setting a guaranteed temperature of the steel plate, and a step of performing a composite compact test using the standard steel. In addition, the high-strength thick steel plate which is the object of the determination method of the present embodiment is, for example, a thick steel plate for building a structure such as a large hull or a hydraulic iron pipe, and has a thickness of 50 mm or more and a yield strength of 240 to 240. What is 1000 N / mm < 2 > is preferable.
First, a plurality of standard steels (high-strength thick steel plates) with different thicknesses are manufactured by a predetermined composition and manufacturing method (for example, 10 to 100 sheets), and by the methods disclosed in Non-Patent Documents 1 and 2, The Kca value of a high-strength thick steel plate is determined by a brittle crack propagation stop test.

また、上記の標準鋼の厚鋼板から小型試験片を採取し、これに対して、後述する各種の小型試験を行って小型試験片の特性値を求める。
本明細書において「小型試験」とは、上記のように用意された各々の試験材から、その一部を切り出して小型試験片を採取し、この小型試験片を用いて行う試験を指す。後に詳しく述べるように、各種の小型試験片の採取は、試験材中の一箇所から行っても良いし、複数の箇所から行ってもよい。小型試験は、部分試験と呼ぶこともできる。
本実施形態では、小型試験に供する小型試験片を、高強度厚鋼板の板厚方向において区分した複数の領域のうち、鋼板表層部を含む領域、及び鋼板表層部を含まない一箇所または二箇所以上の内部の領域からそれぞれ採取する。
Moreover, a small test piece is sampled from the above-described standard steel thick steel plate, and various small tests described later are performed on the small test piece to obtain the characteristic value of the small test piece.
In this specification, the “small test” refers to a test performed by cutting out a part of each test material prepared as described above, collecting a small test piece, and using the small test piece. As will be described in detail later, various small test pieces may be collected from one place in the test material or from a plurality of places. The small test can also be called a partial test.
In this embodiment, among a plurality of regions obtained by dividing a small test piece to be subjected to a small test in the thickness direction of a high-strength thick steel plate, a region including a steel plate surface layer portion, and one or two locations not including a steel plate surface layer portion Collect from each of the above internal areas.

ここで、板厚50mm以上の厚鋼板における板厚中心部のき裂伝播挙動と、鋼板表層部近傍のき裂伝播挙動が相違する理由について説明する。   Here, the reason why the crack propagation behavior in the central portion of the plate thickness in the thick steel plate having a thickness of 50 mm or more and the crack propagation behavior in the vicinity of the steel plate surface layer portion will be described.

板厚50mm以上の厚鋼板では、製造時に、板厚方向の温度履歴が異なるうえ、圧延時に、鋼板内部に作用する歪も板厚方向で異なることがある。このため、鋼板組織の結晶粒径や集合組織が、板厚方向で大きく異なる場合が多い。
それ故、板厚50mm以上の厚鋼板から、任意の位置で小型試験片を採取して小型試験を行った場合、試験結果は、小型試験片の採取位置の影響を受けて大きく分散し、板厚50mm以上の厚鋼板全体の脆性き裂伝播特性を代表しない。
In a thick steel plate having a plate thickness of 50 mm or more, the temperature history in the plate thickness direction differs during production, and the strain acting on the inside of the steel plate during rolling may also vary in the plate thickness direction. For this reason, the crystal grain size and texture of the steel sheet structure often differ greatly in the thickness direction.
Therefore, when a small test piece is collected from a thick steel plate with a thickness of 50 mm or more at any position and a small test is performed, the test results are greatly dispersed due to the influence of the sampling position of the small test piece. It does not represent the brittle crack propagation characteristics of the entire thick steel plate having a thickness of 50 mm or more.

さらに、板厚50mm以上の厚鋼板の板厚方向において、脆性き裂伝播挙動が異なる。この原因は、き裂先端が、板厚内部では平面歪状態にあり、表面近傍では平面応力状態にあることに関係する。即ち、厚鋼板の板厚内部では、き裂先端が平面歪状態にあるので、き裂先端に形成される塑性域の寸法は、板厚表面近傍に存在するき裂先端の塑性域に比べて小さく、その結果、き裂の伝播に対する抵抗が小さくなり、脆性き裂が進展し易くなっている。   Furthermore, the brittle crack propagation behavior differs in the thickness direction of thick steel plates having a thickness of 50 mm or more. This is related to the fact that the crack tip is in a plane strain state inside the plate thickness and in a plane stress state near the surface. That is, since the crack tip is in a plane strain state within the plate thickness of the thick steel plate, the size of the plastic zone formed at the crack tip is larger than that of the crack tip existing near the plate thickness surface. As a result, the resistance to propagation of cracks is reduced, and brittle cracks are likely to progress.

一方、厚鋼板の表面近傍(表層部)では、き裂先端は、平面応力状態にあるので、き裂先端に形成される塑性域の寸法は、板厚内部に存在するき裂先端の塑性域の寸法より大きく、その結果、脆性き裂は、板厚内部に比べ、伝播し難くなっている。このため、表層部近傍にシアリップが形成され、脆性き裂伝播停止性能の向上に大きく寄与することは広く知られている。このように、鋼板の表層部では板厚内部と全く異なる現象が起きている。   On the other hand, in the vicinity of the surface of the thick steel plate (surface layer), the crack tip is in a plane stress state, so the dimension of the plastic zone formed at the crack tip is the plastic zone of the crack tip existing inside the plate thickness. As a result, the brittle crack is harder to propagate than inside the plate thickness. For this reason, it is well known that a shear lip is formed in the vicinity of the surface layer portion and contributes greatly to the improvement of brittle crack propagation stopping performance. Thus, a phenomenon completely different from the inside of the plate thickness occurs in the surface layer portion of the steel plate.

したがって、本実施形態においては、板厚50mm以上の厚鋼板の脆性き裂伝播挙動が、板厚方向において異なることを踏まえ、複合小型試験に供する小型試験片を、高強度厚鋼板の板厚方向において区分した複数の領域から採取する。   Therefore, in the present embodiment, based on the fact that the brittle crack propagation behavior of a thick steel plate having a thickness of 50 mm or more differs in the plate thickness direction, the small test piece used for the composite small test is changed to the plate thickness direction of the high-strength thick steel plate. Collected from a plurality of areas divided in.

以降の記載において、厚鋼板の表面、または表面下2mm程度までの位置を少なくとも含むように採取した試験片を表層小型試験片(落重試験片)と呼ぶ。
さらに、本実施形態では前記表層小型試験片に加えて、厚鋼板の厚み方向内部おいて、1箇所の位置から試験片を採取する。このように、厚鋼板の表面部分を含まず、厚鋼板の厚み方向で表面下10mm以上の内部から採取された試験片を、内部小型試験片と呼ぶ。
In the following description, a test piece collected so as to include at least the surface of the thick steel plate or a position up to about 2 mm below the surface is referred to as a small surface test piece (falling weight test piece).
Furthermore, in this embodiment, in addition to the surface layer small test piece, the test piece is collected from one position inside the thickness direction of the thick steel plate. Thus, the test piece collected from the inside 10 mm or more below the surface in the thickness direction of the thick steel plate without including the surface portion of the thick steel plate is referred to as an internal small test piece.

内部小型試験片を採取する場合、採取位置は、厚鋼板の板厚中心部(中心偏析部)aを避けるのが好ましい。図1Aに示すように、厚鋼板7の板厚中心部aから内部小型試験片8を採取すれば、試験結果は、板厚中心部の脆性き裂伝播挙動を示すと通常は考えられる。ところが、連続鋳造プロセスで製造した鋼板には、板厚中心部に、中心偏析部と呼ばれる合金元素濃化域が存在することが多く、中心偏析が顕著な場合は、中心偏析部は、脆性き裂発生特性を著しく低下させる原因となりうる。そのため、厚鋼板内部において、中心偏析が顕著な場合は、図1Aに示すように、内部小型試験片9を、脆性き裂伝播面が中心偏析部を含まない領域bで採取することが好ましい。なお、厚鋼板内部において、中心偏析が顕著でない場合は、板厚中心部を含む内部小型試験片8を採取してもよい。   When collecting an internal small-sized test piece, it is preferable to avoid the central portion (center segregation portion) a of the thick steel plate as the collection position. As shown in FIG. 1A, if an internal small test piece 8 is taken from the thickness center portion a of the thick steel plate 7, it is usually considered that the test result shows a brittle crack propagation behavior at the thickness center portion. However, steel sheets manufactured by a continuous casting process often have an alloy element enrichment zone called a center segregation part at the center of the plate thickness, and when the center segregation is remarkable, the center segregation part is not brittle. It can cause a significant decrease in crack initiation characteristics. Therefore, when the center segregation is remarkable in the thick steel plate, as shown in FIG. 1A, it is preferable to collect the small internal test piece 9 in a region b where the brittle crack propagation surface does not include the center segregation portion. If center segregation is not remarkable inside the thick steel plate, an internal small test piece 8 including the center portion of the plate thickness may be collected.

厚鋼板の板厚中心部近傍で、板厚中心部を含まない内部小型試験片を採取する場合、板厚中心部から厚さ方向に0.1mm以上離れた(更に好ましくは1mm以上離れた)領域を採取することが好ましく、かつ、板厚中心部から5mm以内の位置を含む領域を採取することが好ましい。例えば、図1Aに示すように、厚鋼板の板厚中心部aを含まず、板厚中心部から5mm以内の位置を含むように採取した内部小型試験片9に係る試験結果は、中心偏析部の影響が排除されているので、板厚中心部の脆性き裂伝播特性を適確に示すものとなる。   When collecting an internal small test piece that does not include the plate thickness center portion in the vicinity of the plate thickness center portion of the thick steel plate, it is separated from the plate thickness center portion by 0.1 mm or more (more preferably 1 mm or more). It is preferable to collect a region, and it is preferable to collect a region including a position within 5 mm from the center of the plate thickness. For example, as shown in FIG. 1A, the test result relating to the internal small test piece 9 collected so as not to include the plate thickness center portion a of the thick steel plate but to include a position within 5 mm from the plate thickness center portion is the center segregation portion. Therefore, the brittle crack propagation characteristics at the center of the plate thickness are accurately shown.

図1Aに示すように、き裂先端が平面応力状態にあり、脆性き裂が伝播し難い鋼板表面近傍(表層部)から小型試験片10を採取する場合、鋼板表面を含む試験片(表層小型試験片)を採取することが好ましい。鋼板の製造後、鋼板表面にスケール、脱炭部分等、鋼板内部と比較して大きく特性の異なる層が存在する場合は、これらの層をなるべく薄く切削して排除してから試験片を採取してもよい。表面を切削する場合でも、鋼板表面から2mmを超えて大きく切削すると、鋼板表面のき裂伝播特性を代表する試験片が得られないおそれがある。スケール、脱炭部分等の影響を避けるためなどの理由により、鋼板表面を切削する場合でも、鋼板表面2mm以内とする必要がある。   As shown in FIG. 1A, when a small test piece 10 is taken from the vicinity of the steel plate surface (surface layer portion) where the crack tip is in a plane stress state and a brittle crack is difficult to propagate, the test piece including the steel plate surface (small surface layer) It is preferable to collect a test piece). After the steel plate is manufactured, if there are layers with significantly different characteristics compared to the inside of the steel plate, such as scales and decarburized parts, remove these layers by cutting them as thin as possible before collecting the specimen. May be. Even when the surface is cut, if it is cut greatly beyond 2 mm from the surface of the steel sheet, there is a possibility that a test piece representative of crack propagation characteristics on the surface of the steel sheet cannot be obtained. Even when the steel sheet surface is cut for reasons such as avoiding the effects of scale, decarburized parts, etc., it is necessary to keep the steel sheet surface within 2 mm.

図1Bに、小型試験片の採取の態様を示す。小型試験片9aは、板厚中心部aから5mm以内の位置を含む小型試験片である。小型試験片10aは、鋼板表面下2mmの位置を含む小型試験片である。小型試験片11は、厚鋼板の板厚1/4の位置を含む小型試験片を採取する態様である。小型試験片8aは、板厚中心部aを含む小型試験片である。小型試験片12は、鋼板表面下2mmの位置および鋼板表面を含む。
本実施形態では、表層小型試験片12は、図1Bに示す位置(鋼板表面を含む)から採取し、内部小型試験片11は板厚1/4の深さ位置(図1Bに示す位置)を含むように採取することが最も好ましい。
FIG. 1B shows an aspect of collecting small test pieces. The small test piece 9a is a small test piece including a position within 5 mm from the plate thickness center portion a. The small test piece 10a is a small test piece including a position 2 mm below the surface of the steel plate. The small test piece 11 is a mode in which a small test piece including a position of a thickness ¼ of a thick steel plate is collected. The small test piece 8a is a small test piece including a plate thickness center portion a. The small test piece 12 includes a position 2 mm below the steel plate surface and the steel plate surface.
In the present embodiment, the surface small test piece 12 is taken from the position shown in FIG. 1B (including the surface of the steel plate), and the internal small test piece 11 has a depth position (position shown in FIG. 1B) of a thickness of 1/4. Most preferably, it is collected so that it contains.

そして、内部小型試験片11は、シアリップの影響をさけるため、鋼板表面から7mm以上、好ましくは10mm以上離れるよう採取する。内部小型試験片としては、板厚中心部を含む試験片、または、板厚中心部から5mm以内の位置を含むように採取した試験片、厚鋼板の板厚1/4の位置を含むように採取した小型試験片等を用いることができる。   The internal small test piece 11 is collected so as to be separated from the steel plate surface by 7 mm or more, preferably 10 mm or more in order to avoid the effect of shear lip. As an internal small test piece, a test piece including a plate thickness center portion, a test piece collected so as to include a position within 5 mm from the plate thickness center portion, and a position of a plate thickness 1/4 of a thick steel plate are included. The collected small test pieces can be used.

このように、内部小型試験片及び表層小型試験片を採取してそれぞれ小型試験をすることにより、板厚方向で異なる脆性き裂伝播挙動に対応する試験結果を得ることができる。この試験結果に基づいて、板厚50mm以上でも厚鋼板のアレスト性能を精度よく推定することができる。この推定の方法の詳細については後述する。   In this way, by collecting the small internal test piece and the small surface test piece and performing the small test respectively, it is possible to obtain test results corresponding to different brittle crack propagation behaviors in the plate thickness direction. Based on this test result, the arrest performance of the thick steel plate can be accurately estimated even when the plate thickness is 50 mm or more. Details of this estimation method will be described later.

厚鋼板の表層部分以外の領域から採取した小型試験片(内部小型試験片)を用いて行う小型試験は、脆性破面率または吸収エネルギーを測定し、破面遷移温度またはエネルギー遷移温度を求めることが可能な小型試験であれば、特定の試験に限定されない。このような試験の場合、小型試験片の内部をき裂が進行する際の挙動を十分に評価できる。
例えば各種のシャルピータイプ衝撃試験片、具体的には、Vノッチシャルピー衝撃試験片、シャープノッチシャルピー衝撃試験片、プレスノッチシャルピー衝撃試験片、プレクラックシャルピー衝撃試験片、3面シャープノッチシャルピー衝撃試験片、シェブロンノッチシャルピー衝撃試験片及び、Uノッチシャルピー衝撃試験片を用いることができる。いずれの試験片においても、衝撃試験時の吸収エネルギーを測定できる。また、破断面の延性破面率または脆性破面率を測定できる。
特定の鋼材の小型試験における延性破面率と吸収エネルギーとの間には通常正の相関関係がある。脆性破面率と吸収エネルギーとの測定では、いずれも、小型試験片の表面部分のみでなく、試験片内部を含み、試験片の断面全体に対して応力が作用した結果が積分的に蓄積されて十分に試験結果に反映される。このために、内部小型試験片の評価方法として、脆性破面率(または延性破面率)または吸収エネルギーの測定を行うことによって、厚鋼板内部における脆性き裂伝播特性を高精度に評価できるものと考えられる。なお、延性破面率と脆性破面率を合計すると100%になるため、脆性破面率の代わりに、延性破面率を用いてもよい。
A small test using a small test piece (internal small test piece) taken from a region other than the surface layer part of a thick steel plate is to measure the brittle fracture surface rate or absorbed energy and obtain the fracture surface transition temperature or energy transition temperature. Is not limited to a specific test, as long as it is a small test that can be performed. In the case of such a test, the behavior when a crack progresses inside a small test piece can be sufficiently evaluated.
For example, various Charpy type impact test specimens, specifically, V-notch Charpy impact test specimens, sharp notch Charpy impact test specimens, press notch Charpy impact test specimens, pre-crack Charpy impact test specimens, and three-face sharp notch Charpy impact test specimens Chevron notch Charpy impact test pieces and U-notch Charpy impact test pieces can be used. In any test piece, the absorbed energy during the impact test can be measured. Moreover, the ductile fracture surface ratio or brittle fracture surface ratio of a fracture surface can be measured.
There is usually a positive correlation between the ductile fracture surface rate and the absorbed energy in small tests of certain steel materials. In the measurement of the brittle fracture surface ratio and the absorbed energy, the results of stress acting on the entire cross section of the specimen including the inside of the specimen as well as the surface part of the small specimen are integrated and accumulated. Is fully reflected in the test results. For this reason, as an evaluation method for small internal test specimens, the brittle crack propagation characteristics inside a thick steel plate can be evaluated with high accuracy by measuring the brittle fracture surface ratio (or ductile fracture surface ratio) or absorbed energy. it is conceivable that. Since the ductile fracture surface ratio and the brittle fracture surface ratio are 100%, the ductile fracture surface ratio may be used instead of the brittle fracture surface ratio.

Vノッチシャルピー衝撃試験や落重試験は、ASTM規格やJIS規格に準拠した試験法を用いて行ってよい。また、シェブロンノッチシャルピー衝撃試験やシャープノッチシャルピー衝撃試験を採用する場合は、脆性き裂が発生し易いように、ノッチ形状を工夫し、脆性き裂伝播特性の寄与を大きく抽出できるよう、試験片の形状を調整することが望ましい。好ましい試験片の形状については、後述する。   The V-notch Charpy impact test and drop weight test may be performed using a test method based on the ASTM standard or JIS standard. In addition, when using the chevron notch Charpy impact test or sharp notch Charpy impact test, test pieces are designed so that the contribution of brittle crack propagation characteristics can be greatly extracted by devising the notch shape so that brittle cracks are likely to occur. It is desirable to adjust the shape. A preferable shape of the test piece will be described later.

図2に、高強度厚鋼板から内部小型試験片102及び表層小型試験片101を採取する位置及び向きを説明するための模式図を示す。また図3Aに、落重試験の試験機および表層小型試験片の配置を示す概略図を、図3Bに落重試験の試験結果の判定方法を説明するための表層小型試験片の概略模式図を示す。なお、図2の内部小型試験片102は、Vノッチシャルピー衝撃試験片を示しており、図中の「N」はノッチを指す。
図4A〜図4Eに、好適な小型試験片の形状を示す。図4Aは落重試験片、図4BはVノッチシャルピー衝撃試験片、図4Cは(1面)シャープノッチシャルピー衝撃試験片、図4Dは3面シャープノッチシャルピー衝撃試験片、図4Eはシェブロンノッチシャルピー衝撃試験片の代表的な形状をそれぞれ示す。
In FIG. 2, the schematic diagram for demonstrating the position and direction which extract | collect the internal small test piece 102 and the surface layer small test piece 101 from a high strength thick steel plate is shown. FIG. 3A is a schematic diagram showing the arrangement of a drop weight tester and a surface layer small test piece, and FIG. 3B is a schematic diagram of a surface layer small test piece for explaining a method for judging the test result of the drop weight test. Show. 2 shows a V-notch Charpy impact test piece, and “N” in the figure indicates a notch.
4A to 4E show shapes of suitable small test pieces. 4A is a drop weight test piece, FIG. 4B is a V-notch Charpy impact test piece, FIG. 4C is a (one side) sharp notch Charpy impact test piece, FIG. 4D is a three-side sharp notch Charpy impact test piece, and FIG. 4E is a chevron notch Charpy. Representative shapes of impact test pieces are shown respectively.

本実施形態の方法に従って表層小型試験として落重試験を用いた場合、厚鋼板の最表面部分の脆性き裂伝播特性を直接的に評価することができる。このため、表層小型試験をVノッチシャルピー衝撃試験等、他の方法で試験した場合に比較して、高い精度で厚鋼板のアレスト性能を評価できる。   When the drop weight test is used as the surface layer small test according to the method of the present embodiment, the brittle crack propagation characteristics of the outermost surface portion of the thick steel plate can be directly evaluated. For this reason, the arrest performance of a thick steel plate can be evaluated with high accuracy as compared with the case where the surface layer small test is tested by other methods such as a V-notch Charpy impact test.

次に、落重試験片について説明する。
図2及び図4Aに示すように、落重試験片101に対し、試験片の表面に溶接部(溶接ビード,図2の101b)を形成し、溶接部に切欠(スリット)を形成する。落重試験片101は、図2に示すように厚鋼板の表層部を含むように採取される。つまり、落重試験片101の一方の表面101aが厚鋼板の表面に対応するように採取される。図2に模式的に示すように、溶接ビード101bは、この表面101aに形成する。なお図4A中の表は、寸法の種類(P−1〜P−3)を示しており、“T”は高さ(厚み)、“L”は長さ、“W”は幅を表している。
Next, the drop weight test piece will be described.
As shown in FIGS. 2 and 4A, a welded portion (weld bead, 101b in FIG. 2) is formed on the surface of the drop test piece 101, and a notch (slit) is formed in the welded portion. The drop weight test piece 101 is collected so as to include a surface layer portion of a thick steel plate as shown in FIG. That is, one surface 101a of the drop weight test piece 101 is collected so as to correspond to the surface of the thick steel plate. As schematically shown in FIG. 2, the weld bead 101b is formed on the surface 101a. The table in FIG. 4A shows the types of dimensions (P-1 to P-3), where “T” represents height (thickness), “L” represents length, and “W” represents width. Yes.

次に、落重試験法について説明する。
取得した落重試験片101を用い、ASTM(Standards of American Society for Testing and Materials;米国材料試験協会規格)のE208−06に規定されたNRL(Naval Research Laboratory)落重試験を行う。落重試験片101の一方の表面101aに、上記規定に従った溶接材料で、長手方向に64mm程度の溶接ビード101bを付設する(図4A)。このビードがクラック開始ウェルド(Crack starter weld)として作用する。さらにこの溶接ビード101bに、幅1.5mm以下のスリットを形成する。
Next, the drop weight test method will be described.
Using the obtained drop weight test piece 101, an NRL (Naval Research Laboratory) drop test specified in E208-06 of ASTM (Standards of American Society for Testing and Materials) is conducted. A welding bead 101b having a length of about 64 mm is attached to one surface 101a of the drop weight test piece 101 in the longitudinal direction with a welding material in accordance with the above-mentioned regulations (FIG. 4A). This bead acts as a crack start weld. Further, a slit having a width of 1.5 mm or less is formed in the weld bead 101b.

次に、図3Aに示すように、落重試験機200の試験片設置台200bに落重試験片101を設置する。このとき、溶接ビード101bの形成された表面101aが下向きになるように設置する。落重試験では、規定の形状・質量をもつ錘200aが試験片101上に落下する。試験片101の鋼材の靭性が低いと、落重試験温度等の条件によって、溶接ビード101bの切欠(スリット)から発生した脆性き裂が、試験片101内部へ伝播する。
切欠から始まったクラックが試験片の表面101aを試験片101の幅方向に伝播してその端部まで進行した(図3Bの状態)場合、試験結果はBreak(き裂伝播あり)と判定される。幅方向の端部にき裂が達しなかった場合は、試験結果はNo Break(き裂伝播なし)と判定される。上記試験操作を、落重試験温度を5℃刻みで変化(No Breakの場合は5℃低下、Breakの場合は5℃上昇)させながら2個ずつの試験片で反復して行い、2個の試験片ともにNo breakが得られた最も低い落重試験温度から5℃低い温度を、NDT温度とする。
き裂は試験片を貫通して溶接ビード設置面101aと反対側の面に進行する場合もあるが、本実施形態で採用する落重試験では、この貫通の有無を評価に含めないこととする。
Next, as shown in FIG. 3A, the drop test piece 101 is installed on the test piece installation base 200 b of the drop test machine 200. At this time, it is installed so that the surface 101a on which the weld bead 101b is formed faces downward. In the drop weight test, a weight 200 a having a specified shape and mass falls on the test piece 101. When the toughness of the steel material of the test piece 101 is low, a brittle crack generated from the notch (slit) of the weld bead 101b propagates into the test piece 101 depending on conditions such as a drop weight test temperature.
When a crack that has started from the notch propagates on the surface 101a of the test piece in the width direction of the test piece 101 and progresses to its end (state in FIG. 3B), the test result is determined to be Break (with crack propagation). . When a crack does not reach the end in the width direction, the test result is determined as No Break (no crack propagation). The above test operation was repeated for each of the two test pieces while changing the drop test temperature in 5 ° C increments (5 ° C decrease for No Break, 5 ° C increase for Break). The NDT temperature is defined as a temperature 5 ° C. lower than the lowest drop weight test temperature at which No break was obtained for both test pieces.
In some cases, the crack penetrates the test piece and proceeds to the surface opposite to the weld bead installation surface 101a. However, in the drop weight test employed in this embodiment, the presence or absence of this penetration is not included in the evaluation. .

落重試験でのNDT温度をアレスト靭性値Kcaの簡易評価に用いた例として、表層超細粒鋼という特殊な鋼板の破壊評価に用いた例がある(非特許文献2)。表層超細粒鋼では、表層部に、ほぼ均一の超細粒組織で脆性破壊し難い層が存在する。非特許文献2では表層超細粒鋼の評価に落重試験が用いられている。ただし、この文献では、落重試験で発生させた脆性き裂が、表層超細粒鋼を貫通して裏面に到達するか否かを主な評価基準とするよう、試験条件、相関式等が最適化されている。このため、ASTM規格の落重試験の一般的な運用法とは、試験全体の用法および結果の解釈、相関式等が大きく異なる。すなわち、この先行技術では、表層超細粒層の特性評価専用の特殊な相関式が得られるものの、当該相関式等の試験条件を一般鋼材に用いることは困難である。また、上記文献の試験では、ビード設置面に沿った態様のき裂の伝播は、試験結果に直接決定的影響を必ずしも与えない。これは、表層超細粒鋼では、き裂が表層超細粒部分を垂直方向に貫通し、その後表層超細粒部分の内側(下側)をき裂が伝播するという、特殊な伝播態様が生じるためである。図5Aにこの表層超細粒鋼の落重試験の破面の様子を、図5Bに一般鋼材の落重試験の破面の様子を示す。表層超細粒鋼の落重試験では、この超細粒組織からなる表層部を脆性き裂が貫通し、図5Aの領域Pに達すれば試験片は全破断する。領域Pまでき裂が貫通しない場合は停止となる。つまり、実質超細粒域の境界まで亀裂が到達すれば、Go(伝播)と判定される。すなわち、表層超細粒鋼の落重試験では、超細粒組織からなる表層部のみの評価をしていることに等しい。一方、一般鋼材の落重試験では、脆性き裂は板厚方向、試験片幅方向の両方向(図5Bの矢印)に伝播し、幅方向の貫通によりBreak(き裂伝播あり)と判定される。このように、一般鋼材の落重試験では、板表面近傍の板表面に平行な脆性き裂の伝播特性を評価するものである点が表層超細粒鋼の落重試験とは大きく異なる。このため、非特許文献2の試験方法は、表層超細粒鋼にのみ適用できる条件に設定されており、一般鋼の試験には適用できない。   As an example of using the NDT temperature in the drop weight test for the simple evaluation of the arrest toughness value Kca, there is an example used for the fracture evaluation of a special steel plate called a super-fine grain steel (Non-Patent Document 2). In the super-fine-grain steel, a layer having a substantially uniform ultra-fine grain structure that is difficult to brittle fracture exists in the super-fine grain steel. In Non-Patent Document 2, a drop weight test is used for evaluation of super-fine grain steel. However, in this document, test conditions, correlation equations, etc. are used so that the main evaluation criterion is whether or not the brittle cracks generated in the drop weight test penetrate the surface ultrafine-grained steel and reach the back surface. Optimized. For this reason, the usage of the entire test, interpretation of the results, correlation equations, and the like are greatly different from the general operation method of the drop weight test of the ASTM standard. That is, with this prior art, although a special correlation formula dedicated to the evaluation of the characteristics of the superfine particle layer can be obtained, it is difficult to use test conditions such as the correlation formula for general steel materials. Moreover, in the test of the said literature, the propagation of the crack of the aspect along a bead installation surface does not necessarily have a decisive influence directly on a test result. This is because in super-fine-grain steel, the crack propagates vertically through the super-fine grain part, and then the crack propagates inside (under) the super-fine grain part. This is because it occurs. FIG. 5A shows the state of the fracture surface in the drop test of the surface ultrafine-grained steel, and FIG. 5B shows the state of the fracture surface in the drop test of the general steel material. In the drop test of the super-fine grain steel, a brittle crack penetrates the super-fine grained surface layer portion, and when the area P in FIG. If the crack does not penetrate to the region P, the operation is stopped. That is, if the crack reaches the boundary of the substantially ultrafine grain region, it is determined as Go (propagation). That is, in the drop weight test of the superfine grain steel, it is equivalent to evaluating only the superficial part composed of the superfine grain structure. On the other hand, in a drop test of a general steel material, a brittle crack propagates in both the plate thickness direction and the specimen width direction (arrow in FIG. 5B), and is judged as Break (with crack propagation) by penetration in the width direction. . As described above, the drop test of the general steel material is greatly different from the drop test of the super-fine grain steel in that the propagation characteristic of the brittle crack parallel to the plate surface in the vicinity of the plate surface is evaluated. For this reason, the test method of Non-Patent Document 2 is set to a condition that can be applied only to the super-fine grain steel, and cannot be applied to the test of general steel.

また、非特許文献2では、板厚内部も落重試験で評価している。板厚内部がアレスト性に寄与する主なメカニズムは、脆性き裂伝播抵抗のエネルギーであり、シアリップ形成のエネルギーではない。このため、内部試験片を落重試験で評価することは、試験鋼の製造バッチ別、製造法別に生じる鋼性状の偏差に起因する評価誤差の原因となると考えられる。当該鋼板では、表層超細粒域のアレスト特性に対する寄与があまりにも大きいため、このような誤差が大きくならず、実用化されている。このため、当該評価式は一般鋼材には適用できない。
一方、一般の鋼材の板厚表層の評価に関しては、最表面の評価と、内部の評価に別々の最適な方法を使い分けることが重要となる。本実施形態で使用する落重試験では、試験片の裏層にき裂が達しているかどうかは評価に含まない。この落重試験は、表層側の寄与が最も大きく、裏面側の寄与が小さい試験法であり、鋼材表層のシアリップ効果の評価に適している。
In Non-Patent Document 2, the inside of the plate thickness is also evaluated by the drop weight test. The main mechanism by which the inside of the plate thickness contributes to arrestability is the energy of brittle crack propagation resistance, not the energy of shear lip formation. For this reason, it is considered that evaluating the internal test piece by the drop weight test causes an evaluation error due to the deviation of the steel properties generated for each production batch and production method of the test steel. In the steel sheet, since the contribution to the arrest characteristics of the super-fine grain region is too large, such an error does not increase and is put into practical use. For this reason, the said evaluation formula cannot be applied to general steel materials.
On the other hand, regarding the evaluation of the plate thickness surface layer of a general steel material, it is important to use different optimum methods separately for the outermost surface evaluation and the internal evaluation. In the drop weight test used in this embodiment, whether or not a crack has reached the back layer of the test piece is not included in the evaluation. This drop weight test is a test method in which the contribution on the surface layer side is the largest and the contribution on the back surface side is small, and is suitable for evaluating the shear lip effect of the steel material surface layer.

本実施形態は、上述した脆性破壊伝播停止試験(ESSO試験)及び複合小型試験の結果に基づいて、厚鋼板のアレスト性能を判定することを基本思想とするものであり、成分組成に基づく特性は試験結果に現れる。このため、広い成分組成の厚鋼板に対して本実施形態の方法を適用することができる。本実施形態で用いる厚鋼板は、公知の成分組成の構造用鋼から製造したものでよい。即ち、本実施形態で用いる厚鋼板は、公知の成分組成の厚鋼板でよい。   The present embodiment is based on the basic idea of determining the arrest performance of a thick steel plate based on the results of the brittle fracture propagation stop test (ESSO test) and the composite compact test described above, and the characteristics based on the component composition are as follows. Appears in test results. For this reason, the method of this embodiment is applicable with respect to the thick steel plate of a wide component composition. The thick steel plate used in the present embodiment may be manufactured from a structural steel having a known component composition. That is, the thick steel plate used in the present embodiment may be a thick steel plate having a known component composition.

なお、本実施形態において判定対象となる厚鋼板としては、例えば、質量%で、C:0.02〜0.20%、Si:0.01〜1.0%、Mn:0.3〜2.0%、Al:0.001〜0.20%、N:0.02%以下、P:0.01%以下、S:0.01%以下を基本成分としたものを挙げることができる。また、母材強度や継手靭性の向上等、要求される特性に応じて、さらに、Ni:2.0%以下、Cr:1.5%以下、Mo:1.0%以下、Cu:1.0%以下、W:1.0%以下、Co:1.0%以下、V:0.1%以下、Nb:0.1以下、Ti:0.05以下、Zr:0.05%以下、Ta:0.05%以下、Hf:0.005%以下、REM:0.005%以下、Y:0.005%以下、Ca:0.01%以下、Mg:0.01%以下、Te:0.01%以下、Se:0.005%以下、B:0.005%以下の1種または2種以上を含有させた厚鋼板を用いてもよい。   In addition, as a thick steel plate used as determination object in this embodiment, for example, in mass%, C: 0.02 to 0.20%, Si: 0.01 to 1.0%, Mn: 0.3 to 2 0.0%, Al: 0.001 to 0.20%, N: 0.02% or less, P: 0.01% or less, and S: 0.01% or less. Further, according to required properties such as improvement of base material strength and joint toughness, Ni: 2.0% or less, Cr: 1.5% or less, Mo: 1.0% or less, Cu: 1. 0% or less, W: 1.0% or less, Co: 1.0% or less, V: 0.1% or less, Nb: 0.1 or less, Ti: 0.05 or less, Zr: 0.05% or less, Ta: 0.05% or less, Hf: 0.005% or less, REM: 0.005% or less, Y: 0.005% or less, Ca: 0.01% or less, Mg: 0.01% or less, Te: A thick steel plate containing one or more of 0.01% or less, Se: 0.005% or less, and B: 0.005% or less may be used.

本実施形態に係るアレスト性能の判定方法では、上記各種の標準鋼の複数箇所からそれぞれ採取した小型試験片について、上記の方法で複数の小型試験(Vノッチシャルピー衝撃試験、落重試験等の複合小型試験)を行った後、次に、得られた複合小型試験の結果と、最初に行った上記各種の標準鋼の脆性破壊伝播停止試験の結果との相関モデルを、以下のように算出する。   In the determination method of arrest performance according to the present embodiment, a plurality of small tests (V-notch Charpy impact test, drop weight test, etc.) are performed on the small test pieces collected from a plurality of locations of the various standard steels. Next, the correlation model between the results of the composite compact test obtained and the results of the brittle fracture propagation stop test of the above-mentioned various standard steels is calculated as follows: .

本実施形態に係る相関モデルは、標準鋼の脆性破壊伝播停止試験により測定される、脆性き裂伝播停止特性Kca値が所定の要求値となる温度であるTKcaを目的変数、標準鋼の前記表層小型試験片の落重試験の結果であるNDT温度を第1の説明変数X、前記標準鋼の前記内部小型試験片を用いた小型試験(Vノッチシャルピー衝撃試験)の結果である破面遷移温度(またはエネルギー遷移温度)を第2の説明変数Y、標準鋼の板厚tを第3の説明変数Zとして重回帰分析を行うことで得られる。具体的には、下記式(1)で表される相関モデル式を算定することができる。   The correlation model according to the present embodiment uses TKca, which is a temperature at which the brittle crack propagation stop characteristic Kca value is a predetermined required value, measured by a brittle fracture stop test of standard steel, as an objective variable, and the surface layer of standard steel. NDT temperature as a result of drop test of small test piece is first explanatory variable X, fracture surface transition temperature as a result of small test (V notch Charpy impact test) using internal small test piece of standard steel (Or energy transition temperature) is the second explanatory variable Y, and the thickness t of the standard steel is the third explanatory variable Z. Specifically, the correlation model equation represented by the following equation (1) can be calculated.

a・X+b・Y+c・Z+d=TKca ・・・ (1)
なお、a,b,c,dは係数である。
a · X + b · Y + c · Z + d = TKca (1)
Note that a, b, c, and d are coefficients.

従来から、大型試験の結果であるKca値と、小型試験片の特性値との対応関係についてアレスト性能の観点から調査されてきたが、十分な精度での相関関係が得られなかった。しかし、本実施形態に係る上記相関モデルの式では、厚鋼板のアレスト性能に対し、従来では考慮されていなかった板厚を新たな要素として加入することで、大型試験でのアレスト性能と小型試験結果との関係において、高精度な相関関係を導出できる。   Conventionally, the correspondence between the Kca value, which is the result of the large test, and the characteristic value of the small test piece has been investigated from the viewpoint of arrest performance, but a correlation with sufficient accuracy could not be obtained. However, in the above correlation model formula according to the present embodiment, the arrest performance in the large test and the small test are added to the arrest performance of the thick steel plate by adding a plate thickness that has not been considered in the past as a new factor. In relation to the result, a highly accurate correlation can be derived.

次に、脆性破壊伝播停止試験及び複合小型試験の結果、ならびに上記相関モデルの式に基づき、板厚毎に厚鋼板のアレスト性能を判定する基準を定める。
具体的には、まず、上記の複合小型試験により求めた標準鋼のNDT温度と、破面遷移温度(またはエネルギー遷移温度)と、上記相関モデルの式において左辺のTKcaを標準鋼の保証温度とした式との相関関係(グラフ)を、板厚ごとに求める。尚、上記保証温度とは、鋼板が所定のKca値を備えていることを保証する最低の温度である。
次に、得られた板厚毎の相関関係(グラフ)に基づき、標準鋼のTKcaの値が保証温度以下を示す領域を決定し、当該領域を表すための標準鋼のNDT温度と破面遷移温度またはエネルギー遷移温度について、例えば、表2に示す様に板厚毎に、厚鋼板のアレスト性能の判定基準として纏める。
このようにして求めた判定基準を用い、サンプル鋼の複合小型試験の結果から、当該サンプル鋼のアレスト性能が合格否かを簡易に判定することができる。なお、サンプル鋼は生産ラインから任意の数を取得することができ、各サンプル鋼から、標準鋼に行ったのと同様の方法で表層小型試験片(落重試験用)および内部小型試験片(脆性破面率または吸収エネルギー測定用)を取得する。そして引き続き標準鋼と同様に、小型試験片に対する各小型試験を行い、サンプル鋼の複合小型試験結果を得ることができる。
Next, based on the results of the brittle fracture propagation stop test and the composite compact test, and the above-mentioned correlation model formula, criteria for determining the arrest performance of the thick steel plate for each plate thickness are determined.
Specifically, first, the NDT temperature, fracture surface transition temperature (or energy transition temperature) of the standard steel obtained by the composite compact test, and the TKca on the left side in the above correlation model formula are the guaranteed temperature of the standard steel. Correlation (graph) with the calculated formula is obtained for each plate thickness. The guaranteed temperature is the lowest temperature that guarantees that the steel plate has a predetermined Kca value.
Next, based on the obtained correlation (graph) for each sheet thickness, a region where the TKca value of the standard steel shows a guaranteed temperature or less is determined, and the NDT temperature and fracture surface transition of the standard steel for representing the region. For example, as shown in Table 2, the temperature or energy transition temperature is summarized as a criterion for determining the arrest performance of a thick steel plate for each plate thickness.
Using the determination criteria thus obtained, it is possible to easily determine whether the arrest performance of the sample steel is acceptable or not from the result of the composite small test of the sample steel. In addition, any number of sample steels can be obtained from the production line, and from each sample steel, a small surface specimen (for drop weight test) and a small internal specimen (in the same way as for standard steel) Get brittle fracture surface ratio or absorbed energy measurement). Then, similarly to the standard steel, each small test is performed on the small test piece, and the composite small test result of the sample steel can be obtained.

上述したように、厚鋼板のアレスト性能は板厚の影響を大きく受ける。即ち、板厚が厚くなればなるほどアレスト性能は厳しくなる傾向となり、厚鋼板の板厚が厚くなればなるほど、き裂の伝播は停止しにくくなる。そこで、標準鋼のNDT温度と、破面遷移温度またはエネルギー遷移温度と、上記相関モデルにおいてTKcaを標準鋼の保証温度とした式との相関関係(グラフ)を、板厚ごとに求め、標準鋼のTKcaの値が保証温度以下を示す領域、つまりアレスト性能が良好となる合格領域を板厚毎に纏めることで、高精度かつ簡易なアレスト性能の判定基準を作成することができる。   As described above, the arrest performance of the thick steel plate is greatly affected by the plate thickness. That is, the arrest performance tends to be severer as the plate thickness increases, and the crack propagation becomes more difficult to stop as the plate thickness of the thick steel plate increases. Therefore, the correlation (graph) between the NDT temperature of the standard steel, the fracture surface transition temperature or the energy transition temperature, and the formula where TKca is the guaranteed temperature of the standard steel in the above correlation model is obtained for each plate thickness. It is possible to create a highly accurate and simple determination criterion for arrest performance by collecting, for each plate thickness, a region where the value of TKca is equal to or lower than the guaranteed temperature, that is, an acceptable region where the arrest performance is good.

なお、アレスト性能の上記判定基準を決定する工程において、前記相関関係(グラフ)に基づき、標準鋼のTKcaの値が保証温度以下を示す領域(アレスト性能が良好と判断される領域)を決定する際、板厚の相違に因らず、前記領域を表すための破面遷移温度(またはエネルギー遷移温度)を一定として、前記領域を表すための標準鋼のNDT温度を決定してもよい。
上述のとおり、板厚が厚くなればなるほどアレスト性能は厳しくなる傾向にあり、アレスト性能が良好となる合格基準(破面遷移温度またはエネルギー遷移温度、及びNDT温度)も厳しくなる。そのため、板厚毎によって合格基準を示す値も変動するが、破面遷移温度またはエネルギー遷移温度を一定値に固定して、板厚毎のNDT温度の合格判定基準を決定することで、より簡易にアレスト性能を判定することが可能となる。
Note that, in the step of determining the determination criterion for arrest performance, based on the correlation (graph), a region where the value of TKca of the standard steel is equal to or lower than the guaranteed temperature (region where the arrest performance is determined to be good) is determined. At this time, the NDT temperature of the standard steel for representing the region may be determined with the fracture surface transition temperature (or energy transition temperature) for representing the region constant, regardless of the difference in the plate thickness.
As described above, the arrest performance tends to be severer as the plate thickness increases, and the acceptance criteria (fracture surface transition temperature or energy transition temperature, and NDT temperature) at which the arrest performance is good become severe. Therefore, although the value indicating the acceptance criteria varies depending on the plate thickness, it is simpler by fixing the fracture surface transition temperature or energy transition temperature to a constant value and determining the acceptance criteria for the NDT temperature for each plate thickness. It is possible to determine the arrest performance.

上述したように、板厚が厚くなればなるほどアレスト性能は厳しくなる傾向にある。すなわち、NDT温度と破面遷移温度(またはエネルギー遷移温度)が同じである場合、板厚が厚くなればなるほどTKcaの値は大きく(高温)になる。また、板厚が厚くなるに伴い、TKcaの板厚依存性は徐々に低下する。例えば、板厚が50〜100mmの範囲での板厚増加に対するTKcaの変化に比べ、板厚が100超〜250mmの範囲での板厚増加に対するTKcaの変化は小さくなる。そのため、前記第3の説明変数Zを、下記式(2)とすることが好ましい。なお、下記式(2)中のtは前記標準鋼の板厚、nを0.01〜1とした係数である。これにより、相関モデルの精度が向上する。
Z=t ・・・ (2)
As described above, the arrest performance tends to become severer as the plate thickness increases. That is, when the NDT temperature and the fracture surface transition temperature (or energy transition temperature) are the same, the value of TKca increases (high temperature) as the plate thickness increases. Moreover, as the plate thickness increases, the plate thickness dependency of TKca gradually decreases. For example, the change in TKca with respect to the increase in plate thickness in the range of more than 100 to 250 mm is smaller than the change in TKca with the increase in plate thickness in the range of 50 to 100 mm. Therefore, it is preferable that the third explanatory variable Z is represented by the following formula (2). In addition, t in following formula (2) is a plate | board thickness of the said standard steel, and is a coefficient which set n to 0.01-1. This improves the accuracy of the correlation model.
Z = t n (2)

この際、前記モデル式(2)のnの値としては、0.01〜1の範囲内の値であれば何れの値を用いても実用上問題ない。しかし、100mmを超える板厚の鋼板を含む場合には、nの値を1未満とし、しかも、nの値が小さければ小さい程、即ち、0.01に近くするする程、相関モデルの精度が向上するため好ましい。しかし、0.01未満にしてもそれ以上の精度の向上は見込めない上、上記式(1)の係数cの値が大きくなるため相関モデル式が煩雑になる。そのため、nの下限は0.01とすることが好ましい。一方、板厚が例えば100mmを超える板厚の鋼板を含まずに、50〜100mmの領域の薄い鋼板で構成されている場合には、nの値として1を用いることが、相関モデル式が簡単となり扱いやすい。そのため、100mmを超える板厚の鋼板を含まない場合は、nを1とすることが好ましい。   At this time, as the value of n in the model formula (2), any value within the range of 0.01 to 1 has no practical problem. However, when a steel sheet having a thickness exceeding 100 mm is included, the value of n is less than 1, and the smaller the value of n, that is, the closer to 0.01, the more accurate the correlation model is. It is preferable because it improves. However, even if it is less than 0.01, further improvement in accuracy cannot be expected, and the value of the coefficient c in the above equation (1) becomes large, so that the correlation model equation becomes complicated. Therefore, the lower limit of n is preferably 0.01. On the other hand, if the plate thickness does not include a steel plate having a thickness exceeding 100 mm, for example, and is made of a thin steel plate in the region of 50 to 100 mm, using 1 as the value of n makes the correlation model equation simple. Easy to handle. Therefore, n is preferably set to 1 when a steel plate having a thickness exceeding 100 mm is not included.

次に、本発明の各実施形態の実施例について説明する。実施例の条件は、本発明の実施可能性及び効果を確認するために採用した条件の例であり、本発明の適用範囲は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of each embodiment of the present invention will be described. The conditions of the examples are examples of conditions adopted to confirm the feasibility and effects of the present invention, and the scope of application of the present invention is not limited to this one condition example. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
本実施例で用いた厚鋼板(鋼種No.1〜14)の成分組成、板厚、および強度区分YP、用意した鋼板枚数(合計105枚)を、表1に示す。また、これら鋼種No1.〜14の脆性破壊伝播停止試験(鋼の保証温度:−10℃)の結果(Kca−10℃[N/mm1.5],TKca6000[℃])も併せて表1に示す。
なお、強度区分については、例えば「YP40」は「降伏点40kgf/mm級」を意味する。
Example 1
Table 1 shows the composition of the thick steel plates (steel types Nos. 1 to 14) used in this example, the plate thickness, the strength category YP, and the number of prepared steel plates (105 in total). Moreover, these steel types No.1. Table 1 also shows the results (Kca- 10 ° C [N / mm 1.5 ], TKca6000 [° C]) of -14 brittle fracture propagation stop test (guaranteed temperature of steel: -10 ° C).
As for the strength classification, for example, “YP40” means “yield point 40 kgf / mm 2 class”.

表1に示す厚鋼板(鋼種No.1〜14)から、図1Bに示す採取態様のうち、落重試験用の小型試験片を表層を含む位置より採取した小型試験片12を用い、Vノッチシャルピー試験用の小型試験片を板厚の1/4の位置を含む位置より採取した小型試験片11を用いた。各試験片の寸法及び形状は、図2、図4A、図4Bに示すとおりとし、落重試験片の寸法は、図4Aの「P−3(T:16mm,L:130mm,W:50mm」とした。
次に、採取した各小型試験片において、NRL落重試験(ASTM E208−06に準拠)及び、Vノッチシャルピー衝撃試験(JIS Z 2242に準拠)を行いNDT温度及びvTrs(破面遷移温度)を求めた。
From the thick steel plate (steel types No. 1 to 14) shown in Table 1, among the sampling modes shown in FIG. 1B, a small test piece 12 obtained by sampling a small test piece for drop weight test from a position including the surface layer was used. A small test piece 11 obtained by collecting a small test piece for the Charpy test from a position including a quarter of the plate thickness was used. The dimensions and shape of each test piece are as shown in FIGS. 2, 4A, and 4B, and the drop weight test piece dimensions are “P-3 (T: 16 mm, L: 130 mm, W: 50 mm” in FIG. 4A. It was.
Next, NRL drop weight test (according to ASTM E208-06) and V-notch Charpy impact test (according to JIS Z 2242) are performed on each sampled small test piece, and NDT temperature and vTrs (fracture surface transition temperature) are measured. Asked.

Figure 2015135324
Figure 2015135324

次に、上記試験の結果より、TKca6000[℃]を目的変数、NDT温度[℃]、vTrs[℃]、板厚t[mm]の(1/13)乗を説明変数として重回帰分析を行ったところ、上記式(1)の係数a、b、c及びdはそれぞれ、a=0.4033、b=0.2882、c=144.1、d=−162.5が得られた。これより、本実施例における相関モデルは下記式(3)となった。
TKca6000=0.4033×NDT温度+0.2882×vTrs+144.1×t1/13−162.5 ・・・ (3)
Next, based on the results of the above test, a multiple regression analysis was performed using TKca 6000 [° C.] as an objective variable, NDT temperature [° C.], vTrs [° C.], and plate thickness t [mm] to the (1/13) th power. As a result, the coefficients a, b, c and d of the above formula (1) were obtained as follows: a = 0.4033, b = 0.882, c = 144.1, d = −162.5. From this, the correlation model in a present Example became following formula (3).
TKca6000 = 0.4033 × NDT temperature + 0.2882 × vTrs + 144.1 × t 1/13 −162.5 (3)

図6に、板厚が50〜250mmの場合に於ける、上記相関モデルの式(3)によるTKca6000の推定値と、表1に示すTKca6000の実測値の関係を示す。
図6のグラフより分かるように、TKca6000の推定値と実測値は概ね一致するものの若干の誤差が生じる。各種試験は同一の鋼板を用いたとしても、試験結果にばらつきが生じるため、ある程度の誤差は避けることはできない。従って、本実施例においては、アレスト性がKca−10℃≧6000N/mm1.5を満足することを簡易判定する基準を、推定TKca6000≦−(10+e)℃とした。例えば、eの値は、TKca6000の推定値と実測値との誤差の標準偏差σを用いることができる。本実施例では、図6のグラフによりσ=6.3℃であることから、アレスト性を簡易判定する基準を推定TKca6000≦−16.3℃とした。このようにすることで、TKca6000の実測値が保証温度(−10℃)超で不合格であるサンプルが、TKca6000の推定値と実測値の誤差により誤って合格と判定してしまうことを防止することができる。また、eの値はσである必要はなく、例えば2σとしても良い。
FIG. 6 shows the relationship between the estimated value of TKca6000 according to equation (3) of the correlation model and the measured value of TKca6000 shown in Table 1 when the plate thickness is 50 to 250 mm.
As can be seen from the graph of FIG. 6, the estimated value of TKca6000 and the actually measured value almost coincide with each other, but a slight error occurs. Even if the same steel plate is used in various tests, a certain degree of error cannot be avoided because test results vary. Therefore, in this example, the criterion for simple determination that the arrestability satisfies Kca- 10 ° C. ≧ 6000 N / mm 1.5 was set to estimated TKca 6000 ≦ − (10 + e) ° C. For example, the standard deviation σ of the error between the estimated value of TKca6000 and the actually measured value can be used as the value of e. In this example, σ = 6.3 ° C. according to the graph of FIG. 6, so that the criterion for simple determination of arrestability was estimated TKca6000 ≦ −16.3 ° C. By doing in this way, it is prevented that the sample whose measured value of TKca6000 exceeds the guaranteed temperature (−10 ° C.) and is rejected is erroneously determined to be acceptable due to an error between the estimated value of TKca6000 and the measured value. be able to. The value of e need not be σ, and may be 2σ, for example.

また、本発明者らによる考察によると、アレスト性がKca−10℃≧6000N/mm1.5を満足する鋼板はほとんどvTrsが−80℃以下であったことから、本実施例においては、vTrsの合格条件を−80℃に固定した。
これより、上記相関モデルの式(3)にTKca6000=−16.3℃、vTrs=−80℃を代入することで、板厚毎のNDT温度の合格条件を決定することができる。このようにして決定した、板厚毎の、落重試験温度、NDT温度及びvTrsを纏めた判定基準テーブルを表2に示す。
Further, according to the study by the present inventors, most of the steel sheets having arrestability satisfying Kca −10 ° C. ≧ 6000 N / mm 1.5 had vTrs of −80 ° C. or lower. The passing condition was fixed at -80 ° C.
Thus, by substituting TKca6000 = −16.3 ° C. and vTrs = −80 ° C. into equation (3) of the correlation model, it is possible to determine the NDT temperature pass condition for each plate thickness. Table 2 shows a determination criterion table that summarizes the drop weight test temperature, NDT temperature, and vTrs determined for each plate thickness.

次に、表2の判定基準テーブルによって、確実にアレスト性の合否判定ができていることを確認するために、板厚が65mm、70mm、80mm、100mm、150mm、200mm、250mmのサンプルについて、NDT温度とvTrsとの関係を、表2の判定基準テーブルによる合格領域とともに纏めた結果を、図7A〜図7Gに示す。
即ち、図7A〜図7Gにおいて、表2のNDT温度の値を図7A〜図7Gの縦軸にプロットし、表2のvTrsの値を図7A〜図7Gの横軸にプロットして、この両者を結んだ線の下側(両温度より低い温度領域)を合格領域とするものである。
また、図7A〜図7G内では、TKca6000(実測値)が保証温度(−10℃)以下で合格であったものを「○」、TKca6000(実測値)が保証温度(−10℃)超で不合格であったものを「×」とした。
この図7A〜図7Gから解るように、各板厚での合格領域には「○」のみしかなく、確実にアレスト性がKca−10℃≧6000N/mm1.5を満足する鋼板のみを判定できていることを立証できている。
Next, in order to confirm that the pass / fail determination of arrestability can be reliably performed according to the determination reference table of Table 2, NDT is performed on samples having plate thicknesses of 65 mm, 70 mm, 80 mm, 100 mm, 150 mm, 200 mm, and 250 mm. 7A to 7G show the results of summarizing the relationship between the temperature and the vTrs together with the pass areas according to the determination criterion table of Table 2.
7A to 7G, the NDT temperature values in Table 2 are plotted on the vertical axis in FIGS. 7A to 7G, and the vTrs values in Table 2 are plotted on the horizontal axis in FIGS. 7A to 7G. The lower side of the line connecting the two (temperature range lower than both temperatures) is set as the pass range.
Moreover, in FIG. 7A-FIG. 7G, what passed TKca6000 (actual value) below guarantee temperature (-10 degreeC) is "(circle)", and TKca6000 (actual value) is over guarantee temperature (-10 degreeC). Those which were not accepted were evaluated as “x”.
As can be seen from FIG. 7A to FIG. 7G, only “◯” is present in the pass region at each plate thickness, and only the steel plate whose arrestability satisfies Kca −10 ° C. ≧ 6000 N / mm 1.5 is surely determined. I can prove that it is done.

Figure 2015135324
Figure 2015135324

以上のようにして、アレスト性の判定基準を作成することができる。その結果、当該判定基準に基づき、サンプル鋼の大型試験(脆性破壊伝播停止試験)を行うことなく、小型試験を行うことで、サンプル鋼のアレスト性の合否を簡易に判定することが可能となる。
本実施例の場合は、鋼の保証温度:−10℃、脆性き裂伝播停止特性Kcaの要求値:6000N/mm1.5を条件とする場合であり、当該条件の場合、サンプル鋼の破面遷移温度vTrs(またはエネルギー遷移温度vTre)が−80℃以下、NDT温度が表2の値以下である場合に、サンプル鋼の脆性き裂伝播停止特性が要求値を満足すると判定できる。換言するに、例えば板厚50mmのサンプル鋼の場合、「NRL落重試験において表2のNDT温度である−63℃よりも5℃高い−58℃以下で合格、かつ、Vノッチシャルピー衝撃試験において表2のvTrsである−80℃以下で合格であれば、当該サンプル鋼の脆性き裂伝播停止特性が要求値を満足すると判定できる。」なお、NRL落重試験の合格基準は、切欠から始まったクラックがサンプル鋼試験片の表面を試験片の幅方向に伝播してその端部まで進行した場合、試験結果は「Break(き裂伝播あり)」と判定され不合格であり、幅方向の端部にき裂が達しなかった場合は、試験結果は「No Break(き裂伝播なし)」と判定される。上記試験操作を、同一の試験温度にて2個ずつの試験片で反復して行い、2個の試験片ともに「No break」が得られた場合、この時の温度において合格とする。また、Vノッチシャルピー衝撃試験の合格基準は、3個の試験の脆性破面率を測定し、これらの平均値が50%以下であった場合、この時の試験温度において合格とする。
As described above, a determination criterion for arrestability can be created. As a result, it is possible to easily determine whether or not the arrestability of the sample steel is acceptable by performing a small test without performing a large test (brittle fracture propagation stop test) of the sample steel based on the determination criteria. .
In this example, the guaranteed temperature of steel: −10 ° C. and the required value of brittle crack propagation stop characteristic Kca: 6000 N / mm 1.5 are the conditions. When the surface transition temperature vTrs (or energy transition temperature vTre) is −80 ° C. or lower and the NDT temperature is lower than the value shown in Table 2, it can be determined that the brittle crack propagation stop characteristic of the sample steel satisfies the required value. In other words, in the case of a sample steel having a thickness of 50 mm, for example, “In the NRL drop weight test, it passed 5 ° C., which is 5 ° C. higher than −63 ° C., which is the NDT temperature in Table 2, and in the V-notch Charpy impact test. If it passes at −80 ° C. or lower, which is the vTrs in Table 2, it can be determined that the brittle crack propagation stop characteristic of the sample steel satisfies the required value. ”Note that the pass criterion for the NRL drop weight test starts from a notch. If the crack propagated on the surface of the sample steel specimen in the width direction of the specimen and progressed to the end, the test result was judged as “Break (with crack propagation)” and failed, When the crack does not reach the end, the test result is determined as “No Break (no crack propagation)”. The above test operation is repeated with two test pieces at the same test temperature, and when “No break” is obtained for both of the two test pieces, the test is accepted at this temperature. The acceptance criteria for the V-notch Charpy impact test are to measure the brittle fracture surface ratio of three tests, and when the average value is 50% or less, the test temperature at this time is passed.

以上説明したように、サンプル鋼のアレスト性の判定基準としてアレスト性に大きな影響を及ぼす板厚の要素を加えることで、判定精度を向上させることが可能となる上、板厚毎の判定基準を作成することで、サンプル鋼のアレスト性の判定を簡易に行うことができる。   As explained above, by adding a plate thickness element that greatly affects the arrestability as a criterion for determining the arrestability of the sample steel, it is possible to improve the determination accuracy and to determine the determination criterion for each plate thickness. By making it, the arrestability of the sample steel can be easily determined.

なお、鋼の保証温度及び脆性き裂伝播停止特性Kcaの要求値が異なる場合には、その場合の条件に沿って相関モデルを導出することで、条件に沿った判定基準を作成することができる。   In addition, when the required values of the guaranteed temperature of steel and the brittle crack propagation stop characteristic Kca are different, a criterion based on the condition can be created by deriving a correlation model along the condition in that case. .

本発明の方法によると、脆性破壊伝播停止試験のように、大型試験装置を必要し、高コストの大型試験を省略することが可能となる。つまり、各バッチの製品鋼材からサンプル鋼材を選出し、このサンプル鋼材から切り出した小型試験片を用いて小型試験を行い、大型試験と同様の高い精度で実製品のアレスト性能を推定できる。本発明の方法を用いると、成分・工程レベルの品質保証に替わって、小型試験に基づいた各バッチの製品鋼材レベルの品質保証を提供できる。   According to the method of the present invention, a large-sized test apparatus is required as in the brittle fracture propagation stop test, and a high-cost large-scale test can be omitted. That is, a sample steel material is selected from the product steel materials of each batch, a small test is performed using a small test piece cut out from the sample steel material, and the arrest performance of the actual product can be estimated with the same high accuracy as the large test. By using the method of the present invention, it is possible to provide quality assurance at the level of product steel of each batch based on a small test, instead of quality assurance at the component / process level.

7 ・・・ 厚鋼板、
8、8a、9、9a、10、10a、11、12 ・・・ 小型試験片、
101 ・・・ 表層小型試験片(落重試験片)、
101a ・・・ 片方の表面(溶接ビード設置面)、
101b ・・・ 溶接ビード、
102 ・・・ 内部小型試験片、
N ・・・ ノッチ、
200 ・・・ 落重試験機、
200a ・・・ 錘、
200b ・・・ 試験片設置台
7 ・ ・ ・ Thick steel plate,
8, 8a, 9, 9a, 10, 10a, 11, 12 ... small test pieces,
101... Small surface layer test piece (falling weight test piece),
101a ... one surface (weld bead installation surface),
101b ... weld bead,
102 ... Internal small test piece,
N ... notch,
200: Drop weight tester,
200a: weight,
200b ... Test specimen mounting table

Claims (3)

厚鋼板の脆性き裂伝播停止特性を判定する方法であって、
板厚の異なる複数の標準鋼を用いて脆性破壊伝播停止試験を行う工程と、
前記標準鋼を用いて複合小型試験を行う工程と、
前記脆性破壊伝播停止試験により実測される脆性き裂伝播停止特性Kca値と前記複合小型試験の結果との相関モデルを算出する工程と、
前記脆性破壊伝播停止試験、前記複合小型試験の結果及び前記相関モデルに基づき、板厚毎の脆性き裂伝播停止特性判定基準を決定する工程と、
サンプル鋼を用いて前記複合小型試験を行う工程と、
前記サンプル鋼の前記複合小型試験の結果及び前記脆性き裂伝播停止特性判定基準に基づき、前記サンプル鋼の脆性き裂伝播停止特性を判定する工程と、
を含み、
前記標準鋼を用いて前記複合小型試験を行う工程、及び前記サンプル鋼を用いて前記複合小型試験を行う工程はともに、
(a)鋼板表層部を含む表層小型試験片を採取する工程と、
(b)鋼板表層部を含まない一箇所または二箇所以上の内部領域からそれぞれ内部小型試験片を採取する工程と、
(c)前記表層小型試験片を用いて、ASTM E208−06に規定されたNRL落重試験法に準拠して落重試験を行い、NDT温度を求める工程と、
(d)前記内部小型試験片を用いて、脆性破面率または吸収エネルギーを測定する小型試験を行い、破面遷移温度またはエネルギー遷移温度を求める工程と、
を含み、
前記脆性き裂伝播停止特性Kca値において、所定のKca値を確保し得る限界温度である目標Kca限界温度TKcaを目的変数、前記標準鋼の前記NDT温度を第1の説明変数X、前記標準鋼の前記破面遷移温度またはエネルギー遷移温度を第2の説明変数Y、前記標準鋼の板厚を第3の説明変数Zとし、a、b、c及びdを係数とすると、前記相関モデルは、下記式(1)であり、
a・X+b・Y+c・Z+d=TKca ・・・ (1)
前記脆性き裂伝播停止特性判定基準を決定する工程では、
前記標準鋼の前記NDT温度と、前記破面遷移温度またはエネルギー遷移温度と、TKcaを、前記標準鋼が所定のKca値を備えていることを保証する最低の温度である保証温度とした上記式(1)との相関関係を、板厚ごとに求める工程と、
前記相関関係に基づき、前記標準鋼の前記TKcaの値が前記保証温度以下を示す領域を決定し、当該領域を表すための前記標準鋼の前記NDT温度と前記破面遷移温度またはエネルギー遷移温度について、板厚毎に纏める工程と、
を含むことを特徴とする高強度厚鋼板の脆性き裂伝播停止特性の判定方法。
A method for determining brittle crack propagation stopping characteristics of a thick steel plate,
A process of performing a brittle fracture propagation stop test using a plurality of standard steels having different thicknesses;
Performing a composite compact test using the standard steel;
Calculating a correlation model between a brittle crack propagation stop characteristic Kca value measured by the brittle fracture propagation stop test and a result of the composite small test;
Based on the results of the brittle fracture propagation stop test, the composite small test and the correlation model, determining a criterion for determining the brittle crack propagation stop characteristics for each plate thickness;
Performing the composite compact test using sample steel;
Based on the result of the composite small test of the sample steel and the criterion for determining the brittle crack propagation stop property, determining the brittle crack propagation stop property of the sample steel;
Including
Both the step of performing the composite compact test using the standard steel and the step of performing the composite compact test using the sample steel,
(A) a step of collecting a surface layer small test piece including a steel sheet surface layer portion;
(B) a step of collecting internal small test pieces from one or two or more internal regions not including the steel sheet surface layer portion;
(C) A step of performing a drop weight test in accordance with the NRL drop weight test method defined in ASTM E208-06 using the surface layer small test piece, and obtaining an NDT temperature;
(D) performing a small test to measure the brittle fracture surface rate or absorbed energy using the internal small test piece, and obtaining a fracture surface transition temperature or an energy transition temperature;
Including
In the brittle crack propagation stop characteristic Kca value, the target Kca limit temperature TKca, which is the limit temperature at which a predetermined Kca value can be secured, is the objective variable, the NDT temperature of the standard steel is the first explanatory variable X, and the standard steel Where the fracture surface transition temperature or energy transition temperature is a second explanatory variable Y, the thickness of the standard steel is a third explanatory variable Z, and a, b, c, and d are coefficients, It is following formula (1),
a · X + b · Y + c · Z + d = TKca (1)
In the step of determining the brittle crack propagation stop property criteria,
The NDT temperature of the standard steel, the fracture surface transition temperature or energy transition temperature, and TKca are the above-mentioned formulas that are guaranteed temperatures that are the lowest temperatures that guarantee that the standard steel has a predetermined Kca value. A step of obtaining a correlation with (1) for each plate thickness;
Based on the correlation, a region in which the value of the TKca of the standard steel indicates the guaranteed temperature or less is determined, and the NDT temperature and the fracture surface transition temperature or energy transition temperature of the standard steel for representing the region. , The process of summarizing every thickness,
A method for determining brittle crack propagation stopping characteristics of a high-strength thick steel plate characterized by comprising:
前記脆性き裂伝播停止特性判定基準を決定する工程において、前記相関関係に基づき、前記標準鋼の前記TKcaの値が前記保証温度以下を示す領域を決定する際、板厚の相違に因らず、前記領域を表すための前記破面遷移温度またはエネルギー遷移温度を一定として、前記領域を表すための前記標準鋼の前記NDT温度を決定することを特徴とする請求項1に記載の高強度厚鋼板の脆性き裂伝播停止特性の判定方法。   In the step of determining the criterion for determining the brittle crack propagation stop property, when determining the region where the value of the TKca of the standard steel shows the guaranteed temperature or less based on the correlation, regardless of the difference in the plate thickness The high strength thickness according to claim 1, wherein the NDT temperature of the standard steel for representing the region is determined with the fracture surface transition temperature or energy transition temperature for representing the region being constant. Judgment method of brittle crack propagation stop property of steel sheet. 前記第3の説明変数Zを、前記標準鋼の板厚をt、nを0.01〜1の係数とし、下記式(2)とすることを特徴とする請求項1又は2に記載の高強度厚鋼板の脆性き裂伝播停止特性の判定方法。
Z=t ・・・ (2)
3. The high value according to claim 1, wherein the third explanatory variable Z is defined by the following formula (2), wherein the thickness of the standard steel is t and n is a coefficient of 0.01 to 1. Judgment method of brittle crack propagation stop property of high strength steel plate.
Z = t n (2)
JP2014257664A 2013-12-20 2014-12-19 Judgment method of brittle crack propagation stop property of high strength thick steel plate Active JP6341082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014257664A JP6341082B2 (en) 2013-12-20 2014-12-19 Judgment method of brittle crack propagation stop property of high strength thick steel plate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013264231 2013-12-20
JP2013264231 2013-12-20
JP2014257664A JP6341082B2 (en) 2013-12-20 2014-12-19 Judgment method of brittle crack propagation stop property of high strength thick steel plate

Publications (2)

Publication Number Publication Date
JP2015135324A true JP2015135324A (en) 2015-07-27
JP6341082B2 JP6341082B2 (en) 2018-06-13

Family

ID=53767233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014257664A Active JP6341082B2 (en) 2013-12-20 2014-12-19 Judgment method of brittle crack propagation stop property of high strength thick steel plate

Country Status (1)

Country Link
JP (1) JP6341082B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108646676A (en) * 2016-05-13 2018-10-12 杭萧钢构(河北)建设有限公司 Steel construction production control method
CN109297838A (en) * 2018-11-16 2019-02-01 南京钢铁股份有限公司 A kind of crack arrest steel product service check method
JP2020041966A (en) * 2018-09-13 2020-03-19 日本製鉄株式会社 Steel plate quality evaluation method
KR20200064138A (en) * 2017-11-22 2020-06-05 제이에프이 스틸 가부시키가이샤 Evaluation method of brittle crack propagation stop performance of thick steel sheet
KR20220093558A (en) * 2020-12-28 2022-07-05 현대제철 주식회사 Brittle-fracturearrest property test method of steel
JP7188655B1 (en) * 2021-06-10 2022-12-13 Jfeスチール株式会社 Evaluation method of brittle crack arrestability of steel plate
JP7252525B1 (en) * 2021-11-29 2023-04-05 Jfeスチール株式会社 Evaluation method of brittle crack arrestability of steel plate
WO2023095528A1 (en) * 2021-11-29 2023-06-01 Jfeスチール株式会社 Method for evaluating brittle crack arrest performance of thick steel plate
JP7371822B1 (en) 2022-07-11 2023-10-31 Jfeスチール株式会社 Method for preparing 3-point bending CTOD test piece
WO2024014181A1 (en) * 2022-07-11 2024-01-18 Jfeスチール株式会社 Method for preparing 3-point bending ctod test piece

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046106A (en) * 2006-07-19 2008-02-28 Nippon Steel Corp System for controlling quality of brittle crack propagation arrest properties of thick steel plate
JP2009063320A (en) * 2007-09-04 2009-03-26 Nippon Steel Corp Judge method of brittle crack propagation stopping characteristics of thick steel plate
JP2010230666A (en) * 2009-03-04 2010-10-14 Nippon Steel Corp Method for determining brittle crack propagation inhibiting performance of high-strength steel plate
JP2011033457A (en) * 2009-07-31 2011-02-17 Jfe Steel Corp Evaluation method of brittle fracture propagation stopping performance of thick steel plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046106A (en) * 2006-07-19 2008-02-28 Nippon Steel Corp System for controlling quality of brittle crack propagation arrest properties of thick steel plate
JP2009063320A (en) * 2007-09-04 2009-03-26 Nippon Steel Corp Judge method of brittle crack propagation stopping characteristics of thick steel plate
JP2010230666A (en) * 2009-03-04 2010-10-14 Nippon Steel Corp Method for determining brittle crack propagation inhibiting performance of high-strength steel plate
JP2011033457A (en) * 2009-07-31 2011-02-17 Jfe Steel Corp Evaluation method of brittle fracture propagation stopping performance of thick steel plate

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108646676A (en) * 2016-05-13 2018-10-12 杭萧钢构(河北)建设有限公司 Steel construction production control method
CN108646676B (en) * 2016-05-13 2021-04-23 杭萧钢构(河北)建设有限公司 Production control method of steel structure product
KR102385019B1 (en) * 2017-11-22 2022-04-08 제이에프이 스틸 가부시키가이샤 Evaluation method of brittle crack propagation stop performance of thick steel plate
US11313776B2 (en) 2017-11-22 2022-04-26 Jfe Steel Corporation Method for evaluating brittle crack arrestability of steel plate
KR20200064138A (en) * 2017-11-22 2020-06-05 제이에프이 스틸 가부시키가이샤 Evaluation method of brittle crack propagation stop performance of thick steel sheet
JP7119805B2 (en) 2018-09-13 2022-08-17 日本製鉄株式会社 Thick steel plate quality evaluation method
JP2020041966A (en) * 2018-09-13 2020-03-19 日本製鉄株式会社 Steel plate quality evaluation method
CN109297838A (en) * 2018-11-16 2019-02-01 南京钢铁股份有限公司 A kind of crack arrest steel product service check method
KR20220093558A (en) * 2020-12-28 2022-07-05 현대제철 주식회사 Brittle-fracturearrest property test method of steel
KR102472304B1 (en) 2020-12-28 2022-11-30 현대제철 주식회사 Brittle-fracturearrest property test method of steel
JP7188655B1 (en) * 2021-06-10 2022-12-13 Jfeスチール株式会社 Evaluation method of brittle crack arrestability of steel plate
WO2022259957A1 (en) * 2021-06-10 2022-12-15 Jfeスチール株式会社 Method for evaluating brittle crack arrest performance of thick steel plate
JP7252525B1 (en) * 2021-11-29 2023-04-05 Jfeスチール株式会社 Evaluation method of brittle crack arrestability of steel plate
WO2023095528A1 (en) * 2021-11-29 2023-06-01 Jfeスチール株式会社 Method for evaluating brittle crack arrest performance of thick steel plate
JP7371822B1 (en) 2022-07-11 2023-10-31 Jfeスチール株式会社 Method for preparing 3-point bending CTOD test piece
WO2024014181A1 (en) * 2022-07-11 2024-01-18 Jfeスチール株式会社 Method for preparing 3-point bending ctod test piece

Also Published As

Publication number Publication date
JP6341082B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP6341082B2 (en) Judgment method of brittle crack propagation stop property of high strength thick steel plate
JP4795487B1 (en) Judgment method of brittle crack propagation stopping performance of high strength thick steel plate
Guo et al. Effect of quality control parameter variations on the fatigue performance of aluminum friction stir welded joints
JP2010230666A (en) Method for determining brittle crack propagation inhibiting performance of high-strength steel plate
Zhang et al. Investigation of fatigue damage to welded joints under variable amplitude loading spectra
Darcis et al. Crack tip opening angle optical measurement methods in five pipeline steels
Amirafshari et al. Weld defect frequency, size statistics and probabilistic models for ship structures
Jiao et al. Fatigue behavior of very high strength (VHS) circular steel tube to plate T-joints under in-plane bending
Su et al. Fatigue behavior of uncorroded non-load-carrying bridge weathering steel Q345qDNH fillet welded joints
JP6308171B2 (en) Evaluation method of brittle fracture propagation stop performance of thick steel plate
Amaro et al. CTOA testing of pipeline steels using MDCB specimens
Liu et al. Investigation of weld cracking of a BOG booster pipeline in an LNG receiving station
JP5197496B2 (en) Quality control method for brittle crack propagation stopping performance of T-shaped full penetration welded structure
Ban et al. Micro-macro properties of stainless-clad bimetallic steel welded connections with different configurations
Jia et al. Material Properties and Flaw Characteristics of Vintage Girth Welds
Zhukov et al. Metallography of non-metallic inclusions in pipe metal and impact assessment of defect structures on non-destructive testing outcomes
Vadholm et al. Instrumented Charpy testing revisited–possible use for Arctic steels?
Leng et al. Analysis of the relationship between CTOD toughness and micromechanism of marine steel weld joints
Majidi-Jirandehi et al. The Effect of Notch Depth on the Absorbed Energy of High-Toughness Steels in the DWTT
Angeles-Herrera et al. Fracture-Toughness evaluation in submerged arc-welding seam welds in nonstandard curved SE (B) specimens in the short radial direction of API 5L Steel pipe
ABISHYAM et al. NUMERICAL AND EXPERIMENTAL FRACTURE MECHANICS BASED OPTIMISATION OF SPECIMEN AND NOTCH PARAMETERS OF AA-5052 ALLOY.
Taylor et al. Correlation between steel microstructural characteristics and the initiation and arrest toughness determined from small-scale mechanical testing
Xu et al. Fracture Toughness of Contemporary EW Seam Welds for EW Specification
Kotian et al. Material Properties and Flaw Characteristics of Vintage Girth Welds
Konar et al. Centerline Segregation Rating and Its Implications on Mechanical Properties and Weldability of Line-Pipe Steels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180430

R151 Written notification of patent or utility model registration

Ref document number: 6341082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350