JP2020041789A - Heat exchanger, pipe expanding member, and air conditioner with heat exchanger - Google Patents

Heat exchanger, pipe expanding member, and air conditioner with heat exchanger Download PDF

Info

Publication number
JP2020041789A
JP2020041789A JP2018171896A JP2018171896A JP2020041789A JP 2020041789 A JP2020041789 A JP 2020041789A JP 2018171896 A JP2018171896 A JP 2018171896A JP 2018171896 A JP2018171896 A JP 2018171896A JP 2020041789 A JP2020041789 A JP 2020041789A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
heat exchanger
flat porous
porous heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018171896A
Other languages
Japanese (ja)
Other versions
JP6636110B1 (en
Inventor
尚毅 山本
Naotake Yamamoto
尚毅 山本
法福 守
Mamoru Hofuku
守 法福
隆人 草野
Takahito Kusano
隆人 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2018171896A priority Critical patent/JP6636110B1/en
Priority to CN201910725513.1A priority patent/CN110895065A/en
Priority to US16/554,841 priority patent/US20200088470A1/en
Application granted granted Critical
Publication of JP6636110B1 publication Critical patent/JP6636110B1/en
Publication of JP2020041789A publication Critical patent/JP2020041789A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05333Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/10Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes made by hydroforming
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/12Fastening; Joining by methods involving deformation of the elements
    • F28F2275/125Fastening; Joining by methods involving deformation of the elements by bringing elements together and expanding

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

To provide a heat exchanger having high heat exchange performance, and an air conditioner comprising the heat exchanger.SOLUTION: A heat exchanger comprises: a flat porous heat transfer pipe 1 that has a substantially parallel refrigerant flow passage 2 whose inside is divided in a width direction by at least four partition walls 3; a fin 10 having an insertion hole 11 for expanding and joining the flat porous heat transfer pipe; and a header that communicates the refrigerant flow passage at each end part of the flat porous heat transfer pipe. In the flat porous heat transfer pipe, the partition walls are arranged such that the flow passage widths at both ends in the width direction are wider than the flow passage widths at other portions. Also, an air conditioner has the heat exchanger.SELECTED DRAWING: Figure 5

Description

本発明は、扁平多孔伝熱管により冷媒流路が形成された熱交換器およびそれを備えた空気調和機に関する。   The present invention relates to a heat exchanger in which a refrigerant flow path is formed by flat porous heat transfer tubes and an air conditioner including the same.

従来、空気調和機等の冷凍サイクル装置では、熱交換器を構成する伝熱管や、熱交換器の間を接続する冷媒配管に、銅または銅合金からなる管部材を用いることが主流であった。しかし、近年では、軽量化および低コスト化の観点から、フィンだけでなくアルミニウムまたはアルミニウム合金製の伝熱管を使用した熱交換器が提案されている。   Conventionally, in a refrigeration cycle device such as an air conditioner, it has been mainstream to use a pipe member made of copper or a copper alloy for a heat transfer tube constituting a heat exchanger or a refrigerant pipe connecting between the heat exchangers. . However, in recent years, from the viewpoint of weight reduction and cost reduction, a heat exchanger using not only fins but also heat transfer tubes made of aluminum or an aluminum alloy has been proposed.

この熱交換器は、アルミニウム合金製のろう材を付着させて、板状フィンと扁平多孔伝熱管とをろう付けして製造することで、高い熱交換性能を実現している。しかし、この製造方法では、ろう付けした熱交換器の板状フィンへの親水性処理を行わなければならないといった問題があった。   This heat exchanger achieves high heat exchange performance by manufacturing by attaching a brazing material made of an aluminum alloy and brazing a plate-like fin and a flat porous heat transfer tube. However, this manufacturing method has a problem that the plate-shaped fins of the brazed heat exchanger must be subjected to a hydrophilic treatment.

ろう付けに替わる熱交換器の製造方法として、板状フィンと扁平多孔伝熱管とを機械的に接合する方法がある。
例えば、特許文献1には、扁平多孔伝熱管が板状フィンを貫通するように取り付けられ、流体によって扁平多孔伝熱管の内圧を高めて伝熱管を拡管することにより、伝熱管とフィンとを接合する方法が記載されている。特許文献1の扁平多孔伝熱管は、伝熱管内の隔壁は屈曲または湾曲した形状であり、隔壁が直線状に伸ばされることで伝熱管が拡管される。
As a method of manufacturing a heat exchanger instead of brazing, there is a method of mechanically joining a plate-like fin and a flat porous heat transfer tube.
For example, in Patent Literature 1, a flat porous heat transfer tube is attached so as to penetrate a plate-like fin, and the internal pressure of the flat porous heat transfer tube is increased by a fluid to expand the heat transfer tube, thereby joining the heat transfer tube and the fin. A method is described. In the flat perforated heat transfer tube of Patent Document 1, the partition wall in the heat transfer tube has a bent or curved shape, and the heat transfer tube is expanded by straightening the partition wall.

また、特許文献2には、ほぼくの字状の隔壁が設けられた扁平多孔伝熱管を多角形の挿入孔を有する板状フィンに貫通させるように取付け、扁平管を水圧などにより塑性変形して機械的にフィンと接合させる方法が記載されている。   Further, in Patent Document 2, a flat porous heat transfer tube provided with a substantially U-shaped partition is attached so as to penetrate a plate-like fin having a polygonal insertion hole, and the flat tube is plastically deformed by water pressure or the like. And a method of mechanically joining the fin with the fin.

特許第4109444号公報Japanese Patent No. 4109444 特開2004−353954号公報JP 2004-353954 A

特許文献1や特許文献2によれば、フィンと扁平多孔伝熱管とを機械的に接合することができるので、予めフィンを親水性被膜処理しておくことで、製造した熱交換器の親水性被膜処理を行う必要はなくなる。
しかしながら、扁平多孔伝熱管の形状によっては、拡管した際のフィンと伝熱管との接触面圧が不均一となり、フィンと扁平多孔伝熱管との接触熱抵抗が増加して、高い熱交換性能を実現できない問題がある。
本発明の目的は、上記の問題を解決し、高い熱交換性能を実現する熱交換器あるいはこの熱交換器を備えた空気調和機を提供することにある。
According to Patent Literature 1 and Patent Literature 2, the fin and the flat porous heat transfer tube can be mechanically joined to each other. There is no need to perform a coating process.
However, depending on the shape of the flat perforated heat transfer tube, the contact pressure between the fin and the heat transfer tube when expanded is not uniform, and the contact heat resistance between the fin and the flat perforated heat transfer tube is increased, resulting in high heat exchange performance. There are problems that cannot be realized.
An object of the present invention is to provide a heat exchanger that solves the above-described problems and realizes high heat exchange performance, or an air conditioner including the heat exchanger.

前記課題を解決するため、本発明の熱交換器は、少なくとも4つの隔壁により幅方向に管内が分割されて略平行な冷媒流路を有する扁平多孔伝熱管と、前記扁平多孔伝熱管を拡管接合する挿入孔を有するフィンと、前記扁平多孔伝熱管の端部のそれぞれで前記冷媒流路を連通するヘッダと、を備える熱交換器であって、前記扁平多孔伝熱管は、幅方向の両端の流路幅が、他部分の流路幅より広くなるように前記隔壁を配置するようにした。
また、本発明の空気調和機は、前記熱交換器を備えるようにした。
In order to solve the above-mentioned problems, a heat exchanger according to the present invention is configured such that a flat porous heat transfer tube having a substantially parallel refrigerant flow path in which the inside of a pipe is divided in a width direction by at least four partition walls, and an expansion joining of the flat porous heat transfer tube. A fin having an insertion hole to be inserted, and a header communicating with the refrigerant flow path at each end of the flat porous heat transfer tube, wherein the flat porous heat transfer tube has both ends in the width direction. The partition walls are arranged such that the width of the flow path is wider than the width of the flow path of the other part.
Further, the air conditioner of the present invention includes the heat exchanger.

また、本発明の熱交換器は、少なくとも4つの隔壁により幅方向に管内が分割されて略平行な冷媒流路を有する扁平多孔伝熱管と、前記扁平多孔伝熱管を拡管接合する挿入孔を有するフィンと、前記扁平多孔伝熱管の端部のそれぞれで前記冷媒流路を連通するヘッダと、を備える熱交換器であって、前記扁平多孔伝熱管は、幅方向の両端の流路幅が、他部分の流路幅の平均より広くなるように前記隔壁を配置した。   Further, the heat exchanger of the present invention has a flat porous heat transfer tube having a substantially parallel refrigerant flow passage divided in the width direction by at least four partition walls, and an insertion hole for expanding and joining the flat porous heat transfer tube. A fin, a heat exchanger including a header that communicates the refrigerant flow path at each end of the flat porous heat transfer tube, wherein the flat porous heat transfer tube has a flow path width at both ends in the width direction, The partition walls were arranged so as to be wider than the average of the channel widths of the other portions.

また、本発明の熱交換器は、少なくとも4つの隔壁により幅方向に管内が分割されて略平行な冷媒流路を有する扁平多孔伝熱管と、前記扁平多孔伝熱管を拡管接合する挿入孔を有するフィンと、前記扁平多孔伝熱管の端部のそれぞれで前記冷媒流路を連通するヘッダと、を備える熱交換器であって、前記扁平多孔伝熱管は、幅方向の央部の流路幅が、他部分の流路幅の平均より狭くなるように前記隔壁を配置した。   Further, the heat exchanger of the present invention has a flat porous heat transfer tube having a substantially parallel refrigerant flow passage divided in the width direction by at least four partition walls, and an insertion hole for expanding and joining the flat porous heat transfer tube. A heat exchanger comprising fins and a header that communicates the refrigerant flow path at each end of the flat porous heat transfer tube, wherein the flat porous heat transfer tube has a flow path width at a central portion in a width direction. The partition walls were arranged so as to be narrower than the average of the flow path widths of other portions.

本発明によれば、扁平多孔伝熱管を拡管してフィンと扁平多孔伝熱管とを接合した際の接触熱抵抗を改善できるので、熱交換性能が高い熱交換器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, since a flat porous heat exchanger tube can be expanded and the contact thermal resistance at the time of joining a fin and a flat porous heat exchanger tube can be improved, the heat exchanger with high heat exchange performance can be provided.

実施形態の熱交換器の要部を示す図である。It is a figure showing an important section of a heat exchanger of an embodiment. 扁平多孔伝熱管の長手方向の断面を示す図である。It is a figure showing a section of a longitudinal direction of a flat perforated heat exchanger tube. 板状フィンの外観を示す図である。It is a figure showing appearance of a plate-like fin. 実施形態の熱交換器の製造フローを示す図である。It is a figure showing the manufacture flow of the heat exchanger of an embodiment. 扁平多孔伝熱管の断面を示す図である。It is a figure showing the section of a flat perforated heat exchanger tube. 隔壁間の距離が異なる扁平多孔伝熱管の平面度と接合性を示す図である。It is a figure which shows the flatness and joinability of the flat porous heat transfer tube from which the distance between partition walls differs. 比較例1の扁平多孔伝熱管の断面図である。FIG. 4 is a cross-sectional view of a flat porous heat transfer tube of Comparative Example 1. 比較例2の扁平多孔伝熱管の断面図である。FIG. 9 is a cross-sectional view of a flat perforated heat transfer tube of Comparative Example 2. 実施例4の扁平多孔伝熱管の断面図である。FIG. 13 is a cross-sectional view of a flat perforated heat transfer tube according to a fourth embodiment. 冷媒流路に放熱フィンを形成した扁平多孔伝熱管の断面図である。It is sectional drawing of the flat porous heat exchanger tube which formed the radiation fin in the refrigerant | coolant flow path. 央部を除く冷媒流路に放熱フィンを形成した扁平多孔伝熱管の断面図である。It is sectional drawing of the flat porous heat exchanger tube which formed the radiation fin in the refrigerant flow path except a center part.

以下、本発明の実施形態を、図面を参照しながら詳細に説明する。
図1は、実施形態の熱交換器の要部を示す図である。実施形態の熱交換器は、空気調和機の凝縮器あるいは蒸発器として機能し、室内熱交換器あるいは室外熱交換器のいずれかとして使用される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Drawing 1 is a figure showing the important section of the heat exchanger of an embodiment. The heat exchanger of the embodiment functions as a condenser or an evaporator of an air conditioner, and is used as either an indoor heat exchanger or an outdoor heat exchanger.

熱交換器は、冷媒が通流する扁平多孔伝熱管1と、扁平多孔伝熱管1が拡管接合する挿入孔11が複数設けられた板状フィン10と、扁平多孔伝熱管1の両端部のそれぞれで扁平多孔伝熱管1を連通するヘッダ(図示せず)と、から構成されている。   The heat exchanger includes a flat porous heat transfer tube 1 through which a refrigerant flows, a plate-like fin 10 provided with a plurality of insertion holes 11 through which the flat porous heat transfer tube 1 is expanded and joined, and both ends of the flat porous heat transfer tube 1. And a header (not shown) that communicates the flat porous heat transfer tube 1.

一方のヘッダに流入した冷媒は、複数の扁平多孔伝熱管1に分配されて、扁平多孔伝熱管1の管内を通流する。この際、冷媒の潜熱および顕熱が、扁平多孔伝熱管1に接合する板状フィン10に熱伝達される。詳細は後述するが、扁平多孔伝熱管1と板状フィン10との間の接触熱抵抗が、熱交換器の熱交換性能に影響する。このため、実施形態の熱交換器では、扁平多孔伝熱管1と板状フィン10との間の接合部の接触面圧を適正にして接触熱抵抗を小さくし、熱交換器の熱交換性能を向上している。   The refrigerant flowing into one of the headers is distributed to the plurality of flat porous heat transfer tubes 1 and flows through the flat porous heat transfer tubes 1. At this time, the latent heat and sensible heat of the refrigerant are transferred to the plate-like fins 10 joined to the flat porous heat transfer tube 1. Although details will be described later, the contact thermal resistance between the flat porous heat transfer tube 1 and the plate-like fin 10 affects the heat exchange performance of the heat exchanger. For this reason, in the heat exchanger of the embodiment, the contact heat resistance is reduced by appropriately setting the contact surface pressure at the joint between the flat porous heat transfer tube 1 and the plate-like fin 10, and the heat exchange performance of the heat exchanger is improved. Has improved.

図2により、扁平多孔伝熱管1を詳細に説明する。
図2は、扁平多孔伝熱管1の長手方向の断面を示している。
扁平多孔伝熱管1は、アルミニウムまたはアルミニウム合金から成り、管断面の長軸方向(管の幅方向)に設けられた複数の隔壁3により分割された複数の冷媒流路2が設けられている。詳細は後述するが、製造時に、扁平多孔伝熱管1は、屈曲あるいは湾曲した形状の隔壁3と管壁4で囲まれた冷媒流路2に高圧の圧縮流体を供給されて、隔壁3を伸ばすように変形することで、管断面の短軸方向(管の厚み方向)に拡管する。
Referring to FIG. 2, the flat porous heat transfer tube 1 will be described in detail.
FIG. 2 shows a cross section of the flat porous heat transfer tube 1 in the longitudinal direction.
The flat porous heat transfer tube 1 is made of aluminum or an aluminum alloy, and is provided with a plurality of refrigerant passages 2 divided by a plurality of partition walls 3 provided in a longitudinal direction of the tube cross section (width direction of the tube). As will be described in detail later, at the time of manufacturing, the flat porous heat transfer tube 1 is supplied with a high-pressure compressed fluid to the refrigerant flow path 2 surrounded by the bent or curved partition wall 3 and the pipe wall 4 to extend the partition wall 3. As a result, the pipe expands in the short axis direction (the thickness direction of the pipe) in the cross section of the pipe.

つぎに、図3により、板状フィン10の詳細を説明する。
図3は、板状フィン10の外観を示す図である。
板状フィン10は、アルミニウムまたはアルミニウム合金から成り、外表面に親水性皮膜処理が施されている。
Next, the details of the plate-like fin 10 will be described with reference to FIG.
FIG. 3 is a diagram showing an appearance of the plate-like fin 10. As shown in FIG.
The plate-like fin 10 is made of aluminum or an aluminum alloy, and has an outer surface subjected to a hydrophilic film treatment.

板状フィン10には、扁平多孔伝熱管1が挿入される複数の挿入孔11が、所定の間隔で設けられている。挿入孔11の外周部には、板状フィン10の一方の面側に折り曲げられたフィンカラー12が設けられ、挿入されて拡管した扁平多孔伝熱管1と接合する。このフィンカラー12を設けることにより、板状フィン10と扁平多孔伝熱管1と接合部の接触熱抵抗を小さくすることができる。
挿入孔11は、拡管前の扁平多孔伝熱管1を挿入するために、0〜150μm程度のクリアランスをもって形成する。
A plurality of insertion holes 11 into which the flat porous heat transfer tubes 1 are inserted are provided in the plate-like fin 10 at predetermined intervals. A fin collar 12 bent on one surface side of the plate-like fin 10 is provided on an outer peripheral portion of the insertion hole 11, and is joined to the flat porous heat transfer tube 1 inserted and expanded. By providing the fin collar 12, the contact thermal resistance between the plate-like fin 10, the flat porous heat transfer tube 1, and the joint can be reduced.
The insertion hole 11 is formed with a clearance of about 0 to 150 μm for inserting the flat porous heat transfer tube 1 before expansion.

板状フィン10と扁平多孔伝熱管1との接合部の接触面圧は、挿入孔11の変形に伴うスプリングバックにより影響される。このため、扁平多孔伝熱管1の拡管量は、扁平多孔伝熱管1を挿入するための挿入孔11のクリアランスと、接触面圧を生成する挿入孔11の変形量との和により定める。   The contact surface pressure at the joint between the plate-like fin 10 and the flat perforated heat transfer tube 1 is affected by springback accompanying the deformation of the insertion hole 11. For this reason, the expansion amount of the flat porous heat transfer tube 1 is determined by the sum of the clearance of the insertion hole 11 for inserting the flat porous heat transfer tube 1 and the deformation amount of the insertion hole 11 that generates a contact surface pressure.

この際、扁平多孔伝熱管1の幅方向(断面の長軸方向)における接合部の接触面圧が均一になるように、扁平多孔伝熱管1の拡管量を幅方向で一定にすることが望ましい。しかし、均等に加圧した場合には、扁平多孔伝熱管1の両端部は、拡管しづらいため、扁平多孔伝熱管1の両端部の拡管量は、央部の拡管量より小さくなる。   At this time, it is desirable to make the expansion amount of the flat porous heat transfer tube 1 constant in the width direction so that the contact surface pressure of the joint portion in the width direction (the major axis direction of the cross section) of the flat porous heat transfer tube 1 becomes uniform. . However, when the pressure is evenly applied, since both ends of the flat porous heat transfer tube 1 are difficult to expand, the expansion amount of both ends of the flat porous heat transfer tube 1 is smaller than the expansion amount of the central portion.

このため、挿入孔11の孔幅を端部と央部とで変えて、板状フィン10の変形量を一定にすることが考えられるが、この場合には、フィンカラー12の形成に問題が生じる可能性がある。したがって、実施形態の熱交換器では、詳細を後述するが、挿入孔11の孔幅は一定として、扁平多孔伝熱管1の隔壁3の配置を変えて扁平多孔伝熱管1の拡管量を適正化する。   For this reason, it is conceivable that the hole width of the insertion hole 11 is changed between the end portion and the center portion to keep the deformation amount of the plate-like fin 10 constant. In this case, however, there is a problem in forming the fin collar 12. Can occur. Therefore, in the heat exchanger of the embodiment, although the details will be described later, the hole width of the insertion hole 11 is fixed, and the arrangement of the partition walls 3 of the flat porous heat transfer tube 1 is changed to optimize the expansion amount of the flat porous heat transfer tube 1. I do.

ここで、図4により、実施形態の熱交換器の製造方法を説明する。
図4は、実施形態の熱交換器の製造フローを示す図である。
ステップS41で、アルミニウムまたはアルミニウム合金素材からなるアルミ板に親水性皮膜処理を施し、ステップS42で、所定の形状にプレス加工して板状フィン10を製造する。
Here, a method for manufacturing the heat exchanger of the embodiment will be described with reference to FIG.
FIG. 4 is a diagram illustrating a manufacturing flow of the heat exchanger of the embodiment.
In step S41, a hydrophilic film treatment is applied to an aluminum plate made of aluminum or an aluminum alloy material, and in step S42, a plate-shaped fin 10 is manufactured by pressing into a predetermined shape.

ステップS43で、アルミニウムまたはアルミニウム合金素材を、例えば、押し出し加工または引き抜き加工し、実施形態の熱交換器の大きさに対応した所定の寸法に切断して、扁平多孔伝熱管1を製造する。
そして、ステップS44で、複数の扁平多孔伝熱管1を所定の間隔で整列する。
In step S43, the aluminum or aluminum alloy material is extruded or drawn, for example, and cut into a predetermined size corresponding to the size of the heat exchanger of the embodiment to manufacture the flat porous heat transfer tube 1.
Then, in step S44, the plurality of flat perforated heat transfer tubes 1 are aligned at predetermined intervals.

ステップS45で、板状フィン10の挿入孔11に、ステップS44で整列した複数の扁平多孔伝熱管1を挿入する。このとき、扁平多孔伝熱管1の外周とフィンカラー12との間には、隙間がない、あるいは、わずかな隙間(0〜150μm)が形成されている。   In step S45, the plurality of flat perforated heat transfer tubes 1 aligned in step S44 are inserted into the insertion holes 11 of the plate-like fin 10. At this time, there is no gap or a slight gap (0 to 150 μm) is formed between the outer periphery of the flat porous heat transfer tube 1 and the fin collar 12.

つぎに、ステップS46で、板状フィン10の挿入孔11に挿入された扁平多孔伝熱管1の両端部を、ヘッダに設けられた接合穴に挿入する。そして、扁平多孔伝熱管1の両端部とヘッダを、ろう付け、あるいは、他の適当な方法により接合する。
ステップS47で、ヘッダを介して圧縮流体を扁平多孔伝熱管1に供給することで、冷媒流路2の内圧を高めて扁平多孔伝熱管1を加圧して、扁平多孔伝熱管1を拡管し、板状フィン10と扁平多孔伝熱管1とを接合する。
実施形態の熱交換器では、上記の製造方法により、後述する接触熱抵抗が小さくなるようした扁平多孔伝熱管1を拡管して機械的に板状フィン10と接合しているので、予め板状フィン10の親水性被膜処理を行うことができ、熱交換器の製造が容易になる。
Next, in step S46, both ends of the flat porous heat transfer tube 1 inserted into the insertion holes 11 of the plate-like fins 10 are inserted into joining holes provided in the header. Then, both ends of the flat porous heat transfer tube 1 and the header are joined by brazing or other appropriate methods.
In step S47, by supplying the compressed fluid to the flat porous heat transfer tube 1 via the header, the internal pressure of the refrigerant flow path 2 is increased to pressurize the flat porous heat transfer tube 1, and the flat porous heat transfer tube 1 is expanded. The plate-like fin 10 and the flat porous heat transfer tube 1 are joined.
In the heat exchanger according to the embodiment, the flat porous heat transfer tube 1 whose contact heat resistance described later is reduced and expanded and mechanically joined to the plate-like fin 10 by the above-described manufacturing method. The fin 10 can be subjected to a hydrophilic coating treatment, which facilitates the manufacture of the heat exchanger.

以後、実施形態の熱交換器における扁平多孔伝熱管1の隔壁3の配置状況を詳細に説明する。
図5は、扁平多孔伝熱管1の断面を示す図である。
Hereinafter, the arrangement state of the partition walls 3 of the flat porous heat transfer tube 1 in the heat exchanger of the embodiment will be described in detail.
FIG. 5 is a view showing a cross section of the flat porous heat transfer tube 1.

扁平多孔伝熱管1は、上下の管壁4がほぼ平行になるように成型された扁平な管であり、扁平多孔伝熱管1は、その内部で上下の管壁4と接続し、扁平多孔伝熱管1の断面の長軸方向に断面形状が山形(ひらがなの「く」の字状あるいは「く」の鏡文字状)に屈曲した複数の隔壁3を備えている。これら隔壁3によって扁平多孔伝熱管1の内部が分割され、複数の冷媒流路2が平行に設けられている。   The flat porous heat transfer tube 1 is a flat tube molded so that the upper and lower tube walls 4 are substantially parallel to each other. The flat porous heat transfer tube 1 is connected to the upper and lower tube walls 4 inside the flat porous heat transfer tube 1 to form a flat porous heat transfer tube. The heat pipe 1 includes a plurality of partition walls 3 having a cross section bent in a long axis direction of the cross section of the heat pipe 1 in a chevron shape (a hiragana “K” shape or a “K” mirror character shape). The inside of the flat porous heat transfer tube 1 is divided by these partition walls 3, and a plurality of refrigerant channels 2 are provided in parallel.

図5の実線は、拡管前の扁平多孔伝熱管1の断面を示し、破線は拡管後の扁平多孔伝熱管1の断面を示している。なお、図5の拡管後の断面(破線)は、拡管状態を誇張して記載している。
扁平多孔伝熱管1の拡管では、山形に屈曲した隔壁3が直線に延ばされて、断面の短軸方向(管の厚み方向)の寸法が大きくなる。この断面の短軸方向(管の厚み方向)の寸法増加量が拡管量となる。
The solid line in FIG. 5 shows a cross section of the flat porous heat transfer tube 1 before expansion, and the broken line shows a cross section of the flat porous heat transfer tube 1 after expansion. In addition, the cross section (broken line) after the expansion in FIG. 5 exaggerates the expanded state.
In the expansion of the flat perforated heat transfer tube 1, the partition wall 3 bent in a chevron shape is linearly extended, and the dimension of the cross section in the minor axis direction (the thickness direction of the tube) increases. The amount of increase in the dimension of this cross section in the minor axis direction (the thickness direction of the pipe) is the expansion amount.

この拡管量は、隔壁3の形状により決まるが、扁平多孔伝熱管1の両端の冷媒流路2では、片側が隔壁3とは異なるため、拡管状態が異なる。また、扁平多孔伝熱管1の両端の冷媒流路2に隣接する冷媒流路2は、端部の拡管の影響を受ける。
このため、隔壁3が均等間隔の場合には、拡管量は断面の長軸方向に分布をもつ。具体的には、扁平多孔伝熱管1の端部に向かって拡管量が小さくなる
The amount of expansion is determined by the shape of the partition wall 3. However, in the refrigerant flow passages 2 at both ends of the flat porous heat transfer tube 1, the expanded state is different because one side is different from the partition wall 3. Further, the refrigerant flow path 2 adjacent to the refrigerant flow paths 2 at both ends of the flat porous heat transfer tube 1 is affected by the expansion at the end.
For this reason, when the partition walls 3 are evenly spaced, the expansion amount has a distribution in the major axis direction of the cross section. Specifically, the expansion amount decreases toward the end of the flat porous heat transfer tube 1.

拡管時に隔壁3に加わる張力は、隔壁3に挟まれた管壁4内側の圧縮流体の圧力により生じるため、隔壁3に加わる張力は、隔壁3の間隔に比例する。実施形態の扁平多孔伝熱管1では、これに基づき、隔壁3の間隔を変えて、拡管量を調整する。
上述のとおり、扁平多孔伝熱管1の端部は央部に比べて拡管しづらく、端部の隔壁3の間隔を広げることが望ましいが、挿入孔11の長さ方向の端部は剛性が高いため、均一な接触面圧を得るには拡管量に上限がある。つまり、扁平多孔伝熱管1の端部における隔壁3の間隔の長さには、上限がある。
なお、隔壁3はくの字形状が伸びるように変形するので、隔壁3の間隔は、拡管前後で変化することはない。
Since the tension applied to the partition wall 3 at the time of expanding the pipe is generated by the pressure of the compressed fluid inside the pipe wall 4 sandwiched between the partition walls 3, the tension applied to the partition wall 3 is proportional to the interval between the partition walls 3. In the flat perforated heat transfer tube 1 of the embodiment, the expansion amount is adjusted by changing the interval between the partition walls 3 based on this.
As described above, the end of the flat perforated heat transfer tube 1 is harder to expand than the central portion, and it is desirable to increase the interval between the partition walls 3 at the end, but the end in the length direction of the insertion hole 11 has high rigidity. Therefore, there is an upper limit to the amount of tube expansion to obtain a uniform contact surface pressure. That is, there is an upper limit to the length of the interval between the partition walls 3 at the end of the flat porous heat transfer tube 1.
In addition, since the partition 3 is deformed so as to extend the shape of a letter, the interval between the partitions 3 does not change before and after the tube expansion.

つぎに、扁平多孔伝熱管1の隔壁3の間隔と、断面の長軸方向における拡管量の差、挿入孔11における接合性の関係を図6〜図9を用いて説明する。
図6は、扁平多孔伝熱管1の管内に設けられた隔壁3の間隔(L、L、L、L)が異なる例ごとの、端部と央部の隔壁3の間隔比(L/L)、扁平多孔伝熱管1の平面度(ΔYmax−ΔYmin)並びに挿入孔11における扁平多孔伝熱管1の接合性を示している。
Next, the relationship between the spacing of the partition walls 3 of the flat porous heat transfer tube 1, the difference in the expansion amount in the longitudinal direction of the cross section, and the bonding property in the insertion hole 11 will be described with reference to FIGS.
Figure 6 is a flat porous heat transfer distance of the partition walls 3 provided in the tube of the heat pipe 1 (L c, L 1, L 2, L T) is different for each example, spacing ratio of the partition walls 3 end and central portion ( L T / L c ), the flatness (ΔYmax−ΔYmin) of the flat porous heat transfer tube 1, and the bondability of the flat porous heat transfer tube 1 in the insertion hole 11 are shown.

隔壁3の間隔(L、L、L、L)は、図5に示した隔壁3の隔壁間の距離に対応している。
間隔Lは、扁平多孔伝熱管1の中央に最も近い流路の隔壁間の距離(管壁4のおける長さ)を示している。
間隔Lは、扁平多孔伝熱管1の端部流路の隔壁と管端部の間における直線部の距離を示している。
間隔L、L、は、扁平多孔伝熱管1の中央流路に隣接する流路から端部に向かって隣接する流路の隔壁間の距離を示している。
本明細書では、隔壁3の間隔(L、L、L、L)を流路幅と称することがある。
ΔYmax、ΔYminは、扁平多孔伝熱管1の片側の拡管幅の最大値と最小値を示し、その差分を平面度としている。平面度が小さい方が平坦であることを示している。
Intervals of the partition walls 3 (L c, L 1, L 2, L T) corresponds to the distance between the partition walls of the partition wall 3 shown in FIG.
Distance L c is the distance between the flattened perforated heat transfer tubes 1 of the nearest flow path to the central partition wall (length definitive wall 4).
Distance L T is the distance of the straight portion between the partition wall and the tube end of the end flow passage of the flat porous heat transfer tube 1.
The intervals L 1 , L 2 indicate the distance between the partition walls of the flow passage adjacent to the central flow passage of the flat porous heat transfer tube 1 toward the end thereof.
In this specification, the intervals (L c , L 1 , L 2 , L T ) between the partition walls 3 may be referred to as a channel width.
ΔYmax and ΔYmin indicate the maximum value and the minimum value of the expanded width on one side of the flat porous heat transfer tube 1, and the difference is defined as flatness. A smaller flatness indicates flatness.

図6の比較例1の扁平多孔伝熱管1は、図7に示している、L、L、L、Lの長さが等しい全孔均等の場合である。
比較例1の扁平多孔伝熱管1は、拡管されたとき、央部流路の管壁4が大きく膨張して平面度は大きくなる。
扁平多孔伝熱管1を拡管して管壁4の外面とフィンカラー12とを密着させることで高熱交換性能が得られるため、拡管により管壁4の外面が波型あるいは凹凸に変化することは好ましくなく、扁平多孔伝熱管1とフィンカラー12との接合性は不十分(×印)となる。
Flat perforated heat transfer tube 1 of Comparative Example 1 in FIG. 6 are shown in FIG. 7, a L c, L 1, L 2, when the total pore equal equal length of L T.
When the flat porous heat transfer tube 1 of Comparative Example 1 is expanded, the tube wall 4 of the central flow passage expands greatly and the flatness increases.
Since the high heat exchange performance is obtained by expanding the flat porous heat transfer tube 1 and bringing the outer surface of the tube wall 4 into close contact with the fin collar 12, it is preferable that the outer surface of the tube wall 4 be changed into a corrugated shape or unevenness by expanding the tube. Therefore, the bonding property between the flat porous heat transfer tube 1 and the fin collar 12 is insufficient (x mark).

図6の比較例2の扁平多孔伝熱管1は、図8に示している、L、L、Lの長さに対してLの長さが短い場合である。
この場合には、拡管後の中央流路の管壁4が大きく膨張して、平面度は大きくなり、扁平多孔伝熱管1とフィンカラー12との接合性は不十分(×印)となる。
Flat perforated heat transfer tubes 1 of the comparative example 2 in FIG. 6 are shown in FIG. 8, a case L c, a short length of L T for the length of L 1, L 2.
In this case, the pipe wall 4 of the central flow path after the expansion is greatly expanded, the flatness is increased, and the bondability between the flat porous heat transfer tube 1 and the fin collar 12 is insufficient (marked by x).

図6の実施例1の扁平多孔伝熱管1は、Lの長さが、L、L、Lの長さに対して長い場合である。
この場合には、拡管後、冷媒流路2の管壁4は、およそ均等に膨張し、平面度は小さくなる。これにより、扁平多孔伝熱管1とフィンカラー12との接合性は優良(◎印)となり、熱交換性の高い熱交換器が得られる。
Flat perforated heat transfer tube 1 of Example 1 in FIG. 6, the length of L T is a case longer than the L c, the length of L 1, L 2.
In this case, after the pipe expansion, the pipe wall 4 of the refrigerant flow path 2 expands almost uniformly, and the flatness decreases. Thereby, the bonding property between the flat porous heat transfer tube 1 and the fin collar 12 becomes excellent (marked with ◎), and a heat exchanger having high heat exchange property can be obtained.

図6の実施例2の扁平多孔伝熱管1は、Lの長さが、L以外のL、L、Lの長さの平均より長い場合である。
この場合にも、拡管後、冷媒流路2の管壁4は、およそ均等に膨張し、平面度は小さくなる。これにより、扁平多孔伝熱管1とフィンカラー12との接合性は優良(◎印)となり、熱交換性の高い熱交換器が得られる。
Flat perforated heat transfer tubes 1 of the second embodiment of FIG. 6, the length of L T is an L T than the L c, L 1, is longer than the average length of L 2.
Also in this case, after expansion, the pipe wall 4 of the refrigerant flow path 2 expands substantially evenly, and the flatness decreases. Thereby, the bonding property between the flat porous heat transfer tube 1 and the fin collar 12 becomes excellent (marked with ◎), and a heat exchanger having high heat exchange property can be obtained.

図6の実施例3の扁平多孔伝熱管1は、Lの長さが、L、L、Lの長さの平均より短い場合である。
この場合にも、拡管後、冷媒流路2の管壁4は、およそ均等に膨張し、平面度は小さくなる。これにより、扁平多孔伝熱管1とフィンカラー12との接合性は優良(◎印)となり、熱交換性の高い熱交換器が得られる。
Flat perforated heat transfer tubes 1 of the third embodiment of FIG. 6, the length of L c is the case L 1, L 2, shorter than the average length of L T.
Also in this case, after expansion, the pipe wall 4 of the refrigerant flow path 2 expands substantially evenly, and the flatness decreases. Thereby, the bonding property between the flat porous heat transfer tube 1 and the fin collar 12 becomes excellent (marked with ◎), and a heat exchanger having high heat exchange property can be obtained.

図6の実施例4の扁平多孔伝熱管1は、図9に示している、Lの長さが、L、L、Lの長さに対して短い場合である。
この場合には、拡管後の端部流路の管壁4が膨張する一方で、中央流路の管壁4は拡管せず、平面度は小さくなり、扁平多孔伝熱管1とフィンカラー12との接合性は良好(○印)となる。
Flat perforated heat transfer tube 1 of Example 4 of FIG. 6 are shown in FIG. 9, the length of L c is the shorter the length of L 1, L 2, L T .
In this case, while the pipe wall 4 of the end flow path after expansion expands, the pipe wall 4 of the central flow path does not expand, the flatness decreases, and the flat porous heat transfer tube 1 and the fin collar 12 Are good (○).

図6に示すとおり、実施例1〜4の扁平多孔伝熱管1については、扁平多孔伝熱管1とフィンカラー12との接合性が良好あるいは優良であり、熱交換性の高い熱交換器を得ることができる。これに対して、比較例1〜2の扁平多孔伝熱管1については、扁平多孔伝熱管1とフィンカラー12との接合性は不充分となっている。このことから、特に、接合性が優良となる条件が望ましく、扁平多孔伝熱管1は、幅方向の両端の流路幅Ltと幅方向の央部の流路幅Lcとが、1.0<(Lt/Lc)<3.5になるように隔壁3を配置する。   As shown in FIG. 6, the flat porous heat transfer tubes 1 of Examples 1 to 4 have good or excellent bonding properties between the flat porous heat transfer tubes 1 and the fin collars 12 and obtain a heat exchanger having high heat exchange properties. be able to. On the other hand, in the flat porous heat transfer tubes 1 of Comparative Examples 1 and 2, the bonding property between the flat porous heat transfer tube 1 and the fin collar 12 is insufficient. For this reason, it is particularly desirable that the bonding property is excellent. In the flat porous heat transfer tube 1, the flow path width Lt at both ends in the width direction and the flow path width Lc at the center in the width direction are 1.0 <. The partition walls 3 are arranged so that (Lt / Lc) <3.5.

上述のとおり、実施形態の扁平多孔伝熱管1によれば、拡管時の管外表面の凹凸が小さくなることで、接触熱抵抗が小さくなり、熱交換性能の高い熱交換器を提供することができる。   As described above, according to the flat porous heat transfer tube 1 of the embodiment, the unevenness of the outer surface of the tube at the time of expansion is reduced, so that the contact heat resistance is reduced and the heat exchanger having high heat exchange performance can be provided. it can.

図10と図11は、図6の実施例1〜4の扁平多孔伝熱管1について、より熱交換性を高めた扁平多孔伝熱管1の断面を示す図である。
詳細には、冷媒流路2の管内面における扁平部に、扁平多孔伝熱管1の長手方向に延在し放熱フィンとなる突起部13が形成され、冷媒との熱伝達率を向上して、扁平多孔伝熱管1の熱交換性能を高める。
FIGS. 10 and 11 are cross-sectional views of the flat porous heat transfer tubes 1 of Examples 1 to 4 of FIG.
In detail, a protruding portion 13 that extends in the longitudinal direction of the flat porous heat transfer tube 1 and serves as a radiation fin is formed on a flat portion of the inner surface of the refrigerant flow passage 2 to improve the heat transfer coefficient with the refrigerant. The heat exchange performance of the flat porous heat transfer tube 1 is improved.

図11に示すように、央部の冷却流路には、突起部13を形成しないようにしてもよい。これにより、流路断面積の低下を防止できるので、冷媒流量の低下(圧損の増加)を抑止できる。
なお、突起部13の断面形状は三角形に限定されず、円弧状の形態、四角形であってもよいことは言うまでもない。
As shown in FIG. 11, the projection 13 may not be formed in the central cooling channel. As a result, a decrease in the flow path cross-sectional area can be prevented, so that a decrease in the refrigerant flow rate (an increase in pressure loss) can be suppressed.
It is needless to say that the cross-sectional shape of the projection 13 is not limited to a triangle, but may be an arc or a quadrangle.

上述のとおり、扁平多孔伝熱管1の管壁4の厚さは、熱交換器として使用する際に管内の流体による圧力に耐えうるように設計されているため、扁平多孔伝熱管1の長手方向の断面において、管内に配置されている屈曲あるいは湾曲した隔壁に対して、管断面の長軸方向両端の管壁厚さが大きくなっている。このため、扁平多孔伝熱管1の拡管の際、管断面の長軸方向両端は、隔壁2に比べて管断面の短軸方向への伸びが小さくなり、扁平多孔伝熱管1の管壁4が不均一に膨らんだ状態となる。   As described above, the thickness of the tube wall 4 of the flat porous heat transfer tube 1 is designed so as to be able to withstand the pressure due to the fluid in the tube when used as a heat exchanger. In the cross section, the wall thickness at both ends in the major axis direction of the cross section of the pipe is larger than the bent or curved partition wall arranged in the pipe. For this reason, at the time of expanding the flat porous heat transfer tube 1, both ends in the major axis direction of the tube cross section are less elongated in the short axis direction of the tube cross section than the partition wall 2, and the tube wall 4 of the flat porous heat transfer tube 1 is formed. A non-uniformly swollen state results.

流体圧力による扁平多孔伝熱管1の拡管の際に、管の管断面の短軸方向へ拡がる力は、隔壁間に対応する各流路の多穴管内面における扁平部の長さに比例する。実施形態の扁平多孔伝熱管1では、断面の長軸方向の両端流路における扁平部の長さを、他の流路における扁平部の長さ(隔壁間の距離)より長くすることで、両端流路の扁平部に掛かる荷重を増加させて拡管する。これにより、扁平多孔伝熱管1の管壁が均一に膨らんだ状態となり、フィンと伝熱管との接合性が向上する。   When the flat porous heat transfer tube 1 is expanded by the fluid pressure, the force expanding in the minor axis direction of the tube cross section of the tube is proportional to the length of the flat portion on the inner surface of the multi-hole tube corresponding to each space between the partition walls. In the flat porous heat transfer tube 1 of the embodiment, the length of the flat portion in the flow path at both ends in the major axis direction of the cross section is made longer than the length of the flat part (distance between the partition walls) in the other flow paths. The pipe is expanded by increasing the load applied to the flat part of the flow path. Thereby, the tube wall of the flat perforated heat transfer tube 1 is uniformly swelled, and the joining property between the fin and the heat transfer tube is improved.

実施形態の扁平多孔伝熱管1が、6つの隔壁3により分割され7つの冷媒流路2を有する場合について説明したが、隔壁3(冷媒流路2)の数は、これに限定されない。少なくとも5つの冷媒流路2を有する扁平多孔伝熱管1であればよい。   Although the case where the flat porous heat transfer tube 1 of the embodiment is divided by the six partitions 3 and has the seven refrigerant channels 2 is described, the number of the partitions 3 (the refrigerant channels 2) is not limited to this. What is necessary is just a flat porous heat transfer tube 1 having at least five refrigerant channels 2.

実施形態の扁平多孔伝熱管1を使用した熱交換器および空気調和機によれば、熱交換器の熱交換性能を向上することができるとともに、高い親水性、耐食性、脱臭性、抗菌性、防カビ性を有する熱交換器を容易に実現できる。   According to the heat exchanger and the air conditioner using the flat perforated heat transfer tube 1 of the embodiment, the heat exchange performance of the heat exchanger can be improved, and at the same time, high hydrophilicity, corrosion resistance, deodorizing property, antibacterial property, and prevention can be achieved. A heat exchanger having mold properties can be easily realized.

1 扁平多孔伝熱管
2 冷媒流路
3 隔壁
4 管壁
10 板状フィン
11 挿入孔
12 フィンカラー
DESCRIPTION OF SYMBOLS 1 Flat perforated heat transfer tube 2 Refrigerant flow path 3 Partition wall 4 Tube wall 10 Plate fin 11 Insertion hole 12 Fin collar

本発明は、扁平多孔伝熱管により冷媒流路が形成された熱交換器等に関する。 The present invention relates to a heat exchanger such that a refrigerant flow path is formed by a flat perforated heat transfer tubes.

特許文献1や特許文献2によれば、フィンと扁平多孔伝熱管とを機械的に接合することができるので、予めフィンを親水性被膜処理しておくことで、製造した熱交換器の親水性被膜処理を行う必要はなくなる。
しかしながら、扁平多孔伝熱管の形状によっては、拡管した際のフィンと伝熱管との接触面圧が不均一となり、フィンと扁平多孔伝熱管との接触熱抵抗が増加して、高い熱交換性能を実現できない問題がある。
本発明の目的は、上記の問題を解決し、高い熱交換性能を実現する熱交換器等を提供することにある。
According to Patent Literature 1 and Patent Literature 2, the fin and the flat porous heat transfer tube can be mechanically joined to each other. There is no need to perform a coating process.
However, depending on the shape of the flat perforated heat transfer tube, the contact pressure between the fin and the heat transfer tube when expanded is not uniform, and the contact heat resistance between the fin and the flat perforated heat transfer tube is increased, resulting in high heat exchange performance. There are problems that cannot be realized.
An object of the present invention is to provide a heat exchanger or the like that solves the above-described problems and realizes high heat exchange performance.

前記課題を解決するため、本発明の熱交換器は、少なくとも4つの隔壁により幅方向に管内が分割されて略平行な冷媒流路を有する扁平多孔伝熱管と、前記扁平多孔伝熱管を拡管接合する挿入孔を有するフィンと、前記扁平多孔伝熱管の端部のそれぞれで前記冷媒流路を連通するヘッダと、を備える熱交換器であって、前記扁平多孔伝熱管は、幅方向の央部の流路幅が、他部分の流路幅の平均より狭くなるように前記隔壁を配置しているとともに、前記他部分の流路幅について、前記央部を挟んで一端側に位置する前記他部分についても他端側に位置する前記他部分についても、その最大と最小の流路幅の比が1.16以下のほぼ同じ幅になるように前記隔壁を配置している熱交換器、
また、本発明の空気調和機は、前記熱交換器を備えるようにした。
In order to solve the above-mentioned problems, a heat exchanger according to the present invention is configured such that a flat porous heat transfer tube having a substantially parallel refrigerant flow path in which the inside of a pipe is divided in a width direction by at least four partition walls, and an expansion joining of the flat porous heat transfer tube. A fin having an insertion hole to be inserted, and a header communicating with the refrigerant flow path at each end of the flat porous heat transfer tube, wherein the flat porous heat transfer tube has a widthwise central portion. The partition wall is arranged so that the flow path width of the other part is narrower than the average of the flow path width of the other part, and the flow path width of the other part is located at one end side with respect to the central part. A heat exchanger in which the partition wall is arranged such that the ratio of the maximum and minimum flow path widths of the other portion also located on the other end side of the portion is substantially equal to or less than 1.16 .
Further, the air conditioner of the present invention includes the heat exchanger.

本発明によれば、扁平多孔伝熱管を拡管してフィンと扁平多孔伝熱管とを接合した際の接触熱抵抗を改善できるので、熱交換性能が高い熱交換器を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, since a flat porous heat exchanger tube can be expanded and the contact thermal resistance at the time of joining a fin and a flat porous heat exchanger tube can be improved, a heat exchanger etc. with high heat exchange performance can be provided.

実施形態の熱交換器の要部を示す図である。It is a figure showing an important section of a heat exchanger of an embodiment. 扁平多孔伝熱管の長手方向の断面を示す図である。It is a figure showing a section of a longitudinal direction of a flat perforated heat exchanger tube. 板状フィンの外観を示す図である。It is a figure showing appearance of a plate-like fin. 実施形態の熱交換器の製造フローを示す図である。It is a figure showing the manufacture flow of the heat exchanger of an embodiment. 扁平多孔伝熱管の断面を示す図である。It is a figure showing the section of a flat perforated heat exchanger tube. 隔壁間の距離が異なる扁平多孔伝熱管の平面度と接合性を示す図である。It is a figure which shows the flatness and joinability of the flat porous heat transfer tube from which the distance between partition walls differs. 比較例1の扁平多孔伝熱管の断面図である。FIG. 4 is a cross-sectional view of a flat porous heat transfer tube of Comparative Example 1. 比較例2の扁平多孔伝熱管の断面図である。FIG. 9 is a cross-sectional view of a flat perforated heat transfer tube of Comparative Example 2. 比較例3の扁平多孔伝熱管の断面図である。FIG. 9 is a cross-sectional view of a flat perforated heat transfer tube of Comparative Example 3 . 冷媒流路に放熱フィンを形成した扁平多孔伝熱管の断面図である。It is sectional drawing of the flat porous heat exchanger tube which formed the radiation fin in the refrigerant | coolant flow path. 央部を除く冷媒流路に放熱フィンを形成した扁平多孔伝熱管の断面図である。It is sectional drawing of the flat porous heat exchanger tube which formed the radiation fin in the refrigerant flow path except a center part.

図2により、扁平多孔伝熱管1を詳細に説明する。
図2は、扁平多孔伝熱管1の長手方向の断面を示している。
扁平多孔伝熱管1は、アルミニウムまたはアルミニウム合金から成り、管断面の長軸方向(管の幅方向)に設けられた複数の隔壁3により分割された複数の冷媒流路2が設けられている。詳細は後述するが、製造時に、扁平多孔伝熱管1は、屈曲あるいは湾曲した形状の隔壁3と管壁4で囲まれた冷媒流路2に高圧の圧縮流体を供給されて、隔壁3を伸ばすように変形することで、管断面の短軸方向(管の厚み方向)に拡管する。
なお、本実施形態の扁平多孔伝熱管1は、幅方向の央部の流路幅が、他部分の流路幅の平均より狭くなるように隔壁を配置しているとともに、他部分の流路幅について、央部を挟んで一端側に位置する他部分についても他端側に位置する他部分についても、その最大と最小の流路幅の比が1.16以下のほぼ同じ幅になるように隔壁を配置している。
また、拡管して扁平多孔伝熱管1とする前の扁平多孔伝熱管1(すなわち拡管部材)としては、幅方向の央部の隔壁同士の間隔が、央部を挟んで一端側に位置する他部分と他端側に位置する他部分の隔壁同士の間隔の平均より狭くなるように隔壁を配置しているとともに、一端側の他部分についても他端側の他部分についても、それぞれ該他部分における隔壁同士の間隔が、その最大と最小の間隔の比が1.16以下のほぼ同じ幅になるように隔壁を配置している
Referring to FIG. 2, the flat porous heat transfer tube 1 will be described in detail.
FIG. 2 shows a cross section of the flat porous heat transfer tube 1 in the longitudinal direction.
The flat porous heat transfer tube 1 is made of aluminum or an aluminum alloy, and is provided with a plurality of refrigerant passages 2 divided by a plurality of partition walls 3 provided in a longitudinal direction of the tube cross section (width direction of the tube). As will be described in detail later, at the time of manufacturing, the flat porous heat transfer tube 1 is supplied with a high-pressure compressed fluid to the refrigerant flow path 2 surrounded by the bent or curved partition wall 3 and the pipe wall 4 to extend the partition wall 3. As a result, the pipe expands in the short axis direction (the thickness direction of the pipe) in the cross section of the pipe.
In the flat porous heat transfer tube 1 of the present embodiment, the partition walls are arranged such that the flow path width at the center in the width direction is smaller than the average of the flow path widths of the other parts, and Regarding the width, the ratio between the maximum and minimum flow path widths of the other portion located on one end side and the other portion located on the other end side across the central portion is substantially the same width of 1.16 or less. A partition is arranged at the bottom.
In addition, as for the flat porous heat transfer tube 1 (that is, the expanded tube member) before being expanded into the flat porous heat transfer tube 1, the interval between the partition walls at the central portion in the width direction is located at one end side with the central portion interposed therebetween. The partition is arranged so as to be narrower than the average of the intervals between the partition and the other part located on the other end side, and the other part on the one end side and the other part on the other end side are also each other part. Are arranged such that the ratio between the maximum and minimum distances of the partition walls is approximately the same width of 1.16 or less .

ステップS43で、アルミニウムまたはアルミニウム合金素材を、例えば、押し出し加工または引き抜き加工し、実施形態の熱交換器の大きさに対応した所定の寸法に切断して、扁平多孔伝熱管1(拡管部材)を製造する。
そして、ステップS44で、複数の扁平多孔伝熱管1を所定の間隔で整列する。
In step S43, the aluminum or aluminum alloy material is, for example, extruded or drawn, cut into a predetermined size corresponding to the size of the heat exchanger of the embodiment, and the flat porous heat transfer tube 1 (expanding member) is cut. To manufacture.
Then, in step S44, the plurality of flat perforated heat transfer tubes 1 are aligned at predetermined intervals.

扁平多孔伝熱管1(拡管部材)は、上下の管壁4がほぼ平行になるように成型された扁平な管であり、扁平多孔伝熱管1は、その内部で上下の管壁4と接続し、扁平多孔伝熱管1の断面の長軸方向に断面形状が山形(ひらがなの「く」の字状あるいは「く」の鏡文字状)に屈曲した複数の隔壁3を備えている。これら隔壁3によって扁平多孔伝熱管1の内部が分割され、複数の冷媒流路2が平行に設けられている。 The flat porous heat transfer tube 1 (expanding member) is a flat tube formed so that upper and lower tube walls 4 are substantially parallel to each other. The flat porous heat transfer tube 1 is connected to the upper and lower tube walls 4 inside the tube. In addition, the flat porous heat transfer tube 1 is provided with a plurality of partition walls 3 whose cross-sectional shape is bent in a long axis direction in the longitudinal direction of the cross-section of the flat porous heat transfer tube 1 (a hiragana “ku” shape or a “ku” mirror character shape). The inside of the flat porous heat transfer tube 1 is divided by these partition walls 3, and a plurality of refrigerant channels 2 are provided in parallel.

図6の比較例3の扁平多孔伝熱管1は、図9に示している、Lの長さが、L、L、Lの長さに対して短い場合である。
この場合には、拡管後の端部流路の管壁4が膨張する一方で、中央流路の管壁4は拡管せず、平面度は小さくなり、扁平多孔伝熱管1とフィンカラー12との接合性は良好(○印)となる。
Flat perforated heat transfer tube 1 of Comparative Example 3 in FIG. 6 are shown in FIG. 9, the length of L c is the shorter the length of L 1, L 2, L T .
In this case, while the pipe wall 4 of the end flow path after expansion expands, the pipe wall 4 of the central flow path does not expand, the flatness decreases, and the flat porous heat transfer tube 1 and the fin collar 12 Are good (○).

図6に示すとおり、実施例1〜の扁平多孔伝熱管1については、扁平多孔伝熱管1とフィンカラー12との接合性が優(◎印)であり、熱交換性の高い熱交換器を得ることができる。これに対して、比較例1〜2の扁平多孔伝熱管1については、扁平多孔伝熱管1とフィンカラー12との接合性は不充分となっている。このことから、特に、接合性が優良となる条件が望ましく、扁平多孔伝熱管1は、幅方向の両端の流路幅Ltと幅方向の央部の流路幅Lcとが、1.31≦(Lt/Lc)≦1.67になるように隔壁3を配置する。 As shown in FIG. 6, for flattened perforated heat transfer tubes 1 of Examples 1 3, the bonding between the flat porous heat transfer tube 1 and the fin collar 12 is good excellent (◎ mark), the heat exchanger having high heat exchange You can get a bowl. On the other hand, in the flat porous heat transfer tubes 1 of Comparative Examples 1 and 2, the bonding property between the flat porous heat transfer tube 1 and the fin collar 12 is insufficient. For this reason, it is particularly desirable that the bonding property be excellent. In the flat porous heat transfer tube 1, the flow path width Lt at both ends in the width direction and the flow path width Lc at the center in the width direction are 1. The partition walls 3 are arranged so that 31 ≦ (Lt / Lc) ≦ 1.67 .

図10と図11は、図6の実施例1〜の扁平多孔伝熱管1(拡管部材)について、より熱交換性を高めた扁平多孔伝熱管1の断面を示す図である。
詳細には、冷媒流路2の管内面における扁平部に、扁平多孔伝熱管1の長手方向に延在し放熱フィンとなる突起部13が形成され、冷媒との熱伝達率を向上して、扁平多孔伝熱管1の熱交換性能を高める。
FIGS. 10 and 11 are cross-sectional views of the flat porous heat transfer tubes 1 (expanding members) of Examples 1 to 3 of FIG.
In detail, a protruding portion 13 that extends in the longitudinal direction of the flat porous heat transfer tube 1 and serves as a radiation fin is formed on a flat portion of the inner surface of the refrigerant flow passage 2 to improve the heat transfer coefficient with the refrigerant. The heat exchange performance of the flat porous heat transfer tube 1 is improved.

前記課題を解決するため、本発明の熱交換器は、少なくとも4つの隔壁により幅方向に管内が分割されて略平行な冷媒流路を有する扁平多孔伝熱管と、前記扁平多孔伝熱管を拡管接合する挿入孔を有するフィンと、前記扁平多孔伝熱管の端部のそれぞれで前記冷媒流路を連通するヘッダと、を備える熱交換器であって、前記扁平多孔伝熱管は、幅方向の央部の流路幅が、他部分の流路幅のいずれより狭くなるように前記隔壁を配置しているとともに、前記他部分の流路幅について、前記央部を挟んで一端側に位置する前記他部分についても他端側に位置する前記他部分についても、その最大と最小の流路幅の比が1.16以下のほぼ同じ幅になるように前記隔壁を配置している熱交換器とした。
また、本発明の空気調和機は、前記熱交換器を備えるようにした。
In order to solve the above-mentioned problems, a heat exchanger according to the present invention is configured such that a flat porous heat transfer tube having a substantially parallel refrigerant flow path in which the inside of a pipe is divided in a width direction by at least four partition walls, and an expansion joining of the flat porous heat transfer tube. A fin having an insertion hole to be inserted, and a header communicating with the refrigerant flow path at each end of the flat porous heat transfer tube, wherein the flat porous heat transfer tube has a widthwise central portion. The partition width is arranged such that the width of the flow path is narrower than any of the flow path widths of the other parts, and the flow path width of the other part is located at one end side with respect to the central part. for even the other portion located on the other side for the other parts, the heat exchanger the ratio of the maximum and minimum channel width is arranged the partition wall to be approximately the same width of 1.16 or less did.
Further, the air conditioner of the present invention includes the heat exchanger.

図2により、扁平多孔伝熱管1を詳細に説明する。
図2は、扁平多孔伝熱管1の長手方向の断面を示している。
扁平多孔伝熱管1は、アルミニウムまたはアルミニウム合金から成り、管断面の長軸方向(管の幅方向)に設けられた複数の隔壁3により分割された複数の冷媒流路2が設けられている。詳細は後述するが、製造時に、扁平多孔伝熱管1は、屈曲あるいは湾曲した形状の隔壁3と管壁4で囲まれた冷媒流路2に高圧の圧縮流体を供給されて、隔壁3を伸ばすように変形することで、管断面の短軸方向(管の厚み方向)に拡管する。
なお、本実施形態の扁平多孔伝熱管1は、幅方向の央部の流路幅が、他部分の流路幅のいずれより狭くなるように隔壁を配置しているとともに、他部分の流路幅について、央部を挟んで一端側に位置する他部分についても他端側に位置する他部分についても、その最大と最小の流路幅の比が1.16以下のほぼ同じ幅になるように隔壁を配置している。
また、拡管して扁平多孔伝熱管1とする前の扁平多孔伝熱管1(すなわち拡管部材)としては、幅方向の央部の隔壁同士の間隔が、央部を挟んで一端側に位置する他部分と他端側に位置する他部分の隔壁同士の間隔のいずれより狭くなるように隔壁を配置しているとともに、一端側の他部分についても他端側の他部分についても、それぞれ該他部分における隔壁同士の間隔が、その最大と最小の間隔の比が1.16以下のほぼ同じ幅になるように隔壁を配置している。
Referring to FIG. 2, the flat porous heat transfer tube 1 will be described in detail.
FIG. 2 shows a cross section of the flat porous heat transfer tube 1 in the longitudinal direction.
The flat porous heat transfer tube 1 is made of aluminum or an aluminum alloy, and is provided with a plurality of refrigerant passages 2 divided by a plurality of partition walls 3 provided in a longitudinal direction of the tube cross section (width direction of the tube). As will be described in detail later, at the time of manufacturing, the flat porous heat transfer tube 1 is supplied with a high-pressure compressed fluid to the refrigerant flow path 2 surrounded by the bent or curved partition wall 3 and the pipe wall 4 to extend the partition wall 3. As a result, the pipe expands in the short axis direction (the thickness direction of the pipe) in the cross section of the pipe.
In the flat porous heat transfer tube 1 of the present embodiment, the partition walls are arranged such that the flow path width at the center in the width direction is narrower than any of the flow path widths at the other parts, and the flow rate at the other parts is reduced. Regarding the road width, the ratio between the maximum and minimum flow path widths of the other portion located on one end side and the other portion located on the other end side of the central portion is substantially the same width of 1.16 or less. The partitions are arranged as follows.
In addition, as for the flat porous heat transfer tube 1 (that is, the expanded tube member) before being expanded into the flat porous heat transfer tube 1, the interval between the partition walls at the central portion in the width direction is located at one end side with the central portion interposed therebetween. together are arranged partition walls so any narrower than the spacing of the partition wall between the other portion located at a portion and the other end side, for the other parts of even the other end to the other portion of the one end side, respectively said other The partitions are arranged such that the distance between the partitions in the portion is approximately the same width with the ratio of the maximum to the minimum distance of 1.16 or less.

Claims (14)

少なくとも4つの隔壁により幅方向に管内が分割されて略平行な冷媒流路を有する扁平多孔伝熱管と、
前記扁平多孔伝熱管を拡管接合する挿入孔を有するフィンと、
前記扁平多孔伝熱管の端部のそれぞれで前記冷媒流路を連通するヘッダと、
を備える熱交換器であって、
前記扁平多孔伝熱管は、幅方向の両端の流路幅が、他部分の流路幅より広くなるように前記隔壁を配置している
熱交換器。
A flat perforated heat transfer tube having a substantially parallel refrigerant flow channel, the inside of which is divided in the width direction by at least four partition walls,
A fin having an insertion hole for expanding and joining the flat porous heat transfer tube;
A header that communicates the refrigerant flow path at each end of the flat porous heat transfer tube,
A heat exchanger comprising:
The heat exchanger in which the flat porous heat transfer tubes are arranged with the partition walls such that flow passage widths at both ends in a width direction are wider than flow passage widths of other portions.
請求項1に記載の熱交換器において、
前記扁平多孔伝熱管は、幅方向の両端の流路幅Ltと幅方向の央部の流路幅Lcとが、1.0<(Lt/Lc)<3.5になるように前記隔壁を配置している
熱交換器。
The heat exchanger according to claim 1,
In the flat porous heat transfer tube, the partition walls are arranged such that the flow path width Lt at both ends in the width direction and the flow path width Lc at the center in the width direction satisfy 1.0 <(Lt / Lc) <3.5. The heat exchanger in place.
少なくとも4つの隔壁により幅方向に管内が分割されて略平行な冷媒流路を有する扁平多孔伝熱管と、
前記扁平多孔伝熱管を拡管接合する挿入孔を有するフィンと、
前記扁平多孔伝熱管の端部のそれぞれで前記冷媒流路を連通するヘッダと、
を備える熱交換器であって、
前記扁平多孔伝熱管は、幅方向の両端の流路幅が、他部分の流路幅の平均より広くなるように前記隔壁を配置している
熱交換器。
A flat perforated heat transfer tube having a substantially parallel refrigerant flow channel, the inside of which is divided in the width direction by at least four partition walls,
A fin having an insertion hole for expanding and joining the flat porous heat transfer tube;
A header that communicates the refrigerant flow path at each end of the flat porous heat transfer tube,
A heat exchanger comprising:
The heat exchanger in which the flat porous heat transfer tubes have the partition walls arranged such that the flow passage widths at both ends in the width direction are wider than the average of the flow passage widths of other portions.
請求項3に記載の熱交換器において、
前記扁平多孔伝熱管は、幅方向の両端の流路幅Ltと幅方向の央部の流路幅Lcとが、1.0<(Lt/Lc)<3.5になるように前記隔壁を配置している
熱交換器。
The heat exchanger according to claim 3,
In the flat porous heat transfer tube, the partition walls are arranged such that the flow path width Lt at both ends in the width direction and the flow path width Lc at the center in the width direction satisfy 1.0 <(Lt / Lc) <3.5. The heat exchanger in place.
少なくとも4つの隔壁により幅方向に管内が分割されて略平行な冷媒流路を有する扁平多孔伝熱管と、
前記扁平多孔伝熱管を拡管接合する挿入孔を有するフィンと、
前記扁平多孔伝熱管の端部のそれぞれで前記冷媒流路を連通するヘッダと、
を備える熱交換器であって、
前記扁平多孔伝熱管は、幅方向の央部の流路幅が、他部分の流路幅の平均より狭くなるように前記隔壁を配置している
熱交換器。
A flat perforated heat transfer tube having a substantially parallel refrigerant flow channel, the inside of which is divided in the width direction by at least four partition walls,
A fin having an insertion hole for expanding and joining the flat porous heat transfer tube;
A header that communicates the refrigerant flow path at each end of the flat porous heat transfer tube,
A heat exchanger comprising:
The heat exchanger in which the flat porous heat transfer tubes are arranged with the partition walls such that a flow path width in a central portion in a width direction is smaller than an average of flow path widths in other portions.
請求項5に記載の熱交換器において、
前記扁平多孔伝熱管は、幅方向の両端の流路幅Ltと幅方向の央部の流路幅Lcとが、1.0<(Lt/Lc)<3.5になるように前記隔壁を配置している
熱交換器。
The heat exchanger according to claim 5,
In the flat porous heat transfer tube, the partition walls are arranged such that the flow path width Lt at both ends in the width direction and the flow path width Lc at the center in the width direction satisfy 1.0 <(Lt / Lc) <3.5. The heat exchanger in place.
請求項1から6のいずれかに記載の熱交換器において、
前記隔壁は、屈曲または湾曲の断面形状を有し、前記扁平多孔伝熱管の幅方向の垂直軸に線対象に配置される
熱交換器。
The heat exchanger according to any one of claims 1 to 6,
The heat exchanger, wherein the partition wall has a bent or curved cross-sectional shape, and is arranged in line with a vertical axis in a width direction of the flat porous heat transfer tube.
請求項1から7のいずれかに記載の熱交換器において、
前記扁平多孔伝熱管の冷媒流路の内面には、管の長手方向に突起部が延在している
熱交換器。
The heat exchanger according to any one of claims 1 to 7,
A heat exchanger in which a protrusion extends in the longitudinal direction of the tube on the inner surface of the refrigerant channel of the flat porous heat transfer tube.
請求項8に記載の熱交換器において、
前記突起部は、央部以外の冷媒流路に設けられている
熱交換器。
The heat exchanger according to claim 8,
The heat exchanger wherein the protrusion is provided in a refrigerant flow path other than the central part.
6つの隔壁により幅方向に管内が分割されて略平行な冷媒流路を有する扁平多孔伝熱管と、
前記扁平多孔伝熱管を拡管接合する挿入孔を有するフィンと、
前記扁平多孔伝熱管の端部のそれぞれで前記冷媒流路を連通するヘッダと、
を備える熱交換器であって、
前記扁平多孔伝熱管は、幅方向の両端の流路幅Ltと幅方向の央部の流路幅Lcとが、1.0<(Lt/Lc)<3.5になるように前記隔壁を配置している
熱交換器。
A flat porous heat transfer tube having a substantially parallel refrigerant flow passage in which the inside of the tube is divided in the width direction by six partition walls,
A fin having an insertion hole for expanding and joining the flat porous heat transfer tube;
A header that communicates the refrigerant flow path at each end of the flat porous heat transfer tube,
A heat exchanger comprising:
In the flat porous heat transfer tube, the partition walls are arranged such that the flow path width Lt at both ends in the width direction and the flow path width Lc at the center in the width direction satisfy 1.0 <(Lt / Lc) <3.5. The heat exchanger in place.
請求項1から10のいずれかに記載の熱交換器において、
前記挿入孔の孔幅は一定である
熱交換器。
The heat exchanger according to any one of claims 1 to 10,
The heat exchanger wherein the hole width of the insertion hole is constant.
請求項1から11のいずれかに記載の熱交換器において、
前記フィンは表面を親水性被膜処理したアルミニウムまたはアルミニウム合金から成り、
前記扁平多孔伝熱管はアルミニウムまたはアルミニウム合金から成る
熱交換器。
The heat exchanger according to any one of claims 1 to 11,
The fins are made of aluminum or aluminum alloy whose surface is treated with a hydrophilic coating,
The flat porous heat transfer tube is a heat exchanger made of aluminum or an aluminum alloy.
請求項1から12のいずれかに記載の熱交換器を備えた
空気調和機。
An air conditioner comprising the heat exchanger according to claim 1.
請求項1から12のいずれかに記載の熱交換器の製造方法であって、
表面を親水性被膜処理したアルミ板材から板状フィンを成形加工する工程と、
複数の前記扁平多孔伝熱管を前記板状フィンの挿入孔に挿入する工程と、
前記扁平多孔伝熱管の両端のそれぞれにヘッダを接合して、前記扁平多孔伝熱管の流路と前記ヘッダとを連通する工程と、
前記ヘッダに圧縮流体を供給して前記扁平多孔伝熱管を拡管し、前記板状フィンと前記扁平多孔伝熱管とを接合する工程と、
を含む、熱交換器の製造方法。
It is a manufacturing method of the heat exchanger in any one of Claims 1 to 12, Comprising:
A step of forming plate-like fins from an aluminum plate material whose surface is treated with a hydrophilic coating,
Inserting the plurality of flat perforated heat transfer tubes into the insertion holes of the plate-like fins,
Joining a header to each of both ends of the flat porous heat transfer tube, and communicating the flow path of the flat porous heat transfer tube with the header,
A step of supplying the compressed fluid to the header to expand the flat porous heat transfer tube, and joining the plate-like fin and the flat porous heat transfer tube,
A method for manufacturing a heat exchanger.
JP2018171896A 2018-09-13 2018-09-13 Air conditioner equipped with heat exchanger, pipe expansion member, and heat exchanger Active JP6636110B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018171896A JP6636110B1 (en) 2018-09-13 2018-09-13 Air conditioner equipped with heat exchanger, pipe expansion member, and heat exchanger
CN201910725513.1A CN110895065A (en) 2018-09-13 2019-08-07 Heat exchanger, method for manufacturing heat exchanger, and air conditioner provided with heat exchanger
US16/554,841 US20200088470A1 (en) 2018-09-13 2019-08-29 Heat exchanger, heat exchanger manufacturing method, and air-conditioner including heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018171896A JP6636110B1 (en) 2018-09-13 2018-09-13 Air conditioner equipped with heat exchanger, pipe expansion member, and heat exchanger

Publications (2)

Publication Number Publication Date
JP6636110B1 JP6636110B1 (en) 2020-01-29
JP2020041789A true JP2020041789A (en) 2020-03-19

Family

ID=69183670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018171896A Active JP6636110B1 (en) 2018-09-13 2018-09-13 Air conditioner equipped with heat exchanger, pipe expansion member, and heat exchanger

Country Status (3)

Country Link
US (1) US20200088470A1 (en)
JP (1) JP6636110B1 (en)
CN (1) CN110895065A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD982730S1 (en) * 2019-06-18 2023-04-04 Caterpillar Inc. Tube
US11525618B2 (en) * 2019-10-04 2022-12-13 Hamilton Sundstrand Corporation Enhanced heat exchanger performance under frosting conditions

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164995A (en) * 1982-03-25 1983-09-29 Kobe Steel Ltd Heat exchanger and manufacture thereof
JPH08247678A (en) * 1995-03-10 1996-09-27 Nagano Haruo Heat-exchanger made of aluminum
JP2000266484A (en) * 1999-03-17 2000-09-29 Bosch Automotive Systems Corp Heat exchanger
JP2003148889A (en) * 2001-11-09 2003-05-21 Gac Corp Heat exchanger and its manufacturing method
JP2004353954A (en) * 2003-05-29 2004-12-16 Denso Corp Heat exchanger
WO2009148200A1 (en) * 2008-06-05 2009-12-10 Lg Electronics Inc. Refrigerant tube and heat exchanger
KR20100001584A (en) * 2008-06-27 2010-01-06 엘지전자 주식회사 Flat tube and heat exchanger comprising in the same
US20120031601A1 (en) * 2010-08-03 2012-02-09 Johnson Controls Technology Company Multichannel tubes with deformable webs
JP2018044707A (en) * 2016-09-14 2018-03-22 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger
JP2018112378A (en) * 2017-01-13 2018-07-19 日立ジョンソンコントロールズ空調株式会社 Heat transfer pipe, heat exchanger and manufacturing method of heat exchanger
WO2019203115A1 (en) * 2018-04-19 2019-10-24 三菱電機株式会社 Flat multi-hole tube, heat exchanger, and method for manufacturing heat exchanger

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3580942B2 (en) * 1996-04-05 2004-10-27 昭和電工株式会社 Flat tubes for heat exchangers and heat exchangers equipped with the tubes
TW552382B (en) * 2001-06-18 2003-09-11 Showa Dendo Kk Evaporator, manufacturing method of the same, header for evaporator and refrigeration system
JP4756585B2 (en) * 2005-09-09 2011-08-24 臼井国際産業株式会社 Heat exchanger tube for heat exchanger
DE102007006664A1 (en) * 2007-02-10 2008-08-14 Modine Manufacturing Co., Racine Flat tube for heat exchanger
US8776874B2 (en) * 2007-12-30 2014-07-15 Valeo, Inc. Heat exchanger tubes and methods for enhancing thermal performance and reducing flow passage plugging
CN204027401U (en) * 2014-07-07 2014-12-17 上海加冷松芝汽车空调股份有限公司 A kind of flat porous heat exchanger tube
CN107907000A (en) * 2017-11-22 2018-04-13 上海加冷松芝汽车空调股份有限公司 The heat exchanger of air-conditioning heat exchanger flat tube and the application flat tube

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164995A (en) * 1982-03-25 1983-09-29 Kobe Steel Ltd Heat exchanger and manufacture thereof
JPH08247678A (en) * 1995-03-10 1996-09-27 Nagano Haruo Heat-exchanger made of aluminum
JP2000266484A (en) * 1999-03-17 2000-09-29 Bosch Automotive Systems Corp Heat exchanger
JP2003148889A (en) * 2001-11-09 2003-05-21 Gac Corp Heat exchanger and its manufacturing method
JP4109444B2 (en) * 2001-11-09 2008-07-02 Gac株式会社 Heat exchanger and manufacturing method thereof
JP2004353954A (en) * 2003-05-29 2004-12-16 Denso Corp Heat exchanger
WO2009148200A1 (en) * 2008-06-05 2009-12-10 Lg Electronics Inc. Refrigerant tube and heat exchanger
KR20100001584A (en) * 2008-06-27 2010-01-06 엘지전자 주식회사 Flat tube and heat exchanger comprising in the same
US20120031601A1 (en) * 2010-08-03 2012-02-09 Johnson Controls Technology Company Multichannel tubes with deformable webs
JP2018044707A (en) * 2016-09-14 2018-03-22 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger
JP2018112378A (en) * 2017-01-13 2018-07-19 日立ジョンソンコントロールズ空調株式会社 Heat transfer pipe, heat exchanger and manufacturing method of heat exchanger
WO2019203115A1 (en) * 2018-04-19 2019-10-24 三菱電機株式会社 Flat multi-hole tube, heat exchanger, and method for manufacturing heat exchanger

Also Published As

Publication number Publication date
CN110895065A (en) 2020-03-20
JP6636110B1 (en) 2020-01-29
US20200088470A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
US7500515B2 (en) Heat exchanger and method of manufacturing the same
JP4050910B2 (en) Heat exchanger
JP4667077B2 (en) Semi-finished joint plate, joint plate, joint plate manufacturing method, and heat exchanger
JP4171760B2 (en) Flat tube and manufacturing method of flat tube
JP2005326135A (en) Heat exchanger
JP2010002093A (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP2007278558A (en) Refrigerant radiator
JPH07190661A (en) Heat exchanger
JP4751662B2 (en) Plate for manufacturing flat tube, method for manufacturing flat tube, and method for manufacturing heat exchanger
JP6636110B1 (en) Air conditioner equipped with heat exchanger, pipe expansion member, and heat exchanger
JP4533726B2 (en) Evaporator and manufacturing method thereof
JP2001050677A (en) Heat exchanger
JP2012247091A (en) Fin and tube type heat exchanger
JP2018124034A (en) Tube for heat exchanger
JP3664783B2 (en) Condenser
JP6674262B2 (en) Heat exchanger and method of manufacturing the same
WO2020095797A1 (en) Heat exchanger and method for manufacturing heat exchanger
WO2019203115A1 (en) Flat multi-hole tube, heat exchanger, and method for manufacturing heat exchanger
JPH11325784A (en) Heat exchanger
JP2010255864A (en) Flat tube and heat exchanger
JP5167930B2 (en) Heat exchanger
JP2007187435A (en) Heat exchanger
JP2016080236A (en) Heat exchanger
JP2001059689A (en) Tube for heat exchanger
JP7164801B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181205

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181205

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191217

R150 Certificate of patent or registration of utility model

Ref document number: 6636110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150