JP2020040833A - Piling method of iron-making material - Google Patents

Piling method of iron-making material Download PDF

Info

Publication number
JP2020040833A
JP2020040833A JP2019011072A JP2019011072A JP2020040833A JP 2020040833 A JP2020040833 A JP 2020040833A JP 2019011072 A JP2019011072 A JP 2019011072A JP 2019011072 A JP2019011072 A JP 2019011072A JP 2020040833 A JP2020040833 A JP 2020040833A
Authority
JP
Japan
Prior art keywords
raw material
mass
iron
test
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019011072A
Other languages
Japanese (ja)
Other versions
JP7299027B2 (en
Inventor
正博 島瀬
Masahiro Shimase
正博 島瀬
勇摩 鈴木
Yuma Suzuki
勇摩 鈴木
大 大山
Dai Oyama
大 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Eco Tech Corp
Original Assignee
Nippon Steel Eco Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=69797502&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2020040833(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Eco Tech Corp filed Critical Nippon Steel Eco Tech Corp
Publication of JP2020040833A publication Critical patent/JP2020040833A/en
Application granted granted Critical
Publication of JP7299027B2 publication Critical patent/JP7299027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

To provide a piling method of iron-making material that makes it hard for landslide of the piled iron-making material to occur when piling the iron-making material at a raw material yard.SOLUTION: The method of piling iron-making material at a raw material yard includes a step to add diluted liquid with high polymer coagulant contained at 0.1 to 2 mass% as an active ingredient to at least one of iron-making materials before and after piling at the raw material yard.SELECTED DRAWING: None

Description

本発明は、製鉄原料の山積み方法に関する。   The present invention relates to a method for stacking ironmaking raw materials.

鉄鉱石及び石炭等の製鉄原料は、製鉄所におけるヤード(以下、「原料ヤード」と記載する。)と称される置き場に山積みされ、保管されている。日本の場合、製鉄原料の多く(特に鉄鉱石や石炭)は、輸入に頼られ、世界各地から船舶で輸送されてきており、産地が異なる原料と一緒に山積みされ、その山の端から取り出されて使用されることで、産地による性質の差の緩和が図られている。   Iron ore raw materials such as iron ore and coal are piled up and stored in a storage area called a yard (hereinafter, referred to as “raw material yard”) in an ironworks. In the case of Japan, many of the steelmaking raw materials (especially iron ore and coal) are imported and are transported by ship from all over the world. They are piled up with raw materials from different production areas and taken out from the edge of the mountain for use. By doing so, the difference in properties depending on the place of production is reduced.

上述の製鉄原料は、採掘現場や、採掘現場内外の保管場及び貯蔵場、並びにそれらの場から船舶等へ輸送されている場(例えばベルトコンベアやトラックの荷台等)において、例えば降雨や粉塵防止用の散水等により、水分を含む。この製鉄原料が、製鉄所へ向かうばら積み貨物船等の船舶で輸送されている間に、船舶の動揺や振動によって、製鉄原料中の水分が、製鉄原料とは分離して船倉の床に溜まった状態となる。そのため、製鉄原料をばら積み貨物船や艀等からアンローダー等で陸揚げする過程において、船倉の床に近い製鉄原料をグラブバケット等でつかみ取る際に、床に溜まった水ごと製鉄原料が取り出されることがある。その結果、水分量の多い製鉄原料が陸揚げされることがある。また、船舶を長時間にわたって泊めておくとそれだけ費用が嵩むことから、上述の陸揚げは降雨の中で行われる場合もある。その場合には、陸揚げされる製鉄原料中の水分量はより多くなる可能性がある。   The above-mentioned ironmaking raw materials are used, for example, in rainfall and dust prevention at mining sites, storage sites and storage sites inside and outside the mining sites, and sites transported from those sites to ships and the like (eg, belt conveyors and truck beds). Contains water due to water spraying. While this steelmaking raw material is being transported by ship such as a bulk carrier to an ironworks, the water in the steelmaking raw material separates from the steelmaking raw material and accumulates on the floor of the hold by the rocking and vibration of the ship. State. Therefore, in the process of unloading steelmaking raw materials from bulk cargo ships or barges with unloaders, etc., when steelmaking raw materials near the floor of the hold are grabbed by grab buckets etc., the steelmaking raw materials together with the water accumulated on the floor are taken out. There is. As a result, ironmaking raw materials having a high moisture content may be discharged. In addition, the above-mentioned landing may be performed during rainfall because the cost increases if the vessel stays for a long time. In that case, the amount of water in the steelmaking raw material to be unloaded may be higher.

含水率が高い製鉄原料等の含水バラ物は、流動しやすいことから、その含水バラ物をベルトコンベア上に荷揚げするに当たり、含水バラ物がベルトコンベアから流出しやすく、落下しやすい等の荷揚げ障害を引き起こすことが特許文献1に開示されている。そのような障害を解消するために、特許文献1では、ベルトコンベア上の含水バラ物に対し、高分子凝集剤を主成分とした薬剤を薬液として添加し、得られた凝集物をベルトコンベアで搬送する方法が提案されている。   Since wet bulk materials such as steelmaking raw materials with a high water content are easy to flow, when unloading the wet bulk materials onto the belt conveyor, the wet bulk materials easily flow out of the belt conveyor and are easily unloaded. Is disclosed in Patent Document 1. In order to solve such an obstacle, in Patent Literature 1, a chemical containing a polymer flocculant as a main component is added as a chemical to a hydrated bulk material on a belt conveyor, and the obtained flocculant is conveyed by the belt conveyor. Transporting methods have been proposed.

国際公開第2014/058074号International Publication No. WO 2014/058074

上述の特許文献1に具体的に開示された含水バラ物の荷揚げ処理方法では、主成分である高分子凝集剤を40%程度以上含有する薬剤(高分子凝集剤を含有する製品)をそのまま(原液で)、含水バラ物に添加する薬液として、使用している。そして、その方法では、ベルトコンベア上の含水バラ物に対し、上記薬液を添加し、含水バラ物と薬液との混合により、凝集粒子を生じさせることで、ベルトコンベアでの搬送が容易となり、原料ヤードへのバラ物の供給がトラブル無くできるとされている。   In the method for unloading hydrated bulk material specifically disclosed in Patent Document 1 described above, a drug (a product containing a polymer flocculant) containing about 40% or more of a polymer flocculant as a main component is used as it is ( Undiluted solution), and used as a chemical solution to be added to hydrous bulk material. According to the method, the above chemical solution is added to the hydrated bulk material on the belt conveyor, and the hydrated bulk material and the chemical solution are mixed to generate aggregated particles. It is said that the supply of loose items to the yard can be done without any trouble.

しかし、特許文献1に開示されたような方法によって、含水バラ物の荷揚げ処理を行ったとしても、その処理によってベルトコンベアで搬送されて原料ヤードに山積みされた製鉄原料においては、製鉄原料中の水分に起因する流動性によって、山が崩れる現象(以下、「山崩れ」と記載する。)が生じる場合があることがわかった。また、逆に、製鉄原料中の水分が非常に少ない場合(例えば、製鉄原料の含水率が8質量%未満であるような場合)には、製鉄原料中の水分が少なすぎることに起因する崩れやすさから、やはり山崩れが生じる場合がある。   However, even if the unloading treatment of the hydrated bulk material is performed by the method disclosed in Patent Literature 1, in the ironmaking raw material transported by the belt conveyor and piled up in the raw material yard by the treatment, the ironmaking raw material It has been found that a phenomenon in which a mountain collapses (hereinafter referred to as “mountain collapse”) may occur due to fluidity caused by moisture. Conversely, when the water content in the steelmaking raw material is very small (for example, when the water content of the steelmaking raw material is less than 8% by mass), the collapse caused by the water content in the steelmaking raw material being too small. For ease, a mountain collapse may still occur.

そこで、本発明は、製鉄原料を原料ヤードに山積みするに当たり、山積みされた製鉄原料の山崩れが生じにくい、製鉄原料の山積み方法を提供しようとするものである。   In view of the above, an object of the present invention is to provide a method of stacking steelmaking raw materials in which piled-up ironmaking raw materials are unlikely to collapse when piled up in a raw material yard.

本発明は、原料ヤードに製鉄原料を山積みする方法であって、前記原料ヤードに山積みされる前の製鉄原料及び山積みされた後の製鉄原料の少なくとも一方の製鉄原料に、有効成分としての高分子凝集剤の含有量が0.1〜2質量%である希薄液を添加する工程を含む、製鉄原料の山積み方法を提供する。   The present invention relates to a method of stacking steelmaking raw materials in a raw material yard, wherein at least one of the steelmaking raw materials before being piled up in the raw material yard and the ironmaking raw materials after being piled up is polymerized as an active ingredient. Provided is a method for stacking iron-making raw materials, the method including a step of adding a dilute solution having a coagulant content of 0.1 to 2% by mass.

本発明によれば、製鉄原料を原料ヤードに山積みするに当たり、山積みされた製鉄原料の山崩れが生じにくい、製鉄原料の山積み方法を提供することができる。   Advantageous Effects of Invention According to the present invention, it is possible to provide a method for stacking steelmaking raw materials in which piled-up ironmaking raw materials are unlikely to collapse when piled up in a raw material yard.

試験例1.1及び1.2で用いた各試料について、崩れやすさを確認する試験を行った後の試料の状態を撮影した写真を対比して表した図表である。5 is a table showing, in comparison with photographs taken of the state of each sample used in Test Examples 1.1 and 1.2 after a test for confirming the easiness of collapse was performed. 試験例2.1〜2.3で用いた各試料について、崩れやすさを確認する試験を行った後の試料の状態を撮影した写真を対比して表した図表である。It is the chart which compared the photograph which image | photographed the state of the sample after performing the test which confirms the easiness of collapse about each sample used in Test Examples 2.1-2.3. 試験例3.1及び3.2で用いた各試料について、崩れやすさを確認する試験を行った後の試料の状態を撮影した写真を対比して表した図表である。It is the table | surface which compared and compared the photograph which image | photographed the state of the sample after performing the test which confirms the fragility easily about each sample used in Test Example 3.1 and 3.2. 試験例4.1〜4.5で用いた各試料について、崩れやすさを確認する試験を行った後の試料の状態を撮影した写真を対比して表した図表である。It is the table | surface which compared and compared the photograph which image | photographed the state of the sample after performing the test which confirms the easiness of collapse about each sample used in Test Examples 4.1-4.5. 試験例5.1〜5.7で用いた各試料について、崩れやすさを確認する試験を行った後の試料の状態を上面側及び側面側から撮影した写真を対比して表した図表である。It is the chart which showed the state of the sample after performing the test which confirms the easiness of collapse about each sample used by Test Examples 5.1-5.7 by comparing the photograph taken from the upper surface side and the side surface side. . 試験例5.8〜5.13で用いた各試料について、崩れやすさを確認する試験を行った後の試料の状態を上面側及び側面側から撮影した写真を対比して表した図表である。It is the chart which showed the state of the sample after performing the test which confirms easiness of collapse about each sample used in Test Examples 5.8 to 5.13 by comparing the photograph taken from the upper surface side and the side surface side. . 試験例5.14〜5.19で用いた各試料について、崩れやすさを確認する試験を行った後の試料の状態を上面側及び側面側から撮影した写真を対比して表した図表である。It is the chart which showed the state of the sample after performing the test which confirms the easiness of collapse about each sample used by Test Examples 5.14-5.19 by comparing the photograph taken from the upper surface side and the side surface side. .

以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments.

本発明者らは、原料ヤードに山積みされた含水状態の製鉄原料が、その原料中の水分等によって流動しやすくなることに起因して生じ得る山崩れを抑制するための方法を検討した。その検討の中で、原料ヤードを想定して、山積みされる前の製鉄原料や山積みされた後の製鉄原料に、特許文献1で具体的に開示された方法で使用された高分子凝集剤を40質量%程度含有する薬液(原液)をそのまま、添加する方法を試した。   The present inventors have studied a method for suppressing landslides that may occur due to the fact that a water-containing ironmaking raw material piled up in a raw material yard becomes more likely to flow due to moisture or the like in the raw material. In the study, assuming a raw material yard, the polymer coagulant used in the method specifically disclosed in Patent Document 1 was added to the steelmaking raw material before being piled up and the ironmaking raw material after being piled up. A method of adding a drug solution (stock solution) containing about 40% by mass as it was was tried.

山積みされた後の製鉄原料に上記薬液を添加した試みでは、すでに山積みされた製鉄原料であることから、上記薬液を添加した後に、それらを混合する工程を省いたために、山崩れが発生しやすい結果となった。この結果を受けて、山積みされる前の製鉄原料に、上記薬液を添加する方法では、製鉄原料と薬液との混合の程度をいくつか変えて試したところ、混合の程度が低いほど、山崩れが発生しやすい傾向にあることがわかった。これらの結果と、上記薬液が添加された後の製鉄原料を観察した結果、上記薬液をそのまま使用した場合には、薬液が製鉄原料の全体に濡れていかず、薬液中の高分子凝集剤が製鉄原料の全体にいきとどいていないことが、山崩れが生じる原因であるとの考えに至った。   In an attempt to add the above-mentioned chemical solution to the steelmaking raw material after being piled up, since the steelmaking raw material is already piled up, after adding the above-mentioned chemical solution, the step of mixing them is omitted, so that a mountain collapse is likely to occur. The result was. Based on this result, the method of adding the chemical solution to the steelmaking raw material before being piled up was tested by changing the degree of mixing of the steelmaking raw material and the chemical solution by several degrees. It was found that it was likely to occur. These results and the observation of the iron-making raw material after the above-mentioned chemical solution was added.If the above-mentioned chemical solution was used as it was, the chemical solution did not wet the entire iron-making raw material, and the polymer flocculant in the chemical solution was iron-made. He concluded that the lack of raw material was the cause of the collapse.

上記特許文献1に開示された方法では、含水バラ物(製鉄原料)を荷揚げするに当たり、ベルトコンベアから流出しやすかったり、落下しやすかったりという搬送トラブル等の荷揚げ障害を解決するために、特定の構成が採られている。具体的には、ベルトコンベア上の含水バラ物に上記薬液をシャワー状に散布又はミスト状に噴霧する方法や、上記薬液が添加された含水バラ物をベルトコンベアのジャンクション部位で落下混合する方法等が採られている。そのため、高分子凝集剤を40質量%程度含有する薬液(原液)が、含水バラ物(製鉄原料)の全体に濡れにくく、高分子凝集剤が含水バラ物の全体にいきとどきにくいことは、従来技術においては認識されていなかったと考えられる。   According to the method disclosed in Patent Document 1, when unloading a hydrated bulk material (iron-making raw material), a specific unloading obstacle such as a transport trouble such as easy outflow from a belt conveyor or easy dropping is solved. The configuration is adopted. Specifically, a method of spraying or spraying the above-mentioned chemical solution in a shower or a mist on a wet bulk material on a belt conveyor, a method of dropping and mixing a wet bulk material to which the above-mentioned chemical solution is added at a junction site of the belt conveyor, and the like. Is adopted. Therefore, it is difficult for a chemical solution (stock solution) containing about 40% by mass of the polymer flocculant to wet the whole of the hydrated bulk material (raw material for steelmaking), and for the polymer flocculant to hardly reach the entire hydrated bulk material. It is thought that it was not recognized in the technology.

また、上述した特許文献1に開示された方法では、含水バラ物(製鉄原料)をベルトコンベアで搬送する過程において、上記薬液(原液)をシャワー状又はミスト状で添加する設備を要し、また、薬液と含水バラ物とを十分に混合するには複数箇所にベルトコンベアのジャンクション部位の落差部分を設ける必要がある。そのため、設備が煩雑になり、また、設備設計に制約があるところでは、薬液と含水バラ物との十分な混合も難しくなる。さらに、原料ヤードに野積みされた製鉄原料に雨が降ると、上述の山崩れがより生じやすくなると考えられるが、原料ヤードに野積みされた状態の製鉄原料に、上記薬液をさらに添加しても、それらを混合することは山崩れを生じることになるため、特許文献1に開示された方法を利用することはできない。したがって、山積みされた製鉄原料の山崩れを抑制する方法には、より利用しやすい簡便な方法が望まれる。   In addition, the method disclosed in Patent Document 1 described above requires equipment for adding the chemical solution (stock solution) in the form of a shower or a mist in the process of transporting a hydrated bulk material (iron-making raw material) on a belt conveyor. In order to sufficiently mix the chemical solution and the water-containing bulk material, it is necessary to provide a plurality of junctions of the belt conveyor with head portions. For this reason, the equipment becomes complicated, and where there is a restriction in the equipment design, it becomes difficult to sufficiently mix the chemical solution and the hydrated bulk material. Further, when it rains on the iron raw material piled up in the raw material yard, it is thought that the above-mentioned mountain collapse is more likely to occur.However, even if the chemical solution is further added to the iron raw material piled up in the raw material yard, However, mixing them results in landslides, and the method disclosed in Patent Document 1 cannot be used. Therefore, a simple and easy-to-use method is desired as a method for suppressing the landslide of piled iron-making raw materials.

以上の検討を経て、本発明者らは、製鉄原料の全体に高分子凝集剤がいきとどきやすいように、製鉄原料に添加する液(添加液)として、高分子凝集剤の濃度が非常に低い液体(高分子凝集剤の希薄液)を使用することで、山崩れを抑制し得るか検討した。その結果、高分子凝集剤の濃度が特定の低濃度範囲である場合に、その希薄液を使いやすく、かつ、山崩れを生じにくくすることができることを見出し、本発明に至った。   After the above examination, the present inventors have found that the concentration of the polymer flocculant is very low as a liquid (addition liquid) to be added to the steelmaking raw material so that the polymer flocculant can easily flow into the entire ironmaking raw material. It was examined whether the use of a liquid (dilute liquid of a polymer flocculant) could suppress mountain collapse. As a result, they have found that when the concentration of the polymer flocculant is in a specific low concentration range, the diluted solution can be easily used and the collapse of the mountain can be hardly generated, and the present invention has been accomplished.

すなわち、本発明の一実施形態の製鉄原料の山積み方法(以下、「本方法」と記載することがある。)は、原料ヤードに製鉄原料を山積みする方法に関する。そして、本方法では、原料ヤードに山積みされる前の製鉄原料及び山積みされた後の製鉄原料の少なくとも一方の製鉄原料に、有効成分としての高分子凝集剤の含有量が0.1〜2質量%である希薄液を添加する工程を含む。   That is, the method for stacking iron-making raw materials according to one embodiment of the present invention (hereinafter, may be described as “the present method”) relates to a method for stacking iron-forming raw materials in a raw material yard. In the present method, the content of the polymer coagulant as an active ingredient is 0.1 to 2 mass in at least one of the iron making raw material before being piled up in the raw material yard and the iron making raw material after being piled up. % Of a dilute solution.

上記工程によって、製鉄原料に希薄液が添加されると、希薄液中の高分子凝集剤が製鉄原料の全体にいきわたり、高分子凝集剤の凝集作用により、製鉄原料が凝集し、凝集した製鉄原料の間隙に水分が捕捉されることで、含水状態の製鉄原料の流動性が低下する。これにより、製鉄原料中の水分に起因する流動性による山崩れを抑制することができる。また、製鉄原料中の水分が非常に少ない場合(例えば、製鉄原料の含水率が8質量%未満であるような場合)には、上記希薄液によって、製鉄原料を適度に湿った状態にできるため、製鉄原料中の水分が少なすぎることに起因する山崩れも抑制することができる。さらに、水分が非常に少ない製鉄原料の場合、高分子凝集剤を例えば10〜50質量%含有する従来の薬液は、製鉄原料の全体に浸透し難いが、希薄液を用いることで、製鉄原料の全体に高分子凝集剤をいきとどかせることができる。よって、降雨等によって製鉄原料が流動しやすくなった場合にも、上述の如く、製鉄原料の流動性による山崩れを抑制することが可能である。   When the diluted liquid is added to the iron-making raw material by the above process, the polymer flocculant in the diluted liquid spreads over the entire iron-making raw material, and the flocculating action of the polymer flocculant causes the iron-making raw material to agglomerate. By trapping water in the gaps, the fluidity of the iron-containing raw material in a water-containing state is reduced. Thereby, landslides due to fluidity due to moisture in the iron making raw material can be suppressed. In addition, when the water content in the steelmaking raw material is extremely small (for example, when the water content of the ironmaking raw material is less than 8% by mass), the ironmaking raw material can be appropriately moistened by the dilute liquid. In addition, landslides caused by too little moisture in the steelmaking raw material can be suppressed. Further, in the case of a steelmaking raw material having extremely low water content, a conventional chemical solution containing, for example, 10 to 50% by mass of a polymer coagulant hardly penetrates into the entire steelmaking raw material. The polymer flocculant can be energized throughout. Therefore, even when the ironmaking raw material is likely to flow due to rainfall or the like, it is possible to suppress mountain collapse due to the fluidity of the ironmaking raw material as described above.

本方法では、上記希薄液を使用するため、製鉄原料と希薄液との混合は必須ではないが、山積みされる前の製鉄原料に希薄液を添加する場合には、それらを混合することが好ましい。山積みされる前の製鉄原料と希薄液とを混合することにより、製鉄原料の全体に高分子凝集剤がよりいきとどきやすくなり、山崩れをより生じにくくすることができる。また、本方法では、希薄液を使用するため、山積みされた後の製鉄原料にも添加することができ、それゆえ、本方法は利用しやすい有用な方法といえる。   In the present method, since the dilute solution is used, the mixing of the ironmaking raw material and the dilute solution is not essential, but when the dilute solution is added to the ironmaking raw material before being piled up, it is preferable to mix them. . By mixing the iron-making raw material before being piled up and the dilute solution, the polymer coagulant can be more easily permeated throughout the iron-making raw material, and the collapse of the mountain can be made more difficult. Further, in the present method, since a dilute solution is used, it can be added to the ironmaking raw material after being piled up. Therefore, the present method can be said to be a useful and easy-to-use method.

前述の特許文献1に開示された含水バラ物の荷揚げ処理方法では、含水バラ物をベルトコンベア上に荷揚げするに当たり、含水バラ物の含水率が上昇した場合に、処理を行うこととしている。それゆえ、原料ヤードにおいては、荷揚げ時に含水率が上昇しなかったために薬液が添加されなかった含水バラ物と、荷揚げ時に含水率が上昇したために薬液が添加された含水バラ物とが、ともに搬送され、かつ、混在して山積みされることとなる。このような状況下で原料ヤードに山積みされた含水バラ物に雨が降ると、含水バラ物の山における、少なくとも薬液が添加されなかった含水バラ物の部分では流動しやすくなり、山が崩れやすくなることが懸念される。さらに、前述の通り、製鉄原料中の水分が少なすぎる場合にも山崩れが生じることがある。それらの実情に関し、本方法では、含水率が上昇したか否かに関わらず、製鉄原料に希薄液を添加することができる。そのようにすることで、原料ヤードに山積みされた製鉄原料の流動性の差を均一化することができ、山崩れをより生じにくくすることが可能となる。   In the method for unloading hydrated bulk material disclosed in Patent Document 1 described above, when the hydrated bulk material is unloaded onto a belt conveyor, the processing is performed when the water content of the hydrated bulk material increases. Therefore, in the raw material yard, both the hydrated bulk material to which the chemical solution was not added because the moisture content did not increase at the time of unloading and the hydrated bulk material to which the chemical solution was added due to the increase in the moisture content at the time of unloading were transported together. And are piled up mixedly. In such a situation, when the rain falls on the hydrated roses piled up in the raw material yard, at least the portion of the hydrated roses to which the chemical solution has not been added in the hydrated roses is likely to flow, and the hills are easily collapsed. It is feared that it will become. Further, as described above, landslides may also occur when the water content in the iron-making raw material is too small. Regarding these circumstances, the present method allows the addition of a dilute solution to the ironmaking raw material regardless of whether the water content has increased. By doing so, it is possible to equalize the difference in the fluidity of the ironmaking raw materials piled up in the raw material yard, and it is possible to make the collapse more difficult.

上述の通り、本方法では、原料ヤードに山積みされる前の製鉄原料に希薄液を添加する工程を含むことが好ましく、その際、より好ましくは製鉄原料と希薄液を混合し、また、希薄液が添加された製鉄原料を原料ヤードに山積みする工程を含むことが好ましい。この方法によって、製鉄原料の全体に高分子凝集剤がよりいきとどきやすくなり、山崩れをより抑制しやすくなる。さらに本方法では、それらの工程とは別に、又はそれらの工程を経て、原料ヤードに山積みされた後の製鉄原料に希薄液を添加する工程を含むことが好ましい。その工程により、原料ヤードに山積みされた後の製鉄原料が乾燥することによってその含水率が低くなりすぎることに起因して生じ得る山崩れや、山積みされた後の製鉄原料への降雨等によって製鉄原料が流動しやすい程度に含水率が上昇した場合に生じ得る山崩れを抑制することができる。   As described above, the present method preferably includes a step of adding a dilute liquid to the ironmaking raw material before being piled up in the raw material yard, and more preferably, mixing the ironmaking raw material with the dilute liquid, It is preferable to include a step of stacking the steelmaking raw materials to which the iron is added in the raw material yard. According to this method, the polymer flocculant is more easily permeated to the entire ironmaking raw material, and the collapse of the mountain is more easily suppressed. Further, the present method preferably includes a step of adding a dilute solution to the steelmaking raw material after being piled up in the raw material yard separately from or after these steps. In the process, the ironmaking raw material is piled up in the raw material yard and dried due to the water content thereof becoming too low, which may cause landslides or rainfall on the piled ironmaking raw material. Can be suppressed when the water content is increased to such an extent that water can easily flow.

本方法による処理対象は、原料ヤードに山積みされる前の製鉄原料、及び原料ヤードに山積みされた後の製鉄原料の少なくとも一方の製鉄原料である。それらの両方を、本明細書において、単に「製鉄原料」と記載することがある。また、山積みされている最中の製鉄原料(例えば原料ヤードに落下させている間の製鉄原料等)は、山積み状態の直前であることから、山積みされる前の製鉄原料に含まれることとする。原料ヤードは、屋外及び屋内のいずれでもよく、本方法による効果の観点から、屋外がより好適である。製鉄原料としては、鉄鉱石、石炭、石灰石、コークス、及びダスト等を挙げることができる。これらのなかでも、鉄鉱石及び石炭が好適であり、鉄鉱石がより好適である。   The objects to be treated by the present method are at least one of the steelmaking raw materials before being piled up in the raw material yard and the steelmaking raw materials after being piled up in the raw material yard. Both of them may be simply referred to as "iron making raw material" in this specification. In addition, the steelmaking raw material being piled up (for example, the steelmaking raw material while being dropped into the raw material yard) is included in the steelmaking raw material before being piled up because it is immediately before the piled state. . The raw material yard may be either outdoor or indoor, and outdoor is more preferable from the viewpoint of the effect of the present method. Examples of ironmaking raw materials include iron ore, coal, limestone, coke, and dust. Among these, iron ore and coal are preferred, and iron ore is more preferred.

本方法による処理対象となる製鉄原料は通常、水分を含む。製鉄原料の含水率は、特に限定されないが、1〜30質量%が好ましく、1〜25質量%がより好ましく、1〜20質量%がさらに好ましい。製鉄原料中の水分に起因する流動性による山崩れを抑制する場合においては、そのような流動性による山崩れを生じやすい製鉄原料であって、例えば含水率(水分量)が8〜20質量%である製鉄原料が、処理対象としてさらに好適である。また、製鉄原料中の水分が少なすぎることに起因する山崩れを抑制する場合においては、そのような山崩れを生じやすい製鉄原料であって、例えば、含水率(水分量)が8質量%未満(1質量%以上8質量%未満)である製鉄原料が、処理対象としてさらに好適である。本明細書において、製鉄原料の含水率は、製鉄原料中の水分の質量を、製鉄原料の全質量(水分及び固形分の質量の和)で割って算出される。   The steelmaking raw material to be treated by the present method usually contains water. The water content of the ironmaking raw material is not particularly limited, but is preferably 1 to 30% by mass, more preferably 1 to 25% by mass, and still more preferably 1 to 20% by mass. In the case where landslides due to fluidity due to moisture in the steelmaking raw material are suppressed, the ironmaking raw materials are liable to cause such landslides due to such fluidity. For example, the water content (moisture content) is 8 to 20% by mass. Ironmaking raw materials are more suitable as targets for treatment. In addition, in the case of suppressing landslides caused by too little water in the ironmaking raw material, such landslides are likely to occur, and for example, the water content (water content) is less than 8% by mass (1%). Mass% or more and less than 8 mass%) is more suitable as a treatment target. In the present specification, the water content of the iron making raw material is calculated by dividing the mass of the water in the iron making raw material by the total mass of the iron making raw material (the sum of the mass of the water and the solid content).

製鉄原料に希薄液を添加する場所及びタイミングとしては、山積みされた後の製鉄原料に希薄液を添加する場合には、原料ヤードにて、山積みされた後の製鉄原料に希薄液を添加することができる。また、山積みされる前の製鉄原料に希薄液を添加する場合には、ばら積み貨物船等の船舶から製鉄原料を陸揚げする際や、原料ヤードに製鉄原料を搬送する際に、希薄液を添加することが好ましい。具体的には、船舶からの製鉄原料の陸揚げに用いられる陸揚げ設備内(例えば、グラブバケット式アンローダー及び連続式アンローダー等におけるホッパー内)にて、その陸揚げ設備内の製鉄原料に希薄液を添加することがより好ましい。また、陸揚げ設備により陸揚げされた製鉄原料を原料ヤードに搬送する搬送手段(例えば、ベルトコンベア)上の製鉄原料に希薄液を添加することがさらに好ましい。これらの方法により、搬送手段からの製鉄原料の流出や落下が抑制され、製鉄原料の搬送がより容易化され得る。   As for the place and timing of adding the dilute solution to the ironmaking raw material, when adding the dilute solution to the piled ironmaking raw material, add the dilute liquid to the piled ironmaking raw material at the raw material yard. Can be. In addition, when adding a dilute solution to a raw material before being piled, the dilute solution is added when unloading the raw material from a ship such as a bulk carrier or when transferring the raw material to a raw material yard. Is preferred. Specifically, in a landing facility used for unloading ironmaking raw materials from a ship (for example, in a hopper in a grab bucket type unloader and a continuous unloader, etc.), a dilute liquid is applied to the ironmaking raw material in the landing equipment. More preferably, it is added. Further, it is more preferable to add a dilute liquid to the iron making raw material on a conveying means (for example, a belt conveyor) that conveys the iron making raw material discharged by the landing equipment to a raw material yard. With these methods, the outflow and fall of the iron making raw material from the conveying means can be suppressed, and the conveying of the iron making raw material can be further facilitated.

製鉄原料への希薄液の添加方式としては、製鉄原料に希薄液を、シャワー状に散布する方式、ミスト状に噴霧する方式、及び蛇口から水道水を流す程度のストレート棒状に流す方式等が好ましく、これらの方式を組み合わせてもよい。これらのなかでも、実際の現場においては、ベルトコンベア上の製鉄原料に、希薄液をストレート棒状に流して添加する方式がより好ましく、希薄液をストレート棒状に流し落とす方式がさらに好ましい。これらのストレート棒状に流す方式によって、製鉄原料の全体に希薄液中の高分子凝集剤がいきとどきやすく、かつ、簡易な設備にて希薄液を添加することが可能である。   As a method of adding the dilute solution to the ironmaking raw material, a method of spraying the dilute liquid on the ironmaking raw material in the form of a shower, a method of spraying in a mist form, and a method of flowing the tap water from a faucet into a straight rod shape are preferable. , These methods may be combined. Among these, in an actual site, a method in which a dilute solution is flowed and added to a steelmaking raw material on a belt conveyor in the form of a straight rod is more preferable, and a method in which the dilute liquid is flowed down in a straight rod shape is more preferable. By such a method of flowing in the form of a straight rod, the polymer flocculant in the dilute solution can be easily supplied to the entire ironmaking raw material, and the dilute solution can be added with simple equipment.

製鉄原料に添加される希薄液は、希薄液の全質量を基準として、有効成分としての高分子凝集剤を0.1〜2質量%含有する。希薄液中の高分子凝集剤の含有量が0.1質量%以上及び2質量%以下であることにより、山崩れを生じにくくする効果を得ることができる。その効果がより得られやすい観点から、希薄液中の高分子凝集剤の含有量は、0.2質量%以上であることが好ましい。また、山崩れを生じにくくする効果がより得られやすい観点及び希薄液を製造しやすい観点から、希薄液中の高分子凝集剤の含有量は、1.8質量%以下であることが好ましく、1.6質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。   The dilute solution added to the ironmaking raw material contains 0.1 to 2% by mass of a polymer flocculant as an active ingredient based on the total mass of the dilute solution. When the content of the polymer flocculant in the dilute solution is 0.1% by mass or more and 2% by mass or less, an effect of making the collapse hard to occur can be obtained. From the viewpoint that the effect can be more easily obtained, the content of the polymer flocculant in the diluted liquid is preferably 0.2% by mass or more. In addition, from the viewpoint of more easily obtaining the effect of making the landslide hard to occur and the viewpoint of easily manufacturing the diluted liquid, the content of the polymer flocculant in the diluted liquid is preferably 1.8% by mass or less, The content is more preferably 0.6% by mass or less, and further preferably 1% by mass or less.

高分子凝集剤は、凝集剤として機能する高分子化合物をいい、その機能を有する水溶性重合体(共重合体を含む)が好適に用いられる。高分子凝集剤としては、ノニオン性高分子凝集剤、アニオン性高分子凝集剤、カチオン性高分子凝集剤、及び両性高分子凝集剤を用いることができる。それらの1種を単独で用いてもよく、2種以上を併用してもよい。これらのなかでも、ノニオン性高分子凝集剤及びアニオン性高分子凝集剤が好ましく、アニオン性高分子凝集剤がより好ましい。   The polymer flocculant refers to a polymer compound that functions as a flocculant, and a water-soluble polymer (including a copolymer) having the function is suitably used. As the polymer flocculant, a nonionic polymer flocculant, an anionic polymer flocculant, a cationic polymer flocculant, and an amphoteric polymer flocculant can be used. One of these may be used alone, or two or more thereof may be used in combination. Among these, a nonionic polymer flocculant and an anionic polymer flocculant are preferable, and an anionic polymer flocculant is more preferable.

好適な高分子凝集剤としては、例えば、(メタ)アクリル酸系モノマーの重合体であるポリ(メタ)アクリル酸系凝集剤、(メタ)アクリル酸エステル系モノマーの重合体であるポリ(メタ)アクリル酸エステル系凝集剤、(メタ)アクリルアミドの重合体であるポリ(メタ)アクリルアミド系凝集剤、アルキルアミノアルキル(メタ)アクリレート系モノマーの重合体であるポリアルキルアミノアルキル(メタ)アクリレート4級塩系凝集剤、及びポリビニルアミジン系凝集剤等を挙げることができる。また、好適な高分子凝集剤としては、(メタ)アクリル酸系モノマー、(メタ)アクリル酸エステル系モノマー、(メタ)アクリルアミド、及びアルキルアミノアルキル(メタ)アクリレート系モノマーからなる群より選ばれる1種又は2種以上のモノマーに由来する構造単位を含む共重合体系凝集剤を挙げることができる。   Suitable polymer flocculants include, for example, poly (meth) acrylic acid-based flocculant which is a polymer of (meth) acrylic acid-based monomer, and poly (meth) which is a polymer of (meth) acrylic acid ester-based monomer Acrylate ester-based coagulant, poly (meth) acrylamide-based coagulant which is a polymer of (meth) acrylamide, polyalkylaminoalkyl (meth) acrylate quaternary salt which is a polymer of alkylaminoalkyl (meth) acrylate-based monomer A coagulant and a polyvinylamidine coagulant. Further, as a preferable polymer flocculant, one selected from the group consisting of (meth) acrylic acid-based monomer, (meth) acrylate-based monomer, (meth) acrylamide, and alkylaminoalkyl (meth) acrylate-based monomer Copolymeric coagulants containing structural units derived from one or more types of monomers can be mentioned.

本明細書において、「(メタ)アクリル」との文言には、アクリル及びメタクリルの両方の文言が含まれることを意味する。また、本明細書において、「構造単位」とは、高分子凝集剤(高分子化合物)を構成するモノマー単位を意味する。「モノマーに由来する構造単位」とは、例えば、モノマーにおける重合性二重結合(C=C)が開裂して単結合(−C−C−)となった構造単位等が挙げられる。   In the present specification, the term “(meth) acryl” means that both words of acryl and methacryl are included. Further, in the present specification, the “structural unit” means a monomer unit constituting a polymer flocculant (polymer compound). The "structural unit derived from a monomer" includes, for example, a structural unit in which a polymerizable double bond (C = C) in a monomer is cleaved to form a single bond (-CC-).

上記(メタ)アクリル酸系モノマーとしては、(メタ)アクリル酸のほか、例えば、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸カリウム、及び(メタ)アクリル酸リチウム等の(メタ)アクリル酸の金属塩;(メタ)アクリル酸アンモニウム;及び(メタ)アクリル酸のアミン塩等を挙げることができるが、これらに限定されない。以下、それらのような(メタ)アクリル酸及びそれらの塩を含めて、「(メタ)アクリル酸(塩)」と記載することがある。また、上記(メタ)アクリル酸エステル系モノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、及び(メタ)アクリル酸2−エチルヘキシル等を挙げることができるが、これらに限定されない。   Examples of the (meth) acrylic acid-based monomer include (meth) acrylic acid and, for example, (meth) acrylic acid such as sodium (meth) acrylate, potassium (meth) acrylate, and lithium (meth) acrylate. Examples thereof include, but are not limited to, metal salts; ammonium (meth) acrylate; and amine salts of (meth) acrylic acid. Hereinafter, "(meth) acrylic acid (salt)" may be described, including such (meth) acrylic acid and salts thereof. Examples of the (meth) acrylate-based monomer include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and (meth) acrylic acid. Examples include, but are not limited to, 2-ethylhexyl.

上記共重合体系凝集剤のより好適なものとしては、例えば、(メタ)アクリル酸(塩)・(メタ)アクリルアミド共重合体、(メタ)アクリルアミド・(メタ)アクリル酸(塩)・2−アクリルアミド−2−メチルプロパンスルホン酸(塩)共重合体、アルキルアミノアルキル(メタ)アクリレート4級塩・(メタ)アクリルアミド共重合体、及び(メタ)アクリルアミド・(メタ)アクリル酸・アルキルアミノアルキル(メタ)アクリレート4級塩共重合体等の凝集剤を挙げることができる。   More preferable examples of the copolymer coagulant include (meth) acrylic acid (salt) / (meth) acrylamide copolymer and (meth) acrylamide / (meth) acrylic acid (salt) / 2-acrylamide -2-methylpropanesulfonic acid (salt) copolymer, alkylaminoalkyl (meth) acrylate quaternary salt / (meth) acrylamide copolymer, and (meth) acrylamide / (meth) acrylic acid / alkylaminoalkyl (meth) And a) a coagulant such as acrylate quaternary salt copolymer.

上記共重合体系凝集剤には、上述のモノマー以外のモノマー(他のモノマー)に由来する構造単位を含んでいてもよい。他のモノマーとしては、例えば、マレイン酸、フマル酸、及びイタコン酸、並びにそれらの塩等の不飽和ジカルボン酸;無水マレイン酸及び無水イタコン酸等のカルボン酸無水物;スチレン及びα−メチルスチレン等の芳香族ビニル系化合物;ビニルスルホン酸、及びスチレンスルホン酸、並びにそれらの塩等の不飽和スルホン酸;酢酸ビニル;アクリロニトリル;メタクリロニトリル等を挙げることができる。   The above-mentioned copolymer coagulant may contain a structural unit derived from a monomer other than the above-mentioned monomer (other monomer). Other monomers include, for example, unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid, and salts thereof; carboxylic anhydrides such as maleic anhydride and itaconic anhydride; styrene and α-methylstyrene; Aromatic vinyl compounds; unsaturated sulfonic acids such as vinylsulfonic acid and styrenesulfonic acid, and salts thereof; vinyl acetate; acrylonitrile; methacrylonitrile.

高分子凝集剤の重量平均分子量(Mw)は、500万〜3000万であることが好ましく、1000万〜2500万であることがより好ましい。この重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、測定することができる。   The weight average molecular weight (Mw) of the polymer flocculant is preferably from 5,000,000 to 30,000,000, more preferably from 10,000,000 to 25,000,000. This weight average molecular weight can be measured by gel permeation chromatography (GPC).

高分子凝集剤は、ポリ(メタ)アクリル酸系凝集剤、ポリ(メタ)アクリル酸エステル系凝集剤、ポリ(メタ)アクリルアミド系凝集剤、及び(メタ)アクリル酸ナトリウム・(メタ)アクリルアミド共重合体系凝集剤からなる群より選ばれる1種又は2種以上を含むことが好ましい。これらのなかでも、希薄液は、高分子凝集剤として、(メタ)アクリル酸ナトリウム・(メタ)アクリルアミド共重合体(上記(メタ)アクリル酸ナトリウム・(メタ)アクリルアミド共重合体系凝集剤)、アクリル酸又はその塩の重合体(上記ポリ(メタ)アクリル酸系凝集剤)、及びアクリルアミド重合体からなる群より選ばれる少なくとも1種を含有することがより好ましく、アクリル酸ナトリウム・アクリルアミド共重合体を含有することがさらに好ましい。   Polymer flocculants include poly (meth) acrylic acid-based flocculants, poly (meth) acrylic acid ester-based flocculants, poly (meth) acrylamide-based flocculants, and sodium (meth) acrylate / (meth) acrylamide copolymers It is preferable to include one or more selected from the group consisting of system coagulants. Among these, the dilute liquid is a polymer coagulant such as sodium (meth) acrylate / (meth) acrylamide copolymer (the above-mentioned sodium (meth) acrylate / (meth) acrylamide copolymer coagulant) and acrylic More preferably, it contains at least one member selected from the group consisting of a polymer of an acid or a salt thereof (the above-mentioned poly (meth) acrylic acid-based coagulant) and an acrylamide polymer, and a sodium acrylate-acrylamide copolymer. More preferably, it is contained.

製鉄原料に添加されるときの希薄液の形態としては、油中水滴(W/O)型エマルジョン及び水中油滴(O/W)型エマルジョン等のエマルジョン状;水性分散液等の分散液状;並びに水溶液等の溶液状を挙げることができる。これらのなかでも、希薄液中の高分子凝集剤が製鉄原料の全体によりいきとどきやすい観点から、希薄液は、製鉄原料に添加されるときの形態が水中油滴型エマルジョン状又は水溶液状の液体であることが好ましい。   Examples of the form of the dilute liquid when added to the raw material for iron making include emulsions such as water-in-oil (W / O) emulsions and oil-in-water (O / W) emulsions; dispersions such as aqueous dispersions; A solution such as an aqueous solution can be used. Among these, from the viewpoint that the polymer flocculant in the dilute solution is more easily perceived by the entire ironmaking raw material, the dilute liquid is a liquid in the form of an oil-in-water emulsion or an aqueous solution when added to the ironmaking raw material. It is preferred that

希薄液としては、例えば、高分子凝集剤の製造時から、特定量の高分子凝集剤と分散媒とを含有する分散液(分散液状の希薄液)を用いることができる。また、希薄液としては、例えば、高分子凝集剤(例えば10〜50質量%)と分散媒を含有する分散液(例えば、市販の液状高分子凝集剤製品)を、高分子凝集剤の濃度が特定量となる量の液状媒体で希釈して得られた希薄液を用いることもできる。さらに、希薄液としては、例えば、市販の粉末状の高分子凝集剤の特定量を溶媒で溶解した溶液(溶液状の希薄液)を用いることもできる。希薄液は、高分子凝集剤、並びに上述した分散媒、溶媒、及び希釈に用い得る液状媒体等の少なくとも1種の液分を含有し、また、不可避的不純物(例えば高分子凝集剤を構成するモノマーの残存分等)を含有してもよい。   As the diluted liquid, for example, a dispersion liquid (dispersed liquid diluted liquid) containing a specific amount of the polymer flocculant and a dispersion medium from the time of manufacturing the polymer flocculant can be used. As the diluted liquid, for example, a dispersion liquid (for example, a commercially available liquid polymer flocculant product) containing a polymer flocculant (for example, 10 to 50% by mass) and a dispersion medium is used. A dilute solution obtained by diluting with a specific amount of a liquid medium can also be used. Further, as the dilute solution, for example, a solution in which a specific amount of a commercially available powdery polymer flocculant is dissolved in a solvent (a dilute solution in a solution) can be used. The dilute liquid contains a polymer coagulant and at least one liquid component such as the above-described dispersion medium, solvent, and liquid medium that can be used for dilution, and contains unavoidable impurities (for example, constituting the polymer coagulant). Monomer remaining).

より好適な希薄液としては、高分子凝集剤(例えば10〜50質量%)及び分散媒を含有する分散液(例えば、市販の液状高分子凝集剤製品)を、高分子凝集剤の濃度が0.1〜2質量%となる量の水で希釈し、撹拌して得られた希薄液を挙げることができる。この希薄液の希釈前の分散液における分散媒としては、例えば、水(例えばアルカリ金属塩及びアンモニウム塩等の塩を含有する水溶液を含む)や水素化精製軽質留出油(石油)等を挙げることができる。   As a more preferable diluent, a dispersion (for example, a commercially available liquid polymer flocculant product) containing a polymer flocculant (for example, 10 to 50% by mass) and a dispersion medium is used. A diluted liquid obtained by diluting with water in an amount of 0.1 to 2% by mass and stirring the mixture is mentioned. Examples of the dispersion medium in the dispersion before dilution of the diluted liquid include water (including, for example, aqueous solutions containing salts such as alkali metal salts and ammonium salts), hydrorefined light distillate (petroleum), and the like. be able to.

上述のような希薄液のさらに好適な具体例としては、高分子凝集剤と、分散媒である水素化精製軽質留出油(石油)とを含有する油中水滴(W/O)型エマルジョンを、高分子凝集剤の濃度が0.1〜2質量%となる量の水で希釈し、撹拌して得られた希薄液を挙げることができる。この希薄液には、分散媒に比べて大量の水で希釈されることで、連続相が油から水に転相し、その連続相(水)中に高分子凝集剤が溶解した、水中油滴(O/W)型エマルジョン状の希薄液を用いることができる。   As a more preferred specific example of the above-mentioned diluted liquid, a water-in-oil (W / O) emulsion containing a polymer flocculant and a hydrorefined light distillate (petroleum) as a dispersion medium is used. And a diluted liquid obtained by diluting and stirring with water in such an amount that the concentration of the polymer coagulant becomes 0.1 to 2% by mass. The diluted liquid is diluted with a larger amount of water than the dispersion medium, so that the continuous phase is converted from oil to water, and the polymer flocculant is dissolved in the continuous phase (water). A dilute liquid in the form of a drop (O / W) emulsion can be used.

また、上述のような希薄液のさらに好適な具体例としては、高分子凝集剤と、分散媒である硫酸塩水溶液(例えば、硫酸アンモニウム水溶液及び硫酸マグネシウム水溶液等)とを含有する水性分散液(例えばサスペンジョン)を、高分子凝集剤の濃度が0.1〜2質量%となる量の水で希釈し、撹拌して得られた希薄液を挙げることもできる。この希薄液には、分散媒に比べて大量の水で希釈され、連続相である水溶液中の水の含有量が増大することで、その水(水溶液)中に高分子凝集剤が溶解した、水溶液状の希薄液を用いることができる。さらに、希薄液の好適な具体例としては、粉末状の高分子凝集剤0.1〜2質量%を水で溶解した水溶液状の希薄液を挙げることもできる。   Further, as a more preferable specific example of the above-mentioned diluted liquid, an aqueous dispersion liquid containing a polymer flocculant and a sulfate aqueous solution (for example, an ammonium sulfate aqueous solution and a magnesium sulfate aqueous solution) as a dispersion medium (for example, (Suspension) is diluted with water in such an amount that the concentration of the polymer coagulant becomes 0.1 to 2% by mass, and a dilute liquid obtained by stirring the suspension is also included. In this dilute liquid, the polymer flocculant was dissolved in the water (aqueous solution) by being diluted with a larger amount of water than the dispersion medium and increasing the content of water in the aqueous solution as a continuous phase. An aqueous dilute solution can be used. Further, as a preferred specific example of the dilute solution, an aqueous dilute solution in which 0.1 to 2% by mass of a powdery polymer coagulant is dissolved in water can also be mentioned.

なお、希薄液中の液分には、上述した水、及び水素化精製軽質留出油(石油)以外の他の液分を含有してもよい。他の液分としては、例えば、アルコール、多価アルコール、ポリグリコール、及びグリコールエーテル等の水溶性有機溶剤を挙げることができ、それらの1種又は2種以上を用いることができる。上述の通り、希薄液は、液分として、水を含有することが好ましい。希薄液中の水の含有量は、希薄液の全質量を基準として、90〜99.9質量%であることが好ましく、95質量%以上であることがより好ましく、98質量%以上であることがさらに好ましい。   The liquid component in the dilute liquid may contain other liquid components other than the above-mentioned water and hydrorefined light distillate oil (petroleum). Other liquid components include, for example, water-soluble organic solvents such as alcohols, polyhydric alcohols, polyglycols, and glycol ethers, and one or more of them can be used. As described above, the dilute liquid preferably contains water as a liquid component. The content of water in the dilute solution is preferably 90 to 99.9% by mass, more preferably 95% by mass or more, and preferably 98% by mass or more based on the total mass of the dilute solution. Is more preferred.

製鉄原料に、上述した好適な希薄液が添加されると、希薄液中の水溶性重合体の一種である高分子凝集剤が製鉄原料中の自由水にも溶解する。そして、製鉄原料中の原料粒子に高分子凝集剤の吸着に基づく接着架橋作用が起こり、その作用により、原料粒子どうしが凝集して粗大化され、その粗大粒子の間隙に上記自由水の大部分が捕捉されると考えられる。その結果、製鉄原料は、流動性が低下して、見かけ上、団粒状又は団塊状の外観に改質され、原料粒子と自由水部分が少なくなったような外観となり、山崩れが生じにくくなる。上記間隙は非常に小さく、また、上記好適な高分子凝集剤は、雨水や湧水等を浸透しにくい性質を有するため、希薄液の添加後かつ山積み後の製鉄原料は、降雨等による水と出会っても混ざり合わないで、そのままの形状を保ちやすい。   When the above-mentioned preferred dilute solution is added to the iron-making raw material, the polymer flocculant, which is a kind of water-soluble polymer in the dilute solution, is dissolved in free water in the iron-making raw material. Then, an adhesive crosslinking action based on the adsorption of the polymer flocculant occurs in the raw material particles in the iron making raw material, and the raw material particles are aggregated and coarsened by the action, and most of the free water is present in the gaps between the coarse particles. Is thought to be captured. As a result, the iron-making raw material has a reduced fluidity, is apparently modified to an aggregated or nodular appearance, has an appearance having fewer raw material particles and free water portions, and is unlikely to collapse. The gap is very small, and the preferred polymer flocculant has a property of hardly penetrating rainwater, spring water, etc., so that after the addition of the dilute solution and after the pile, the steelmaking raw material is mixed with water due to rainfall or the like. Even if they meet, they do not mix, and it is easy to keep the shape as it is.

製鉄原料への希薄液の添加量としては、製鉄原料の全質量に対する高分子凝集剤としての添加割合が0.0001〜0.05質量%の量で希薄液を製鉄原料に添加することが好ましい。製鉄原料の全質量に対する高分子凝集剤としての添加割合は、0.0005〜0.02質量%であることがより好ましく、0.001〜0.01質量%であることがさらに好ましい。上記の「製鉄原料の全質量」は、希薄液が添加される製鉄原料全体の質量であって、製鉄原料の固形分の質量及び製鉄原料中の水分の質量の和である。また、製鉄原料の全質量に対する高分子凝集剤としての添加割合は、希薄液中の高分子凝集剤(有効成分)としての添加質量を、製鉄原料の全質量で割って算出される。   As the amount of the dilute liquid added to the iron making raw material, it is preferable to add the dilute liquid to the iron making raw material in an amount of 0.0001 to 0.05% by mass as a polymer coagulant with respect to the total mass of the iron making raw material. . The addition ratio of the polymer coagulant to the total mass of the ironmaking raw material is more preferably 0.0005 to 0.02% by mass, and still more preferably 0.001 to 0.01% by mass. The “total mass of the iron making raw material” is the total mass of the iron making raw material to which the dilute liquid is added, and is the sum of the mass of the solid content of the iron making raw material and the mass of the water in the iron making raw material. Further, the addition ratio of the polymer coagulant to the total mass of the ironmaking raw material is calculated by dividing the addition mass of the polymer coagulant (active ingredient) in the dilute liquid by the total mass of the ironmaking raw material.

また、製鉄原料への希薄液の添加量を、希薄液が添加された後の製鉄原料の水分が8〜25質量%となる量に制御することが好ましい。製鉄原料への希薄液の添加により、希薄液が添加された後の製鉄原料の水分を8〜25質量%とすることにより、希薄液の添加後かつ山積み後の製鉄原料中の適度な水分量と、高分子凝集剤によって、山崩れをより生じにくくすることができる。この観点から、製鉄原料への希薄液の添加量を、希薄液が添加された後の製鉄原料の水分が10〜20質量%となる量に制御することがより好ましい。   Further, it is preferable to control the amount of the diluted liquid to be added to the iron making raw material to an amount such that the water content of the iron manufacturing raw material after the addition of the diluted liquid is 8 to 25% by mass. By adding the dilute solution to the ironmaking raw material, the water content of the ironmaking raw material after the dilute liquid is added is adjusted to 8 to 25% by mass, so that the appropriate amount of water in the ironmaking raw material after the dilute liquid is added and after piled up By using the polymer coagulant, mountain collapse can be made more difficult to occur. From this viewpoint, it is more preferable to control the amount of the diluted liquid to be added to the iron making raw material to an amount such that the water content of the iron manufacturing raw material after the addition of the diluted liquid is 10 to 20% by mass.

以上詳述した本発明の一実施形態の製鉄原料の山積み方法は、原料ヤードに山積みされる前の製鉄原料及び山積みされた後の製鉄原料の少なくとも一方の製鉄原料に、有効成分としての高分子凝集剤の含有量が0.1〜2質量%である希薄液を添加する工程を含む。この工程によって、希薄液が製鉄原料の全体に濡れていき、希薄液中の高分子凝集剤が製鉄原料の全体にいきわたることで、製鉄原料中の水分に起因する流動性による山崩れや、製鉄原料中の水分が少なすぎることに起因する山崩れを抑制することができる。それゆえ、本方法は、原料ヤードにおける製鉄原料の山崩れ抑制方法としてより好適である。なお、希薄液の添加後かつ山積み後の製鉄原料については、従来と同様に使用することができ、その製鉄原料に添加された希薄液中の高分子凝集剤等の成分は、製鉄過程で焼失される。   The method for stacking iron raw materials according to one embodiment of the present invention described above is characterized in that a polymer as an active ingredient is added to at least one of the iron raw materials before being piled in the raw material yard and the iron raw materials after being piled. A step of adding a dilute solution having a coagulant content of 0.1 to 2% by mass. By this process, the dilute solution wets the entire ironmaking raw material, and the polymer flocculant in the dilute solution spreads over the entire ironmaking raw material. Mountain collapse caused by too little water in the lands can be suppressed. Therefore, the present method is more suitable as a method for suppressing a landslide of a steelmaking raw material in a raw material yard. The ironmaking raw material after the addition of the dilute solution and after the pile can be used in the same manner as in the past, and the components such as the polymer flocculant in the dilute solution added to the ironmaking material are burned off during the ironmaking process. Is done.

以上の通り、本発明の一実施形態の製鉄原料の山積み方法は、次の構成を採ることが可能である。
[1]原料ヤードに製鉄原料を山積みする方法であって、前記原料ヤードに山積みされる前の製鉄原料及び山積みされた後の製鉄原料の少なくとも一方の製鉄原料に、有効成分としての高分子凝集剤の含有量が0.1〜2質量%である希薄液を添加する工程を含む、製鉄原料の山積み方法。
[2]前記原料ヤードに山積みされる前の前記製鉄原料に前記希薄液を添加する工程と、前記希薄液が添加された前記製鉄原料を前記原料ヤードに山積みする工程と、を含む上記[1]に記載の製鉄原料の山積み方法。
[3]前記原料ヤードに山積みされた後の前記製鉄原料に前記希薄液を添加する工程を含む上記[1]又は[2]に記載の製鉄原料の山積み方法。
[4]前記希薄液は、前記製鉄原料に添加されるときの形態が水中油滴型エマルジョン状又は水溶液状の液体である上記[1]〜[3]のいずれかに記載の製鉄原料の山積み方法。
[5]前記希薄液は、前記高分子凝集剤として、アクリル酸ナトリウム・アクリルアミド共重合体、アクリル酸又はその塩の重合体、及びアクリルアミド重合体からなる群より選ばれる少なくとも1種を含有する上記[1]〜[4]のいずれかに記載の製鉄原料の山積み方法。
[6]前記製鉄原料の全質量に対する前記高分子凝集剤としての添加割合が0.0001〜0.05質量%の量で前記希薄液を前記製鉄原料に添加する上記[1]〜[5]のいずれかに記載の製鉄原料の山積み方法。
[7]前記製鉄原料への前記希薄液の添加量を、前記希薄液が添加された後の前記製鉄原料の含水率が8〜25質量%となる量に制御する上記[1]〜[6]のいずれかに記載の製鉄原料の山積み方法。
As described above, the method for stacking iron-making raw materials according to one embodiment of the present invention can employ the following configuration.
[1] A method of stacking ironmaking raw materials in a raw material yard, wherein polymer aggregation as an active ingredient is added to at least one of the steelmaking raw materials before being piled in the raw material yard and the ironmaking raw materials after being piled up. A method of stacking raw materials for ironmaking, comprising a step of adding a dilute solution having a content of an agent of 0.1 to 2% by mass.
[2] The above-mentioned [1] including a step of adding the dilute solution to the ironmaking raw material before being piled up in the raw material yard, and a step of stacking the ironmaking raw material to which the dilute liquid has been added in the raw material yard. ] The pile method of the iron-making raw material as described in the above.
[3] The method for stacking iron-making raw materials according to the above [1] or [2], comprising a step of adding the dilute liquid to the iron-making raw materials after being stacked in the raw material yard.
[4] The pile of the ironmaking raw material according to any one of the above [1] to [3], wherein the diluted liquid is a liquid in the form of an oil-in-water emulsion or an aqueous solution when added to the ironmaking raw material. Method.
[5] The dilute liquid contains at least one selected from the group consisting of sodium acrylate / acrylamide copolymer, acrylic acid or a salt thereof, and acrylamide polymer as the polymer flocculant. The method for stacking iron-making raw materials according to any one of [1] to [4].
[6] The above-mentioned [1] to [5], wherein the diluted liquid is added to the ironmaking raw material in an amount of 0.0001 to 0.05% by mass as the polymer coagulant based on the total mass of the ironmaking raw material. 5. The method of stacking raw materials for iron according to any one of the above.
[7] The above-mentioned [1] to [6], wherein the amount of the dilute solution added to the ironmaking raw material is controlled so that the water content of the ironmaking raw material after the dilute liquid is added becomes 8 to 25% by mass. ] The pile method of the iron-making raw material as described in any of [1].

以下、実験室レベルでの試験例を挙げて、本発明の一実施形態の製鉄原料の山積み方法に関する効果等をさらに具体的に説明する。   Hereinafter, the effects related to the method of stacking iron-making raw materials according to one embodiment of the present invention will be described more specifically with reference to test examples at the laboratory level.

<試験例1>
試験例1では、篩分けにより、粒径が5mm以下の鉄鉱石であって、含水率が7.7質量%であるカラジャス鉄鉱石を製鉄原料として用いた。
<Test Example 1>
In Test Example 1, iron ore having a particle size of 5 mm or less and having a water content of 7.7% by mass was used as a raw material for ironmaking by screening.

(試験例1.1)
試験例1.1では、ブランク試験として、鉄鉱石に添加する液(以下、「添加液」と記載することがある。)を用いずに、上記カラジャス鉄鉱石をそのまま試料として用い、後述する試験を行った。
(Test Example 1.1)
In Test Example 1.1, as a blank test, the above-mentioned calajas iron ore was used as a sample without using a liquid to be added to iron ore (hereinafter sometimes referred to as “addition liquid”), and a test described later was performed. Was done.

(試験例1.2)
試験例1.2では、容器内の上記カラジャス鉄鉱石に添加液を添加した後、容器に蓋をし、容器ごと上下に5回転倒撹拌して、鉄鉱石と添加液とを混合し、得られた混合物を試料として用い、後述する試験を行った。添加液には、高分子凝集剤としてアクリル酸ナトリウム・アクリルアミド共重合体を含有するアニオン性W/O型エマルジョン(商品名「NSドライ−322L」、日鉄住金環境社製;アクリル酸ナトリウム・アクリルアミド共重合体及び水素化精製軽質留出油(石油)を成分とする淡黄白色〜淡褐色乳濁液。)を、上記共重合体の含有量が0.4質量%となる量の水で希釈(100倍希釈)し、撹拌して得られた希薄液(白色乳濁液)を用いた。この希薄液は、分散媒(油)に比べて大量の水で希釈されたことで、連続相が油から水に転相し、その連続相(水)中に上記共重合体が溶解した、水中油滴(O/W)型エマルジョン状の希薄液である。上記鉄鉱石の全質量に対する添加液(希薄液)の添加割合は2.0質量%とした。したがって、上記鉄鉱石の全質量に対する上記共重合体としての添加割合は、0.008質量%とした。
(Test Example 1.2)
In Test Example 1.2, after the additive liquid was added to the above-mentioned carajas iron ore in the container, the container was capped, and the container was stirred up and down 5 times, and the iron ore and the additive liquid were mixed to obtain Using the obtained mixture as a sample, a test described later was performed. The additive liquid includes an anionic W / O emulsion containing a sodium acrylate / acrylamide copolymer as a polymer coagulant (trade name “NS Dry-322L”, manufactured by Nippon Steel & Sumitomo Metal Corporation; sodium acrylate / acrylamide) A pale yellowish white to light brown emulsion containing a copolymer and a hydrorefined light distillate (petroleum) as components) with water in an amount such that the content of the copolymer becomes 0.4% by mass. A diluted liquid (white emulsion) obtained by diluting (100-fold dilution) and stirring was used. The diluted liquid was diluted with a larger amount of water than the dispersion medium (oil), so that the continuous phase was changed from oil to water, and the copolymer was dissolved in the continuous phase (water). It is an oil-in-water (O / W) emulsion-type diluted liquid. The addition ratio of the additive liquid (dilute liquid) to the total mass of the iron ore was 2.0% by mass. Therefore, the addition ratio of the iron ore as the copolymer with respect to the total mass of the iron ore was set to 0.008% by mass.

(崩れやすさ確認試験)
以下に述べるように、模擬的に山積みした状態とした各試料の崩れにくさ及び崩れやすさを確認する試験(本明細書において、「崩れやすさ確認試験」と記載する。)を行った。内寸で幅(奥行)200mm、長さ400mm、及び高さ100mmの片側が開口した直方体状の槽であって、底面に滑り止めのための珪砂を敷き詰めて固定した試験用槽を用意した。この試験用槽の底面の中央付近に、内寸で内径100mm及び高さ105mmのプラスチック製の円筒(以下、「円筒モールドM」と記載する。)を置いた後、その円筒モールドM内に、各試験例における試料をすりきりまで充填した。次いで、円筒モールドMを上方に引き抜き、そのときに試験用槽の底面に残った試料について、円筒モールドM内に充填されていたことで円柱形状であった試料からの崩れ度合いを評価した。具体的には、円筒モールドMを引き抜いた後に試験用槽に残った試料の径方向への最大長さ(x値;試験用槽に水平方向の長さ)及び残った試料の最大高さ(y値;試験用槽に垂直方向の高さ)を測った。そして、測定されたx値及びy値に基づいて、崩れにくさ及び崩れやすさ(以下、単に「崩れやすさ」と記載する。)を評価した。残った試料のx値が元の円筒モールドMの内径(100mm)に近くて小さいほど、また、残った試料のy値が元の円筒モールドMの高さ(105mm)に近くて大きいほど、残った試料が、円筒モールドM内にあった元の円柱形状に近い形状であったことを表し、崩れにくかったことを表す。
(Test for confirming easiness of collapse)
As described below, a test for confirming the easiness of collapse and the easiness of crushing of each sample in a simulated piled state (referred to as a “collapse easiness confirmation test” in this specification) was performed. A test tank was prepared, which was a rectangular parallelepiped tank having an inner size of 200 mm in width (depth), 400 mm in length, and 100 mm in height, and one side of which was open and fixed with silica sand for slip prevention on the bottom surface. After placing a plastic cylinder (hereinafter, referred to as “cylindrical mold M”) having an inner diameter of 100 mm and a height of 105 mm near the center of the bottom surface of the test tank, The sample in each test example was completely filled. Next, the cylindrical mold M was pulled out upward, and the sample remaining on the bottom surface of the test tank at that time was evaluated for the degree of collapse from the cylindrical sample that was filled in the cylindrical mold M. Specifically, the maximum length in the radial direction of the sample remaining in the test tank after the cylindrical mold M was pulled out (x value; the length in the horizontal direction in the test tank) and the maximum height of the remaining sample ( y value; height in the vertical direction of the test tank). Then, based on the measured x value and y value, the difficulty of collapse and the ease of collapse (hereinafter, simply referred to as “easiness of collapse”) were evaluated. The smaller the x value of the remaining sample is closer to the inner diameter (100 mm) of the original cylindrical mold M, and the larger the y value of the remaining sample is closer to the height (105 mm) of the original cylindrical mold M, This indicates that the sample had a shape close to the original columnar shape in the cylindrical mold M, and that the sample did not easily collapse.

(崩れやすさの評価)
上記の崩れやすさ確認試験の結果で得られたx値及びy値に基づいて、以下の評価基準にしたがって、崩れやすさを評価した。A〜Dの順に崩れにくかったことを表し、A及びBを許容できる崩れにくいレベル、C及びDを許容できない崩れやすいレベルとした。
A:x値とその元の値(内径100mm)との差、及びy値とその元の値(高さ105mm)との差が、いずれも、5mm未満であった。
B:x値とその元の値との差、及びy値とその元の値との差が、いずれも15mm未満であり、かつ、x値とその元の値との差、及びy値とその元の値との差の少なくとも一方が、5mm以上15mm未満であった。
C:x値とその元の値との差、及びy値とその元の値との差が、いずれも30mm未満であり、かつ、x値とその元の値との差、及びy値とその元の値との差の少なくとも一方が、15mm以上30mm未満であった。
D:x値とその元の値との差、及びy値とその元の値との差の少なくとも一方が、30mm以上であった。
(Evaluation of ease of collapse)
Based on the x value and the y value obtained as a result of the above-described collapsibility test, the collapsibility was evaluated according to the following evaluation criteria. A to D indicate that it was difficult to collapse, and A and B were permissible levels that were difficult to collapse, and C and D were levels that were not permissible.
A: The difference between the x value and its original value (inner diameter 100 mm) and the difference between the y value and its original value (height 105 mm) were all less than 5 mm.
B: The difference between the x value and its original value and the difference between the y value and its original value are all less than 15 mm, and the difference between the x value and its original value, and the y value. At least one of the differences from the original value was 5 mm or more and less than 15 mm.
C: The difference between the x value and its original value, and the difference between the y value and its original value are all less than 30 mm, and the difference between the x value and its original value, and the y value. At least one of the differences from the original value was 15 mm or more and less than 30 mm.
D: At least one of the difference between the x value and its original value and the difference between the y value and its original value was 30 mm or more.

試験例1.1及び1.2の試験条件及び試験結果を表1に示す。また、試験例1.1及び1.2のそれぞれにおいて、上記の崩れやすさ確認試験によって、試験用槽に残った試料の状態を撮影した写真を、対比表の形式で表した図1に示す。なお、試験例1.1では、図1に示すように、上述の試験によって、試料が大きく崩れて、試験用槽の長さ方向の内壁に達したため、x値は150mm以上とした。   Table 1 shows the test conditions and test results of Test Examples 1.1 and 1.2. In each of Test Examples 1.1 and 1.2, a photograph of the state of the sample remaining in the test tank by the above-described collapsibility test is shown in FIG. 1 in the form of a comparison table. . In Test Example 1.1, as shown in FIG. 1, the x value was set to 150 mm or more because the sample was largely disintegrated and reached the inner wall in the length direction of the test tank by the above-described test.

試験例1.1(ブランク試験)では、円筒モールドMを引き抜いた後に残った試料が大きく崩れたのに対し、試験例1.2では、円筒モールドMを引き抜いた後に残った試料が大きく崩れることはなく、x値及びy値も高く、概ね、元の形状が維持されていた。試験例1では、含水率が7.7質量%と低い製鉄原料を使用したことから、試験例1.1で試料が崩れたのは、製鉄原料中の水分が少なすぎることが原因と考えられる。また、試験例1.2で崩れを抑制できたのは、含水率が非常に低い製鉄原料に希薄液を添加したことにより、製鉄原料が適度に湿った状態になったことによる影響が大きいと考えられる。   In Test Example 1.1 (blank test), the sample remaining after pulling out the cylindrical mold M was significantly collapsed, whereas in Test Example 1.2, the sample remaining after pulling out the cylindrical mold M was significantly collapsed. However, the x and y values were high, and the original shape was generally maintained. In Test Example 1, since a steelmaking raw material having a low water content of 7.7% by mass was used, the sample collapsed in Test Example 1.1 is considered to be caused by too little water in the steelmaking raw material. . In addition, the collapse was suppressed in Test Example 1.2 because the addition of the dilute liquid to the extremely low water content of the ironmaking raw material greatly affected the ironmaking raw material in an appropriately wet state. Conceivable.

<試験例2>
試験例2では、上記試験例1で用いた製鉄原料と同じカラジャス鉄鉱石(含水率7.7質量%)に加水し、含水率を15質量%に調整したカラジャス鉄鉱石を製鉄原料として用いた。
<Test Example 2>
In Test Example 2, water was added to the same calajas iron ore (water content: 7.7% by mass) as the iron making raw material used in Test Example 1 above, and the water content was adjusted to 15% by mass. .

(試験例2.1)
試験例2.1では、ブランク試験として、添加液を用いずに、上記の含水率が15質量%であるカラジャス鉄鉱石をそのまま試料として用い、上述の崩れやすさ確認試験を行って、x値及びy値を測り、崩れやすさを評価した。
(Test Example 2.1)
In Test Example 2.1, as a blank test, the above-mentioned Karajas iron ore having a water content of 15% by mass was used as a sample without using an additive liquid, and the above-described collapsibility test was performed. And y value were measured to evaluate the easiness of collapse.

(試験例2.2)
試験例2.2では、上記試験例1.2と比較して、試験例1.2で用いた含水率が7.7質量%であるカラジャス鉄鉱石を、上記の含水率が15質量%であるカラジャス鉄鉱石に変更したこと以外は、試験例1.2と同様の手順及び方法にて試料を得た。その試料について、上述の崩れやすさ確認試験を行って、x値及びy値を測り、崩れやすさを評価した。
(Test Example 2.2)
In Test Example 2.2, as compared with Test Example 1.2, the calajas iron ore having a water content of 7.7% by mass used in Test Example 1.2 was used at a water content of 15% by mass. A sample was obtained by the same procedure and method as in Test Example 1.2, except that a change was made to a certain calajas iron ore. The sample was subjected to the above-described collapsibility test, the x value and the y value were measured, and the collapsibility was evaluated.

(試験例2.3)
試験例2.3では、上記試験例1.2と比較して、試験例2.2と同様、上記の含水率が15質量%であるカラジャス鉄鉱石を使用したこと、及び使用した添加液を変更したこと以外は、試験例1.2と同様の手順及び方法にて試料を得た。その試料について、上述の崩れやすさ確認試験を行って、x値及びy値を測り、崩れやすさを評価した。試験例2.3における添加液には、試験例2.2で使用したものと同じアニオン性W/O型エマルジョン(商品名「NSドライ−322L」、日鉄住金環境社製)をそのままの原液で用いた。上記鉄鉱石の全質量に対する添加液(原液)の添加割合は0.02質量%とした。したがって、上記鉄鉱石の全質量に対する上記共重合体としての添加割合は、0.008質量%とした。
(Test Example 2.3)
In Test Example 2.3, as compared with Test Example 1.2, as in Test Example 2.2, the above-mentioned carajas iron ore having a water content of 15% by mass was used, and the used additive liquid was used. A sample was obtained by the same procedure and method as in Test Example 1.2 except for the change. The sample was subjected to the above-described collapsibility test, the x value and the y value were measured, and the collapsibility was evaluated. The undiluted solution in Test Example 2.3 used was the same anionic W / O emulsion (trade name “NS Dry-322L”, manufactured by Nippon Steel & Sumikin Environment Co., Ltd.) as used in Test Example 2.2. Used in The addition ratio of the additive liquid (stock solution) to the total mass of the iron ore was 0.02% by mass. Therefore, the addition ratio of the iron ore as the copolymer with respect to the total mass of the iron ore was set to 0.008% by mass.

試験例2.1〜2.3の試験条件及び試験結果を表2に示す。また、試験例2.1〜2.3のそれぞれにおいて、上記の崩れやすさ確認試験によって、試験用槽に残った試料の状態を撮影した写真を、対比表の形式で表した図2に示す。   Table 2 shows the test conditions and test results of Test Examples 2.1 to 2.3. In each of Test Examples 2.1 to 2.3, a photograph of the state of the sample remaining in the test tank in the above-described collapse easiness confirmation test is shown in FIG. 2 in the form of a comparison table. .

試験例2.1(ブランク試験)では、円筒モールドMを引き抜いた後に残った試料が潰れてy値が小さくなり、かつ、水平方向に流れてx値が大きくなったことから、処理対象の鉄鉱石(含水率15質量%)がその水分に起因する流動性によって、崩れやすいことが確認された。それに対して、試験例2.2では、円筒モールドMを引き抜いた後に残った試料が大きく崩れることはなく、x値及びy値も高く、概ね、元の形状が維持されていた。このことから、含水率が15質量%である鉄鉱石に、高分子凝集剤を0.4質量%含有する希薄液を添加したことによって、試料の崩れを抑制できたことが確認された。この結果は、希薄液の添加により、希薄液中の高分子凝集剤が鉄鉱石の全体にいきとどいたことにより、高分子凝集剤の凝集作用で多くの鉄鉱石が凝集し、凝集した鉄鉱石の間隙に多くの水分が捕捉され、鉄鉱石の流動性が低下したことによるものと考えられる。   In Test Example 2.1 (blank test), the sample remaining after the cylindrical mold M was pulled out was crushed and the y value was reduced, and the x value was increased by flowing in the horizontal direction. It was confirmed that the stone (water content: 15% by mass) was easily broken by the fluidity caused by the moisture. On the other hand, in Test Example 2.2, the sample remaining after the cylindrical mold M was pulled out was not largely collapsed, the x value and the y value were high, and the original shape was generally maintained. From this, it was confirmed that the collapse of the sample could be suppressed by adding a dilute solution containing 0.4% by mass of the polymer flocculant to iron ore having a water content of 15% by mass. This result indicates that the addition of the dilute solution caused the polymer coagulant in the dilute solution to permeate the entire iron ore. It is considered that a large amount of water was captured in the gaps of the iron ore, and the fluidity of the iron ore was reduced.

また、試験例2.3では、試験例2.1よりも試料の崩れを抑制できたものの、試験例2.2の結果と比べて、x値が大きく、y値が小さい結果となり、試料の崩れが生じたことが確認され、さらに、試験用槽に残った試料の下部からの水(自由水)の流出も見られた。これらの結果は、試験例2.3で使用した、高分子凝集剤を40質量%含有する薬液(原液)が、鉄鉱石の全体に濡れにくく、薬液中の高分子凝集剤が鉄鉱石の全体にいきとどいていなかったことによるものと考えられる。   Further, in Test Example 2.3, although the collapse of the sample was able to be suppressed more than in Test Example 2.1, the x value was larger and the y value was smaller than the result of Test Example 2.2. It was confirmed that collapse occurred, and further, outflow of water (free water) from the lower portion of the sample remaining in the test tank was also observed. These results indicate that the chemical solution (stock solution) containing 40% by mass of the polymer flocculant used in Test Example 2.3 was less likely to wet the entire iron ore, and the polymer flocculant in the chemical solution was less than the entire iron ore. It is thought that it was due to the fact that he did not keep up.

<試験例3>
試験例3では、含水率が9.6質量%である超微粉鉄鉱石に加水し、含水率を20質量%に調整した超微粉鉄鉱石を製鉄原料として用いた。
<Test Example 3>
In Test Example 3, water was added to ultrafine iron ore having a water content of 9.6% by mass, and the ultrafine iron ore whose water content was adjusted to 20% by mass was used as an ironmaking raw material.

(試験例3.1)
試験例3.1では、ブランク試験として、添加液を用いずに、上記の含水率が20質量%である超微粉鉄鉱石をそのまま試料として用い、上述の崩れやすさ確認試験を行って、x値及びy値を測り、崩れやすさを評価した。
(Test Example 3.1)
In Test Example 3.1, as a blank test, the above-described ultrafine iron ore having a water content of 20% by mass was used as a sample without using an additive liquid, and the above-described collapsibility test was performed. The value and y value were measured to evaluate the easiness of collapse.

(試験例3.2)
試験例3.2では、上記試験例1.2と比較して、試験例1.2で用いた含水率が7.7質量%であるカラジャス鉄鉱石を、上記の含水率が20質量%である超微粉鉄鉱石に変更したこと以外は、試験例1.2と同様の手順及び方法にて試料を得た。その試料について、上述の崩れやすさ確認試験を行って、x値及びy値を測り、崩れやすさを評価した。
(Test Example 3.2)
In Test Example 3.2, in comparison with Test Example 1.2, the calajas iron ore having the water content of 7.7% by mass used in Test Example 1.2 was used at the water content of 20% by mass. A sample was obtained by the same procedure and method as in Test Example 1.2, except that the sample was changed to a certain ultrafine iron ore. The sample was subjected to the above-described collapsibility test, the x value and the y value were measured, and the collapsibility was evaluated.

試験例3.1及び3.2の試験条件及び試験結果を表3に示す。また、試験例3.1及び3.2のそれぞれにおいて、上記の崩れやすさ確認試験によって、試験用槽に残った試料の状態を撮影した写真を、対比表の形式で表した図3に示す。   Table 3 shows the test conditions and test results of Test Examples 3.1 and 3.2. Further, in each of Test Examples 3.1 and 3.2, a photograph of the state of the sample remaining in the test tank by the above-described collapse easiness confirmation test is shown in FIG. 3 in the form of a comparison table. .

試験例3の結果から、含水率が20質量%と高いことで流動しやすい鉄鉱石に、高分子凝集剤を0.4質量%含有する希薄液を添加したことによって、試料の流動性が低下し、試料の崩れを抑制できたことが確認された。   From the results of Test Example 3, the fluidity of the sample was reduced by adding a dilute solution containing 0.4% by mass of a polymer flocculant to iron ore that had a high water content of 20% by mass and thus was easily flowable. Thus, it was confirmed that the collapse of the sample could be suppressed.

<試験例4>
試験例4では、試験例2と同様に、試験例1で用いた製鉄原料と同じカラジャス鉄鉱石(含水率7.7質量%)に加水し、含水率を15質量%に調整したカラジャス鉄鉱石を製鉄原料として用いた。
<Test Example 4>
In Test Example 4, as in Test Example 2, water was added to the same calajas iron ore (water content: 7.7% by mass) as the iron-making raw material used in Test Example 1 to adjust the water content to 15% by mass. Was used as a raw material for steelmaking.

(試験例4.1)
試験例4.1では、ブランク試験として、添加液を用いずに、上記の含水率が15質量%であるカラジャス鉄鉱石をそのまま試料として用い、後述する試験を行った。
(Test Example 4.1)
In Test Example 4.1, as a blank test, a test described later was performed using a calajas iron ore having a water content of 15% by mass as a sample without using an additive liquid.

(試験例4.2)
プラスチック製容器に、上記の含水率が15質量%であるカラジャス鉄鉱石を500g入れた。その容器内の鉄鉱石に、添加液を添加した後、容器に蓋をし、容器ごと上下に5回転倒撹拌して、鉄鉱石と添加液とを混合した。得られた混合物を試料として用い、後述する試験を行った。添加液には、前述の試験例2.3で用いたものと同じアニオン性W/O型エマルジョン(商品名「NSドライ−322L」、日鉄住金環境社製)をそのまま、原液で用いた。上記鉄鉱石の全質量に対する添加液(原液)の添加割合は0.02質量%とした。したがって、上記鉄鉱石の全質量に対する上記共重合体としての添加割合は、0.008質量%とした。
(Test Example 4.2)
A plastic container was charged with 500 g of the above-mentioned carajas iron ore having a water content of 15% by mass. After the additive liquid was added to the iron ore in the container, the container was capped, and the container was stirred up and down 5 times vertically to mix the iron ore and the additive liquid. Using the obtained mixture as a sample, a test described below was performed. As an additive liquid, the same anionic W / O emulsion (trade name “NS Dry-322L”, manufactured by Nippon Steel & Sumikin Environment Co., Ltd.) as used in Test Example 2.3 was used as a stock solution. The addition ratio of the additive liquid (stock solution) to the total mass of the iron ore was 0.02% by mass. Therefore, the addition ratio of the iron ore as the copolymer with respect to the total mass of the iron ore was set to 0.008% by mass.

(試験例4.3)
試験例4.3では、上記試験例4.2と比較して、使用した添加液及びその量を変更したこと以外は、試験例4.2と同様の手順及び方法にて試料を得た。その試料について、後述する試験を行った。添加液には、前述の試験例1.2、2.2、及び3.2と同様、高分子凝集剤としてアクリル酸ナトリウム・アクリルアミド共重合体を含有するアニオン性W/O型エマルジョン(商品名「NSドライ−322L」、日鉄住金環境社製)を、上記共重合体の含有量が0.4質量%となる量の水で希釈(100倍希釈)し、撹拌して得られたO/W型エマルジョン状の希薄液(上記試験例1.2参照)を用いた。鉄鉱石の全質量に対する添加液(希薄液)の添加割合は2.0質量%とした。したがって、鉄鉱石の全質量に対する上記共重合体としての添加割合は、0.008質量%とした。
(Test Example 4.3)
In Test Example 4.3, a sample was obtained by the same procedure and method as in Test Example 4.2 except that the used additive liquid and the amount thereof were changed as compared with Test Example 4.2. The test described below was performed on the sample. As in the test examples 1.2, 2.2, and 3.2, the additive liquid contains an anionic W / O emulsion containing a sodium acrylate-acrylamide copolymer as a polymer coagulant (trade name) "NS Dry-322L", manufactured by Nippon Steel & Sumitomo Metal Environment Co., Ltd.) was diluted (100-fold dilution) with water in an amount such that the content of the above copolymer was 0.4% by mass, and stirred to obtain O. A / W emulsion dilute solution (see Test Example 1.2 above) was used. The addition ratio of the additive liquid (dilute liquid) to the total mass of iron ore was 2.0% by mass. Therefore, the addition ratio as the above-mentioned copolymer with respect to the total mass of iron ore was set to 0.008 mass%.

(試験例4.4)
試験例4.4では、上記試験例4.2と比較して、使用した添加液及びその量を変更したこと以外は、試験例4.2と同様の手順及び方法にて試料を得た。その試料について、後述する試験を行った。添加液には、高分子凝集剤としてアクリル酸ナトリウム・アクリルアミド共重合体を含有する水性分散液(商品名「NSドライ−709L」、日鉄住金環境社製;アクリル酸ナトリウム・アクリルアミド共重合体及び硫酸アンモニウムを成分とする白色〜淡褐色乳濁液。)を、上記共重合体の含有量が1質量%となる量の水で希釈(20倍希釈)し、撹拌して得られた希薄液(透明液)を用いた。この希薄液は、分散媒(硫酸アンモニウム水溶液)に比べて大量の水で希釈され、連続相である水溶液中の水の含有量が増大したことで、その水(水溶液)中に高分子凝集剤が溶解した、水溶液状の希薄液である。鉄鉱石の全質量に対する添加液(希薄液)の添加割合は0.8質量%とした。したがって、鉄鉱石の全質量に対する上記共重合体としての添加割合は、0.008質量%とした。
(Test Example 4.4)
In Test Example 4.4, a sample was obtained in the same procedure and method as in Test Example 4.2, except that the used additive liquid and the amount thereof were changed as compared with Test Example 4.2. The test described below was performed on the sample. The additive liquid includes an aqueous dispersion containing a sodium acrylate / acrylamide copolymer as a polymer coagulant (trade name “NS Dry-709L”, manufactured by Nippon Steel & Sumitomo Metal Corporation; sodium acrylate / acrylamide copolymer; A white to pale brown emulsion containing ammonium sulfate as a component) is diluted (20-fold dilution) with water in such an amount that the content of the above-mentioned copolymer becomes 1% by mass, and stirred to obtain a dilute solution ( Transparent liquid) was used. This dilute solution is diluted with a larger amount of water than the dispersion medium (aqueous ammonium sulfate solution), and the content of water in the aqueous solution which is a continuous phase increases, so that the polymer flocculant is contained in the water (aqueous solution). It is a dissolved, aqueous dilute solution. The addition ratio of the additive liquid (dilute liquid) to the total mass of the iron ore was 0.8% by mass. Therefore, the addition ratio as the above-mentioned copolymer with respect to the total mass of iron ore was set to 0.008 mass%.

(試験例4.5)
試験例4.5では、上記試験例4.2と比較して、使用した添加液及びその量を変更したこと以外は、試験例4.2と同様の手順及び方法にて試料を得た。その試料について、後述する試験を行った。添加液には、試験例4.4で用いた希薄液と同じものを用いた。鉄鉱石の全質量に対する添加液(希薄液)の添加割合は0.4質量%とした。したがって、鉄鉱石の全質量に対する高分子凝集剤(アクリル酸ナトリウム・アクリルアミド共重合体)としての添加割合は、0.004質量%とした。
(Test Example 4.5)
In Test Example 4.5, a sample was obtained in the same procedure and method as in Test Example 4.2, except that the used additive liquid and the amount thereof were changed as compared with Test Example 4.2. The test described below was performed on the sample. The same additive liquid as the diluted liquid used in Test Example 4.4 was used. The addition ratio of the additive solution (dilute solution) to the total mass of the iron ore was 0.4% by mass. Therefore, the addition ratio of the polymer coagulant (sodium acrylate / acrylamide copolymer) to the total mass of the iron ore was 0.004 mass%.

(崩れやすさ確認試験)
上記試験用槽の底面の中央付近に、内寸で内径60mm及び高さ100mmのプラスチック製の円筒(以下、「円筒モールドm」と記載する。)を置いた後、その円筒モールドm内に、各試験例における試料をすりきりまで充填した。次いで、円筒モールドmを上方に引き抜き、そのときに試験用槽の底面に残った試料について、円筒モールドm内に充填されていたことで円柱形状であった試料からの崩れ度合いを評価した。具体的には、円筒モールドmを引き抜いた後に試験用槽に残った試料の径方向への最大長さ(x値;試験用槽に水平方向の長さ)及び残った試料の最大高さ(y値;試験用槽に垂直方向の高さ)を測った。残った試料のx値が元の円筒モールドmの内径(60mm)に近くて小さいほど、また、残った試料のy値が元の円筒モールドmの高さ(100mm)に近くて大きいほど、残った試料が、円筒モールドm内にあった元の円柱形状に近い形状であったことを表し、崩れにくかったことを表す。
(Test for confirming easiness of collapse)
After placing a plastic cylinder (hereinafter, referred to as a “cylindrical mold m”) having an inner diameter of 60 mm and a height of 100 mm near the center of the bottom surface of the test tank, The sample in each test example was completely filled. Next, the cylindrical mold m was pulled out upward, and the sample remaining on the bottom surface of the test tank at that time was evaluated for the degree of collapse from the sample which had been filled into the cylindrical mold m and had a cylindrical shape. Specifically, the maximum length in the radial direction of the sample remaining in the test tank after the cylindrical mold m was pulled out (x value; the length in the horizontal direction in the test tank) and the maximum height of the remaining sample ( y value; height in the vertical direction of the test tank). The smaller the x value of the remaining sample is closer to the inner diameter (60 mm) of the original cylindrical mold m and the larger the y value of the remaining sample is closer to the height (100 mm) of the original cylindrical mold m, This indicates that the sample had a shape close to the original columnar shape in the cylindrical mold m, indicating that the sample hardly collapsed.

(崩れやすさの評価)
上記の崩れやすさ確認試験の結果で得られたx値及びy値に基づいて、以下の評価基準にしたがって、崩れやすさを評価した。
A:x値とその元の値(内径60mm)との差、及びy値とその元の値(高さ100mm)との差が、いずれも、元の値の5%未満であった。
B:x値とその元の値との差、及びy値とその元の値との差が、いずれも、元の値の10%未満であり、かつ、x値とその元の値との差、及びy値とその元の値との差の少なくとも一方が、元の値の5%以上10%未満であった。
C:x値とその元の値との差、及びy値とその元の値との差が、いずれも、元の値の25%未満であり、かつ、x値とその元の値との差、及びy値とその元の値との差の少なくとも一方が、元の値の10%以上25%未満であった。
D:x値とその元の値との差、及びy値とその元の値との差の少なくとも一方が、元の値の25%以上であった。
(Evaluation of ease of collapse)
Based on the x value and the y value obtained as a result of the above-described collapsibility test, the collapsibility was evaluated according to the following evaluation criteria.
A: The difference between the x value and its original value (inner diameter 60 mm) and the difference between the y value and its original value (height 100 mm) were all less than 5% of the original value.
B: The difference between the x value and its original value and the difference between the y value and its original value are both less than 10% of the original value, and the difference between the x value and its original value. At least one of the difference and the difference between the y value and the original value was 5% or more and less than 10% of the original value.
C: The difference between the x value and its original value, and the difference between the y value and its original value are both less than 25% of the original value, and the difference between the x value and its original value. At least one of the difference and the difference between the y value and the original value was 10% or more and less than 25% of the original value.
D: At least one of the difference between the x value and its original value and the difference between the y value and its original value was 25% or more of the original value.

(試料の見かけの水分具合)
試験例4.1〜4.5のそれぞれにおける崩れやすさ確認試験を行った後の試料の一部を採取し、試料の状態を目視にて確認し、以下の評価基準にしたがって、試料の見かけの水分(自由水)の具合を評価した。
A:試料表面に出ている水分がほとんど見られず、団粒状又は団塊状の外観であった。
B:試料表面の一部に水分が出ているように見られたが、団粒状又は団塊状の外観であった。
C:試料表面の大部分に水分が出ているように見られ、流動しやすい泥状の外観であった。
(Apparent moisture condition of sample)
A part of the sample after conducting the test for confirming the easiness of collapse in each of Test Examples 4.1 to 4.5 was sampled, the state of the sample was visually checked, and the appearance of the sample was evaluated according to the following evaluation criteria. The condition of water (free water) was evaluated.
A: Almost no water was found on the surface of the sample, and the sample had a granular or nodular appearance.
B: Moisture appeared on a part of the surface of the sample, but it had an appearance of aggregate or aggregate.
C: Moisture appeared on most of the surface of the sample, and had a muddy appearance that was easy to flow.

試験例4.1〜4.5の試験条件及び試験結果を表4に示す。また、試験例4.1〜4.5のそれぞれにおいて、上記の崩れやすさ確認試験によって、試験用槽に残った試料の状態(図4中の状態1)を撮影した写真、及び見かけの水分具合を評価した試料の状態(図4中の状態2)を撮影した写真を、対比表の形式で表した図4に示す。   Table 4 shows the test conditions and test results of Test Examples 4.1 to 4.5. In each of Test Examples 4.1 to 4.5, a photograph of the state of the sample (state 1 in FIG. 4) remaining in the test tank and the apparent moisture content were obtained by the above-described collapse easiness confirmation test. FIG. 4 shows a photograph of the state (state 2 in FIG. 4) of the sample whose condition was evaluated in the form of a comparison table.

試験例4.2では、試験例4.1(ブランク試験)よりも試料の崩れを抑制できたものの、試験例4.3〜4.5の結果と比べて、x値が大きく、y値が小さい結果となり、試料の崩れが生じたことが確認された。また、試験例4.2における原液を添加した後の製鉄原料(試料)は、見かけ上(表面上)、大部分に水分が出ているように見られ、流動しやすい泥状様の外観であったため、薬液(原液)中の高分子凝集剤が鉄鉱石の全体にいきとどいていなかったと推測される。   In Test Example 4.2, although the collapse of the sample was suppressed more than in Test Example 4.1 (blank test), the x value was larger and the y value was lower than the results of Test Examples 4.3 to 4.5. The result was small, and it was confirmed that the sample collapsed. In addition, the iron-making raw material (sample) after adding the stock solution in Test Example 4.2 was apparently (on the surface), most of which appeared to have moisture, and had a mud-like appearance that was easy to flow. Therefore, it is presumed that the polymer flocculant in the chemical solution (stock solution) did not permeate the entire iron ore.

試験例4.3〜4.5では、含水率が15質量%である製鉄原料に、高分子凝集剤を0.4質量%又は1質量%含有する分散液の希薄液を添加したことによって、希薄液を添加した後の製鉄原料(試料)の崩れを抑制できたことが確認された。また、試験例4.3〜4.5(特に試験例4.3及び4.4)における希薄液を添加した後の製鉄原料(試料)は、見かけ上(表面上)、水分があまり見られない状態の団粒状又は団塊状の外観となっていた。これは、希薄液中の高分子凝集剤が鉄鉱石の全体にいきとどき、高分子凝集剤の凝集作用により凝集した製鉄原料の間隙に水分が十分に捕捉されたことによるものと考えられる。   In Test Examples 4.3 to 4.5, by adding a diluted solution of a dispersion containing 0.4% by mass or 1% by mass of a polymer coagulant to a steelmaking raw material having a water content of 15% by mass, It was confirmed that the collapse of the steelmaking raw material (sample) after the addition of the dilute solution could be suppressed. In addition, in the iron making raw materials (samples) after adding the dilute solution in Test Examples 4.3 to 4.5 (especially in Test Examples 4.3 and 4.4), much water was apparently observed (on the surface). There was no aggregated or nodular appearance. This is considered to be because the polymer flocculant in the dilute solution spread over the entire iron ore, and the moisture was sufficiently captured in the gaps between the iron-making raw materials that were flocculated by the flocculating action of the polymer flocculant.

<試験例5>
試験例5では、篩分けにより、粒径が5mm以下の鉄鉱石であって、含水率が4.1質量%であるカラジャス鉄鉱石に水を加え、含水率を15質量%に調整したカラジャス鉄鉱石を製鉄原料として用いた。この製鉄原料から、以下に述べる試料を作製し、作製した試料について、試験例4で述べた方法と同様の方法の崩れやすさ確認試験を行った。その結果を後記表5(表5−1〜5−3)に示す。また、試験例5において、崩れやすさ確認試験によって、試験用槽に残った試料の状態を上面側及び側面側から撮影した写真を対比表の形式で表した図5(図5A〜C)に示す。
<Test Example 5>
In Test Example 5, the iron ore having a particle size of 5 mm or less and having a water content of 4.1% by mass was added with water by sieving to adjust the water content to 15% by mass. Stone was used as a steelmaking raw material. From the ironmaking raw material, the following samples were prepared, and the prepared samples were subjected to a test for confirming the likelihood of collapse of the same method as described in Test Example 4. The results are shown in Table 5 below (Tables 5-1 to 5-3). Further, in Test Example 5, FIG. 5 (FIGS. 5A to 5C) in which photographs of the state of the sample remaining in the test tank taken from the upper surface side and the side surface by the collapsibility confirmation test are shown in the form of a comparison table. Show.

なお、試験例5で用いた製鉄原料は、試験例2及び4で用いた製鉄原料のように、含水率が15質量%に調整されたカラジャス鉄鉱石であるが、試験例2及び4で用いた製鉄原料に比べて、より細かい粒径のものが多かったことから、より流動しやすいものであった(試験例5.1参照)。そのため、試験例5における崩れやすさ確認試験では、試験例5で用いた製鉄原料自体の崩れやすさ確認試験の結果(試験例5.1のブランク試験の結果)に基づいて評価した。   The iron making raw material used in Test Example 5 was a calajas iron ore whose water content was adjusted to 15% by mass, like the iron making raw material used in Test Examples 2 and 4, but was used in Test Examples 2 and 4. Compared to the iron-making raw material, there were many finer particles, so that it was easier to flow (see Test Example 5.1). Therefore, in the test for confirming the easiness of collapse in Test Example 5, the evaluation was performed based on the results of the test for confirming the susceptibility of the steelmaking raw material itself used in Test Example 5 (the results of the blank test in Test Example 5.1).

(試験例5.1)
試験例5.1では、ブランク試験として、添加液を用いずに、上記の含水率が15質量%であるカラジャス鉄鉱石をそのまま試料として用いた。
(Test Example 5.1)
In Test Example 5.1, as a blank test, the above-mentioned Karajas iron ore having a water content of 15% by mass was used as a sample without using an additive liquid.

(試験例5.2)
プラスチック製容器に、上記の製鉄原料を500g入れた。その容器内の製鉄原料に、添加液を添加した後、容器に蓋をし、容器ごと上下に5回転倒撹拌して、製鉄原料と添加液とを混合し、試料を得た。添加液には、高分子凝集剤としてアクリル酸ナトリウム・アクリルアミド共重合体を含有する水性分散液(商品名「NSドライ−709L」、日鉄住金環境社製;アクリル酸ナトリウム・アクリルアミド共重合体及び硫酸アンモニウムを成分とする白色〜淡褐色乳濁液。)を、上記共重合体の含有量が1質量%となる量の水で希釈(20倍希釈)し、撹拌して得られた水溶液状の希薄液(透明液)を用いた(上記試験例4.4参照)。製鉄原料の全質量に対する添加液(希薄液)の添加割合は0.10質量%とした。したがって、製鉄原料の全質量に対する高分子凝集剤(上記共重合体)としての添加割合は、0.001質量%とした。
(Test Example 5.2)
In a plastic container, 500 g of the above-mentioned iron-making raw material was put. After the additive liquid was added to the iron making raw material in the container, the container was capped, and the container was stirred up and down 5 times to mix the iron making raw material and the additive liquid to obtain a sample. The additive liquid includes an aqueous dispersion containing a sodium acrylate / acrylamide copolymer as a polymer coagulant (trade name “NS Dry-709L”, manufactured by Nippon Steel & Sumitomo Metal Corporation; sodium acrylate / acrylamide copolymer; A white to pale brown emulsion containing ammonium sulfate as a component) is diluted (20-fold dilution) with water in such an amount that the content of the copolymer becomes 1% by mass, and the aqueous solution obtained by stirring is diluted. A dilute liquid (clear liquid) was used (see Test Example 4.4 above). The addition ratio of the additive solution (dilute solution) to the total mass of the ironmaking raw material was 0.10% by mass. Therefore, the addition ratio of the polymer coagulant (the above copolymer) to the total mass of the ironmaking raw material was set to 0.001 mass%.

(試験例5.3〜5.7)
試験例5.3〜5.5では、試験例5.2と比較して、製鉄原料の全質量に対する添加液(希薄液)の添加割合(それに伴う、製鉄原料の全質量に対する高分子凝集剤(上記共重合体)としての添加割合)を、表5−1に示す通りに変更したこと以外は、試験例5.2と同様にして、試料を得た。また、試験例5.6及び5.7では、上記水性分散液を、上記共重合体の含有量がそれぞれ0.50質量%及び0.25質量%となる量の水で希釈(それぞれ40倍及び80倍希釈)し、撹拌して得られた水溶液状の希薄液(透明液)を添加液として用いたこと、製鉄原料の全質量に対する、添加液(希薄液)の添加割合(それに伴う、高分子凝集剤(上記共重合体)としての添加割合)を表5−1に示す通りとしたこと以外は、試験例5.2と同様にして、試料を得た。
(Test Examples 5.3 to 5.7)
In Test Examples 5.3 to 5.5, compared with Test Example 5.2, the addition ratio of the additive liquid (dilute liquid) to the total mass of the ironmaking raw material (the accompanying polymer coagulant relative to the total mass of the ironmaking raw material) A sample was obtained in the same manner as in Test Example 5.2 except that (addition ratio as the above-mentioned copolymer) was changed as shown in Table 5-1. In Test Examples 5.6 and 5.7, the aqueous dispersion was diluted with water in such amounts that the copolymer content was 0.50% by mass and 0.25% by mass, respectively (40 times each). And an aqueous diluted solution (transparent liquid) obtained by stirring as an additive solution, and the addition ratio of the additive solution (dilute solution) to the total mass of the steelmaking raw material (according to this, A sample was obtained in the same manner as in Test Example 5.2 except that the addition ratio of the polymer flocculant (the above copolymer) was as shown in Table 5-1.

(試験例5.8〜5.10)
試験例5.8〜5.10では、添加液として、試験例5.2で用いた高分子凝集剤としてアクリル酸ナトリウム・アクリルアミド共重合体を含有する水性分散液(商品名「NSドライ−709L」、日鉄住金環境社製)をそのまま、原液で用いた。そして、この添加液(原液)を、製鉄原料の全質量に対して、0.02質量%添加した。したがって、製鉄原料の全質量に対する高分子凝集剤(上記共重合体)としての添加割合は、0.004質量%とした。また、容器内の製鉄原料に添加液(原液)を添加した後の転倒撹拌の回数を、試験例5.8では5回、試験例5.9では50回、試験例5.10では100回とした。これらのこと以外は、試験例5.2と同様にして、試料を得た。
(Test Examples 5.8 to 5.10)
In Test Examples 5.8 to 5.10, an aqueous dispersion containing sodium acrylate / acrylamide copolymer as a polymer coagulant used in Test Example 5.2 (trade name “NS Dry-709L”) was used as an additive liquid. , Nippon Steel & Sumikin Environment Co., Ltd.) was used as a stock solution. Then, the additive liquid (stock solution) was added in an amount of 0.02% by mass with respect to the total mass of the ironmaking raw material. Therefore, the addition ratio of the polymer coagulant (the above copolymer) to the total mass of the ironmaking raw material was set to 0.004% by mass. In addition, the number of times of overturning and stirring after adding the additive liquid (stock solution) to the steelmaking raw material in the container was 5 times in Test Example 5.8, 50 times in Test Example 5.9, and 100 times in Test Example 5.10. And Except for these, a sample was obtained in the same manner as in Test Example 5.2.

(試験例5.11〜5.13)
試験例5.11〜5.13では、添加液として、高分子凝集剤としてアクリル酸ナトリウム・アクリルアミド共重合体を含有する水性分散液(商品名「NSドライ−709L」、日鉄住金環境社製;アクリル酸ナトリウム・アクリルアミド共重合体及び硫酸アンモニウムを成分とする白色〜淡褐色乳濁液。)を、上記共重合体の含有量が0.2質量%となる量の水で希釈(100倍希釈)し、撹拌して得られた水溶液状の希薄液(透明液)を用いた(上記試験例4.4参照)。この添加液(希薄液)を、製鉄原料の全質量に対して、2.0質量%添加した。したがって、製鉄原料の全質量に対する高分子凝集剤(上記共重合体)としての添加割合は、0.004質量%とした。また、容器内の製鉄原料に添加液(希薄液)を添加した後の転倒撹拌の回数を、試験例5.11では5回、試験例5.12では25回、試験例5.13では50回とした。これらのこと以外は、試験例5.2と同様にして、試料を得た。
(Test Examples 5.11 to 5.13)
In Test Examples 5.11 to 5.13, an aqueous dispersion containing sodium acrylate / acrylamide copolymer as a polymer coagulant (trade name “NS Dry-709L”, manufactured by Nippon Steel & Sumikin Environment Co., Ltd.) A white to light brown emulsion containing a sodium acrylate / acrylamide copolymer and ammonium sulfate as components) (diluted 100-fold) with water in such an amount that the content of the copolymer becomes 0.2% by mass. Then, an aqueous dilute solution (transparent liquid) obtained by stirring was used (see Test Example 4.4 above). This additive liquid (dilute liquid) was added in an amount of 2.0% by mass based on the total mass of the ironmaking raw material. Therefore, the addition ratio of the polymer coagulant (the above copolymer) to the total mass of the ironmaking raw material was set to 0.004% by mass. In addition, the number of times of overturning and stirring after adding the additive liquid (dilute liquid) to the steelmaking raw material in the container was 5 in Test Example 5.11, 25 in Test Example 5.12, and 50 in Test Example 5.13. Times. Except for these, a sample was obtained in the same manner as in Test Example 5.2.

(試験例5.14〜5.16)
試験例5.14〜5.16では、添加液として、試験例2.3と同様、高分子凝集剤としてアクリル酸ナトリウム・アクリルアミド共重合体を含有するアニオン性W/O型エマルジョン(商品名「NSドライ−322L」、日鉄住金環境社製)をそのままの原液で用いた。そして、この添加液(原液)を、製鉄原料の全質量に対して、0.02質量%添加した。したがって、製鉄原料の全質量に対する高分子凝集剤(上記共重合体)としての添加割合は、0.008質量%とした。また、容器内の製鉄原料に添加液(原液)を添加した後の転倒撹拌の回数を、試験例5.14では5回、試験例5.15では50回、試験例5.16では100回とした。これらのこと以外は、試験例5.2と同様にして、試料を得た。
(Test Examples 5.14 to 5.16)
In Test Examples 5.14 to 5.16, as in the case of Test Example 2.3, an anionic W / O emulsion containing sodium acrylate / acrylamide copolymer as a polymer coagulant (trade name: NS Dry-322L "(manufactured by Nippon Steel & Sumikin Environment Co., Ltd.). Then, the additive liquid (stock solution) was added in an amount of 0.02% by mass with respect to the total mass of the ironmaking raw material. Therefore, the addition ratio of the polymer coagulant (the copolymer) to the total mass of the ironmaking raw material was set to 0.008% by mass. In addition, the number of times of overturning and stirring after adding the additive liquid (stock solution) to the steelmaking raw material in the container was 5 times in Test Example 5.14, 50 times in Test Example 5.15, and 100 times in Test Example 5.16. And Except for these, a sample was obtained in the same manner as in Test Example 5.2.

(試験例5.17〜5.19)
試験例5.17〜5.19では、添加液として、高分子凝集剤としてアクリル酸ナトリウム・アクリルアミド共重合体を含有するアニオン性W/O型エマルジョン(商品名「NSドライ−322L」、日鉄住金環境社製;アクリル酸ナトリウム・アクリルアミド共重合体及び水素化精製軽質留出油(石油)を成分とする淡黄白色〜淡褐色乳濁液。)を、上記共重合体の含有量が0.2質量%となる量の水で希釈(200倍希釈)し、撹拌して得られた水中油滴(O/W)型エマルジョン状の希薄液(白色乳濁液)を用いた(上記試験例1.2参照)。この添加液(希薄液)を、製鉄原料の全質量に対して、4.0質量%添加した。したがって、製鉄原料の全質量に対する上記共重合体としての添加割合は、0.008質量%とした。また、容器内の製鉄原料に添加液(希薄液)を添加した後の転倒撹拌の回数を、試験例5.17では5回、試験例5.18では25回、試験例5.19では50回とした。これらのこと以外は、試験例5.2と同様にして、試料を得た。
(Test Examples 5.17 to 5.19)
In Test Examples 5.17 to 5.19, an anionic W / O emulsion containing a sodium acrylate-acrylamide copolymer as a polymer coagulant (trade name “NS Dry-322L”, Nippon Steel) A pale yellowish white to light brown emulsion containing a sodium acrylate / acrylamide copolymer and a hydrorefined light distillate (petroleum) as components). A diluted liquid (white emulsion) in the form of an oil-in-water (O / W) emulsion obtained by diluting with water in an amount of 0.2% by mass (diluted 200 times) and stirring was used (the above test). See Example 1.2). This additive liquid (dilute liquid) was added in an amount of 4.0% by mass based on the total mass of the ironmaking raw material. Therefore, the addition ratio as the above-mentioned copolymer with respect to the total mass of the ironmaking raw material was set to 0.008% by mass. Further, the number of times of overturning and stirring after adding the additive liquid (dilute liquid) to the iron making raw material in the container was 5 in Test Example 5.17, 25 in Test Example 5.18, and 50 in Test Example 5.19. Times. Except for these, a sample was obtained in the same manner as in Test Example 5.2.

試験例5.2〜5.7の結果より、試験例5.1の結果で示された非常に流動性の高い製鉄原料に対して、高分子凝集剤を0.25〜1.00質量%含有する希薄液を添加したことによって、製鉄原料の流動性を十分に低下でき、製鉄原料の崩れを抑制できたことが確認された(図5A参照)。   From the results of Test Examples 5.2 to 5.7, the polymer coagulant was added in an amount of 0.25 to 1.00% by mass based on the extremely fluid ironmaking raw material shown in the results of Test Example 5.1. It was confirmed that the addition of the dilute solution contained could sufficiently lower the fluidity of the iron making raw material and suppress the collapse of the iron making raw material (see FIG. 5A).

また、試験例5.8〜5.10では、高分子凝集剤を20質量%含有する水性分散液の原液を用いた場合、それと製鉄原料との撹拌回数を50回及び100回と増やして十分に混合したとしても、製鉄原料の流動性を十分に低下できず、製鉄原料の崩れを有効に抑制することができなかった。この結果より、上記原液は、原液中の高分子凝集剤が製鉄原料の全体にいきとどきにくかったものと考えられる。これに対して、試験例5.11〜5.13では、非常に流動性の高い製鉄原料に、高分子凝集剤を0.2質量%含有する水溶液状の希薄液を添加したことによって、製鉄原料と希薄液との撹拌回数が少ない場合でも、製鉄原料の流動性を十分に低下でき、製鉄原料の崩れを抑制できたことが確認された(図5B参照)。この結果より、上記希薄液は、希薄液中の高分子凝集剤が製鉄原料の全体にいきとどきやすかったものと考えられる。   In Test Examples 5.8 to 5.10, when a stock solution of an aqueous dispersion containing 20% by mass of a polymer flocculant was used, the number of stirring times between the solution and the ironmaking raw material was increased to 50 times and 100 times, and this was sufficient. , The fluidity of the steelmaking raw material could not be sufficiently reduced, and the collapse of the steelmaking raw material could not be effectively suppressed. From these results, it is considered that the above-mentioned stock solution was such that the polymer flocculant in the stock solution was hard to reach the whole iron-making raw material. On the other hand, in Test Examples 5.11 to 5.13, an iron-made raw material was added by adding an aqueous dilute solution containing 0.2% by mass of a polymer flocculant to a highly fluid iron-made raw material. It was confirmed that even when the number of times of stirring of the raw material and the dilute solution was small, the fluidity of the iron manufacturing raw material could be sufficiently reduced and the collapse of the iron manufacturing raw material could be suppressed (see FIG. 5B). From these results, it is considered that the diluted liquid was such that the polymer flocculant in the diluted liquid was easy to reach the entire iron-making raw material.

さらに、試験例5.14〜5.16では、高分子凝集剤を40質量%含有するW/O型エマルジョンの原液を用いた場合、それと製鉄原料との撹拌回数を50回及び100回と増やして十分に混合したとしても、製鉄原料の流動性を十分に低下できず、製鉄原料の崩れを有効に抑制することができなかった。この結果より、上記原液は、原液中の高分子凝集剤が製鉄原料の全体にいきとどきにくかったものと考えられる。これに対して、試験例5.17〜5.19では、非常に流動性の高い製鉄原料に、高分子凝集剤を0.2質量%含有するO/W型エマルジョン状の希薄液を添加したことによって、製鉄原料と希薄液との撹拌回数が少ない場合でも、製鉄原料の流動性を十分に低下でき、製鉄原料の崩れを抑制できたことが確認された(図5C参照)。この結果より、上記希薄液は、希薄液中の高分子凝集剤が製鉄原料の全体にいきとどきやすかったものと考えられる。

Further, in Test Examples 5.14 to 5.16, when a stock solution of a W / O emulsion containing 40% by mass of the polymer flocculant was used, the number of times of stirring the raw material and the ironmaking raw material was increased to 50 times and 100 times. However, even if they were mixed sufficiently, the fluidity of the steelmaking raw material could not be sufficiently reduced, and the collapse of the steelmaking raw material could not be effectively suppressed. From these results, it is considered that the above-mentioned stock solution was such that the polymer flocculant in the stock solution was hard to reach the whole iron-making raw material. On the other hand, in Test Examples 5.17 to 5.19, an O / W emulsion dilute liquid containing 0.2% by mass of a polymer coagulant was added to a highly fluid ironmaking raw material. Thus, it was confirmed that even when the number of times of stirring of the ironmaking raw material and the dilute solution was small, the fluidity of the ironmaking raw material could be sufficiently reduced and the collapse of the ironmaking raw material could be suppressed (see FIG. 5C). From these results, it is considered that the diluted liquid was such that the polymer flocculant in the diluted liquid was easy to reach the entire iron-making raw material.

Claims (7)

原料ヤードに製鉄原料を山積みする方法であって、
前記原料ヤードに山積みされる前の製鉄原料及び山積みされた後の製鉄原料の少なくとも一方の製鉄原料に、有効成分としての高分子凝集剤の含有量が0.1〜2質量%である希薄液を添加する工程を含む、製鉄原料の山積み方法。
A method of stacking steelmaking raw materials in a raw material yard,
A dilute solution in which at least one of the steelmaking raw material before being piled up in the raw material yard and the ironmaking raw material after being piled up has a polymer coagulant content of 0.1 to 2% by mass as an active ingredient; A method for stacking raw materials for ironmaking, comprising the step of adding iron.
前記原料ヤードに山積みされる前の前記製鉄原料に前記希薄液を添加する工程と、
前記希薄液が添加された前記製鉄原料を前記原料ヤードに山積みする工程と、
を含む請求項1に記載の製鉄原料の山積み方法。
Adding the dilute solution to the iron raw material before being piled up in the raw material yard;
Stacking the steelmaking raw material to which the dilute liquid has been added in the raw material yard,
The method according to claim 1, comprising:
前記原料ヤードに山積みされた後の前記製鉄原料に前記希薄液を添加する工程を含む請求項1又は2に記載の製鉄原料の山積み方法。   3. The method according to claim 1, further comprising a step of adding the dilute liquid to the ironmaking raw material after being piled up in the raw material yard. 4. 前記希薄液は、前記製鉄原料に添加されるときの形態が水中油滴型エマルジョン状又は水溶液状の液体である請求項1〜3のいずれか1項に記載の製鉄原料の山積み方法。   4. The method according to claim 1, wherein the diluted liquid is an oil-in-water emulsion or an aqueous solution when added to the iron-making raw material. 5. 前記希薄液は、前記高分子凝集剤として、アクリル酸ナトリウム・アクリルアミド共重合体、アクリル酸又はその塩の重合体、及びアクリルアミド重合体からなる群より選ばれる少なくとも1種を含有する請求項1〜4のいずれか1項に記載の製鉄原料の山積み方法。   The dilute solution contains, as the polymer flocculant, at least one selected from the group consisting of sodium acrylate / acrylamide copolymer, acrylic acid or a salt thereof, and acrylamide polymer. 5. The method for pile-up of steelmaking raw materials according to any one of 4. 前記製鉄原料の全質量に対する前記高分子凝集剤としての添加割合が0.0001〜0.05質量%の量で前記希薄液を前記製鉄原料に添加する請求項1〜5のいずれか1項に記載の製鉄原料の山積み方法。   6. The method according to claim 1, wherein the dilute liquid is added to the ironmaking raw material in an amount of 0.0001 to 0.05% by mass based on the total mass of the ironmaking raw material as the polymer coagulant. 7. The method of stacking the raw materials for iron described. 前記製鉄原料への前記希薄液の添加量を、前記希薄液が添加された後の前記製鉄原料の含水率が8〜25質量%となる量に制御する請求項1〜6のいずれか1項に記載の製鉄原料の山積み方法。

The amount of the dilute solution added to the ironmaking raw material is controlled to an amount such that the water content of the ironmaking raw material after the dilute liquid is added becomes 8 to 25% by mass. 5. The method of stacking raw materials for iron according to 4.

JP2019011072A 2018-09-05 2019-01-25 Method of piling up raw materials for ironmaking Active JP7299027B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018165611 2018-09-05
JP2018165611 2018-09-05

Publications (2)

Publication Number Publication Date
JP2020040833A true JP2020040833A (en) 2020-03-19
JP7299027B2 JP7299027B2 (en) 2023-06-27

Family

ID=69797502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019011072A Active JP7299027B2 (en) 2018-09-05 2019-01-25 Method of piling up raw materials for ironmaking

Country Status (1)

Country Link
JP (1) JP7299027B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004298A1 (en) * 2022-06-30 2024-01-04 Jfeスチール株式会社 Powder property-modifying method, production method for water-containing bulk material, water-containing bulk material, and granulation method for raw material for sintering

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214292A (en) * 2011-03-25 2012-11-08 Kurita Water Ind Ltd Method for modifying slurry of coal and/or iron ore
WO2014058074A1 (en) * 2012-10-12 2014-04-17 Jfeスチール株式会社 Method for unloading water-containing bulk material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214292A (en) * 2011-03-25 2012-11-08 Kurita Water Ind Ltd Method for modifying slurry of coal and/or iron ore
WO2014058074A1 (en) * 2012-10-12 2014-04-17 Jfeスチール株式会社 Method for unloading water-containing bulk material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004298A1 (en) * 2022-06-30 2024-01-04 Jfeスチール株式会社 Powder property-modifying method, production method for water-containing bulk material, water-containing bulk material, and granulation method for raw material for sintering

Also Published As

Publication number Publication date
JP7299027B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
US10029953B2 (en) Composition for dust control and improved material handling
JP2011042741A (en) Dust inhibitor and dust prevention method
JP5927807B2 (en) Method for modifying coal and / or iron ore slurry
AU2013330776B2 (en) Method for unloading water-containing bulk material
JP2020040833A (en) Piling method of iron-making material
TW201348454A (en) Method for transporting iron making raw material and method for producing solidified form of iron making raw material
JP5910810B2 (en) Unloading method of water-containing roses
JP7212506B2 (en) Method for treating oil-containing sludge and method for treating wastewater
EP2989221B1 (en) Method for loading loose iron ore partially treated by means of superabsorbents
JP2021147656A (en) Method for treating iron ore
JP2020033437A (en) Method for preventing sticking, adhesion or fastening of sand and fluidized treatment soil
AU2015241974B2 (en) Method of processing water-containing bulk material and apparatus for adding flocculant to water-containing bulk material
US10882998B2 (en) Enhancing release of bulk solids from a surface
TW202402648A (en) Powder property-modifying method, production method for water-containing bulk material, water-containing bulk material, and granulation method for raw material for sintering
JP6041509B2 (en) Method for producing granulated solidified soil of self-hardening sludge
BR112019009499B1 (en) METHOD FOR ENHANCED BULK SOLID RELEASE FROM A SURFACE, AND, USE OF A SUBSTANCE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230615

R150 Certificate of patent or registration of utility model

Ref document number: 7299027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150