JP2020039190A - High voltage insulation monitoring device and high voltage insulation monitoring method - Google Patents

High voltage insulation monitoring device and high voltage insulation monitoring method Download PDF

Info

Publication number
JP2020039190A
JP2020039190A JP2018164145A JP2018164145A JP2020039190A JP 2020039190 A JP2020039190 A JP 2020039190A JP 2018164145 A JP2018164145 A JP 2018164145A JP 2018164145 A JP2018164145 A JP 2018164145A JP 2020039190 A JP2020039190 A JP 2020039190A
Authority
JP
Japan
Prior art keywords
zero
phase
phase current
current
current transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018164145A
Other languages
Japanese (ja)
Other versions
JP6907167B2 (en
Inventor
資基 早田
Sukemoto Hayata
資基 早田
鈴木 隆
Takashi Suzuki
隆 鈴木
和博 小林
Kazuhiro Kobayashi
和博 小林
賢司 小野
Kenji Ono
賢司 小野
鈴木 正美
Masami Suzuki
正美 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANTO ELECTRICAL SAFETY INSPECTION ASS
KANTO ELECTRICAL SAFETY INSPECTION ASSOCIATION
Saneisha Seisakusho KK
Original Assignee
KANTO ELECTRICAL SAFETY INSPECTION ASS
KANTO ELECTRICAL SAFETY INSPECTION ASSOCIATION
Saneisha Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANTO ELECTRICAL SAFETY INSPECTION ASS, KANTO ELECTRICAL SAFETY INSPECTION ASSOCIATION, Saneisha Seisakusho KK filed Critical KANTO ELECTRICAL SAFETY INSPECTION ASS
Priority to JP2018164145A priority Critical patent/JP6907167B2/en
Publication of JP2020039190A publication Critical patent/JP2020039190A/en
Application granted granted Critical
Publication of JP6907167B2 publication Critical patent/JP6907167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

To provide a high voltage insulation monitoring device and a high voltage insulation monitoring method, which are capable of correcting an error of a zero-phase current even in a switch comprising only a current transformer of two phases, and capable of highly precisely detecting insulation deterioration.SOLUTION: A representative configuration of a high voltage insulation monitoring device 10 is connected to a switch comprising a zero-phase current transformer 24 for detecting zero-phase current and a current transformer 26 for detecting load current of at least two phases in three phases, and detects insulation deterioration of a high-voltage distribution line. The high voltage insulation monitoring device 10 comprises a correction section 36 for correcting the zero-pase current so that an error of the zero-phase current due to influence of load current is suppressed by using characteristics of the current transformer 26 and the zero-phase current transformer 24. The correction section 36 corrects the error of the zero-phase current from the load current obtained from the two-phase current transformer 26 by assuming that the zero-phase current is so small as to be ignored with respect to the phase current.SELECTED DRAWING: Figure 1

Description

本発明は、高圧配電線路の絶縁低下を検出する高圧絶縁監視装置及び高圧絶縁監視方法に関する。   The present invention relates to a high-voltage insulation monitoring device and a high-voltage insulation monitoring method for detecting a decrease in insulation of a high-voltage distribution line.

高圧受電設備では、配電系統からの受電点に開閉器(区分開閉器)を設置し、その開閉器と地絡継電器とを組み合わせて地絡保護を行うことが一般的になっている。地絡継電器は、零相電圧及び零相電流の整定値を超える地絡事故が起きた場合に、開閉器による遮断動作を行う。また地絡継電器は、開閉器の定格遮断容量を守るための負荷電流値を開閉器内部の変流器(CT)から得ている。   In high-voltage power receiving equipment, it is common to install a switch (separate switch) at a power receiving point from a power distribution system and perform ground fault protection by combining the switch and a ground fault relay. The ground fault relay performs a breaking operation by the switch when a ground fault that exceeds the set values of the zero-phase voltage and the zero-phase current occurs. In addition, the ground fault relay obtains a load current value for protecting the rated breaking capacity of the switch from a current transformer (CT) inside the switch.

地絡事故を検出する方法としては、開閉器内の零相電圧検出装置(ZPD)から取り出した零相電圧や、零相変流器(ZCT)から取り出した零相電流を利用する方法が用いられている(例えば、特許文献1参照)。なお、地絡事故時の絶縁抵抗値は0〜数十kΩとなり、100mA程度の零相電流の検出を行うことになる。   As a method of detecting a ground fault, a method using a zero-phase voltage extracted from a zero-phase voltage detection device (ZPD) in a switch or a zero-phase current extracted from a zero-phase current transformer (ZCT) is used. (For example, see Patent Document 1). In addition, the insulation resistance value at the time of a ground fault is 0 to several tens kΩ, and a zero-phase current of about 100 mA is detected.

一方、地絡事故の原因が設備汚損によって徐々に劣化するものである場合には、事故前に絶縁抵抗が少しだけ低下している時期がある。これを検出する場合、数MΩ程度の高抵抗の検出、すなわち数mAの零相電流の検出が必要となる。ところが、零相電流は理想的にはゼロであるところ、負荷電流が大きくなると零相変流器(ZCT)には数mA程度の誤差が生じるため、数mAの零相電流を検出することは難しい。そこで出願人は、特許第5972097号(特許文献2)において、各相の負荷電流の影響による零相電流の誤差を補正する技術を提案した。これにより、高精度な絶縁低下検出を行うことが可能となった。   On the other hand, when the cause of the ground fault is one that gradually deteriorates due to equipment contamination, there is a time when the insulation resistance slightly decreases before the accident. To detect this, it is necessary to detect a high resistance of about several MΩ, that is, to detect a zero-phase current of several mA. However, the zero-phase current is ideally zero, but when the load current increases, an error of about several mA occurs in the zero-phase current transformer (ZCT). Therefore, it is impossible to detect the zero-phase current of several mA. difficult. In view of this, the applicant has proposed a technique in Japanese Patent No. 5972097 (Patent Document 2) for correcting an error in the zero-phase current due to the influence of the load current of each phase. As a result, it is possible to perform highly accurate insulation deterioration detection.

特開平6−284559号公報JP-A-6-284559 特許第5972097号公報Japanese Patent No. 5972097

しかしながら特許文献2の技術においては、零相変流器の特性(方程式の補正係数)を求める際に、各相の負荷電流の合成が零となる状態で三相負荷のバランスを変えて、各相の負荷電流と零相電流との関係を求めている。すなわち、特許文献2の技術においては三相分の負荷電流(CT出力)が必要である。一方で、短絡事故時には三相のうち二相が過電流となることから、過電流検出(短絡事故や地絡事故の検出)は少なくとも二相分の負荷電流で実現できる。このため現在の市場では、二相に合計2個の変流器(CT)だけを内蔵してコストダウンを図った開閉器が提供されている。   However, in the technique of Patent Document 2, when calculating the characteristics (correction coefficient of the equation) of the zero-phase current transformer, the balance of the three-phase load is changed in a state where the combination of the load currents of the respective phases becomes zero, and The relationship between the phase load current and the zero-phase current is determined. That is, the technique of Patent Document 2 requires three phases of load current (CT output). On the other hand, since two phases out of three phases become overcurrent at the time of a short circuit fault, overcurrent detection (detection of a short circuit fault or a ground fault fault) can be realized with a load current of at least two phases. For this reason, in the current market, there is provided a switch having a built-in two current transformers (CT) in two phases to reduce the cost.

そこで本発明の目的は、二相分の変流器しか備えない開閉器であっても零相電流の誤差を補正し、高精度な絶縁低下検出を行うことが可能な高圧絶縁監視装置及び高圧絶縁監視方法を提供することである。   Therefore, an object of the present invention is to provide a high-voltage insulation monitoring device and a high-voltage insulation monitoring device capable of correcting a zero-phase current error and performing highly accurate insulation deterioration detection even in a switch having only two-phase current transformers. It is to provide an insulation monitoring method.

上記課題を解決するために、本発明にかかる高圧絶縁監視装置の代表的な構成は、零相電流を検出する零相変流器と、三相のうち少なくとも二相の負荷電流を検出する変流器とを備えた開閉器に接続して高圧配電線路の絶縁低下を検出する高圧絶縁監視装置であって、変流器及び零相変流器の特性を用いて、負荷電流の影響による零相電流の誤差を抑えるように零相電流を補正する補正部を備え、補正部は、零相電流が相電流に対して無視できるほど小さいと仮定して、二相の変流器から得た負荷電流より零相電流の誤差を補正することを特徴とする。   In order to solve the above-described problems, a typical configuration of a high-voltage insulation monitoring device according to the present invention includes a zero-phase current transformer for detecting a zero-phase current and a transformer for detecting at least two-phase load current among three phases. A high-voltage insulation monitoring device connected to a switch equipped with a current transformer to detect a decrease in insulation of a high-voltage distribution line. A compensator for compensating the zero-phase current so as to suppress the error of the phase current is provided, and the compensator is obtained from the two-phase current transformer, assuming that the zero-phase current is negligibly small with respect to the phase current. It is characterized in that the error of the zero-phase current is corrected from the load current.

上記構成の装置によれば、三相中の任意の二相の変流器の負荷電流を用いて、零相電流の負荷電流による影響をキャンセルすることができる。したがって、コストダウンのために二相分の変流器しか備えない開閉器であっても零相電流の誤差を補正し、高精度な絶縁低下検出を行うことが可能な高圧絶縁監視装置を提供することができる。   According to the device having the above configuration, the influence of the load current of the zero-phase current can be canceled by using the load current of any two-phase current transformer in the three phases. Accordingly, a high-voltage insulation monitoring device capable of correcting a zero-phase current error and performing highly accurate insulation deterioration detection even for a switch having only two-phase current transformers for cost reduction. can do.

また、本発明にかかる高圧絶縁監視方法の代表的な構成は、零相電流を検出する零相変流器と三相のうち少なくとも二相の負荷電流を検出する変流器とを備えた開閉器に接続し、零相変流器によって高圧配電線路の零相電流を検出し、変流器によって高圧配電線路の少なくとも二相の負荷電流を検出し、変流器及び零相変流器の特性を用いて、負荷電流の影響による零相電流の誤差を抑えるように零相電流を補正してから、補正された零相電流に基づいて高抵抗の絶縁低下を検出する高圧絶縁監視方法であって、零相電流が相電流に対して無視できるほど小さいと仮定して、二相の変流器から得た負荷電流より零相電流の誤差を補正することを特徴とする。   A typical configuration of the high-voltage insulation monitoring method according to the present invention is a switching apparatus including a zero-phase current transformer for detecting a zero-phase current and a current transformer for detecting at least two-phase load current among three phases. And a zero-phase current transformer to detect the zero-phase current in the high-voltage distribution line, the current transformer to detect at least two-phase load current in the high-voltage distribution line, and connect the current transformer and the zero-phase current transformer. Using the characteristics, the zero-phase current is corrected so as to suppress the error of the zero-phase current due to the effect of the load current, and then, based on the corrected zero-phase current, a high-voltage insulation monitoring method that detects a decrease in high-resistance insulation is used. The error of the zero-phase current is corrected based on the load current obtained from the two-phase current transformer, assuming that the zero-phase current is negligibly small with respect to the phase current.

上記構成の方法によれば、三相中の任意の二相の変流器の出力(負荷電流)を用いて、零相電流の負荷電流による影響をキャンセルすることができる。したがって、コストダウンのために二相分の変流器しか備えない開閉器であっても零相電流の誤差を補正し、高精度な絶縁低下検出を行うことが可能な高圧絶縁監視方法を提供することができる。なお、上述した高圧絶縁監視装置における技術的思想に対応する構成要素やその説明は、当該高圧絶縁監視方法にも適用可能である。   According to the method having the above configuration, the effect of the zero-phase current due to the load current can be canceled by using the output (load current) of an arbitrary two-phase current transformer among the three phases. Therefore, to provide a high-voltage insulation monitoring method capable of correcting a zero-phase current error and performing highly accurate insulation deterioration detection even for a switch having only two-phase current transformers for cost reduction. can do. In addition, the components corresponding to the technical concept in the above-described high-voltage insulation monitoring device and the description thereof are also applicable to the high-voltage insulation monitoring method.

本発明に係る高圧絶縁監視装置又は高圧絶縁監視方法によれば、二相分の変流器しか備えない開閉器であっても零相電流の誤差を補正し、高精度な絶縁低下検出を行うことが可能な高圧絶縁監視装置及び高圧絶縁監視方法を提供することができる。   According to the high-voltage insulation monitoring device or the high-voltage insulation monitoring method according to the present invention, even if the switch has only two-phase current transformers, the error of the zero-phase current is corrected and the insulation deterioration detection is performed with high accuracy. It is possible to provide a high-voltage insulation monitoring device and a high-voltage insulation monitoring method capable of performing the following.

高圧絶縁監視装置の概略構成を示すブロック図である。It is a block diagram showing a schematic structure of a high voltage insulation monitoring device. 試験回路の構成を説明する図である。FIG. 3 is a diagram illustrating a configuration of a test circuit. 誤差除去処理の実験結果を比較する図である。It is a figure which compares the experimental result of error elimination processing. V相電流の推定の実験結果を比較する図である。It is a figure which compares the experimental result of estimation of V phase current.

[第1実施形態]
本発明にかかる高圧絶縁監視装置および高圧絶縁監視方法の第1実施形態について説明する。図1は高圧絶縁監視装置の概略構成を示すブロック図である。高圧絶縁監視装置10は、変電所から需要先に電気を供給する配電系統の高圧配電線路U相,V相,W相上に設けられた開閉器20(区分開閉器)と、地絡事故の発生に応じて開閉器20による遮断動作を行う地絡継電器30と、地絡事故発生などを報知する表示部50とを備えている。
[First Embodiment]
A first embodiment of a high-voltage insulation monitoring device and a high-voltage insulation monitoring method according to the present invention will be described. FIG. 1 is a block diagram showing a schematic configuration of the high-voltage insulation monitoring device. The high-voltage insulation monitoring device 10 includes a switch 20 (a sectional switch) provided on a U-phase, V-phase, or W-phase high-voltage distribution line of a distribution system that supplies electricity from a substation to a demand destination, and a ground fault accident. A ground fault relay 30 that performs a breaking operation by the switch 20 in response to the occurrence, and a display unit 50 that notifies occurrence of a ground fault or the like.

開閉器20は、高圧配電線路の零相電圧を検出する零相電圧検出装置22(ZPD)と、高圧配電線路の零相電流を検出する零相変流器24(ZCT)と、高圧配電線路の各相の負荷電流を検出する変流器26(CT)とを有している。   The switch 20 includes a zero-phase voltage detector 22 (ZPD) that detects a zero-phase voltage of the high-voltage distribution line, a zero-phase current transformer 24 (ZCT) that detects a zero-phase current of the high-voltage distribution line, and a high-voltage distribution line. And a current transformer 26 (CT) for detecting the load current of each phase.

以下の説明において、零相変流器24が検出した零相電流IZCTをZCT出力という。また、変流器26が検出した負荷電流をCT出力という。 In the following description, the zero-phase current IZCT detected by the zero-phase current transformer 24 is referred to as a ZCT output. The load current detected by the current transformer 26 is called a CT output.

本実施形態において変流器26は、三相の線路U相,V相,W相のうち二相の線路U相,W相のみに2つの変流器26U,26Wが取り付けられている。この開閉器20は、高圧受電設備における配電系統からの受電点に設けられている。なお、零相電圧検出装置22としては、例えば、各相の対地電圧を合成して零相電圧を検出するコンデンサ形零相電圧検出装置を用いることが可能である。   In the present embodiment, the current transformer 26 has two current transformers 26U and 26W attached to only two-phase lines U and W phases of the three-phase lines U, V and W phases. The switch 20 is provided at a power receiving point from the power distribution system in the high-voltage power receiving equipment. As the zero-phase voltage detector 22, for example, a capacitor-type zero-phase voltage detector that combines the ground voltages of the respective phases and detects the zero-phase voltage can be used.

地絡継電器30は、零相電圧検出装置22により検出された零相電圧及び零相変流器24により検出された零相電流が、配電系統との保護協調の観点から設定されている零相電圧及び零相電流の整定値を超えるか否かを判断する。それらの零相電圧及び零相電流が整定値を超えたと判断した場合には、地絡事故が発生したと判定する。そして地絡継電器30は、零相電圧−零相電流の位相を判定して、電源側の地絡か、負荷側の地絡かを判定し、負荷側の地絡である場合に開閉器20による遮断動作を行う。これにより、高圧配電線路が開閉器20により遮断されることになる。   The ground fault relay 30 has a zero-phase voltage detected by the zero-phase voltage detection device 22 and a zero-phase current detected by the zero-phase current transformer 24, the zero-phase current of which is set from the viewpoint of protection coordination with the distribution system. It is determined whether the set values of the voltage and the zero-phase current are exceeded. When it is determined that the zero-phase voltage and the zero-phase current have exceeded the set values, it is determined that a ground fault has occurred. Then, the ground fault relay 30 determines the phase of the zero-phase voltage-zero-phase current to determine whether the power-supply-side ground fault or the load-side ground fault occurs. Perform the shut-off operation. As a result, the high-voltage distribution line is cut off by the switch 20.

地絡継電器30は補正部36を有している。補正部36は、後述するように、変流器26及び零相変流器24の特性を用いて、負荷電流の影響によるZCT出力の誤差を抑えるようにZCT出力を補正する。特に本実施形態において、補正部36は、二相の変流器26U,26Wから得た負荷電流I,Iにより残りの一相の負荷電流Iを推定して、推定により得られた三相分の負荷電流が零相電流に与える誤差を求める。 The ground fault relay 30 has a correction unit 36. The correction unit 36 corrects the ZCT output using characteristics of the current transformer 26 and the zero-phase current transformer 24 so as to suppress an error in the ZCT output due to the load current, as described later. In particular, in the present embodiment, the correction unit 36 estimates the remaining one-phase load current IV based on the load currents I U and I W obtained from the two-phase current transformers 26U and 26W, and obtains the estimation by estimation. The error that the load current for three phases gives to the zero-phase current is obtained.

表示部50は、地絡事故が発生したことを報知する表示や、地絡事故発生前の数MΩの絶縁低下が発生したことを報知する表示を行う。この表示部50としては、例えば、磁気反転表示器などを用いることが可能であり、他にも、LEDランプなどの表示灯やLEDディスプレイなどを用いることが可能である。なお、表示灯やLEDディスプレイなどを用いる場合には、例えば、太陽電池や充電池などの電源を設け、その電源から表示部50に電力を供給する。   The display unit 50 provides a display for notifying that a ground fault has occurred, and a display for notifying that insulation loss of several MΩ has occurred before the occurrence of the ground fault. As the display section 50, for example, a magnetic reversal display or the like can be used, and in addition, a display lamp such as an LED lamp or an LED display can be used. When an indicator light, an LED display, or the like is used, for example, a power supply such as a solar battery or a rechargeable battery is provided, and power is supplied to the display unit 50 from the power supply.

次に、前述の補正部36による補正処理について説明する。最初に、三相分のCT出力を用いた誤差除去について説明し、次に二相分のCT出力を用いた誤差除去について説明する。   Next, a correction process performed by the correction unit 36 will be described. First, error removal using three-phase CT outputs will be described, and then error removal using two-phase CT outputs will be described.

零相変流器24のZCT出力は実際に系統を流れる零相電流成分およびZCT個体差による誤差成分から次式(1)で表される。
The ZCT output of the zero-phase current transformer 24 is expressed by the following equation (1) from the zero-phase current component actually flowing through the system and the error component due to the ZCT individual difference.

三相平衡状態の場合、本来はIZCT=0となる。したがって、三相平衡状態であるのに零相電流が発生した場合には(IZCT≠0)、その原因は負荷電流の影響となる。 In the case of a three-phase equilibrium state, I ZCT = 0 originally. Therefore, when a zero-phase current is generated in the three-phase equilibrium state (I ZCT ≠ 0), the cause is the influence of the load current.

発明者らのこれまでの検討結果より、ZCT個体差による誤差成分を各相CT出力から式(2)のように定義する。但し、個体差特性値は各相負荷電流がZCT出力に及ぼす影響を相ごとの変流器の特性のばらつきを加味して表した係数であり、個々の開閉器ごとに固有の定数である。
From the results of the studies by the inventors so far, the error component due to the individual difference of the ZCT is defined as the equation (2) from the CT output of each phase. However, the individual difference characteristic value is a coefficient representing the effect of each phase load current on the ZCT output in consideration of the variation in the characteristics of the current transformer for each phase, and is a constant unique to each switch.

式(1)(2)より、開閉器20の三相に変流器26が内蔵されている場合、系統を流れる零相電流成分IはCT出力とZCT出力から式(3)のように求められる。
From equation (1) (2), if the current transformer 26 to a three-phase switch 20 is built, zero-phase current component I 0 flowing through the system, as from CT output and ZCT output equation (3) Desired.

次に、二相分のCT出力を用いた誤差除去について説明する。開閉器20の二相にのみ変流器26が内蔵されている場合、式(3)から零相電流を求める事はできない。そこで、開閉器に内蔵された二相分のCT出力を用いて、ZCT出力から負荷電流の影響をキャンセルする為の補正係数を導出する。   Next, error removal using the CT outputs for two phases will be described. When the current transformer 26 is built in only two phases of the switch 20, the zero-phase current cannot be obtained from Expression (3). Therefore, a correction coefficient for canceling the effect of the load current is derived from the ZCT output using the two-phase CT outputs built in the switch.

各相の変流器26が理想的な特性を持ち、CT出力の高圧換算値が対応する相電流と完全に一致する場合、系統を流れる零相電流と各相の負荷電流には式(4)の関係が成り立つ。
If the current transformer 26 of each phase has ideal characteristics, and the high-voltage converted value of the CT output completely matches the corresponding phase current, the zero-phase current flowing through the system and the load current of each phase are expressed by Equation (4). ) Holds.

ここで、絶縁低下検出の対象となる1[MΩ]以上の絶縁低下を要因として発生する零相電流は数[mA]程度であり、一般的な高圧需要家での各相電流数[A]に対して無視できるほど小さい。従って、零相電流を0[mA]と置くことにより、式(4)から不明な相電流の推定値が求められる。例えば、UW二相にのみ変流器26が内蔵された開閉器20のV相電流は式(5)のように近似される。
Here, the zero-phase current generated due to insulation lowering of 1 [MΩ] or more, which is the object of insulation lowering detection, is about several [mA], and the number of phase currents [A] in general high-voltage consumers. Small enough to be ignored. Therefore, by setting the zero-phase current to 0 [mA], an unknown phase current estimated value can be obtained from Expression (4). For example, the V-phase current of the switch 20 in which the current transformer 26 is incorporated only in the UW two-phase is approximated as Expression (5).

式(3)(5)より、開閉器20のUW二相にのみ変流器26が内蔵されている場合、系統を流れる零相電流は二相分のCT出力とZCT出力から式(6)のように求められる。式(6)は、式(3)と式(5)からIを消去したものである。
この式(6)を用いれば、二相分のCT出力I,IとZCT出力IZCTから系統を流れる零相電流Iを求めることができる。
From the equations (3) and (5), when the current transformer 26 is built in only the UW two-phase of the switch 20, the zero-phase current flowing through the system is expressed by the equation (6) from the CT output and the ZCT output for the two phases. Is required. Equation (6) is obtained by erasing the I U in the formula (3) from equation (5).
Using this equation (6), two phases of the CT output I U, it is possible to determine the zero-phase current I o flowing through the system from I W and ZCT output I ZCT.

図2は試験回路の構成を説明する図である。開閉器20には、三相平衡電圧源60と三相負荷抵抗62を接続する。UW二相に変流器26U,26Wを備え、V相に変流器を持たないものとする。図2の試験構成では対地電流経路が無いため、零相電流Iは開閉器を流れず、電源や負荷抵抗の条件によらず零相電流Iは発生しない。従って、ZCT出力IZCTには負荷電流の影響による出力のみが現れる。 FIG. 2 is a diagram illustrating the configuration of the test circuit. A three-phase balanced voltage source 60 and a three-phase load resistor 62 are connected to the switch 20. Current transformers 26U and 26W are provided in the UW two-phase, and no current transformer is provided in the V-phase. For ground current path is not a test configuration of FIG. 2, the zero-phase current I o is not flow through the switch, the zero-phase current I o irrespective of the power supply and load resistance conditions is not generated. Therefore, only the output due to the effect of the load current appears in the ZCT output IZCT .

まず、開閉器20に内蔵された変流器26U,26Wの誤差を補正する。変流器26U,26Wに規定の電流が流れるよう三相平衡電圧源60から三相交流電圧を出力し、変流器26U,26Wの出力の高圧換算値が実際に変流器26U,26Wを流れる電流と一致するように、高圧換算のゲインとオフセット値を設定する。変流器26U,26Wの出力の高圧換算値Iu,Iwは以下式で表される。
First, errors of the current transformers 26U and 26W built in the switch 20 are corrected. A three-phase AC voltage is output from the three-phase balanced voltage source 60 so that a specified current flows through the current transformers 26U and 26W, and the high-voltage conversion values of the outputs of the current transformers 26U and 26W actually change the current transformers 26U and 26W. The high voltage conversion gain and offset value are set so as to match the flowing current. The high voltage converted values Iu, Iw of the outputs of the current transformers 26U, 26W are represented by the following equations.

式(6)においてα’=α−α、α’=α−αと置き換える。零相電流Iは無視できるほど小さいと仮定することができるから、I’=0とする。すると式(6)は次の式(8)のように表現できる。
In the equation (6), α ′ U = α U −α V and α ′ W = α W −α V are replaced. Since it can be assumed that the zero-phase current Io is negligibly small, it is assumed that I ′ 0 = 0. Then, equation (6) can be expressed as the following equation (8).

各相負荷抵抗の比が異なる2つのパターンにおいて、三相平衡電圧源60から三相交流電圧を出力し、その際に得られたCT出力及びZCT出力の高圧換算値を取得する。
取得した高圧換算値を用いて式(8)より導出した式(9)の四元連立方程式を解き、補正係数を求める。
In two patterns having different ratios of the load resistance of each phase, a three-phase AC voltage is output from the three-phase balanced voltage source 60, and a high-voltage conversion value of the CT output and the ZCT output obtained at that time is obtained.
Using the acquired high-pressure converted value, the system of equations (9) derived from the equation (8) is solved to obtain a correction coefficient.

上記のようにして求めた補正係数α’,α’を式(6)に代入すれば、ZCT出力であるIZCTを補正して、負荷電流の影響をキャンセルすることができる。すなわち、式(6)の左辺である「二相分のCT出力から算出した零相電流I’」を、系統を流れる零相電流成分Iとみなすことができる。 By substituting the correction coefficients α ′ U and α ′ W obtained as described above into Expression (6), it is possible to correct IZCT , which is the ZCT output, and cancel the effect of the load current. That is, the “zero-phase current I ′ 0 calculated from the CT outputs for the two phases” on the left side of the equation (6) can be regarded as the zero-phase current component I 0 flowing through the system.

次に、本発明の方法の誤差量について検討する。二相分のCT出力を用いた誤差除去の精度は、零相電流を求める際に使用する相電流の一相分が推定値であることから、三相分のCT出力を用いる場合と比較して低下すると考えられる。式(3)(5)より、系統を流れる零相電流成分は式(10)のように表すこともできる。
Next, the error amount of the method of the present invention will be examined. The accuracy of the error elimination using the two-phase CT output is compared with the case of using the three-phase CT output because one phase of the phase current used for obtaining the zero-phase current is an estimated value. It is thought that it decreases. From equations (3) and (5), the zero-phase current component flowing through the system can be expressed as in equation (10).

式(10)より、三相分のCT出力を用いて零相電流を求めた場合に対する、UW二相分のCT出力を用いて零相電流を求めた場合の誤差量は式(11)で表される。
From the equation (10), the error amount when the zero-phase current is calculated using the UW two-phase CT outputs with respect to the case where the zero-phase current is calculated using the three-phase CT outputs is expressed by the equation (11). expressed.

式(11)より、三相分のCT出力を用いた場合に対する二相分のCT出力を用いた処理結果の誤差量は、CTが内蔵されていない相の個体差特性値(定数)と各相CT出力の合成値の積となる。   From the equation (11), the error amount of the processing result using the two-phase CT output with respect to the case where the three-phase CT output is used is determined by the individual difference characteristic value (constant) of the phase having no built-in CT and each It is the product of the combined values of the phase CT outputs.

図3は誤差除去処理の実験結果を比較する図である。図3(a)は三相分のCT出力を用いた誤差除去処理結果、図3(b)は二相分のCT出力を用いた誤差除去処理結果であり、図3(c)は三相と二相の誤差除去処理結果の差である。図3(a)〜(c)を参照すると、二相分のCT出力を用いた誤差除去処理結果は、三相分のCT出力を用いた場合とほぼ等しいことがわかる。   FIG. 3 is a diagram comparing experimental results of the error removal processing. 3A shows the result of the error removal processing using the CT outputs for three phases, FIG. 3B shows the result of the error removal processing using the CT outputs for two phases, and FIG. And the difference between the two-phase error removal processing results. Referring to FIGS. 3A to 3C, it can be seen that the result of the error removal processing using the CT outputs for two phases is almost the same as the case using the CT outputs for three phases.

図4はV相電流の推定の実験結果を比較する図である。図4(a)はV相電流の実測値、図4(b)はV相電流の推定値、図4(c)はV相電流の実測値と推定値の差(ベクトル差分)である。V相電流が6.8〜9.0[A]程度であるところ、差は0.01〜0.08[A]であり、1/100以下のレベルである。このことから、本発明における推定は精度が高いことがわかる。   FIG. 4 is a diagram comparing the experimental results of the estimation of the V-phase current. 4A shows the measured value of the V-phase current, FIG. 4B shows the estimated value of the V-phase current, and FIG. 4C shows the difference (vector difference) between the measured value and the estimated value of the V-phase current. When the V-phase current is about 6.8 to 9.0 [A], the difference is 0.01 to 0.08 [A], which is a level of 1/100 or less. This indicates that the estimation in the present invention has high accuracy.

上記のようにして補正部36は、負荷電流の影響を受けたZCT出力を高精度な絶縁低下検出が可能となるレベルまで補正することができる。特に本発明においては、補正部36が、三相中の任意の二相の変流器のCT出力を用いて、ZCT出力の負荷電流による影響をキャンセルすることができる。したがって、コストダウンのために二相分の変流器しか備えない開閉器であってもZCT出力の誤差を補正し、高精度な絶縁低下検出を行うことが可能な高圧絶縁監視装置及び高圧絶縁監視方法を提供することができる。   As described above, the correction unit 36 can correct the ZCT output affected by the load current to a level that enables highly accurate detection of insulation deterioration. In particular, in the present invention, the correction unit 36 can cancel the effect of the load current on the ZCT output by using the CT output of any two-phase current transformer among the three phases. Accordingly, a high-voltage insulation monitoring device and a high-voltage insulation device capable of correcting an error in ZCT output and performing highly accurate insulation reduction detection even for a switch having only two-phase current transformers for cost reduction. A monitoring method can be provided.

最後に、前述の実施形態は例示であり、発明の範囲はそれらに限定されない。上記実施形態においてはV相の変流器を備えないと説明したが、変流器が不足する相はU相やW相であってもよい。また前述の実施形態は種々変更可能であり、例えば、前述の実施形態に示される全構成要素から幾つかの構成要素が削除されても良く、さらに、異なる実施形態に係る構成要素が適宜組み合わされても良い。   Finally, the above-described embodiments are examples, and the scope of the invention is not limited thereto. In the above-described embodiment, the description has been made that the current transformer of the V phase is not provided. However, the phase in which the current transformer is insufficient may be the U phase or the W phase. In addition, the above-described embodiments can be variously modified. For example, some components may be deleted from all the components shown in the above-described embodiments, and components according to different embodiments may be appropriately combined. May be.

本発明は、高圧配電線路の絶縁低下を検出する高圧絶縁監視装置及び高圧絶縁監視方法として利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used as a high-voltage insulation monitoring device and a high-voltage insulation monitoring method for detecting a decrease in insulation of a high-voltage distribution line.

10…高圧絶縁監視装置、20…開閉器、22…零相電圧検出装置、24…零相変流器、26…変流器、30…地絡継電器、36…補正部、50…表示部、60…三相平衡電圧源、62…三相負荷抵抗 DESCRIPTION OF SYMBOLS 10 ... High voltage insulation monitoring device, 20 ... Switch, 22 ... Zero phase voltage detection device, 24 ... Zero phase current transformer, 26 ... Current transformer, 30 ... Ground fault relay, 36 ... Correction part, 50 ... Display part, 60: three-phase balanced voltage source, 62: three-phase load resistance

Claims (2)

零相電流を検出する零相変流器と、三相のうち少なくとも二相の負荷電流を検出する変流器とを備えた開閉器に接続して高圧配電線路の絶縁低下を検出する高圧絶縁監視装置であって、
前記変流器及び前記零相変流器の特性を用いて、前記負荷電流の影響による前記零相電流の誤差を抑えるように前記零相電流を補正する補正部を備え、
前記補正部は、
零相電流が相電流に対して無視できるほど小さいと仮定して、二相の変流器から得た負荷電流より零相電流の誤差を補正することを特徴とする高圧絶縁監視装置。
High-voltage insulation for detecting a decrease in insulation of a high-voltage distribution line by connecting to a switch having a zero-phase current transformer for detecting a zero-phase current and a current transformer for detecting at least two-phase load current among three phases. A monitoring device,
Using a characteristic of the current transformer and the zero-phase current transformer, a correction unit that corrects the zero-phase current so as to suppress the error of the zero-phase current due to the influence of the load current,
The correction unit,
A high-voltage insulation monitoring device, wherein a zero-phase current error is corrected based on a load current obtained from a two-phase current transformer, assuming that the zero-phase current is negligibly small with respect to the phase current.
零相電流を検出する零相変流器と三相のうち少なくとも二相の負荷電流を検出する変流器とを備えた開閉器に接続し、
前記零相変流器によって高圧配電線路の零相電流を検出し、
前記変流器によって高圧配電線路の少なくとも二相の負荷電流を検出し、
前記変流器及び前記零相変流器の特性を用いて、負荷電流の影響による零相電流の誤差を抑えるように零相電流を補正してから、補正された零相電流に基づいて高抵抗の絶縁低下を検出する高圧絶縁監視方法であって、
零相電流が相電流に対して無視できるほど小さいと仮定して、二相の変流器から得た負荷電流より零相電流の誤差を補正することを特徴とする高圧絶縁監視方法。
Connected to a switch comprising a zero-phase current transformer for detecting a zero-phase current and a current transformer for detecting at least two-phase load current among three phases,
The zero-phase current transformer detects a zero-phase current in the high-voltage distribution line,
The current transformer detects at least two-phase load current of the high-voltage distribution line,
Using the characteristics of the current transformer and the zero-phase current transformer, the zero-phase current is corrected so as to suppress the error of the zero-phase current due to the effect of the load current, and then the high-level current is corrected based on the corrected zero-phase current. A high-voltage insulation monitoring method for detecting insulation lowering of resistance,
A high-voltage insulation monitoring method comprising correcting a zero-phase current error from a load current obtained from a two-phase current transformer, assuming that the zero-phase current is negligibly small with respect to the phase current.
JP2018164145A 2018-09-03 2018-09-03 High-voltage insulation monitoring device and high-voltage insulation monitoring method Active JP6907167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018164145A JP6907167B2 (en) 2018-09-03 2018-09-03 High-voltage insulation monitoring device and high-voltage insulation monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018164145A JP6907167B2 (en) 2018-09-03 2018-09-03 High-voltage insulation monitoring device and high-voltage insulation monitoring method

Publications (2)

Publication Number Publication Date
JP2020039190A true JP2020039190A (en) 2020-03-12
JP6907167B2 JP6907167B2 (en) 2021-07-21

Family

ID=69738330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018164145A Active JP6907167B2 (en) 2018-09-03 2018-09-03 High-voltage insulation monitoring device and high-voltage insulation monitoring method

Country Status (1)

Country Link
JP (1) JP6907167B2 (en)

Also Published As

Publication number Publication date
JP6907167B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
US7425778B2 (en) Apparatus and method for compensating secondary currents used in differential protection to correct for a phase shift introduced between high voltage and low voltage transformer windings
RU2416851C2 (en) Method and relay of adaptive remote protection for power transmission lines
JP6976258B2 (en) Systems and methods for detecting inter-turn failures in transformer windings
US8823307B2 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
US6584417B1 (en) Method and directional element for fault direction determination in a capacitance-compensated line
US9118181B2 (en) Method of fault phase selection and fault type determination
US7319576B2 (en) Apparatus and method for providing differential protection for a phase angle regulating transformer in a power system
CN105467268B (en) Directional detection of ground faults in an electric power distribution network
EP2859635B1 (en) Method for identifying fault by current differential protection and device thereof
US20190097418A1 (en) Multiple generator ground fault detection
BR112017009650B1 (en) DIFFERENTIAL PROTECTION METHOD TO GENERATE A FAULT SIGNAL, AND, ELECTRICAL DIFFERENTIAL PROTECTION DEVICE.
CN110546881B (en) Segmented estimation of negative sequence voltage for fault detection in electrical systems
US20120182657A1 (en) Rate of change differential protection
KR101238694B1 (en) Digtal relay being able to check and correct miss wiring and method thereof
JP2007071774A (en) Insulation measuring method and apparatus therefor
US10338122B2 (en) Method and device for detecting a fault in an electrical network
JP3624190B2 (en) DC insulation monitoring device
JP6907167B2 (en) High-voltage insulation monitoring device and high-voltage insulation monitoring method
JP5972097B2 (en) High voltage insulation monitoring device and high voltage insulation monitoring method
KR102027844B1 (en) Apparatus for correcting measurement error of measuring instrument using equipment information and method thereof
JP2019013124A (en) High voltage insulation monitoring apparatus and high pressure insulation monitoring method
JP2013013170A (en) Differential protective relay device and saturation determination method for current transformer
LV13922B (en) Method for determination of distance to fault place by phase-to-earth fault in distribution networks
JP2015216783A (en) Bus bar protective relay device
JP6922816B2 (en) Insulation measuring device and insulation measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210630

R150 Certificate of patent or registration of utility model

Ref document number: 6907167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150