JP2020038941A - Electric module and manufacturing method thereof - Google Patents

Electric module and manufacturing method thereof Download PDF

Info

Publication number
JP2020038941A
JP2020038941A JP2018166268A JP2018166268A JP2020038941A JP 2020038941 A JP2020038941 A JP 2020038941A JP 2018166268 A JP2018166268 A JP 2018166268A JP 2018166268 A JP2018166268 A JP 2018166268A JP 2020038941 A JP2020038941 A JP 2020038941A
Authority
JP
Japan
Prior art keywords
photoelectrode
counter electrode
conductive layer
support
electric module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018166268A
Other languages
Japanese (ja)
Other versions
JP6703574B2 (en
Inventor
壮一郎 鈴木
Soichiro Suzuki
壮一郎 鈴木
博之 井川
Hiroyuki Igawa
博之 井川
英輔 馬場
Eisuke Baba
英輔 馬場
幹弘 梶間
Mikihiro Kajima
幹弘 梶間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2018166268A priority Critical patent/JP6703574B2/en
Publication of JP2020038941A publication Critical patent/JP2020038941A/en
Application granted granted Critical
Publication of JP6703574B2 publication Critical patent/JP6703574B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide an electric module that satisfactorily prevents liquid leakage in a region near a fused portion between a photoelectrode and a counter electrode.SOLUTION: A charge transfer body is present in an area S surrounded with a fused portion 60 in which a photoelectrode 10 and a counter electrode 20 are fused, a photoelectrode 10, a counter electrode 20, and a sealing material. In the area S, when the maximum thickness of a photoelectrode support 12 is T1, the maximum thickness of a counter electrode support 22 is T2, and the minimum thickness of the fused portion adjacent to the region S is T3, T3/(T1+T2) is 0.4 to 1.SELECTED DRAWING: Figure 3

Description

本発明は電気モジュールおよびその製造方法に関する。   The present invention relates to an electric module and a method for manufacturing the same.

近年、クリーンな発電源として、光エネルギーを直接かつ即時に電力に変換することができ、二酸化炭素等の汚染物質を排出しない電気モジュールとして太陽電池が注目されている。   2. Description of the Related Art In recent years, solar cells have been attracting attention as electric modules that can directly and immediately convert light energy into electric power as a clean power source and do not emit pollutants such as carbon dioxide.

最近では、色素増感太陽電池をはじめとする太陽電池の実用化に向けて、ロール・ツー・ロール方式(以下、RtoR方式と記載する)を導入した連続生産が検討されている。
RtoR方式を導入した色素増感太陽電池の製造方法は、例えば、光電極支持体の面に光電極導電層を設け、光電極導電層の面の所定の領域に、増感色素を担持した無機半導体層と封止材と電荷移動体をそれぞれ設けて、光電極を作製する。これとは別に、対向電極支持体の面に対向電極導電層を設け、対向電極導電層の面に触媒層を設けて対向電極を作製する。その後、無機半導体層と触媒層とが対向するように、光電極と対向電極とを貼り合わせて、色素増感太陽電池を作製する。色素増感太陽電池の光電極と対向電極は、光電極導電層と対向電極導電層とが封止材を介して接合している。
Recently, for the practical use of solar cells such as dye-sensitized solar cells, continuous production using a roll-to-roll method (hereinafter referred to as RtoR method) has been studied.
A method for producing a dye-sensitized solar cell employing the RtoR method includes, for example, providing an inorganic conductive layer provided on a surface of a photoelectrode support, and carrying a sensitizing dye on a predetermined region of the surface of the photoelectrode conductive layer. A photoelectrode is manufactured by providing a semiconductor layer, a sealing material, and a charge transfer body. Separately from this, a counter electrode conductive layer is provided on the surface of the counter electrode support, and a catalyst layer is provided on the surface of the counter electrode conductive layer to prepare a counter electrode. After that, the photoelectrode and the counter electrode are attached to each other so that the inorganic semiconductor layer and the catalyst layer face each other, thereby manufacturing a dye-sensitized solar cell. The photoelectrode and the counter electrode of the dye-sensitized solar cell have a photoelectrode conductive layer and a counter electrode conductive layer joined via a sealing material.

例えば、特許文献1には、対向する光電極及び対向電極の所定の部分に超音波振動を付与し、光電極支持体と対向電極支持体とを融着して封止するととともに絶縁する方法が開示されている。   For example, Patent Literature 1 discloses a method in which ultrasonic vibration is applied to opposing photoelectrodes and a predetermined portion of the opposing electrodes to fuse and seal the photoelectrode support and the counter electrode support and to insulate them. It has been disclosed.

国際公開第2014/030736号International Publication No. 2014/030736

しかし、光電極と対向電極に超音波振動を付与して融着部を形成すると、色素増感太陽電池の動作不良が生じることがある。
本発明者等の知見によれば、超音波振動を付与すると、光電極と対向電極との融着部に近い領域で、封止材と光電極導電層との間、及び封止材と対向電極導電層との間に電解質が流出する現象(液漏れ)が発生する場合がある。液漏れが発生すると太陽電池の動作不良が生じやすい。
本発明は、光電極と対向電極との融着部に近い領域における液漏れを、良好に防止する電気モジュールおよびその製造方法を提供する。
However, when ultrasonic vibration is applied to the photoelectrode and the counter electrode to form a fused portion, malfunction of the dye-sensitized solar cell may occur.
According to the findings of the present inventors, when ultrasonic vibration is applied, the region between the sealing material and the photoelectrode conductive layer, and the region facing the sealing material are opposed to the region near the fused portion between the photoelectrode and the counter electrode. A phenomenon (liquid leakage) in which the electrolyte flows out between the electrode conductive layer and the electrode conductive layer may occur. When liquid leakage occurs, malfunction of the solar cell is likely to occur.
The present invention provides an electric module and a method for manufacturing the same, which effectively prevent liquid leakage in a region near a fused portion between a photoelectrode and a counter electrode.

本発明は、以下の態様を有する。
[1]光電極、前記光電極と離間して対向する対向電極、前記光電極と前記対向電極との間に位置する電荷移動体、及び前記光電極と前記対向電極との間に位置して前記電荷移動体を封止する封止材を有する電気モジュールであって、
前記光電極は、光電極支持体、前記光電極支持体上に位置する光電極導電層を有し、
前記対向電極は、対向電極支持体、及び前記対向電極支持体上に位置する対向電極導電層を有し、
前記電荷移動体は、前記光電極と前記対向電極とを融着した融着部と、前記光電極と、前記対向電極と、前記封止材とで囲まれた領域Sに存在し、
前記領域Sにおける、前記光電極支持体の最大厚みをT1、前記対向電極支持体の最大厚みをT2とし、前記領域Sに隣接する前記融着部の最小厚みをT3とするとき、T3/(T1+T2)で表される値が0.4〜1であることを特徴とする電気モジュール。
[2]前記電気モジュールが色素増感太陽電池であり、前記光電極が前記光電極導電層上に位置する無機半導体層を有し、前記無機半導体層が増感色素を担持している、[1]の電気モジュール。
[3][1]又は[2]の電気モジュールを製造する、電気モジュールの製造方法であって、前記光電極の、前記対向電極側となる面に前記電荷移動体及び前記封止材を設け、前記光電極と前記対向電極とを貼り合わせ、前記T3/(T1+T2)で表される値が0.4〜1となるように前記融着部を形成する、電気モジュールの製造方法。
The present invention has the following aspects.
[1] a photoelectrode, a counter electrode facing the photoelectrode at a distance, a charge moving body positioned between the photoelectrode and the counter electrode, and a photoelectrode positioned between the photoelectrode and the counter electrode. An electric module having a sealing material for sealing the charge transfer body,
The photoelectrode has a photoelectrode support, a photoelectrode conductive layer located on the photoelectrode support,
The counter electrode has a counter electrode support, and a counter electrode conductive layer located on the counter electrode support,
The charge transfer member is present in a region S surrounded by a fused portion obtained by fusing the photoelectrode and the counter electrode, the photoelectrode, the counter electrode, and the sealing material,
When the maximum thickness of the photoelectrode support in the region S is T1, the maximum thickness of the counter electrode support is T2, and the minimum thickness of the fused portion adjacent to the region S is T3, T3 / ( An electric module, wherein the value represented by (T1 + T2) is 0.4 to 1.
[2] The electric module is a dye-sensitized solar cell, wherein the photoelectrode has an inorganic semiconductor layer located on the photoelectrode conductive layer, and the inorganic semiconductor layer carries a sensitizing dye. 1].
[3] A method for manufacturing an electric module according to [1] or [2], wherein the charge transfer body and the sealing material are provided on a surface of the photoelectrode on the side of the counter electrode. And bonding the photoelectrode and the counter electrode, and forming the fused portion such that a value represented by T3 / (T1 + T2) is 0.4 to 1.

本発明に係る電気モジュールによれば、光電極と対向電極との融着部に近い領域における液漏れを良好に防止できる。その結果、電気モジュールの動作不良を良好に防止できる。   ADVANTAGE OF THE INVENTION According to the electric module which concerns on this invention, the liquid leak in the area | region near the fusion part of a photoelectrode and a counter electrode can be prevented favorably. As a result, operation failure of the electric module can be favorably prevented.

本発明の一実施形態に係る電気モジュールの平面図である。It is a top view of the electric module concerning one embodiment of the present invention. 図1に示す(ii)−(ii)断面図である。It is (ii)-(ii) sectional drawing shown in FIG. 図1に示す(iii)−(iii)断面図である。It is (iii)-(iii) sectional drawing shown in FIG. 本発明の一実施形態に係る電気モジュールの製造装置の概略図である。It is a schematic diagram of a manufacturing device of an electric module concerning one embodiment of the present invention. 図4に示す製造装置で用いられる融着部形成装置の断面図である。FIG. 5 is a cross-sectional view of a fusion splicing unit used in the manufacturing apparatus shown in FIG. 4. 本発明の他の実施形態に係る電気モジュールの平面図である。It is a top view of the electric module concerning other embodiments of the present invention.

以下、図面を参照して本発明に係る電気モジュールの実施の形態について説明する。なお、以下の説明で用いる図面は、便宜上、特徴となる部分を拡大して示しており、各構成要素の寸法比率等は、実際とは異なる場合がある。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更できる。   Hereinafter, an embodiment of an electric module according to the present invention will be described with reference to the drawings. In the drawings used in the following description, characteristic portions are enlarged for convenience, and the dimensional ratios and the like of the components may be different from actual ones. Further, the materials, dimensions, and the like exemplified in the following description are merely examples, and the present invention is not limited thereto, and can be appropriately changed without changing the gist thereof.

以下の説明においては、本発明に係る電気モジュールの一例として、RtoR方式を用いて製造されるフィルム型の色素増感太陽電池を挙げて説明する。ここで、本発明を適用した電気モジュールは、色素増感太陽電池に限定されず、二枚の電極同士を、封止材を介在させて貼り合わせたものであれば、色素増感太陽電池以外の電気モジュールも全て含むものである。   In the following description, a film-type dye-sensitized solar cell manufactured using the RtoR method will be described as an example of the electric module according to the present invention. Here, the electric module to which the present invention is applied is not limited to a dye-sensitized solar cell, and is not limited to a dye-sensitized solar cell as long as two electrodes are bonded to each other with a sealing material interposed therebetween. All of the electric modules are included.

[電気モジュール(色素増感太陽電池)の構成]
図1〜図3に示すように、本発明を適用した本実施形態の色素増感太陽電池(電気モジュール)1は、光電極10と、対向電極20と、電荷移動体30と、封止材40と、導通材50と、融着部60を有する。光電極10と対向電極20とは離間して対向している。
電荷移動体30は、光電極10と対向電極20の間に位置している。封止材40及び融着部60は、電荷移動体30を封止している。電荷移動体30は、光電極10、対向電極20、封止材40、及び融着部60で囲まれた領域Sに存在する。電荷移動体30は、光電極10及び対向電極20の双方に接している。
導通材50は、光電極10と対向電極20の間に位置している。電荷移動体30と導通材50の間に封止材40が位置している。導通材50は、光電極10及び対向電極20の双方に接している。
[Configuration of Electric Module (Dye-Sensitized Solar Cell)]
As shown in FIGS. 1 to 3, a dye-sensitized solar cell (electric module) 1 according to the present embodiment to which the present invention is applied includes a photoelectrode 10, a counter electrode 20, a charge transfer body 30, and a sealing material. 40, a conductive material 50, and a fused portion 60. The photoelectrode 10 and the opposing electrode 20 are opposed to each other at a distance.
The charge moving body 30 is located between the photoelectrode 10 and the counter electrode 20. The sealing material 40 and the fusion part 60 seal the charge transfer body 30. The charge transfer body 30 exists in a region S surrounded by the photoelectrode 10, the counter electrode 20, the sealing material 40, and the fusion part 60. The charge moving body 30 is in contact with both the photoelectrode 10 and the counter electrode 20.
The conductive material 50 is located between the photoelectrode 10 and the counter electrode 20. The sealing material 40 is located between the charge moving body 30 and the conductive material 50. The conductive material 50 is in contact with both the photoelectrode 10 and the counter electrode 20.

光電極10は、光電極支持体12と光電極導電層14と無機半導体層16とを有する。
光電極支持体12の表面に平行な面内において、封止材40が延長する方向をD2方向、D2方向に垂直な方向をD1方向とする。色素増感太陽電池1を平面視した図1において、電荷移動体30を挟む2つの封止材40は互いに平行であり、D2方向に平行である。
The photoelectrode 10 has a photoelectrode support 12, a photoelectrode conductive layer 14, and an inorganic semiconductor layer 16.
In a plane parallel to the surface of the photoelectrode support 12, the direction in which the sealing material 40 extends is defined as the direction D2, and the direction perpendicular to the direction D2 is defined as the direction D1. In FIG. 1 in which the dye-sensitized solar cell 1 is viewed in plan, two sealing members 40 sandwiching the charge transfer body 30 are parallel to each other and parallel to the direction D2.

光電極導電層14は、光電極支持体12上に位置している。無機半導体層16は、光電極導電層14上に位置している。即ち、光電極支持体12と光電極導電層14と無機半導体層16とは、この順で位置している。
無機半導体層16は、電荷移動体30に接している。無機半導体層16は、光電極導電層14の一部を覆っている。無機半導体層16の外方で、光電極導電層14の一部は、電荷移動体30と接している。無機半導体層16は増感色素を担持している。
なお、電荷移動体30が存在する領域において、無機半導体層16が光電極導電層14の全面を覆っていてもよい。
The photoelectrode conductive layer 14 is located on the photoelectrode support 12. The inorganic semiconductor layer 16 is located on the photoelectrode conductive layer 14. That is, the photoelectrode support 12, the photoelectrode conductive layer 14, and the inorganic semiconductor layer 16 are located in this order.
The inorganic semiconductor layer 16 is in contact with the charge transfer body 30. The inorganic semiconductor layer 16 covers a part of the photoelectrode conductive layer 14. Outside the inorganic semiconductor layer 16, a part of the photoelectrode conductive layer 14 is in contact with the charge transfer body 30. The inorganic semiconductor layer 16 carries a sensitizing dye.
The inorganic semiconductor layer 16 may cover the entire surface of the photoelectrode conductive layer 14 in a region where the charge transfer body 30 exists.

光電極支持体12の材質は、RtoR方式を用いた連続生産に適用できる程度に柔軟性を有し、大面積フィルム状に形成可能な材質であれば、特に限定されない。
光電極支持体12の材質として、例えば、ポリエチレンテレフタレート(PET)、アクリル、ポリカーボネート、ポリエチレンナフタレート(PEN)、又はポリイミド等の透明の樹脂材料が挙げられる。
The material of the photoelectrode support 12 is not particularly limited as long as it is flexible enough to be applicable to continuous production using the RtoR method and can be formed into a large-area film shape.
Examples of the material of the photoelectrode support 12 include a transparent resin material such as polyethylene terephthalate (PET), acrylic, polycarbonate, polyethylene naphthalate (PEN), or polyimide.

光電極導電層14は、光電極支持体12の対向電極20側の面の全体にわたって成膜されている。
光電極導電層14は、導電性を有すれば、特に制限されない。光電極導電層14は、従来公知の色素増感太陽電池用の導電層である。光電極10が光入射面を形成する場合、光電極導電層14は光透過性を有する。即ち、光電極導電層14としては、いわゆる透明導電層が好ましい。
光電極導電層14の材質として、例えば、金、白金、銀、銅、クロム、タングステン、アルミニウム、マグネシウム、チタン、ニッケル、マンガン、亜鉛、鉄及びこれらの合金等の金属;フッ素ドープ酸化スズ(FTO)、ナトリウム、ナトリウム−カリウム合金、リチウム、マグネシウム、アルミニウム、マグネシウム−銀混合物、マグネシウム−インジウム混合物、アルミニウム−リチウム合金、Al/Al混合物、Al/LiF混合物、CuI、インジウムスズ酸化物(ITO)、SnO、アルミニウム亜鉛酸化物(AZO)、インジウム亜鉛酸化物(IZO)、ガリウム亜鉛酸化物(GZO)等の導電性透明無機材料;導電性透明ポリマー等が挙げられる。これらの素材は、1種単独でもよいし、2種以上の組み合わせでもよい。
光電極導電層14の厚みは、光電極導電層14を構成する素材に応じて、適宜決定する。光電極導電層14が金属の場合、光電極導電層14の厚みは、10〜50nmが好ましい。光電極導電層14が導電性透明無機材料又は導電性透明ポリマーの場合、光電極導電層14の厚みは、50nm〜500μmが好ましい。
光電極導電層14の厚みは、光電極支持体12の面と直交する断面の画像における、任意の10点の測定値の平均値である。
The photoelectrode conductive layer 14 is formed over the entire surface of the photoelectrode support 12 on the counter electrode 20 side.
The photoelectrode conductive layer 14 is not particularly limited as long as it has conductivity. The photoelectrode conductive layer 14 is a conductive layer for a conventionally known dye-sensitized solar cell. When the photoelectrode 10 forms a light incident surface, the photoelectrode conductive layer 14 has light transmittance. That is, as the photoelectrode conductive layer 14, a so-called transparent conductive layer is preferable.
Examples of the material of the photoelectrode conductive layer 14 include metals such as gold, platinum, silver, copper, chromium, tungsten, aluminum, magnesium, titanium, nickel, manganese, zinc, iron, and alloys thereof; and fluorine-doped tin oxide (FTO). ), sodium - potassium alloy, lithium, magnesium, aluminum, magnesium - silver mixture, a magnesium - indium mixture, an aluminum - lithium alloy, Al / Al 2 O 3 mixture, Al / LiF mixture, CuI, indium tin oxide ( Conductive transparent inorganic materials such as ITO), SnO 2 , aluminum zinc oxide (AZO), indium zinc oxide (IZO), and gallium zinc oxide (GZO); and conductive transparent polymers. These materials may be used alone or in combination of two or more.
The thickness of the photoelectrode conductive layer 14 is appropriately determined according to the material constituting the photoelectrode conductive layer 14. When the photoelectrode conductive layer 14 is a metal, the thickness of the photoelectrode conductive layer 14 is preferably 10 to 50 nm. When the photoelectrode conductive layer 14 is a conductive transparent inorganic material or a conductive transparent polymer, the thickness of the photoelectrode conductive layer 14 is preferably 50 nm to 500 μm.
The thickness of the photoelectrode conductive layer 14 is an average value of measured values at arbitrary 10 points in an image of a cross section orthogonal to the plane of the photoelectrode support 12.

無機半導体層16は、増感色素を吸着可能な半導体材料であればよい。半導体材料は、例えば、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ、酸化ガリウム等の酸化物、硫化スズ、硫化インジウム、硫化亜鉛、酸化第一銅、三酸化モリブデン、五酸価バナジウム、酸化タングステン等の酸化物、チオシアン酸銅(I)、ヨウ化銅、二硫化モリブデン、二セレン化モリブデン、硫化銅(I)等が挙げられる。
無機半導体層16は、稠密層でもよく多孔質層でもよい。色素増感太陽電池1の光電変換効率のさらなる向上の点から、無機半導体層16は、多孔質層が好ましい。
無機半導体層16の厚みは、500nm〜100μmが好ましい。無機半導体層16の厚みは、光電極支持体12の面と直交する断面の画像における、任意の10点の測定値の平均値である。
The inorganic semiconductor layer 16 may be any semiconductor material that can adsorb the sensitizing dye. Semiconductor materials include, for example, titanium oxide, zinc oxide, indium oxide, tin oxide, oxides such as gallium oxide, tin sulfide, indium sulfide, zinc sulfide, cuprous oxide, molybdenum trioxide, vanadium pentoxide, and tungsten oxide. And the like, copper (I) thiocyanate, copper iodide, molybdenum disulfide, molybdenum diselenide, copper (I) sulfide, and the like.
The inorganic semiconductor layer 16 may be a dense layer or a porous layer. From the viewpoint of further improving the photoelectric conversion efficiency of the dye-sensitized solar cell 1, the inorganic semiconductor layer 16 is preferably a porous layer.
The thickness of the inorganic semiconductor layer 16 is preferably from 500 nm to 100 μm. The thickness of the inorganic semiconductor layer 16 is an average value of measured values at arbitrary 10 points in an image of a cross section orthogonal to the plane of the photoelectrode support 12.

増感色素は、有機色素又は金属錯体色素から構成される。有機色素としては、例えば、クマリン系、ポリエン系、シアニン系、ヘミシアニン系、又はチオフェン系等の各種有機色素等が挙げられる。金属錯体色素としては、例えば、ルテニウム錯体等が挙げられる。   The sensitizing dye is composed of an organic dye or a metal complex dye. Examples of the organic dye include various organic dyes such as coumarin, polyene, cyanine, hemicyanine, and thiophene. Examples of the metal complex dye include a ruthenium complex and the like.

対向電極20は、対向電極支持体22と、対向電極導電層24とを有する。対向電極導電層24は、対向電極支持体22上に位置している。
光電極10と対向電極20とは、無機半導体層16と対向電極導電層24とを向き合わせて、対向している。
The counter electrode 20 has a counter electrode support 22 and a counter electrode conductive layer 24. The counter electrode conductive layer 24 is located on the counter electrode support 22.
The photoelectrode 10 and the counter electrode 20 face each other with the inorganic semiconductor layer 16 and the counter electrode conductive layer 24 facing each other.

対向電極支持体22の材質は、光電極支持体12と同様に、RtoR方式を用いた連続生産に適用できる程度に柔軟性を有し、大面積フィルム状に形成可能な材質であれば、特に限定されない。対向電極支持体22の材質としては、例えば、光電極支持体12と同様の樹脂材料が挙げられる。   Similar to the photoelectrode support 12, the material of the counter electrode support 22 is flexible as long as it can be applied to continuous production using the RtoR method, and if it is a material that can be formed into a large area film. Not limited. Examples of the material of the counter electrode support 22 include the same resin material as that of the photoelectrode support 12.

対向電極導電層24の素材は、光電極導電層14の素材と同様に、金属、導電性透明無機材料、導電性透明ポリマー等である。対向電極導電層24と光電極導電層14とは、同じでもよいし、異なってもよい。対向電極20が光入射面を形成する場合、対向電極導電層24は、光透過性を有する。この場合、対向電極導電層24としては、いわゆる透明導電層が好ましい。
対向電極導電層24の好ましい厚みは、光電極導電層14の好ましい厚みと同様である。対向電極導電層24の厚みは、光電極導電層14の厚みと同じでもよいし、異なってもよい。
The material of the counter electrode conductive layer 24 is a metal, a conductive transparent inorganic material, a conductive transparent polymer, or the like, like the material of the photoelectrode conductive layer 14. The counter electrode conductive layer 24 and the photoelectrode conductive layer 14 may be the same or different. When the counter electrode 20 forms a light incident surface, the counter electrode conductive layer 24 has light transmittance. In this case, a so-called transparent conductive layer is preferable as the counter electrode conductive layer 24.
The preferred thickness of the opposing electrode conductive layer 24 is the same as the preferred thickness of the photoelectrode conductive layer 14. The thickness of the opposing electrode conductive layer 24 may be the same as or different from the thickness of the photoelectrode conductive layer 14.

対向電極導電層24上に触媒層26が位置してもよい。触媒層26は、対向電極導電層24の光電極10側の面に、互いに離間して複数設けられている。触媒層26は、電荷移動体30に接している。触媒層26の外方で、対向電極導電層24の一部は、電荷移動体30と接している。
触媒層26の材質としては、例えば、PEDOT、プラチナ、ITO、ポリアニリン、又はカーボン等が挙げられる。
触媒層26の厚みは、2nm〜500μmが好ましい。触媒層26の厚みは、光電極支持体12の面と直交する断面の画像における、任意の10点の測定値の平均値である。
The catalyst layer 26 may be located on the counter electrode conductive layer 24. A plurality of catalyst layers 26 are provided on the surface of the counter electrode conductive layer 24 on the side of the photoelectrode 10 so as to be separated from each other. The catalyst layer 26 is in contact with the charge transfer body 30. Outside the catalyst layer 26, a part of the counter electrode conductive layer 24 is in contact with the charge transfer body 30.
Examples of the material of the catalyst layer 26 include PEDOT, platinum, ITO, polyaniline, and carbon.
The thickness of the catalyst layer 26 is preferably 2 nm to 500 μm. The thickness of the catalyst layer 26 is an average value of measured values at arbitrary 10 points in an image of a cross section orthogonal to the surface of the photoelectrode support 12.

電荷移動体30は、電解液又はゲル電解質である。本実施形態の電荷移動体30は、無機半導体層16、光電極導電層14、触媒層26、及び対向電極導電層24に接している。電荷移動体30は、増感色素に電子を供給可能な酸化還元対を有する。
電解液は、分散媒(以下「電解液分散媒」ということがある)と、電解液分散媒に分散している酸化還元対とを有する。ゲル電解質は電解液をゲル状にしたものである。ゲル電解質の製造方法は、例えば、電解液にゲル化剤又は増粘剤を加えてゲル状又にする。ゲル電解質の電荷移動体30は色素増感太陽電池1の耐久性を高めることができる。
The charge transfer body 30 is an electrolytic solution or a gel electrolyte. The charge transfer body 30 of the present embodiment is in contact with the inorganic semiconductor layer 16, the photoelectrode conductive layer 14, the catalyst layer 26, and the counter electrode conductive layer 24. The charge transfer body 30 has a redox couple capable of supplying electrons to the sensitizing dye.
The electrolytic solution has a dispersion medium (hereinafter sometimes referred to as an “electrolyte dispersion medium”) and a redox couple dispersed in the electrolytic solution dispersion medium. The gel electrolyte is obtained by gelling an electrolytic solution. In a method for producing a gel electrolyte, for example, a gelling agent or a thickener is added to an electrolytic solution to form a gel. The gel electrolyte charge transfer body 30 can enhance the durability of the dye-sensitized solar cell 1.

電解液分散媒は、非水系溶剤、イオン液体等である。非水系溶剤は、アセトニトリル、プロピオニトリル等である。イオン液体は、ヨウ化ジメチルプロピルイミダゾリウム、ヨウ化ブチルメチルイミダゾリウム等である。
酸化還元対は、支持電解質とハロゲン分子との組み合わせである。
支持電解質は、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム等の金属ヨウ化物、テトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等のヨウ素塩等のヨウ化物;臭化ナトリウム、臭化カリウム等の金属臭化物、テトラアルキルアンモニウムブロマイド、ピリジニウムブロマイド、イミダゾリウムブロマイド等の臭素塩等の臭素化合物である。
ハロゲン分子は、ヨウ素分子、臭素分子等である。
支持電解質とハロゲン分子との組み合わせとしては、ヨウ化物とヨウ素分子との組み合わせ、臭素化合物と臭素分子との組み合わせが好ましい。
The electrolyte dispersion medium is a non-aqueous solvent, an ionic liquid, or the like. Non-aqueous solvents include acetonitrile, propionitrile and the like. The ionic liquid is dimethylpropyl imidazolium iodide, butyl methyl imidazolium iodide, or the like.
A redox couple is a combination of a supporting electrolyte and a halogen molecule.
Supporting electrolytes include metal iodides such as lithium iodide, sodium iodide and potassium iodide; iodides such as iodine salts such as tetraalkylammonium iodide, pyridinium iodide and imidazolium iodide; sodium bromide, bromide Metal bromides such as potassium; and bromine compounds such as bromide salts such as tetraalkylammonium bromide, pyridinium bromide and imidazolium bromide.
The halogen molecule is an iodine molecule, a bromine molecule, or the like.
As the combination of the supporting electrolyte and the halogen molecule, a combination of an iodide and an iodine molecule and a combination of a bromine compound and a bromine molecule are preferable.

封止材40は、光電極10と対向電極20との間に位置する。封止材40の厚み方向の両端は、光電極10及び対向電極20にそれぞれ接合している。封止材40は融着部60とともに電荷移動体30を封止する。
本実施形態において、封止材40の厚み方向の両端は、光電極導電層14及び対向電極導電層24にそれぞれ接合している。
封止材40は、電荷移動体30を封止できればよく、光硬化性樹脂、熱硬化性樹脂等、従来公知の封止材を使用できる。
封止材40の厚みは、10〜200μmが好ましい。封止材40の厚みは、光電極支持体12の面と直交する断面の画像における、任意の10点の測定値の平均値である。
The sealing material 40 is located between the photoelectrode 10 and the counter electrode 20. Both ends in the thickness direction of the sealing material 40 are respectively joined to the photoelectrode 10 and the counter electrode 20. The sealing material 40 seals the charge transfer body 30 together with the fusion part 60.
In the present embodiment, both ends in the thickness direction of the sealing material 40 are joined to the photoelectrode conductive layer 14 and the counter electrode conductive layer 24, respectively.
The sealing material 40 only needs to seal the charge transfer body 30, and a conventionally known sealing material such as a photocurable resin or a thermosetting resin can be used.
The thickness of the sealing material 40 is preferably 10 to 200 μm. The thickness of the sealing material 40 is an average value of measured values at arbitrary 10 points in an image of a cross section orthogonal to the surface of the photoelectrode support 12.

D1方向において隣り合う封止材40の間に導通材50が位置している。導通材50は、光電極導電層14及び対向電極導電層24に接している。
導通材50の材質としては、導通可能な素材であれば特に限定されず、例えば、公知の導電材、導電ペースト、又は導電性微粒子と接着剤の混合物等が挙げられる。
色素増感太陽電池1を所望のパターンで切り出す際に、導通材50の切断が容易である点からは、導通材50の材質として、エポキシ樹脂やフェノール樹脂等の接着剤に、適量の導電性微粒子を混合した導通ペーストが好ましい。導通材50は、封止材40と同様の材料からなるバインダーを含んでもよい。
The conductive material 50 is located between the sealing materials 40 adjacent in the direction D1. The conductive material 50 is in contact with the photoelectrode conductive layer 14 and the counter electrode conductive layer 24.
The material of the conductive material 50 is not particularly limited as long as it is a conductive material, and examples thereof include a known conductive material, conductive paste, or a mixture of conductive fine particles and an adhesive.
When the dye-sensitized solar cell 1 is cut out in a desired pattern, the conductive material 50 can be easily cut from the point that the conductive material 50 is made of an adhesive such as an epoxy resin or a phenol resin. A conductive paste mixed with fine particles is preferable. The conductive material 50 may include a binder made of the same material as the sealing material 40.

色素増感太陽電池1を平面視した図1において、光電極導電層14と対向電極導電層24と封止材40とが重なる領域には、帯状の第一絶縁部(絶縁部)41又は第二絶縁部(絶縁部)42が存在している。
第一絶縁部41は、光電極導電層14を貫通する切断部である。第一絶縁部41は、光電極導電層14を分断して電気的に絶縁している。
第二絶縁部42は、対向電極導電層24を貫通する切断部である。第二絶縁部42は、対向電極導電層24を分断して電気的に 絶縁している。
D1方向において、第一絶縁部41と第二絶縁部42は交互に存在している。
In FIG. 1 in which the dye-sensitized solar cell 1 is viewed in plan, a region where the photoelectrode conductive layer 14, the counter electrode conductive layer 24, and the sealing material 40 overlap each other has a band-shaped first insulating portion (insulating portion) 41 or Two insulating parts (insulating parts) 42 are present.
The first insulating part 41 is a cut part penetrating the photoelectrode conductive layer 14. The first insulating portion 41 separates and electrically insulates the photoelectrode conductive layer 14.
The second insulating part 42 is a cut part penetrating the counter electrode conductive layer 24. The second insulating portion 42 separates and electrically insulates the counter electrode conductive layer 24.
In the direction D1, the first insulating portions 41 and the second insulating portions 42 exist alternately.

融着部60は、光電極10と対向電極20に外力を加えて圧着した部分である。例えば、後述の図5に示すように、光電極10と対向電極20を貼り合わせた状態で、超音波振動を付与し、光電極支持体12と対向電極支持体22とを接合する。なお、図示していないが、融着部60中に、光電極導電層14、無機半導体層16、対向電極導電層24、触媒層26等がわずかに残っている場合があるが、これらの層は超音波振動の作用で分断されており、融着部60は、電気的に絶縁している。
融着部60は、図1に示すように、D2方向において、所定の間隔で存在する。
The fusion portion 60 is a portion where the photoelectrode 10 and the counter electrode 20 are pressed by applying an external force. For example, as shown in FIG. 5 described below, in a state where the photoelectrode 10 and the counter electrode 20 are bonded, ultrasonic vibration is applied to join the photoelectrode support 12 and the counter electrode support 22. Although not shown, the photoelectrode conductive layer 14, the inorganic semiconductor layer 16, the counter electrode conductive layer 24, the catalyst layer 26, and the like may slightly remain in the fused portion 60. Are separated by the action of ultrasonic vibration, and the fused portion 60 is electrically insulated.
As shown in FIG. 1, the fusion parts 60 exist at predetermined intervals in the direction D2.

図3に示すように、光電極10、対向電極20、封止材40、及び融着部60で囲まれた領域Sにおける、光電極支持体12の最大厚みをT1、対向電極支持体22の最大厚みをT2とし、領域Sに隣接する融着部60の最小厚みをT3とするとき、T3/(T1+T2)で表される比は0.4〜1である。
1個の色素増感太陽電池1に複数の融着部60が存在する場合は、全部の融着部60が上記T3/(T1+T2)の範囲内にあることを意味する。
光電極支持体12の最大厚みT1、対向電極支持体22の最大厚みT2、及び融着部60の最小厚みT3は、光電極支持体12の面と直交する断面における測定値である。
T3/(T1+T2)の値が0.4以上であると、融着部60に近い領域における液漏れが生じ難く、1以下であると融着部の絶縁性に優れる。T3/(T1+T2)の値は0.4以上1未満が好ましく、0.5〜0.9がより好ましく、0.6〜0.8がさらに好ましい。
T3/(T1+T2)の値は、融着部60の形成条件によって調整できる。例えば、融着時に、光電極10及び対向電極20に加える外力が大きくなると、T3/(T1+T2)の値は小さくなる。
As shown in FIG. 3, the maximum thickness of the photoelectrode support 12 in a region S surrounded by the photoelectrode 10, the counter electrode 20, the sealing material 40, and the fusion portion 60 is T 1, Assuming that the maximum thickness is T2 and the minimum thickness of the fused portion 60 adjacent to the region S is T3, the ratio represented by T3 / (T1 + T2) is 0.4 to 1.
When a plurality of fusion parts 60 exist in one dye-sensitized solar cell 1, it means that all the fusion parts 60 are within the range of T3 / (T1 + T2).
The maximum thickness T1 of the photoelectrode support 12, the maximum thickness T2 of the opposing electrode support 22, and the minimum thickness T3 of the fused portion 60 are measured values in a cross section orthogonal to the plane of the photoelectrode support 12.
When the value of T3 / (T1 + T2) is 0.4 or more, liquid leakage hardly occurs in a region near the fused portion 60, and when the value is 1 or less, the insulation of the fused portion is excellent. The value of T3 / (T1 + T2) is preferably 0.4 or more and less than 1, more preferably 0.5 to 0.9, and even more preferably 0.6 to 0.8.
The value of T3 / (T1 + T2) can be adjusted according to the conditions for forming the fused portion 60. For example, when the external force applied to the photoelectrode 10 and the counter electrode 20 at the time of fusion increases, the value of T3 / (T1 + T2) decreases.

T1は、10〜500μmが好ましく、50〜150μmがより好ましい。T2は、10〜500μmが好ましく、50〜150μmがより好ましい。T1とT2は、同じでもよく、異なってもよい。T1、T2が上記範囲の下限値以上であると充分な製品強度が得られやすく、上限値以下であると製品を充分に薄型化できる。
T1及びT2は超音波振動の作用を受けていないため、電気モジュールを組み立てる前の、光電極支持体12の厚み及び対向電極支持体22の厚みと同じとみなすことができる。組み立て前の支持体等の厚みは、接触式のマイクロメータで測定でき、任意の10点の厚みの測定値の平均値を採用する。
T1 is preferably from 10 to 500 μm, more preferably from 50 to 150 μm. T2 is preferably from 10 to 500 µm, more preferably from 50 to 150 µm. T1 and T2 may be the same or different. When T1 and T2 are equal to or more than the lower limit of the above range, sufficient product strength is easily obtained, and when it is equal to or less than the upper limit, the product can be sufficiently thinned.
Since T1 and T2 are not affected by the ultrasonic vibration, the thickness of the photoelectrode support 12 and the thickness of the counter electrode support 22 before assembling the electric module can be regarded as the same. The thickness of the support or the like before assembly can be measured with a contact-type micrometer, and the average value of the measured values of the thickness at any 10 points is adopted.

[電気モジュールの製造方法]
本実施形態の電気モジュールの製造方法は、図4に例示する製造装置100を用いて、所定の方向D3に沿って連続的に搬送される光電極10上に、封止材40、導通材50及び電荷移動体30を設け、所定の方向D4に沿って連続的に搬送される対向電極20を貼り合わせた後、融着部60を形成して、図1〜図3に示す構成の色素増感太陽電池1を連続的に製造する方法である。
[Method of manufacturing electric module]
The manufacturing method of the electric module of the present embodiment uses the manufacturing apparatus 100 illustrated in FIG. 4 to seal the sealing material 40 and the conductive material 50 on the photoelectrode 10 that is continuously conveyed along the predetermined direction D3. And a charge transfer body 30, and after bonding the counter electrode 20 which is continuously conveyed along a predetermined direction D4, a fused portion 60 is formed to form a dye sensitizer having the structure shown in FIGS. This is a method for continuously manufacturing the solar cell 1.

まず、図示略のRtoR方式を採用した装置を用いて、光電極支持体12を所定の方向に沿って連続的に搬送しながら、公知のスパッタリング法や印刷法等を用いて、光電極支持体12の表面に光電極導電層14を形成する。次いで、公知のエアロゾルデポジション法(Aerosol Deposition method:AD法)を用いて、光電極導電層14の所定の位置に無機半導体層16を形成する。次いで、公知の方法で、無機半導体層16に増感色素を吸着させて光電極10を得る。光電極10を、無機半導体層16を外側にした状態でロール状に巻き取る。
光電極導電層14を形成した後、無機半導体層16を形成する前の状態で、一旦ロール状に巻き取ってもよい。また、光電極10を形成した後、巻き取らずに、次工程を行ってもよい。
First, while continuously transporting the photoelectrode support 12 in a predetermined direction by using a device adopting an RtoR method (not shown), the photoelectrode support 12 is formed by using a known sputtering method, a printing method, or the like. 12, a photoelectrode conductive layer 14 is formed. Next, the inorganic semiconductor layer 16 is formed at a predetermined position of the photoelectrode conductive layer 14 by using a known aerosol deposition method (AD method). Next, the photoelectrode 10 is obtained by adsorbing the sensitizing dye to the inorganic semiconductor layer 16 by a known method. The photoelectrode 10 is wound into a roll with the inorganic semiconductor layer 16 facing outward.
After the formation of the photoelectrode conductive layer 14 and before the formation of the inorganic semiconductor layer 16, it may be once wound into a roll. After the formation of the photoelectrode 10, the next step may be performed without winding.

これとは別に、図示略のRtoR方式を採用した装置を用いて、対向電極支持体22を所定の方向に沿って連続的に搬送しながら、公知のスパッタリング法や印刷法等を用いて、対向電極支持体22の表面に対向電極導電層24を形成する。次いで、公知のスパッタリング法や印刷法等を用いて、対向電極導電層24の所定の位置に触媒層26を形成して対向電極20を得る。対向電極20を、触媒層26を内側にした状態でロール状に巻き取る。
対向電極導電層24を形成した後、触媒層26を形成する前の状態で、一旦ロール状に巻き取ってもよい。また、対向電極20を形成した後、巻き取らずに、次工程を行ってもよい。
Separately from this, while continuously transporting the counter electrode support 22 in a predetermined direction using an apparatus that employs an RtoR method (not shown), the counter electrode support 22 is formed by using a known sputtering method, a printing method, or the like. The counter electrode conductive layer 24 is formed on the surface of the electrode support 22. Next, the catalyst layer 26 is formed at a predetermined position of the counter electrode conductive layer 24 by using a known sputtering method, a printing method, or the like to obtain the counter electrode 20. The counter electrode 20 is wound up in a roll shape with the catalyst layer 26 inside.
After the formation of the counter electrode conductive layer 24 and before the formation of the catalyst layer 26, it may be temporarily wound into a roll. After forming the counter electrode 20, the next step may be performed without winding.

次いで、図4に示すように、製造装置100にロール状の光電極10及び対向電極20を設置する。
光電極10をD3方向に繰り出して搬送しながら、図示略の絶縁部形成装置を用いて、第一絶縁部41を形成する。絶縁部形成装置としては、例えば、ダイカットロールを備えた加工装置、レーザー加工装置等が挙げられる。
次に、搬送中の光電極10に、封止材塗布装置101を用いて封止材料を塗布し、未硬化の封止材40を形成する。続いて、導通材塗布装置102を用いて導通材50の材料を塗布し、導通材50を形成する。続いて、電解液塗布装置103を用いて電解液を塗布し、電荷移動体30を形成する。
Next, as shown in FIG. 4, the roll-shaped photoelectrode 10 and the counter electrode 20 are installed in the manufacturing apparatus 100.
The first insulating portion 41 is formed by using an insulating portion forming device (not shown) while feeding and transporting the photoelectrode 10 in the D3 direction. Examples of the insulating portion forming device include a processing device having a die cut roll, a laser processing device, and the like.
Next, a sealing material is applied to the photoelectrode 10 being conveyed using the sealing material application device 101 to form an uncured sealing material 40. Subsequently, the material of the conductive material 50 is applied using the conductive material application device 102 to form the conductive material 50. Subsequently, an electrolytic solution is applied using the electrolytic solution application device 103 to form the charge transfer body 30.

一方、対向電極20をD4方向に繰り出して搬送しながら、図示略の絶縁部形成装置を用いて、第二絶縁部42を形成する。絶縁部形成装置は前記と同様である。   On the other hand, the second insulating portion 42 is formed using an insulating portion forming device (not shown) while the counter electrode 20 is being fed out and transported in the D4 direction. The insulating part forming apparatus is the same as described above.

次に、一対の押圧ロール111、112の間に、電荷移動体30を形成した光電極10と、第二絶縁部42を形成した対向電極20とを、重ね合わせた状態で導入する。押圧ロール111、112は、これらの間を通過する光電極10及び対向電極20を互いに押圧する。
続いて、押圧ロール111、112を通過した直後に、図示略の硬化装置を用いて、未硬化の封止材40を硬化させて、光電極10と封止材40とを貼り合わせるとともに、対向電極20と封止材40とを貼り合わせる。例えば、未硬化の封止材40が光硬化性樹脂である場合、硬化装置としてUVランプを用いて紫外線を照射して封止材40を硬化させる。このようにして光電極10と対向電極20を、封止材40を介して貼り合わせる。
Next, between the pair of pressing rolls 111 and 112, the photoelectrode 10 on which the charge moving body 30 is formed and the counter electrode 20 on which the second insulating portion 42 is formed are introduced in a superposed state. The press rolls 111 and 112 press the photoelectrode 10 and the counter electrode 20 that pass between them.
Subsequently, immediately after passing through the pressing rolls 111 and 112, the uncured sealing material 40 is cured by using a curing device (not shown), and the photoelectrode 10 and the sealing material 40 are bonded together. The electrode 20 and the sealing material 40 are bonded together. For example, when the uncured sealing material 40 is a photocurable resin, the sealing material 40 is cured by irradiating ultraviolet rays using a UV lamp as a curing device. In this way, the photoelectrode 10 and the counter electrode 20 are bonded via the sealing material 40.

次に、図5に示すように、超音波振動を付与する超音波付与部115と、超音波付与部115に対向する台座116を備える融着部形成装置を用いて、所定の位置に融着部60を形成する。
超音波付与部115の先端部115aと、台座116の先端部116aには、それぞれ複数の凹凸が形成されている。両者の凹凸は互いに噛み合う形状である。超音波付与部115と台座116の間の距離は可変である。
貼り合された対向電極20と光電極10に、超音波付与部115の先端部115aと、台座116の先端部116aをそれぞれ接触させて、超音波付与部115と台座116との距離を縮小する。このようにして超音波振動を付与しながら加圧すると、光電極支持体12、対向電極支持体22、及びこれらの間に存在する封止材40等の構造物に、振動エネルギーが伝達されて摩擦熱が発生し、融点が低い構造物は溶融して流動する。また、前記構造物に金属のような剛体が存在する場合、該剛体は超音波振動によって破壊され、破壊された粒径が比較的小さければ拡散(移動)する。
その結果、光電極支持体12と対向電極支持体22との間に存在していた封止材40等の構造物が、融着部60に隣接する部分に押し出され、図3に示すように光電極支持体12と対向電極支持体22とが融着した融着部60となる。
Next, as shown in FIG. 5, fusion is performed at a predetermined position using a fusion section forming apparatus including an ultrasonic application section 115 for applying ultrasonic vibration and a pedestal 116 opposed to the ultrasonic application section 115. The part 60 is formed.
A plurality of projections and depressions are formed on the distal end 115a of the ultrasonic wave applying section 115 and the distal end 116a of the pedestal 116, respectively. The two concavities and convexities have shapes that mesh with each other. The distance between the ultrasonic wave application unit 115 and the pedestal 116 is variable.
The distal end 115a of the ultrasonic wave applying section 115 and the distal end 116a of the pedestal 116 are brought into contact with the bonded counter electrode 20 and the photoelectrode 10, respectively, to reduce the distance between the ultrasonic applying section 115 and the pedestal 116. . When pressure is applied while applying ultrasonic vibration in this manner, vibration energy is transmitted to structures such as the photoelectrode support 12, the counter electrode support 22, and the sealing material 40 existing therebetween. Friction heat is generated, and the structure having a low melting point melts and flows. In addition, when a rigid body such as a metal exists in the structure, the rigid body is broken by ultrasonic vibration, and diffuses (moves) if the broken particle size is relatively small.
As a result, the structure such as the sealing material 40 existing between the photoelectrode support 12 and the counter electrode support 22 is extruded to a portion adjacent to the fusion portion 60, as shown in FIG. The fused portion 60 is formed by fusing the photoelectrode support 12 and the counter electrode support 22 together.

以上の工程で、図1〜図3に示す色素増感太陽電池1を製造できる。この後、長尺の色素増感太陽電池1を、1つの融着部60を分断するように、融着部60の長さ方向(D1方向)に沿って切断して、実際に使用される大きさの色素増感太陽電池を切り出してもよい。   Through the above steps, the dye-sensitized solar cell 1 shown in FIGS. 1 to 3 can be manufactured. Thereafter, the long dye-sensitized solar cell 1 is cut along the length direction (D1 direction) of the fused portion 60 so as to divide one fused portion 60, and is actually used. A dye-sensitized solar cell having a size may be cut out.

[変形例]
図1に示す実施形態では、融着部60をD1方向に平行(D2方向に垂直)に形成しているが、図6に例示する色素増感太陽電池2のように、融着部61をD1方向に対して斜めに形成してもよい。色素増感太陽電池2を融着部61に沿って切断すると、台形や平行四辺形の色素増感太陽電池が得られる。
図6において図1と同じ構成要素には同じ符号を付す。図6の例も図2に示す構造と同じ構造を有するが、一部の構成要素の図示を省略している。
融着部61とD1方向との角度θは、融着部61を形成する工程において、光電極10及び対向電極20の搬送方向(D2方向)と超音波付与部115との角度によって決まる。前記角度θは特に限定されず、所望の形状に応じて設定できる。例えば0〜45°が好ましい。色素増感太陽電池2に存在する複数のθは互いに同じでもよく、異なってもよい。
[Modification]
In the embodiment shown in FIG. 1, the fusion portion 60 is formed parallel to the direction D1 (perpendicular to the direction D2). However, as in the dye-sensitized solar cell 2 illustrated in FIG. It may be formed obliquely to the direction D1. When the dye-sensitized solar cell 2 is cut along the fused portion 61, a trapezoidal or parallelogram dye-sensitized solar cell is obtained.
6, the same components as those in FIG. 1 are denoted by the same reference numerals. The example of FIG. 6 also has the same structure as the structure shown in FIG. 2, but illustration of some components is omitted.
The angle θ between the fusion portion 61 and the direction D1 is determined by the angle between the direction in which the photoelectrode 10 and the counter electrode 20 are transported (the direction D2) and the ultrasonic wave application portion 115 in the step of forming the fusion portion 61. The angle θ is not particularly limited, and can be set according to a desired shape. For example, 0 to 45 ° is preferable. A plurality of θs present in the dye-sensitized solar cell 2 may be the same or different.

以下に、本発明の実施例を詳細に説明するが、本発明はこれらの実施例のみに限定されない。 Hereinafter, examples of the present invention will be described in detail, but the present invention is not limited to only these examples.

[実施例1〜4、比較例1、2]
以下に示す材料を用いて、上記実施形態に示した電気モジュールの製造方法の手順で、図1〜図3に示す色素増感太陽電池(電気モジュール)1を製造した。各例において、融着部の最小厚みT3が表1に示す値となるように超音波融着条件を調整した。具体的には超音波付与部の先端部と台座の先端部との距離を調整した。なお、液漏れを観察するために、電解液を着色した。
・光電極支持体及び対向電極支持体…PET。
・光電極導電層及び対向電極導電層…FTO。
・無機半導体層…酸化チタンからなる多孔質層。
・増感色素…ルテニウム系色素
・触媒層…プラチナ
・電荷移動体…アセトニトリルに着色剤を添加した電解液。
・封止材…紫外線硬化型樹脂。
・導通材…積水化学工業製、ミクロパール(登録商標)AU−250。
光電極において、光電極支持体の厚み(T1)125μm、光電極導電層の厚み100nm、無機半導体層の厚み10μmとした。
対向電極において、対向電極支持体の厚み(T2)125μm、対向電極導電層の厚み100nm、触媒層の厚み10nmとした。
封止材の幅は2mm、封止材の厚みは50μmとした。
[Examples 1 to 4, Comparative Examples 1 and 2]
The dye-sensitized solar cell (electric module) 1 shown in FIGS. 1 to 3 was manufactured by using the following materials in the procedure of the method for manufacturing an electric module described in the above embodiment. In each example, the ultrasonic welding conditions were adjusted so that the minimum thickness T3 of the welded portion became a value shown in Table 1. Specifically, the distance between the tip of the ultrasonic wave application unit and the tip of the pedestal was adjusted. The electrolyte was colored to observe the leakage.
-Photoelectrode support and counter electrode support: PET.
-Photoelectrode conductive layer and counter electrode conductive layer: FTO.
-Inorganic semiconductor layer: a porous layer made of titanium oxide.
・ Sensitizing dye: ruthenium-based dye ・ Catalyst layer: platinum ・ Charge transfer agent: electrolytic solution obtained by adding a colorant to acetonitrile
-Sealing material: UV-curable resin.
-Conductive material: Micropearl (registered trademark) AU-250 manufactured by Sekisui Chemical Co., Ltd.
In the photoelectrode, the thickness (T1) of the photoelectrode support was 125 μm, the thickness of the photoelectrode conductive layer was 100 nm, and the thickness of the inorganic semiconductor layer was 10 μm.
In the counter electrode, the thickness (T2) of the counter electrode support was 125 μm, the thickness of the counter electrode conductive layer was 100 nm, and the thickness of the catalyst layer was 10 nm.
The width of the sealing material was 2 mm, and the thickness of the sealing material was 50 μm.

(液漏れ防止効果の評価)
各例において、得られた色素増感太陽電池の任意の10個の融着部を目視で観察して、電解液が封止材側に流出する現象(液漏れ)の有無を調べた。下記の評価基準で液漏れ防止効果を評価した。結果を表1に示す。
[評価基準]
A:液漏れした融着部がゼロ。
B:液漏れした融着部が1個または2個。
C:液漏れした融着部が3個または4個。
D:液漏れした融着部が5個以上。
(Evaluation of liquid leakage prevention effect)
In each example, any ten fused portions of the obtained dye-sensitized solar cell were visually observed to determine whether or not there was a phenomenon (liquid leakage) in which the electrolyte solution flowed out to the sealing material side. The liquid leakage prevention effect was evaluated according to the following evaluation criteria. Table 1 shows the results.
[Evaluation criteria]
A: There are no fused parts that leak.
B: One or two fused parts leaked.
C: Three or four fused parts leaked.
D: Five or more fused parts leaked.

(融着部の絶縁性の評価)
各例において、前記液漏れの有無を調べた10個の融着部について、下記の方法で絶縁性試験をした。
[絶縁性試験の方法]
色素増感太陽電池を、1個の融着部を挟む両側の対向電極導電層が露出するように切断し、該両側の対向電極導電層にそれぞれテスター棒を当てて導通性を確認した。
テスターの表示が「オーバーロード」を示した場合は絶縁良好、「オーバーロード」以外を示した場合は絶縁不良と判定した。10個の融着部について判定した結果に基づき、下記の評価基準で絶縁性を評価した。結果を表1に示す。
[評価基準]
A:絶縁不良である融着部がゼロ。
B:絶縁不良である融着部が1個または2個。
C:絶縁不良である融着部が3個または4個。
D:絶縁不良である融着部が5個以上。
(Evaluation of insulation properties of the fused part)
In each example, an insulation test was performed on the ten fused portions, for which the presence or absence of the liquid leakage was examined, by the following method.
[Method of insulation test]
The dye-sensitized solar cell was cut so that the opposing electrode conductive layers on both sides sandwiching one fused portion were exposed, and a tester rod was applied to each of the opposing electrode conductive layers on both sides to check the conductivity.
When the display of the tester showed "overload", it was determined that the insulation was good, and when it showed anything other than "overload", it was determined that the insulation was poor. Based on the results of the determination for the ten fused parts, the insulation was evaluated according to the following evaluation criteria. Table 1 shows the results.
[Evaluation criteria]
A: There are no fused parts where insulation is defective.
B: One or two fused portions having defective insulation.
C: Three or four fused portions having poor insulation.
D: Five or more fused portions having poor insulation.

(剥離強度の評価)
各例において、前記液漏れの有無を調べた10個の融着部について、光電極支持体と対向電極支持体との剥離強度を、T字剥離強度試験方法に基づき、T字型のピール試験機、電動スタンド(型番:MX2−500N−L、製造販売元:株式会社イマダ)、デジタルフォースゲージ(型番:ZTS−100N、製造販売元:株式会社イマダ)を用いて測定した。前記剥離強度が6N/10mm以上であれば合格と判定した。耐久性の点では剥離強度が高い方が好ましい。
10個の融着部の測定結果の平均値を表1に示す。
(Evaluation of peel strength)
In each example, the peel strength between the photoelectrode support and the counter electrode support was determined for each of the ten fused parts, for which the presence or absence of the liquid leakage was checked, based on a T-shaped peel strength test method. And a motorized stand (model number: MX2-500NL, manufacturer and distributor: Imada Co., Ltd.) and a digital force gauge (model number: ZTS-100N; manufacturer and distributor: Imada Corporation). If the peel strength was 6 N / 10 mm or more, it was determined to be acceptable. From the viewpoint of durability, it is preferable that the peel strength is high.
Table 1 shows the average value of the measurement results of the ten fused parts.

Figure 2020038941
Figure 2020038941

表1の結果に示されるように、T3/(T1+T2)が0.4〜1である実施例1〜4は電解液の液漏れ防止効果が良好であった。
一方、T3/(T1+T2)が0.4未満である比較例1は液漏れ防止効果に劣った。
As shown in the results of Table 1, Examples 1 to 4 in which T3 / (T1 + T2) was 0.4 to 1 had a good effect of preventing the electrolyte from leaking.
On the other hand, Comparative Example 1 in which T3 / (T1 + T2) was less than 0.4 was inferior in the effect of preventing liquid leakage.

1 色素増感型太陽電池(電気モジュール)、10 光電極、12 光電極支持体、14光電極導電層、20 対向電極、22 対向電極支持体、24 対向電極導電層、30 電荷移動体、40 封止材 60 融着部 DESCRIPTION OF SYMBOLS 1 Dye-sensitized solar cell (electric module), 10 photoelectrodes, 12 photoelectrode supports, 14 photoelectrode conductive layers, 20 counter electrodes, 22 counter electrode supports, 24 counter electrode conductive layers, 30 charge transfer bodies, 40 Sealing material 60 fusion spliced part

Claims (3)

光電極、前記光電極と離間して対向する対向電極、前記光電極と前記対向電極との間に位置する電荷移動体、前記光電極と前記対向電極との間に位置して前記電荷移動体を封止する封止材、及び前記光電極と前記対向電極とを融着した融着部を有する電気モジュールであって、
前記光電極は、光電極支持体、及び前記光電極支持体上に位置する光電極導電層を有し、
前記対向電極は、対向電極支持体、及び前記対向電極支持体上に位置する対向電極導電層を有し、
前記電荷移動体は、前記光電極と前記対向電極と前記封止材と前記融着部とで囲まれた領域Sに存在し、
前記領域Sにおける、前記光電極支持体の最大厚みをT1、前記対向電極支持体の最大厚みをT2とし、前記領域Sに隣接する前記融着部の最小厚みをT3とするとき、T3/(T1+T2)で表される値が0.4〜1であることを特徴とする電気モジュール。
A photoelectrode, a counter electrode spaced apart from and facing the photoelectrode, a charge moving body positioned between the photoelectrode and the counter electrode, and a charge moving body positioned between the photoelectrode and the counter electrode. A sealing material for sealing, and an electric module having a fused portion obtained by fusing the photoelectrode and the counter electrode,
The photoelectrode has a photoelectrode support, and a photoelectrode conductive layer located on the photoelectrode support,
The counter electrode has a counter electrode support, and a counter electrode conductive layer located on the counter electrode support,
The charge transfer body is present in a region S surrounded by the photoelectrode, the counter electrode, the sealing material, and the fusion bonding portion,
When the maximum thickness of the photoelectrode support in the region S is T1, the maximum thickness of the counter electrode support is T2, and the minimum thickness of the fused portion adjacent to the region S is T3, T3 / ( An electric module, wherein the value represented by (T1 + T2) is 0.4 to 1.
前記電気モジュールが色素増感太陽電池であり、前記光電極が前記光電極導電層上に位置する無機半導体層を有し、前記無機半導体層が増感色素を担持している、請求項1に記載の電気モジュール。   The electric module according to claim 1, wherein the electric module is a dye-sensitized solar cell, wherein the photoelectrode has an inorganic semiconductor layer located on the photoelectrode conductive layer, and the inorganic semiconductor layer carries a sensitizing dye. An electrical module as described. 請求項1又は請求項2に記載の電気モジュールを製造する、電気モジュールの製造方法であって、
前記光電極の、前記対向電極側となる面に前記電荷移動体及び前記封止材を設け、前記光電極と前記対向電極とを貼り合わせ、前記T3/(T1+T2)で表される値が0.4〜1となるように前記融着部を形成する、電気モジュールの製造方法。
It is a manufacturing method of an electric module which manufactures the electric module of Claim 1 or Claim 2, Comprising:
The charge transfer body and the sealing material are provided on a surface of the photoelectrode on the side of the counter electrode, and the photoelectrode and the counter electrode are bonded to each other, and the value represented by T3 / (T1 + T2) is 0. 4. A method for manufacturing an electric module, wherein the fused portion is formed so as to be 4 to 1.
JP2018166268A 2018-09-05 2018-09-05 Electric module and manufacturing method thereof Expired - Fee Related JP6703574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018166268A JP6703574B2 (en) 2018-09-05 2018-09-05 Electric module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018166268A JP6703574B2 (en) 2018-09-05 2018-09-05 Electric module and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2020038941A true JP2020038941A (en) 2020-03-12
JP6703574B2 JP6703574B2 (en) 2020-06-03

Family

ID=69738245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018166268A Expired - Fee Related JP6703574B2 (en) 2018-09-05 2018-09-05 Electric module and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6703574B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004171827A (en) * 2002-11-18 2004-06-17 Aisin Seiki Co Ltd Wet type solar cell
JP2006012794A (en) * 2004-05-26 2006-01-12 Kansai Paint Co Ltd Photocell and manufacturing method therefor
JP2006202681A (en) * 2005-01-24 2006-08-03 Sekisui Jushi Co Ltd Dye-sensitized solar cell and its manufacturing method
JP2012113946A (en) * 2010-11-24 2012-06-14 Sony Corp Sealed structure and manufacturing method thereof
WO2017047645A1 (en) * 2015-09-17 2017-03-23 積水化学工業株式会社 Electrical module production method and electrical module production device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004171827A (en) * 2002-11-18 2004-06-17 Aisin Seiki Co Ltd Wet type solar cell
JP2006012794A (en) * 2004-05-26 2006-01-12 Kansai Paint Co Ltd Photocell and manufacturing method therefor
JP2006202681A (en) * 2005-01-24 2006-08-03 Sekisui Jushi Co Ltd Dye-sensitized solar cell and its manufacturing method
JP2012113946A (en) * 2010-11-24 2012-06-14 Sony Corp Sealed structure and manufacturing method thereof
WO2017047645A1 (en) * 2015-09-17 2017-03-23 積水化学工業株式会社 Electrical module production method and electrical module production device

Also Published As

Publication number Publication date
JP6703574B2 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
JP5230481B2 (en) Photoelectric conversion element
WO2012118050A1 (en) Dye-sensitized solar cell and process of manufacturing same, and dye-sensitized solar cell module and process of manufacturing same
WO2018084317A1 (en) Solar cell module and method for manufacturing solar cell module
JP2012059599A (en) Carbon based electrode and electrochemical device
TW201830439A (en) Photovoltaic module and method for manufacturing photovoltaic module
JP4830323B2 (en) Method for producing dye-sensitized solar cell module
JP6918521B2 (en) Electric module and manufacturing method of electric module
JP6703574B2 (en) Electric module and manufacturing method thereof
KR101188929B1 (en) Seal member for photoelectric conversion device, photoelectric conversion device comprising the same and method of preparing the same
JP7084259B2 (en) Electric module and its manufacturing method
WO2015122532A1 (en) Electric module and manufacturing method for electric module
JP2015191986A (en) Dye-sensitized solar cell and method for manufacturing the same
CN110268491B (en) Solar cell module and method for manufacturing solar cell module
TW201639208A (en) Photoelectric conversion element and method for producing photoelectric conversion element
JP2020047805A (en) Electric module and manufacturing method of electric module
WO2015083738A1 (en) Conductive member with sealing function, electric module, and manufacturing method for electric module
JP2020126876A (en) Electric module
JP2020047804A (en) Electric module and manufacturing method of electric module
JP2020126875A (en) Electric module and method of manufacturing the same
JP2018163935A (en) Solar cell module and manufacturing method for solar cell module
JP5706786B2 (en) Method for producing dye-sensitized solar cell
CN103548104B (en) DSSC and manufacture method thereof
TWI639261B (en) Dye-sensitized photovoltaic cell, module, and manufacturing method thereof
JP2017059832A (en) Solar cell
JP6912243B2 (en) Dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190724

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200508

R151 Written notification of patent or utility model registration

Ref document number: 6703574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees