JP2020037713A - Sputtering target allowing stable discharge - Google Patents

Sputtering target allowing stable discharge Download PDF

Info

Publication number
JP2020037713A
JP2020037713A JP2018163912A JP2018163912A JP2020037713A JP 2020037713 A JP2020037713 A JP 2020037713A JP 2018163912 A JP2018163912 A JP 2018163912A JP 2018163912 A JP2018163912 A JP 2018163912A JP 2020037713 A JP2020037713 A JP 2020037713A
Authority
JP
Japan
Prior art keywords
metal particles
powder
alloy
metal
composite phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018163912A
Other languages
Japanese (ja)
Other versions
JP6873087B2 (en
Inventor
靖幸 岩淵
Yasuyuki Iwabuchi
靖幸 岩淵
真一 荻野
Shinichi Ogino
真一 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018163912A priority Critical patent/JP6873087B2/en
Priority to CN201880004613.9A priority patent/CN111133126B/en
Priority to PCT/JP2018/036507 priority patent/WO2020044573A1/en
Priority to SG11201905658UA priority patent/SG11201905658UA/en
Priority to MYPI2019003601A priority patent/MY187017A/en
Publication of JP2020037713A publication Critical patent/JP2020037713A/en
Application granted granted Critical
Publication of JP6873087B2 publication Critical patent/JP6873087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

To provide a ferromagnetic material sputtering target capable of obtaining stable discharge in a magnetron sputtering apparatus, having less particles generated during sputtering and capable of improving a leakage magnetic flux.SOLUTION: A sputtering target comprises: a plurality of metal particles (A) formed of Co or Co alloy; and a composite phase (B) obtained by dispersing Co or Co alloy filling gaps between the plurality of metal particles and metal oxide to each other. A difference between Co concentration in the Co or Co alloy constituting the plurality of metal particles (A) and Co concentration in Co or Co alloy constituting the composite phase (B) is 5 at% or less, and the ratio of the area of the plurality of metal particles to the total area of the plurality of metal particles (A) and the composite phase (B) is 20-65%.SELECTED DRAWING: Figure 3

Description

本発明は、磁気記録媒体の磁性薄膜、特に垂直磁気記録方式を採用したハードディスクの磁気記録層の成膜に使用される強磁性材スパッタリングターゲットに関し、漏洩磁束が大きくマグネトロンスパッタ装置でスパッタする際に安定した放電が得られる、パーティクル発生の少ない非金属無機材料粒子分散型強磁性材スパッタリングターゲットに関する。
なお、以下の説明において、「スパッタリングターゲット」を、単に「ターゲット」と略記するところがあるが、実質的に同一のことを意味するものである。念のため申し添える。
The present invention relates to a magnetic thin film of a magnetic recording medium, in particular, a ferromagnetic material sputtering target used for forming a magnetic recording layer of a hard disk employing a perpendicular magnetic recording method. The present invention relates to a non-metallic inorganic material particle-dispersed ferromagnetic material sputtering target capable of obtaining a stable discharge and generating less particles.
In the following description, "sputtering target" may be simply abbreviated as "target", but it means substantially the same. I will tell you just in case.

ハードディスクドライブに代表される磁気記録の分野では、記録を担う磁性薄膜の材料として、強磁性金属であるCo、Fe又はNiをベースとした材料が用いられている。例えば、面内磁気記録方式を採用するハードディスクの記録層にはCoを主成分とするCo−Cr系やCo−Cr−Pt系の強磁性合金が用いられてきた。また、近年実用化された垂直磁気記録方式を採用するハードディスクの記録層には、Coを主成分とするCo−Cr−Pt系の強磁性合金に酸化物や炭素等の非磁性粒子を分散させた複合材料が多く用いられている。磁性薄膜は、生産性の観点から、上記材料を成分とするスパッタリングターゲットでスパッタリング法により作製されることが多い。スパッタリング法とは、正の電極となる基板と負の電極となるターゲットを対向させ、不活性ガス雰囲気下で、該基板とターゲット間に高電圧を印加して電場を発生させるものである。
この時、不活性ガスが電離し、電子と陽イオンからなるプラズマが形成されるが、このプラズマ中の陽イオンがターゲット(負の電極)の表面に衝突するとターゲットを構成する原子が叩き出されるが、この飛び出した原子が対向する基板表面に付着して膜が形成される。このような一連の動作により、ターゲットを構成する材料が基板上に成膜されるという原理を用いたものである。
In the field of magnetic recording represented by a hard disk drive, a material based on a ferromagnetic metal such as Co, Fe or Ni is used as a material of a magnetic thin film for recording. For example, a Co-Cr-based or Co-Cr-Pt-based ferromagnetic alloy containing Co as a main component has been used for a recording layer of a hard disk employing an in-plane magnetic recording system. In addition, non-magnetic particles such as oxides and carbon are dispersed in a Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component in a recording layer of a hard disk employing a perpendicular magnetic recording method that has been put into practical use in recent years. Composite materials are often used. The magnetic thin film is often produced by a sputtering method using a sputtering target containing the above material as a component from the viewpoint of productivity. In the sputtering method, a substrate serving as a positive electrode and a target serving as a negative electrode are opposed to each other, and a high voltage is applied between the substrate and the target in an inert gas atmosphere to generate an electric field.
At this time, the inert gas is ionized and a plasma composed of electrons and cations is formed. When the cations in the plasma collide with the surface of the target (negative electrode), atoms constituting the target are knocked out. However, the ejected atoms adhere to the opposing substrate surface to form a film. By such a series of operations, the principle that the material constituting the target is formed on the substrate is used.

スパッタリング装置には様々な方式のものがあるが、上記の磁気記録膜の成膜では、生産性の高さからDC電源を備えたマグネトロンスパッタリング装置が広く用いられている。   There are various types of sputtering apparatuses, and a magnetron sputtering apparatus equipped with a DC power supply is widely used for forming the magnetic recording film because of its high productivity.

マグネトロンスパッタリングはターゲットの裏側に永久磁石を配置し、その磁界によってスパッタで生じる2次電子を閉じ込めることで効率よくスパッタを進める手法である。しかし、垂直磁気記録用ターゲットのような強磁性ターゲットでは、磁界がターゲット内部を通過してしまい、漏洩磁束が小さくなるため、スパッタの効率が悪くなる。このため、ターゲットの漏洩磁束を高める必要がある。これと同時に、近年のハードディスクドライブの記録密度の向上に伴い、磁気ヘッドの浮動量が小さくなっていることから、磁気記録媒体として許容されるパーティクルのサイズや個数の制限は厳しくなっており、低パーティクル化も重要となっている。   Magnetron sputtering is a technique in which a permanent magnet is arranged on the back side of a target, and secondary electrons generated by sputtering are confined by the magnetic field to efficiently advance sputtering. However, in the case of a ferromagnetic target such as a target for perpendicular magnetic recording, a magnetic field passes through the inside of the target, and the leakage magnetic flux is reduced, so that sputtering efficiency is deteriorated. Therefore, it is necessary to increase the leakage magnetic flux of the target. At the same time, with the recent increase in the recording density of hard disk drives, the floating amount of the magnetic head has become smaller, and the size and number of particles allowed as a magnetic recording medium have been severely restricted. Particles are also important.

例えば、Co粉末とCr粉末とTiO2粉末とSiO2粉末を混合して得られた混合粉末とCo球形粉末を遊星運動型ミキサーで混合し、この混合粉をホットプレスにより成形し磁気記録媒体用スパッタリングターゲットを得る方法が提案されている(特許文献1)。
この場合のターゲット組織は、非金属無機材料粒子が均一に分散した金属素地である相(A)の中に、周囲の組織より透磁率が高い球形の金属相(B)を有している様子が見える(特許文献1の図1)。このような組織は、後述する問題を有し、好適な磁気記録媒体用スパッタリングターゲットとは言えない。
For example, a mixed powder obtained by mixing a Co powder, a Cr powder, a TiO 2 powder, and a SiO 2 powder and a Co spherical powder are mixed with a planetary mixer, and the mixed powder is formed by hot pressing to form a magnetic recording medium. A method for obtaining a sputtering target has been proposed (Patent Document 1).
In this case, the target structure has a spherical metal phase (B) having a higher magnetic permeability than the surrounding structure in the phase (A), which is a metal base in which non-metallic inorganic material particles are uniformly dispersed. Can be seen (FIG. 1 of Patent Document 1). Such a structure has a problem described below, and cannot be said to be a suitable sputtering target for a magnetic recording medium.

国際公開第2011/089760号WO 2011/089760

前述のように、マグネトロンスパッタ装置で強磁性材スパッタリングターゲットをスパッタしようとすると、磁石からの磁束の多くは強磁性体であるターゲット内部を通過してしまうため、漏洩磁束が小さくなり、スパッタ時に放電しない、あるいは放電しても放電が安定しないという大きな問題が生じる。   As described above, when attempting to sputter a ferromagnetic material sputtering target with a magnetron sputtering apparatus, most of the magnetic flux from the magnet passes through the inside of the target, which is a ferromagnetic material, so that the leakage magnetic flux becomes small, and discharge occurs during sputtering. However, there is a big problem that the discharge is not stable even if the discharge is performed.

この問題を解決するには、Co粗粒を加えることで透磁率の高い部分(Co粗粒部)と低い部分(酸化物分散部)を作り、全体の透磁率を下げ、漏洩磁束を高める方法が考えられる。しかし、Co粗粒部と酸化物分散部で組成差ができるため、焼結工程でCo粗粒部と酸化物分散部で金属の拡散が起き、これに伴い酸化物の凝集が起きるという問題が生じ得る。これはパーティクル数増加の原因となる。また、このような方法は、Crが少なくPtが入る組成などでは効果が得にくい。   In order to solve this problem, a method of forming a portion having high magnetic permeability (coarse grain portion) and a low portion (oxide dispersing portion) by adding Co coarse particles, lowering the overall magnetic permeability, and increasing the leakage magnetic flux. Can be considered. However, since there is a difference in composition between the Co coarse-grain portion and the oxide dispersion portion, there is a problem that metal diffusion occurs in the Co coarse-grain portion and the oxide dispersion portion in the sintering step, and consequently oxide coagulation occurs. Can occur. This causes an increase in the number of particles. Further, such a method is difficult to obtain an effect with a composition containing a small amount of Cr and containing Pt.

そこで、本発明は上記知見に基づき、マグネトロンスパッタ装置で安定した放電が得られるとともに、スパッタ時のパーティクル発生が少ない、漏洩磁束を向上させた強磁性材スパッタリングターゲットを提供することを課題とする。   Therefore, an object of the present invention is to provide a ferromagnetic material sputtering target that can obtain stable discharge with a magnetron sputtering apparatus, generate less particles during sputtering, and improve leakage magnetic flux, based on the above findings.

本発明者は上記課題を解決するために鋭意検討したところ、Co粗粒部と酸化物分散部のように、金属の組成差を設ける方法ではなく、酸化物の濃度分散を制御することに着目することにより透磁率を不均一とし、ターゲット全体の漏洩磁束を向上させる方法を発見した。そして、ターゲット内のCo濃度をできる限り均一にすることにより、拡散の抑制による酸化物の凝集が減少するという効果が得られることを発見した。   The inventor of the present invention has made intensive studies to solve the above-mentioned problems, and focused on controlling the concentration dispersion of the oxide, not the method of providing a metal composition difference as in the case of the Co coarse-grained portion and the oxide dispersion portion. By doing so, the inventors found a method of making the magnetic permeability non-uniform and improving the leakage magnetic flux of the entire target. Then, they have found that by making the Co concentration in the target as uniform as possible, an effect of reducing the aggregation of the oxide due to the suppression of diffusion can be obtained.

そこで、本願発明は、以下のように特定される。
(1)Co又はCo合金で構成された複数の金属粒子(A)、並びに、該複数の金属粒子間の隙間を埋めるCo又はCo合金と金属酸化物とが互いに分散し合っている複合相(B)を備え、
前記複数の金属粒子(A)を構成するCo又はCo合金中のCo濃度と、前記複合相(B)を構成するCo又はCo合金中のCo濃度との差が5at%以下であり、
前記複数の金属粒子(A)及び前記複合相(B)の合計面積に対する前記複数の金属粒子(A)の面積比率が20〜65%である、
スパッタリングターゲット。
(2)前記複数の金属粒子(A)が観察される一面における、前記複数の金属粒子(A)の粒子径が20μm以上かつその粒子径の平均が20〜250μmである(1)に記載のスパッタリングターゲット。
(3)前記複数の金属粒子(A)及び前記複合相(B)は共にCo合金を含有し、該Co合金はCr、Pt、Ru及びBよりなる群から選択される1種以上の合金元素を含有する(1)又は(2)に記載のスパッタリングターゲット。
(4)前記複合相(B)の前記金属酸化物の面積比率が40〜70%であることを特徴とする(1)〜(3)のいずれか一項に記載のスパッタリングターゲット。
Therefore, the present invention is specified as follows.
(1) A plurality of metal particles (A) composed of Co or a Co alloy, and a composite phase in which Co or a Co alloy and a metal oxide filling a gap between the plurality of metal particles are mutually dispersed. B)
A difference between a Co concentration in Co or Co alloy constituting the plurality of metal particles (A) and a Co concentration in Co or Co alloy constituting the composite phase (B) is 5 at% or less;
An area ratio of the plurality of metal particles (A) to a total area of the plurality of metal particles (A) and the composite phase (B) is 20 to 65%;
Sputtering target.
(2) The surface of the plurality of metal particles (A) on one surface where the plurality of metal particles (A) are observed, wherein the plurality of metal particles (A) have a particle diameter of 20 μm or more and the average of the particle diameters is 20 to 250 μm. Sputtering target.
(3) The plurality of metal particles (A) and the composite phase (B) both contain a Co alloy, and the Co alloy is at least one alloy element selected from the group consisting of Cr, Pt, Ru, and B The sputtering target according to (1) or (2), comprising:
(4) The sputtering target according to any one of (1) to (3), wherein an area ratio of the metal oxide in the composite phase (B) is 40 to 70%.

本発明に係る強磁性材スパッタリングターゲットを用いてスパッタすることで、スパッタ時に安定した放電が得られるとともに、スパッタ時のパーティクル発生が少なく、漏洩磁束を向上させることができる。   By performing sputtering using the ferromagnetic material sputtering target according to the present invention, stable discharge can be obtained at the time of sputtering, and particles are less generated at the time of sputtering, and leakage magnetic flux can be improved.

複数の金属粒子(A)及び複合相(B)を示す図である。It is a figure showing a plurality of metal particles (A) and a composite phase (B). 各実施例及び比較例のそれぞれの断面組織のレーザー顕微鏡写真である。It is a laser microscope photograph of each sectional structure of each Example and a comparative example. 各実施例及び比較例のそれぞれの断面組織のレーザー顕微鏡写真である。It is a laser microscope photograph of each sectional structure of each Example and a comparative example. 複数の金属粒子(A)を構成するCo又はCo合金中のCo濃度と、複合相(B)を構成するCo又はCo合金中のCo濃度の測定方法を示す図であるIt is a figure which shows the Co concentration in Co or Co alloy which comprises several metal particles (A), and the Co concentration in Co or Co alloy which comprises composite phase (B). 複数の金属粒子(A)及び複合相(B)の合計面積に対する複数の金属粒子(A)の面積比率の測定方法を示す図である。It is a figure showing a measuring method of an area ratio of a plurality of metal particles (A) to a total area of a plurality of metal particles (A) and a composite phase (B). 複合相(B)中の金属酸化物の面積比率の測定方法を示す図である。It is a figure which shows the measuring method of the area ratio of the metal oxide in a composite phase (B).

本発明の強磁性材スパッタリングターゲットは、Co又はCo合金で構成された複数の金属粒子(A)、並びに、該複数の金属粒子間の隙間を埋めるCo又はCo合金と金属酸化物とが互いに分散し合っている複合相(B)を備える。Co又はCo合金で構成された複数の金属粒子(A)と複合相(B)とでは、金属酸化物の濃度の差により透磁率に差が存在するため、ターゲット全体として漏洩磁束を向上させることができる。   In the ferromagnetic sputtering target of the present invention, a plurality of metal particles (A) composed of Co or a Co alloy, and a Co or Co alloy and a metal oxide that fill gaps between the plurality of metal particles are dispersed in each other. A combined composite phase (B). A plurality of metal particles (A) and a composite phase (B) composed of Co or a Co alloy have a difference in magnetic permeability due to a difference in the concentration of the metal oxide. Can be.

(複数の金属粒子(A)及び複合相(B))
本発明に係るスパッタリングターゲットは一実施形態において、Co又はCo合金で構成された複数の金属粒子(A)は、後述する該複数の金属粒子間の隙間を埋めるCo又はCo合金と金属酸化物とが互いに分散し合っている複合相(B)と比較する場合、複数の金属粒子(A)を構成するCo又はCo合金中のCo濃度と、複合相(B)を構成するCo又はCo合金中のCo濃度との差が5at%以下である。
前述のように、ターゲット全体として漏洩磁束を向上させる方法として、金属酸化物が少なく、透磁率の高い部分と、金属酸化物が集中し透磁率が低い部分を設けることが考えられるが、これらの部分における組成の差が大きいと、金属拡散が起き、(A)の外周部に酸化物の凝集ができるので、パーティクル数が増加してしまう。これに対し、複数の金属粒子(A)を構成するCo又はCo合金中のCo濃度と、複合相(B)を構成するCo又はCo合金中のCo濃度との差を5at%以下とすることにより、金属拡散を抑制することができ、酸化物の凝集を抑制することができるので、漏洩磁束が向上し、マグネトロンスパッタ装置で安定した放電が得られ、スパッタ時のパーティクル発生が少ないという効果が得られる。
この観点から、複数の金属粒子(A)を構成するCo又はCo合金中のCo濃度と、複合相(B)を構成するCo又はCo合金中のCo濃度との差は、3at%以下であることが好ましい。
(Plurality of metal particles (A) and composite phase (B))
In one embodiment of the sputtering target according to the present invention, a plurality of metal particles (A) composed of Co or a Co alloy include Co or a Co alloy and a metal oxide, which fill gaps between the plurality of metal particles described later. Are compared with the composite phase (B) dispersed in each other, the Co concentration in the Co or Co alloy constituting the plurality of metal particles (A) and the Co or Co alloy constituting the composite phase (B) Is 5 at% or less.
As described above, as a method of improving the leakage magnetic flux as a whole target, it is conceivable to provide a portion having a small amount of metal oxide and a high magnetic permeability and a portion where the metal oxide is concentrated and the magnetic permeability is low. If there is a large difference in composition in the portion, metal diffusion occurs, and an oxide can be aggregated on the outer peripheral portion of (A), so that the number of particles increases. On the other hand, the difference between the Co concentration in the Co or Co alloy constituting the plurality of metal particles (A) and the Co concentration in the Co or Co alloy constituting the composite phase (B) is set to 5 at% or less. Therefore, metal diffusion can be suppressed, and agglomeration of oxides can be suppressed, so that leakage magnetic flux can be improved, stable discharge can be obtained with a magnetron sputtering device, and the effect of reducing generation of particles during sputtering can be obtained. can get.
From this viewpoint, the difference between the Co concentration in Co or Co alloy constituting the plurality of metal particles (A) and the Co concentration in Co or Co alloy constituting the composite phase (B) is 3 at% or less. Is preferred.

金属粒子部分と金属酸化物部分は組織観察時の色の濃淡で判断することができる。例えば図1に示すように、SEM(走査型電子顕微鏡)による組織観察結果では、2次電子の強度が画像の濃淡として現れるので、一般的に金属部分は2次電子強度が強くなるので明るく、酸化物は強度が低くなるので暗く見える。相対的な画像の濃度差で金属粗粒部分とマトリックス、或いはマトリックス中の金属部分と金属酸化物部分の領域を区別することは可能である。ただし、組織観察時に使用する装置や条件によっては必ずしも金属粒子部分が白く、金属酸化物部分が黒く見えるわけではなく逆転する場合もあり得る。その場合、白く見える部分を金属酸化物部分、黒く見える部分を金属粒子部分として測定すればよい。本明細書において、金属粒子部分が白く、金属酸化物部分が黒く見える実施形態について説明する。   The metal particle portion and the metal oxide portion can be determined by the density of the color at the time of observing the structure. For example, as shown in FIG. 1, in the result of observation of the structure by SEM (scanning electron microscope), the intensity of the secondary electrons appears as shading of the image, so that the metal portion is generally bright because the secondary electron intensity is strong. Oxides appear dark because of their lower strength. It is possible to distinguish the region between the metal coarse-grain portion and the matrix, or the metal portion and the metal oxide portion in the matrix, based on the relative image density difference. However, depending on the device and conditions used for observing the structure, the metal particle portion does not always appear white and the metal oxide portion does not appear black, and may be reversed. In that case, the portion that looks white may be measured as the metal oxide portion, and the portion that looks black may be measured as the metal particle portion. In this specification, an embodiment will be described in which a metal particle portion looks white and a metal oxide portion looks black.

Co濃度の測定は、SEM/EDS(走査型電子顕微鏡/エネルギー分散型X線分光法)での点分析による元素分析で行う。測定方法としては、図4に示されるように、スパッタリングターゲットについて、低倍率で組織画像を取得する。低倍率の組織画像では複数の金属粒子(A)と複合相(B)が色の濃淡から判断でき、複数の金属粒子(A)部分について定量分析を行う。測定位置は金属粒子(A)の最外周部から少なくとも8μmよりも内側を測定する。測定の精度を向上させるために金属粒子(A)を少なくとも5個選定してCo濃度を測定し、その平均値を複数の金属粒子(A)を構成するCo又はCo合金中のCo濃度とする。低倍率の具体的数値は、複数の金属粒子(A)が1視野において複数個観察できる倍率が好ましく、200〜500倍が好ましい。また、定量分析を行う際のスポットのサイズは3μm四方以下とする。
続いて低倍率の組織画像で複合相(B)部分について、高倍率で像を取得する。このとき、高倍率で像を測定する位置は、いずれの金属粒子(A)の最外周部からも少なくとも10μm離れた位置とする。この像では、複合相(B)中の金属粒子部分と金属酸化物部分が色の濃淡により判断でき、このうち複合相(B)の金属粒子部分について点分析を行う。複合相(B)の金属粒子部分を測定し、測定結果の酸素値が1at%以下の場合を採用する。測定の精度を向上させるために複合相(B)の金属粒子を少なくとも5個選定してCo濃度を測定し、その平均値を、複合相(B)を構成するCo又はCo合金中のCo濃度とする。高倍率の具体的数値は、複合相(B)のみが個観察できる倍率が好ましく、5000倍以上とするのが好ましい。また定量分析を行う際のスポットのサイズは0.5μm四方以下とする。
なお、測定装置は組織観察可能な機能と元素分析が可能な機能を備えていれば、使用装置はSEM/EDSに限らない。例えば、SEM/WDS、TEM/EDS、EPMAなどを用いても良い。
The measurement of the Co concentration is performed by elemental analysis based on point analysis using SEM / EDS (scanning electron microscope / energy dispersive X-ray spectroscopy). As a measurement method, as shown in FIG. 4, a tissue image is acquired at a low magnification for a sputtering target. In the low-magnification tissue image, the plurality of metal particles (A) and the composite phase (B) can be determined from the shade of color, and quantitative analysis is performed on the plurality of metal particles (A). The measurement position is measured at least inside 8 μm from the outermost periphery of the metal particles (A). In order to improve the accuracy of the measurement, at least five metal particles (A) are selected, the Co concentration is measured, and the average value is defined as the Co concentration in Co or a Co alloy constituting the plurality of metal particles (A). . The specific numerical value of the low magnification is preferably a magnification at which a plurality of metal particles (A) can be observed in one visual field, and is preferably 200 to 500 times. The size of the spot when performing quantitative analysis is 3 μm square or less.
Subsequently, an image of the complex phase (B) portion is acquired at a high magnification in the tissue image of a low magnification. At this time, the position where the image is measured at a high magnification is a position at least 10 μm away from the outermost peripheral portion of any of the metal particles (A). In this image, the metal particle portion and the metal oxide portion in the composite phase (B) can be determined from the shading of the color, and the point analysis is performed on the metal particle portion of the composite phase (B). The case where the metal particle portion of the composite phase (B) is measured and the oxygen value of the measurement result is 1 at% or less is adopted. In order to improve the accuracy of the measurement, at least five metal particles of the composite phase (B) are selected, the Co concentration is measured, and the average value is used as the Co concentration in Co or the Co alloy constituting the composite phase (B). And Specific numerical values of the high magnification are preferably magnifications at which only the composite phase (B) can be individually observed, and more preferably 5000 times or more. The size of the spot when performing quantitative analysis is 0.5 μm square or less.
The measuring device is not limited to the SEM / EDS as long as it has a function of observing the structure and a function of performing elemental analysis. For example, SEM / WDS, TEM / EDS, EPMA, etc. may be used.

複数の金属粒子(A)及び複合相(B)の合計面積に対する複数の金属粒子(A)の面積比率は20〜65%とする。複数の金属粒子(A)の面積比率が20%より低いと、漏洩磁束の向上効果が得られなくなり、面積比率が65%を超えると、酸化物同士が繋がって粗大になり、パーティクル数が上昇してしまう。好ましくは、複数の金属粒子(A)の面積比率は35〜45%とする。   The area ratio of the plurality of metal particles (A) to the total area of the plurality of metal particles (A) and the composite phase (B) is set to 20 to 65%. If the area ratio of the plurality of metal particles (A) is lower than 20%, the effect of improving the leakage magnetic flux cannot be obtained, and if the area ratio exceeds 65%, the oxides are connected to each other and become coarse, increasing the number of particles. Resulting in. Preferably, the area ratio of the plurality of metal particles (A) is 35 to 45%.

複数の金属粒子(A)及び複合相(B)の合計面積に対する複数の金属粒子(A)の面積比率の測定は、レーザー顕微鏡での組織観察により行う。測定方法としては、スパッタリングターゲットの切断面をレーザー顕微鏡で観察し、200倍の視野において存在する複数の金属粒子(A)の面積を測定し、これを視野全体の面積で割ることにより求めることができる。具体的には、レーザー顕微鏡写真では複数の金属粒子(A)は白く、複合相(B)は黒く見えることから、画像処理ソフトを用いて2値化して(図5)、それぞれの面積を算出し、さらに、精度を上げるために任意の5視野において同様の測定を実施して、複数の金属粒子(A)及び複合相(B)の面積の平均値を算出し、これにより複数の金属粒子(A)の面積比率を算出する。   The measurement of the area ratio of the plurality of metal particles (A) to the total area of the plurality of metal particles (A) and the composite phase (B) is performed by observing the structure with a laser microscope. As a measuring method, it can be obtained by observing the cut surface of the sputtering target with a laser microscope, measuring the area of a plurality of metal particles (A) present in a visual field of 200 times, and dividing this by the area of the entire visual field. it can. Specifically, since a plurality of metal particles (A) look white and the composite phase (B) looks black in a laser micrograph, binarization is performed using image processing software (FIG. 5), and the area of each is calculated. Further, in order to improve the accuracy, the same measurement is performed in any five visual fields, and the average value of the area of the plurality of metal particles (A) and the composite phase (B) is calculated. The area ratio of (A) is calculated.

金属酸化物としては、Co、Cr、Ta、Si、Ti、Zr、Al、Nb、Bから選択した1成分以上の酸化物を用いることができる。なお、金属酸化物に替えて、酸化物以外に、窒化物、炭化物、炭窒化物を用いることもできる。また、これらの無機物材料を複合して使用することもできる。これらは、酸化物と同等の機能を保有させることができる。   As the metal oxide, an oxide of one or more components selected from Co, Cr, Ta, Si, Ti, Zr, Al, Nb, and B can be used. Note that, instead of the metal oxide, a nitride, a carbide, or a carbonitride can be used in addition to the oxide. Further, these inorganic materials can be used in combination. These can have a function equivalent to an oxide.

複数の金属粒子(A)が観察される一面における、複数の金属粒子(A)の粒子径の平均は20〜250μmであるのが好ましい。粒子径の平均が20μm未満の場合、(B)相との区別がつきにくくなり、金属酸化物相の濃度差を出しにくくなる。250μmを超える場合ターゲット表面の平滑性が失われ、パーティクル源となる可能性が高まる。また、複数の金属粒子(A)の粒子径が16μm未満の場合、(B)相との区別がつきにくくなるため、複数の金属粒子(A)の粒子径は16μm以上とし、それ未満は(B)相として考える。
複数の金属粒子(A)の粒子径は、組織観察画像から金属粒子の面積を求め、その面積に相当する円の直径を粒子径とする。具体的には、スパッタリングターゲットの切断面をレーザー顕微鏡で観察し、200倍の視野において存在する複数の金属粒子(A)の面積を測定し、その面積に相当する円の直径を当該粒子径として、これを視野全体の複数の金属粒子(A)について測定し、これらの平均値を求めることで求めることができる。
また、複合相(B)において、Co又はCo合金で構成された粒子として、粒子径が20μm未満のものが観測されることはあるが、改めてこれを複数の金属粒子(A)として算入しない。
The average of the particle diameters of the plurality of metal particles (A) on one surface where the plurality of metal particles (A) are observed is preferably 20 to 250 μm. When the average of the particle diameters is less than 20 μm, it is difficult to distinguish from the (B) phase, and it is difficult to obtain a difference in the concentration of the metal oxide phase. If it exceeds 250 μm, the smoothness of the target surface is lost, and the possibility of becoming a particle source increases. In addition, when the particle diameter of the plurality of metal particles (A) is less than 16 μm, it is difficult to distinguish from the (B) phase. Therefore, the particle diameter of the plurality of metal particles (A) is 16 μm or more. B) Think as a phase.
As for the particle diameter of the plurality of metal particles (A), the area of the metal particle is obtained from the tissue observation image, and the diameter of a circle corresponding to the area is defined as the particle diameter. Specifically, the cut surface of the sputtering target is observed with a laser microscope, the area of a plurality of metal particles (A) present in a visual field of 200 times is measured, and the diameter of a circle corresponding to the area is defined as the particle diameter. This can be determined by measuring this for a plurality of metal particles (A) in the entire field of view and calculating the average value of these.
In addition, in the composite phase (B), particles having a particle diameter of less than 20 μm may be observed as particles made of Co or a Co alloy, but these are not counted again as a plurality of metal particles (A).

複合相(B)中の金属酸化物の面積比率は40〜70%とすることが好ましい。金属酸化物の面積比率が40%以上であれば漏洩磁束の向上効果がさらに顕著となり、面積比率が70%以下であれば金属酸化物の粗大化を防止することができる。   The area ratio of the metal oxide in the composite phase (B) is preferably 40 to 70%. When the area ratio of the metal oxide is 40% or more, the effect of improving the leakage magnetic flux becomes more remarkable, and when the area ratio is 70% or less, the metal oxide can be prevented from becoming coarse.

複合相(B)の金属酸化物の面積比率の測定も、レーザー顕微鏡での組織観察により行う。測定方法としては、スパッタリングターゲットの切断面をレーザー顕微鏡で観察し、200倍の視野において存在する複合相(B)を確認し、当該複合相(B)について、さらに12000倍の視野において存在する金属酸化物の面積を測定し、これを視野全体の面積で割ることにより求めることができる。具体的には、レーザー顕微鏡写真では複合相(B)を構成するCo又はCo合金は白く、金属酸化物は黒く見えることから、画像処理ソフトを用いて2値化して(図6)、それぞれの面積を算出し、さらに、精度を上げるために任意の5視野において同様の測定を実施して、Co又はCo合金及び金属酸化物の面積の平均値を算出し、これにより金属酸化物の面積比率を算出する。   The measurement of the area ratio of the metal oxide of the composite phase (B) is also performed by observing the structure with a laser microscope. As a measuring method, a cut surface of a sputtering target is observed with a laser microscope, a composite phase (B) existing in a visual field of 200 times is confirmed, and a metal present in the composite phase (B) in a visual field of 12000 times is further observed. The area can be determined by measuring the area of the oxide and dividing the area by the area of the entire visual field. Specifically, Co or Co alloy constituting the composite phase (B) looks white and the metal oxide looks black in the laser micrograph, so that it was binarized using image processing software (FIG. 6), and The area is calculated, and the same measurement is performed in any five visual fields to improve the accuracy, and the average value of the area of Co or Co alloy and the metal oxide is calculated, whereby the area ratio of the metal oxide is calculated. Is calculated.

好ましい本発明の強磁性材スパッタリングターゲットとしては、金属酸化物を除いた組成で、Cr、Pt、Ru及びBよりなる群から選択される1種以上を含有することができる。これらは磁気記録媒体としての特性を向上させるために、必要に応じて添加される元素である。具体的には、Crがゼロ又は15mol%以下、Ptが10mol%以上50mol%以下、Ruがゼロ又は15mol%以下、Bがゼロ又は15mol%以下であり、残余がCoである組成が好ましい。
また、上記Cr、Pt、Ru及びBよりなる群から選択される1種以上を含有する場合、複数の金属粒子(A)及び複合相(B)は共にCo合金を含有し、該Co合金は上記Cr、Pt、Ru及びBよりなる群から選択される1種以上を合金元素として含有することが好ましい。
A preferred ferromagnetic sputtering target of the present invention may contain at least one selected from the group consisting of Cr, Pt, Ru and B in a composition excluding a metal oxide. These are elements added as necessary to improve the characteristics as a magnetic recording medium. Specifically, a composition in which Cr is zero or 15 mol% or less, Pt is 10 mol% or more and 50 mol% or less, Ru is zero or 15 mol% or less, B is zero or 15 mol% or less, and the balance is Co is preferable.
When containing one or more selected from the group consisting of Cr, Pt, Ru and B, the plurality of metal particles (A) and the composite phase (B) both contain a Co alloy, and the Co alloy is It is preferable to contain at least one selected from the group consisting of Cr, Pt, Ru and B as an alloy element.

なお、本発明において、スパッタリングターゲットの中には、複数の金属粒子(A)及び複合相(B)以外、本発明の効果を得る妨げにならない限り、他の相を設けることは可能であるが、本発明の効果を最大限に引き出すため、他の相が存在しないことが好ましい。   In the present invention, other than the plurality of metal particles (A) and the composite phase (B), other phases can be provided in the sputtering target as long as they do not hinder the effects of the present invention. In order to maximize the effects of the present invention, it is preferable that other phases do not exist.

(製法)
本発明に係るスパッタリングターゲットは、粉末焼結法を用いて、例えば、以下の方法によって作製することができる。まず、Co又はCo合金で構成された組成を有する粒子粉末と、Co又はCo合金と金属酸化物とが互いに分散し合っている粒子粉末をそれぞれ作製し、そしてこれらを所望のターゲット組成になるように秤量・混合し、焼結用の粉末とする。これをホットプレス等で焼結し、本発明のスパッタリングターゲットを作製することができる。
(Production method)
The sputtering target according to the present invention can be manufactured using the powder sintering method, for example, by the following method. First, a particle powder having a composition composed of Co or a Co alloy, and a particle powder in which the Co or Co alloy and the metal oxide are mutually dispersed are produced, and these are formed to have a desired target composition. Weighed and mixed into a powder for sintering. This is sintered by a hot press or the like to produce the sputtering target of the present invention.

出発原料としては微細なCo金属粉末若しくはCo合金粉末、及び粗大なCo金属粉末若しくはCo合金粉末と金属酸化物粉末を用いる。微細なCo金属粉末もしくはCo合金粉末は最大粒径が20μm以下のものを用いることが望ましい。粗大なCo金属粉末もしくはCo合金粉末は、20〜250μmの粒径範囲のものが望ましい。金属酸化物粉末は最大粒径が5μm以下のものを用いることが望ましい。なお、粒径が小さ過ぎると凝集しやすくなるため、0.1μm以上のものを用いることがさらに望ましい。   As a starting material, a fine Co metal powder or a Co alloy powder, or a coarse Co metal powder or a Co alloy powder and a metal oxide powder are used. It is desirable to use fine Co metal powder or Co alloy powder having a maximum particle size of 20 μm or less. The coarse Co metal powder or Co alloy powder desirably has a particle size range of 20 to 250 μm. It is desirable to use a metal oxide powder having a maximum particle size of 5 μm or less. Note that if the particle size is too small, the particles are apt to aggregate, so it is more preferable to use one having a particle size of 0.1 μm or more.

まず、Co又はCo合金と金属酸化物とが互いに分散し合っている相(B)を作成するために微細なCo金属粉末もしくはCo合金粉末と金属酸化物粉末を秤量する。この粉末について、ボールミル等の公知の手法を用いて粉砕を兼ねて混合する。このとき、粉砕容器内に不活性ガスを封入して原料粉の酸化をできるかぎり抑制することが望ましい。不活性ガスとしては、Ar、N2ガスが挙げられる。次に、この混合粉末に、Co又はCo合金で構成された相(A)を作成するために粗大なCo金属粉末若しくはCo合金粉末を加え、さらに混合を行う。このとき粒子粉末が粉砕されないように、粉砕力の高いボールミルは使用しない。粒子粉末を微細粉砕しないことで、粗大な金属粒子を残すとともに焼結の際に粒子粉末間の拡散を抑えることができ、前述の複数の金属粒子(A)と複合相(B)を備える焼結体を得ることができる。また、上記以外の方法により、粒子粉末を混合することもできる。 First, in order to form a phase (B) in which Co or a Co alloy and a metal oxide are mutually dispersed, fine Co metal powder or a Co alloy powder and a metal oxide powder are weighed. This powder is mixed using a well-known method such as a ball mill while also serving as pulverization. At this time, it is desirable that an inert gas be sealed in the pulverizing container to suppress oxidation of the raw material powder as much as possible. Examples of the inert gas include Ar and N 2 gases. Next, a coarse Co metal powder or a Co alloy powder is added to the mixed powder to form a phase (A) composed of Co or a Co alloy, and further mixed. At this time, a ball mill having a high crushing power is not used so that the particle powder is not crushed. By not finely pulverizing the particle powder, coarse metal particles can be left and diffusion between the particle powders can be suppressed during sintering, and the sintering including the plurality of metal particles (A) and the composite phase (B) can be performed. You can get union. Further, the particle powder can be mixed by a method other than the above.

こうして得られた焼結用粉末をホットプレスで成型・焼結する。ホットプレス以外にも、プラズマ放電焼結法、熱間静水圧焼結法を使用することもできる。焼結時の保持温度はターゲットが十分緻密化する温度域で最も低い温度に設定するのが好ましい。ターゲットの組成にもよるが、多くの場合、800〜1300℃の温度範囲にある。以上の工程により、強磁性材スパッタリングターゲット用焼結体を製造することができる。   The sintering powder thus obtained is molded and sintered by hot pressing. In addition to hot pressing, a plasma discharge sintering method and a hot isostatic pressing method can be used. The holding temperature during sintering is preferably set to the lowest temperature in a temperature range where the target is sufficiently densified. Depending on the composition of the target, the temperature is often in the range of 800 to 1300 ° C. Through the above steps, a sintered body for a ferromagnetic material sputtering target can be manufactured.

得られた焼結体を、旋盤等を用いて所望の形状に成形加工することにより、本発明に係るスパッタリングターゲットを作製することができる。ターゲット形状には特に制限はないが、例えば平板状(円盤状や矩形板状を含む)及び円筒状が挙げられる。本発明に係るスパッタリングターゲットは、グラニュラー構造磁性薄膜の成膜に使用するスパッタリングターゲットとして特に有用である。   The obtained sintered body is formed into a desired shape using a lathe or the like, whereby the sputtering target according to the present invention can be manufactured. The target shape is not particularly limited, and examples thereof include a flat plate shape (including a disk shape and a rectangular plate shape) and a cylindrical shape. The sputtering target according to the present invention is particularly useful as a sputtering target used for forming a granular magnetic thin film.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、本発明が限定されることを意図するものではない。   Hereinafter, Examples of the present invention are shown together with Comparative Examples, but these Examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the present invention. .

<スパッタリングターゲットの作製>
・実施例1〜5、比較例2、3
原料粉末として、平均粒径3μmのCo粉末、平均粒径1μmのTiO2粉末、平均粒径1μmのSiO2粉末、平均粒径2μmのCoO粉末、直径が50〜150μmの範囲にあるCoアトマイズ粉末を用意した。これらの粉末を表1に示す複数の金属粒子(A)と複合相(B)の組成、及び(A)と(B)のCo濃度差を構成するように、各実施例及び比較例のそれぞれについて秤量した。
次に、各々、秤量したCo粉末、TiO2粉末、SiO2粉末を媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。さらに、得られた混合粉末にCoO粉末とCoアトマイズ粉末を加え、容量約7Lの遊星運動型ミキサーで2時間混合し、焼結用混合粉を得た。
各組成を構成する混合粉をカーボン製の型に充填し、真空雰囲気中、温度950℃、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。
・実施例6、7、8、比較例4、5
原料粉末として、平均粒径3μmのCo粉末、平均粒径1μmのPt粉末、平均粒径1μmのTiO2粉末、平均粒径1μmのSiO2粉末、平均粒径2μmのCoO粉末、直径が30〜150μmの範囲にあるCo−Ptアトマイズ粉末を用意した。これらの粉末を表1に示す複数の金属粒子(A)と複合相(B)の組成、及び(A)と(B)のCo濃度差を構成するように、各実施例及び比較例のそれぞれについて秤量した。
次に、各々、秤量したCo粉末、Pt粉末、TiO2粉末、SiO2粉末を媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。さらに、得られた混合粉末にCoO粉末とCo−Ptアトマイズ粉末を加え、容量約7Lの遊星運動型ミキサーで2時間混合し、焼結用混合粉を得た。
各組成を構成する混合粉をカーボン製の型に充填し、真空雰囲気中、温度950℃、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。
・比較例1、6
原料粉末として、平均粒径3μmのCo粉末、平均粒径1μmのPt粉末、平均粒径1μmのTiO2粉末、平均粒径1μmのSiO2粉末、平均粒径2μmのCoO粉末を用意した。これらの粉末を表1に示す複数の金属粒子(A)と複合相(B)の組成、及び(A)と(B)のCo濃度差を構成するように、各実施例及び比較例のそれぞれについて秤量した。
次に、各々、秤量したCo粉末、Pt粉末、TiO2粉末、SiO2粉末を媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。さらに、得られた混合粉末にCoO粉末を加え、容量約7Lの遊星運動型ミキサーで2時間混合し、焼結用混合粉を得た。
各組成を構成する混合粉をカーボン製の型に充填し、真空雰囲気中、温度950℃、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。
<Preparation of sputtering target>
-Examples 1 to 5, Comparative Examples 2 and 3
As a raw material powder, a Co powder having an average particle diameter of 3 μm, a TiO 2 powder having an average particle diameter of 1 μm, a SiO 2 powder having an average particle diameter of 1 μm, a CoO powder having an average particle diameter of 2 μm, and a Co atomized powder having a diameter in the range of 50 to 150 μm. Was prepared. Each of the Examples and Comparative Examples was prepared such that these powders were configured to have the composition of the plurality of metal particles (A) and the composite phase (B) shown in Table 1 and the Co concentration difference between (A) and (B). Was weighed.
Next, the weighed Co powder, TiO 2 powder, and SiO 2 powder were each enclosed in a 10-liter capacity ball mill pot together with zirconia balls as a medium, and were rotated and mixed for 20 hours. Furthermore, CoO powder and Co atomized powder were added to the obtained mixed powder, and mixed for 2 hours with a planetary mixer having a capacity of about 7 L to obtain a mixed powder for sintering.
The mixed powder constituting each composition was filled in a carbon mold, and hot-pressed in a vacuum atmosphere under the conditions of a temperature of 950 ° C., a holding time of 2 hours and a pressure of 30 MPa to obtain a sintered body.
-Examples 6, 7, and 8 and Comparative Examples 4 and 5
As the raw material powder, a Co powder having an average particle diameter of 3 μm, a Pt powder having an average particle diameter of 1 μm, a TiO 2 powder having an average particle diameter of 1 μm, a SiO 2 powder having an average particle diameter of 1 μm, a CoO powder having an average particle diameter of 2 μm, and a diameter of 30 to A Co-Pt atomized powder in a range of 150 µm was prepared. Each of the Examples and Comparative Examples was prepared such that these powders were configured to have the composition of the plurality of metal particles (A) and the composite phase (B) shown in Table 1 and the Co concentration difference between (A) and (B). Was weighed.
Next, the weighed Co powder, Pt powder, TiO 2 powder, and SiO 2 powder were each sealed in a 10-liter capacity ball mill pot together with zirconia balls as a medium, and rotated and mixed for 20 hours. Further, CoO powder and Co-Pt atomized powder were added to the obtained mixed powder, and mixed for 2 hours with a planetary mixer having a capacity of about 7 L to obtain a mixed powder for sintering.
The mixed powder constituting each composition was filled in a carbon mold, and hot-pressed in a vacuum atmosphere under the conditions of a temperature of 950 ° C., a holding time of 2 hours and a pressure of 30 MPa to obtain a sintered body.
-Comparative Examples 1 and 6
As a raw material powder, a Co powder having an average particle diameter of 3 μm, a Pt powder having an average particle diameter of 1 μm, a TiO 2 powder having an average particle diameter of 1 μm, a SiO 2 powder having an average particle diameter of 1 μm, and a CoO powder having an average particle diameter of 2 μm were prepared. Each of the Examples and Comparative Examples was prepared such that these powders were configured to have the composition of the plurality of metal particles (A) and the composite phase (B) shown in Table 1 and the Co concentration difference between (A) and (B). Was weighed.
Next, the weighed Co powder, Pt powder, TiO 2 powder, and SiO 2 powder were each sealed in a 10-liter capacity ball mill pot together with zirconia balls as a medium, and rotated and mixed for 20 hours. Further, a CoO powder was added to the obtained mixed powder, and mixed for 2 hours with a planetary mixer having a capacity of about 7 L to obtain a mixed powder for sintering.
The mixed powder constituting each composition was filled in a carbon mold, and hot-pressed in a vacuum atmosphere under the conditions of a temperature of 950 ° C., a holding time of 2 hours and a pressure of 30 MPa to obtain a sintered body.

次に、旋盤を用いて、それぞれの焼結体を直径180.0mm、厚さ5.0mmの形状に切削加工し、円盤状のスパッタリングターゲットを得た。上記の製造手順で得られた各試験例に係るターゲットを旋盤で切削して得た切粉について、ICP−AES装置(日立ハイテクサイエンス社製(旧SII製)、装置名:SPS3100HV)により組成分析を行い、いずれのターゲットの組成も実質的に秤量組成と同じであることを確認した。ここで測定精度を高めるために、金属組成分析については内部標準法で検量線を引いて実施した。   Next, each sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm using a lathe to obtain a disk-shaped sputtering target. Composition analysis of a chip obtained by cutting the target according to each of the test examples obtained by the above-described production procedure with a lathe using an ICP-AES device (manufactured by Hitachi High-Tech Science Corporation (formerly SII), device name: SPS3100HV). Was performed, and it was confirmed that the composition of each target was substantially the same as the weighed composition. Here, in order to improve the measurement accuracy, the metal composition analysis was performed by drawing a calibration curve by the internal standard method.

<2値化の方法>
複数の金属粒子(A)の面積比率は、前述したレーザー顕微鏡での組織観察により測定した。レーザー顕微鏡にはKEYENCE製VK−9710を用いた。画像の2値化には画像処理ソフトimage J(National Institutes of Health製、Ver1.49n)を使用した。File→Openから画像を読み込む。Image→Typeから8−bitを選択する。画像のスケールを除いた部分を選択し、Image→Cropでスケール部分を切り取る。Process→Filters→Gaussian Blurを選択し、Sigmaに2を入力し、OKをクリックする。Process→Binary→Make Binaryを選択する。以上の手順で画像の2値化を行う。
<Binarization method>
The area ratio of the plurality of metal particles (A) was measured by observing the structure with the laser microscope described above. KEYENCE VK-9710 was used for the laser microscope. For the binarization of the image, image processing software image J (manufactured by National Institutes of Health, Ver 1.49n) was used. Read an image from File → Open. Select 8-bit from Image → Type. A part of the image excluding the scale is selected, and the scale part is cut out by Image → Crop. Select Process → Filters → Gaussian Blur, enter 2 for Sigma, and click OK. Select Process → Binary → Make Binary. The image is binarized according to the above procedure.

<(A)相および(B)相のCo濃度の測定>
複数の金属粒子(A)および複合相(B)のCo濃度の測定は、SEM−EDS(日立製S−3700N)での点分析による元素分析で行う。測定方法としては、スパッタリングターゲットについて、SEMにて500倍で像を取得する。顕微鏡写真では複数の金属粒子(A)が白く、複合相(B)が黒く見えることから、白い部分について点分析を行う。測定位置は金属粒子(A)の最外周部から少なくとも8μmよりも内側を測定する。測定の精度を向上させるために金属粒子(A)を少なくとも5個選定してCo濃度を測定し、その平均値を複数の金属粒子(A)を構成するCo又はCo合金中のCo濃度とする。
続いてSEMにて500倍の像で黒く見える複合相(B)について、5000倍で像を取得する。このとき、5000倍で像を測定する位置は、いずれの金属粒子(A)の最外周部からも少なくとも10μm離れた位置とする。この像では、また白く見える部分と、黒く見える部分を観察することができ、このうち白い部分について点分析を行う。白い部分を測定し、測定結果の酸素値が1at%以下の場合を採用する。測定の精度を向上させるために複合相(B)の白い部分を少なくとも5個選定してCo濃度を測定し、その平均値を複合相(B)を構成するCo又はCo合金中のCo濃度とする。
<Measurement of Co concentration in (A) phase and (B) phase>
The measurement of the Co concentration of the plurality of metal particles (A) and the composite phase (B) is performed by elemental analysis by point analysis using SEM-EDS (Hitachi S-3700N). As a measurement method, an image of the sputtering target is acquired at 500 times by SEM. In the micrograph, since the plurality of metal particles (A) appear white and the composite phase (B) appears black, point analysis is performed on the white portion. The measurement position is measured at least inside 8 μm from the outermost periphery of the metal particles (A). In order to improve the accuracy of the measurement, at least five metal particles (A) are selected, the Co concentration is measured, and the average value is defined as the Co concentration in Co or a Co alloy constituting the plurality of metal particles (A). .
Subsequently, the composite phase (B) which looks black in an image of 500 times with an SEM is imaged at 5000 times. At this time, the position where the image is measured at 5000 times is a position at least 10 μm away from the outermost peripheral portion of any of the metal particles (A). In this image, a portion that looks white and a portion that looks black can be observed, and a point analysis is performed on the white portion. The white portion is measured, and the case where the oxygen value of the measurement result is 1 at% or less is adopted. In order to improve the accuracy of the measurement, at least five white portions of the composite phase (B) are selected, the Co concentration is measured, and the average value is determined as the Co concentration in the Co or Co alloy constituting the composite phase (B). I do.

<PTFの測定方法>
漏洩磁束の測定はASTM F2086−01(Standard Test Method for Pass Through Flux of Circular Magnetic Sputtering Targets、Method 2)に則して実施した。ターゲットの中心を固定し、0度、30度、60度、90度、120度と回転させて測定した漏洩磁束密度を、ASTMで定義されているreference fieldの値で割り返し、100を掛けてパーセントで表した。そしてこれら5点について平均した結果を、平均漏洩磁束密度(PTF)とした。
<Method of measuring PTF>
The measurement of the leakage magnetic flux was performed in accordance with ASTM F2086-01 (Standard Test Method for Pass Through Through Flux of Circular Magnetic Sputting Targets, Method 2). The center of the target is fixed, and the leakage magnetic flux density measured by rotating at 0, 30, 60, 90, and 120 degrees is divided by the value of the reference field defined by ASTM and multiplied by 100. Expressed as a percentage. The result of averaging these five points was taken as the average leakage magnetic flux density (PTF).

<スパッタリング評価>
ターゲットについてDCマグネトロンスパッタ装置に取り付けスパッタリングを行った。スパッタ条件は、スパッタパワー1kW、Arガス圧1.5Paとし、2kWhrのプレスパッタを実施した後、4インチ径のシリコン基板上へ目標膜厚1000nmでスパッタした。そして基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。パーティクルカウンターにはCandela CS920(KLA Tencor製)を使用した。スパッタにより成膜されたウェハにレーザーを照射し、そのレーザーの反射や散乱を検知することによりパーティクルを判別している。
<Sputtering evaluation>
The target was attached to a DC magnetron sputtering apparatus to perform sputtering. The sputtering conditions were as follows: sputtering power was 1 kW, Ar gas pressure was 1.5 Pa, pre-sputtering was performed at 2 kWhr, and then sputtering was performed on a 4-inch diameter silicon substrate with a target film thickness of 1000 nm. Then, the number of particles attached to the substrate was measured by a particle counter. Candela CS920 (manufactured by KLA Tencor) was used for the particle counter. Particles are identified by irradiating a laser to a wafer formed by sputtering and detecting reflection and scattering of the laser.

これら実施例と比較例の結果を比較すると、比較例1は実施例1〜5に比べ複数の金属粒子(A)を備えないため、平均漏洩磁束密度が低くなっており、パーティクル数が増加していると考えられる。比較例2は複数の金属粒子(A)の面積比率が本発明の範囲より小さく、平均漏洩磁束密度向上の効果が得られておらず、パーティクル数が増加していると考えられる。比較例3は金属粒子(A)の面積比率が本発明の範囲より大きく、酸化物が粗大になってしまい、パーティクル数が増加していると考えられる。比較例4および5は実施例6〜8に比べ、(A)と(B)相のCo濃度の差が本発明範囲より大きく、(A)周辺で粗大な酸化物が見られるようになり、パーティクル数が増加していると考えられる。比較例6は、比較例1と同様に複数の金属粒子(A)を備えないため、平均漏洩磁束密度が低くなっており、パーティクル数が増加していると考えられる。   Comparing the results of these Examples and Comparative Examples, Comparative Example 1 does not include a plurality of metal particles (A) as compared with Examples 1 to 5, so the average leakage magnetic flux density is low, and the number of particles increases. It is thought that it is. In Comparative Example 2, the area ratio of the plurality of metal particles (A) was smaller than the range of the present invention, the effect of improving the average leakage magnetic flux density was not obtained, and it is considered that the number of particles increased. In Comparative Example 3, it is considered that the area ratio of the metal particles (A) is larger than the range of the present invention, the oxide becomes coarse, and the number of particles increases. In Comparative Examples 4 and 5, compared with Examples 6 to 8, the difference in the Co concentration between the (A) and (B) phases was larger than the range of the present invention, and coarse oxides were observed around (A). It is considered that the number of particles is increasing. Comparative Example 6 does not include a plurality of metal particles (A) as in Comparative Example 1, so that the average leakage magnetic flux density is low and the number of particles is considered to be increasing.

Claims (4)

Co又はCo合金で構成された複数の金属粒子(A)、並びに、該複数の金属粒子間の隙間を埋めるCo又はCo合金と金属酸化物とが互いに分散し合っている複合相(B)を備え、
前記複数の金属粒子(A)を構成するCo又はCo合金中のCo濃度と、前記複合相(B)を構成するCo又はCo合金中のCo濃度との差が5at%以下であり、
前記複数の金属粒子(A)及び前記複合相(B)の合計面積に対する前記複数の金属粒子(A)の面積比率が20〜65%である、
スパッタリングターゲット。
A plurality of metal particles (A) composed of Co or a Co alloy, and a composite phase (B) in which Co or a Co alloy and a metal oxide that fill gaps between the plurality of metal particles are mutually dispersed. Prepared,
A difference between a Co concentration in Co or Co alloy constituting the plurality of metal particles (A) and a Co concentration in Co or Co alloy constituting the composite phase (B) is 5 at% or less;
An area ratio of the plurality of metal particles (A) to a total area of the plurality of metal particles (A) and the composite phase (B) is 20 to 65%;
Sputtering target.
前記複数の金属粒子(A)が観察される一面における、前記複数の金属粒子(A)の粒子径が20μm以上かつその粒子径の平均が20〜250μmである請求項1に記載のスパッタリングターゲット。   2. The sputtering target according to claim 1, wherein a particle diameter of the plurality of metal particles (A) is 20 μm or more and an average of the particle diameters is 20 to 250 μm on one surface where the plurality of metal particles (A) are observed. 前記複数の金属粒子(A)及び前記複合相(B)は共にCo合金を含有し、該Co合金はCr、Pt、Ru及びBよりなる群から選択される1種以上の合金元素を含有する請求項1又は2に記載のスパッタリングターゲット。   The plurality of metal particles (A) and the composite phase (B) both contain a Co alloy, and the Co alloy contains at least one alloy element selected from the group consisting of Cr, Pt, Ru, and B. The sputtering target according to claim 1. 前記複合相(B)の前記金属酸化物の面積比率が40〜70%であることを特徴とする請求項1〜3のいずれか一項に記載のスパッタリングターゲット。   The sputtering target according to any one of claims 1 to 3, wherein an area ratio of the metal oxide in the composite phase (B) is 40 to 70%.
JP2018163912A 2018-08-31 2018-08-31 Stable dischargeable sputtering target Active JP6873087B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018163912A JP6873087B2 (en) 2018-08-31 2018-08-31 Stable dischargeable sputtering target
CN201880004613.9A CN111133126B (en) 2018-08-31 2018-09-28 Sputtering target capable of stably discharging
PCT/JP2018/036507 WO2020044573A1 (en) 2018-08-31 2018-09-28 Sputtering target capable of discharging steadily
SG11201905658UA SG11201905658UA (en) 2018-08-31 2018-09-28 Stably dischargeable sputtering target
MYPI2019003601A MY187017A (en) 2018-08-31 2018-09-28 Stably dischargeable sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018163912A JP6873087B2 (en) 2018-08-31 2018-08-31 Stable dischargeable sputtering target

Publications (2)

Publication Number Publication Date
JP2020037713A true JP2020037713A (en) 2020-03-12
JP6873087B2 JP6873087B2 (en) 2021-05-19

Family

ID=69645084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018163912A Active JP6873087B2 (en) 2018-08-31 2018-08-31 Stable dischargeable sputtering target

Country Status (5)

Country Link
JP (1) JP6873087B2 (en)
CN (1) CN111133126B (en)
MY (1) MY187017A (en)
SG (1) SG11201905658UA (en)
WO (1) WO2020044573A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3885690T2 (en) * 1987-09-17 1994-06-09 Seiko Epson Corp A method of manufacturing a sputtering target for use in the manufacture of a magneto-optical recording medium.
JP4962905B2 (en) * 2007-03-12 2012-06-27 三菱マテリアル株式会社 Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles
MY145087A (en) * 2008-03-28 2011-12-30 Jx Nippon Mining & Metals Corp Sputtering target of nonmagnetic-particle-dispersed ferromagnetic material
MY149640A (en) * 2009-12-11 2013-09-13 Jx Nippon Mining & Metals Corp Sputtering target comprising oxide phase dispersed in co or co alloy phase, magnetic thin film made of co or co alloy phase and oxide phase, and magnetic recording medium using the said thin film
MY149437A (en) * 2010-01-21 2013-08-30 Jx Nippon Mining & Metals Corp Ferromagnetic material sputtering target
JP2011216135A (en) * 2010-03-31 2011-10-27 Mitsubishi Materials Corp Sputtering target for forming magnetic recording medium film, and manufacturing method thereof
JP4885333B1 (en) * 2010-09-03 2012-02-29 Jx日鉱日石金属株式会社 Ferromagnetic sputtering target

Also Published As

Publication number Publication date
CN111133126B (en) 2022-06-21
JP6873087B2 (en) 2021-05-19
WO2020044573A1 (en) 2020-03-05
MY187017A (en) 2021-08-26
CN111133126A (en) 2020-05-08
SG11201905658UA (en) 2020-04-29

Similar Documents

Publication Publication Date Title
TWI494453B (en) Ferromagnetic material sputtering target
TWI482867B (en) Non - magnetic Particle Dispersive Type Strong Magnetic Sputtering Target
JP4885333B1 (en) Ferromagnetic sputtering target
TWI435945B (en) Reduced Particle Generation of Strong Magnetic Sputtering Target
JP6526837B2 (en) Ferromagnetic sputtering target
US8679268B2 (en) Sputtering target of ferromagnetic material with low generation of particles
JP5763178B2 (en) Ferromagnetic sputtering target with less generation of particles
JP6359622B2 (en) Sputtering target containing Co or Fe
JP4871406B1 (en) Magnetron sputtering target and method for manufacturing the same
JP4673453B1 (en) Ferromagnetic material sputtering target
WO2020044573A1 (en) Sputtering target capable of discharging steadily
JP6728094B2 (en) Ferromagnetic material sputtering target
JP2009293102A (en) Sputtering target for depositing vertical magnetic recording medium film with low relative permeability
JP4758522B1 (en) Ferromagnetic sputtering target with less generation of particles
JP4819199B1 (en) Ferromagnetic sputtering target with less generation of particles
TW202405197A (en) Co-Cr-Pt-oxide-based sputtering target
JP2012087412A (en) Target for magnetron sputtering and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210420

R151 Written notification of patent or utility model registration

Ref document number: 6873087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250