JP2020035807A - Method of manufacturing silicon carbide semiconductor device - Google Patents

Method of manufacturing silicon carbide semiconductor device Download PDF

Info

Publication number
JP2020035807A
JP2020035807A JP2018159023A JP2018159023A JP2020035807A JP 2020035807 A JP2020035807 A JP 2020035807A JP 2018159023 A JP2018159023 A JP 2018159023A JP 2018159023 A JP2018159023 A JP 2018159023A JP 2020035807 A JP2020035807 A JP 2020035807A
Authority
JP
Japan
Prior art keywords
region
impurity region
trench
silicon carbide
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018159023A
Other languages
Japanese (ja)
Inventor
弘 塩見
Hiroshi Shiomi
弘 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2018159023A priority Critical patent/JP2020035807A/en
Publication of JP2020035807A publication Critical patent/JP2020035807A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

To provide a method of manufacturing a silicon carbide semiconductor device, with which it is possible to suppress occurrence of alignment deviation.SOLUTION: A first trench is formed on a first principal surface by performing anisotropic etching on a third impurity region and a second impurity region using a mask. A fourth impurity region, which is in contact with a first impurity region and has a second conductivity type, is formed by performing ion implantation on the first trench using a mask. A second trench is formed by extending the first trench through performing thermal etching in an atmosphere containing a halogen gas on the third impurity region, the second impurity region, the first region, and the fourth impurity region. The second trench has a side surface continuing to the first principal surface, and a bottom located at the fourth impurity region. An angle formed by the first principal surface and the side surface is larger than 90°.SELECTED DRAWING: Figure 1

Description

本開示は、炭化珪素半導体装置の製造方法に関する。   The present disclosure relates to a method for manufacturing a silicon carbide semiconductor device.

特開2015−072999号公報(特許文献1)には、トレンチゲート構造のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)が記載されている。当該MOSFETにおいては、トレンチの底部を覆うようにp型ボトム層が形成され、かつp型ベース領域とn型ドリフト層との間にn型電流分散層が形成されている。   JP-A-2015-072999 (Patent Document 1) describes a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) having a trench gate structure. In the MOSFET, a p-type bottom layer is formed so as to cover the bottom of the trench, and an n-type current distribution layer is formed between the p-type base region and the n-type drift layer.

特開2015−072999号公報JP-A-2005-072999

本開示の目的は、アライメントずれの発生を抑制可能な炭化珪素半導体装置の製造方法を提供することである。   An object of the present disclosure is to provide a method for manufacturing a silicon carbide semiconductor device that can suppress occurrence of misalignment.

本開示に係る炭化珪素半導体装置の製造方法は以下の工程を備えている。第1主面と、第1主面と反対側の第2主面とを有する炭化珪素基板が準備される。炭化珪素基板は、第1導電型を有する第1不純物領域と、第1不純物領域上に設けられ、かつ第1導電型と異なる第2導電型を有する第2不純物領域と、第1不純物領域から隔てられるように第2不純物領域上に設けられ、第1主面に接しかつ第1導電型を有する第3不純物領域とを含んでいる。第1不純物領域は、第2不純物領域に接する第1領域と、第1領域に対して第2不純物領域とは反対側に位置する第2領域とを有している。さらに、第1主面上にマスクが形成される。マスクを用いて、第3不純物領域と、第2不純物領域とに対して異方性エッチングを行うことにより、第1主面に第1トレンチが形成される。マスクを用いて、第1トレンチに対してイオン注入を行うことにより、第1不純物領域に接しかつ第2導電型を有する第4不純物領域が形成される。第3不純物領域と、第2不純物領域と、第1領域と、第4不純物領域とに対して、ハロゲンガスを含む雰囲気で熱エッチングを行うことにより、第1トレンチを拡張して第2トレンチが形成される。第2トレンチは、第1主面に連なる側面と、第4不純物領域に位置する底とを有している。第1主面と側面とがなす角度は、90°よりも大きい。   A method for manufacturing a silicon carbide semiconductor device according to the present disclosure includes the following steps. A silicon carbide substrate having a first main surface and a second main surface opposite to the first main surface is prepared. The silicon carbide substrate includes a first impurity region having a first conductivity type, a second impurity region provided on the first impurity region and having a second conductivity type different from the first conductivity type, and a first impurity region. A third impurity region is provided on the second impurity region so as to be separated from the first impurity region and is in contact with the first main surface and has the first conductivity type. The first impurity region has a first region in contact with the second impurity region and a second region located on the opposite side of the first region from the second impurity region. Further, a mask is formed on the first main surface. By performing anisotropic etching on the third impurity region and the second impurity region using a mask, a first trench is formed on the first main surface. By performing ion implantation on the first trench using the mask, a fourth impurity region which is in contact with the first impurity region and has the second conductivity type is formed. By performing thermal etching on the third impurity region, the second impurity region, the first region, and the fourth impurity region in an atmosphere containing a halogen gas, the first trench is expanded to form a second trench. It is formed. The second trench has a side surface connected to the first main surface and a bottom located in the fourth impurity region. The angle formed by the first main surface and the side surface is greater than 90 °.

本開示によれば、アライメントずれの発生を抑制可能な炭化珪素半導体装置の製造方法を提供することができる。   According to the present disclosure, it is possible to provide a method of manufacturing a silicon carbide semiconductor device capable of suppressing occurrence of misalignment.

本実施形態に係る炭化珪素半導体装置の構造を示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing a structure of the silicon carbide semiconductor device according to the embodiment. 本実施形態に係る炭化珪素半導体装置のトレンチの構造を示す平面模式図である。FIG. 3 is a schematic plan view showing a structure of a trench of the silicon carbide semiconductor device according to the present embodiment. 本実施形態に係る炭化珪素半導体装置の製造方法を概略的に示すフロー図である。FIG. 5 is a flowchart schematically showing a method for manufacturing the silicon carbide semiconductor device according to the present embodiment. 本実施形態に係る炭化珪素半導体装置の製造方法の第1工程を示す断面模式図である。FIG. 5 is a schematic cross-sectional view showing a first step of the method for manufacturing the silicon carbide semiconductor device according to the present embodiment. 本実施形態に係る炭化珪素半導体装置の製造方法の第2工程を示す断面模式図である。FIG. 10 is a schematic sectional view showing a second step of the method for manufacturing the silicon carbide semiconductor device according to the present embodiment. 本実施形態に係る炭化珪素半導体装置の製造方法の第3工程を示す断面模式図である。FIG. 10 is a schematic sectional view showing a third step of the method for manufacturing a silicon carbide semiconductor device according to the present embodiment. 本実施形態に係る炭化珪素半導体装置の製造方法の第4工程を示す断面模式図である。FIG. 10 is a schematic sectional view showing a fourth step of the method for manufacturing the silicon carbide semiconductor device according to the present embodiment. 本実施形態に係る炭化珪素半導体装置の製造方法の第5工程を示す断面模式図である。FIG. 13 is a schematic sectional view showing a fifth step of the method for manufacturing a silicon carbide semiconductor device according to the present embodiment. 本実施形態に係る炭化珪素半導体装置の製造方法の第6工程を示す断面模式図である。FIG. 15 is a schematic sectional view showing a sixth step of the method for manufacturing a silicon carbide semiconductor device according to the present embodiment. 本実施形態に係る炭化珪素半導体装置の製造方法の第7工程を示す断面模式図である。FIG. 15 is a schematic sectional view showing a seventh step of the method for manufacturing a silicon carbide semiconductor device according to the present embodiment. 本実施形態に係る炭化珪素半導体装置の製造方法の第8工程を示す断面模式図である。FIG. 15 is a schematic sectional view showing an eighth step of the method for manufacturing a silicon carbide semiconductor device according to the present embodiment. 本実施形態に係る炭化珪素半導体装置の製造方法の第9工程を示す断面模式図である。FIG. 15 is a schematic sectional view showing a ninth step of the method for manufacturing a silicon carbide semiconductor device according to the present embodiment. 本実施形態の変形例に係る炭化珪素半導体装置の製造方法の第1工程を示す断面模式図である。FIG. 11 is a schematic cross-sectional view showing a first step of a method for manufacturing a silicon carbide semiconductor device according to a modification of the present embodiment. 本実施形態の変形例に係る炭化珪素半導体装置の製造方法の第2工程を示す断面模式図である。FIG. 15 is a schematic cross-sectional view showing a second step of the method for manufacturing the silicon carbide semiconductor device according to the modification of the present embodiment. 特性オン抵抗とトレンチの底からの距離の関係および耐圧とトレンチの底からの距離の関係を示すシミュレーションデータである。6 is simulation data showing the relationship between the characteristic on-resistance and the distance from the trench bottom and the relationship between the breakdown voltage and the distance from the trench bottom.

[本開示の実施形態の概要]
まず本開示の実施形態の概要について説明する。本明細書の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示す。結晶学上の指数が負であることは、通常、数字の上に”−”(バー)を付すことによって表現されるが、本明細書では数字の前に負の符号を付すことによって結晶学上の負の指数を表現する。
[Overview of Embodiment of the Present Disclosure]
First, an outline of an embodiment of the present disclosure will be described. In the crystallographic description of this specification, [] indicates the individual orientation, <> indicates the collective orientation, () indicates the individual plane, and indicates the collective plane with {}. Negative crystallographic indices are usually represented by a "-" (bar) over the number, but in this specification, a negative sign in front of the number indicates that the crystallographic index is negative. Express the negative exponent above.

(1)本開示に係る炭化珪素半導体装置200の製造方法は以下の工程を備えている。第1主面1と、第1主面1と反対側の第2主面2とを有する炭化珪素基板100が準備される。炭化珪素基板100は、第1導電型を有する第1不純物領域10と、第1不純物領域10上に設けられ、かつ第1導電型と異なる第2導電型を有する第2不純物領域20と、第1不純物領域10から隔てられるように第2不純物領域20上に設けられ、第1主面1に接しかつ第1導電型を有する第3不純物領域30とを含んでいる。第1不純物領域10は、第2不純物領域20に接する第1領域11と、第1領域11に対して第2不純物領域20とは反対側に位置する第2領域12とを有している。さらに、第1主面1上にマスク64が形成される。マスク64を用いて、第3不純物領域30と、第2不純物領域20とに対して異方性エッチングを行うことにより、第1主面1に第1トレンチ70が形成される。マスク64を用いて、第1トレンチ70に対してイオン注入を行うことにより、第1不純物領域10に接しかつ第2導電型を有する第4不純物領域40が形成される。第3不純物領域30と、第2不純物領域20と、第1領域11と、第4不純物領域40とに対して、ハロゲンガスを含む雰囲気で熱エッチングを行うことにより、第1トレンチ70を拡張して第2トレンチ5が形成される。第2トレンチ5は、第1主面1に連なる側面3と、第4不純物領域40に位置する底4とを有している。第1主面1と側面3とがなす角度θは、90°よりも大きい。   (1) The method for manufacturing silicon carbide semiconductor device 200 according to the present disclosure includes the following steps. Silicon carbide substrate 100 having first main surface 1 and second main surface 2 opposite to first main surface 1 is prepared. Silicon carbide substrate 100 includes a first impurity region 10 having a first conductivity type, a second impurity region 20 provided on first impurity region 10 and having a second conductivity type different from the first conductivity type, A third impurity region provided on second impurity region and separated from first impurity region and in contact with first main surface and having a first conductivity type. The first impurity region 10 has a first region 11 in contact with the second impurity region 20 and a second region 12 located on the opposite side of the first region 11 from the second impurity region 20. Further, a mask 64 is formed on first main surface 1. The first trench 70 is formed in the first main surface 1 by performing anisotropic etching on the third impurity region 30 and the second impurity region 20 using the mask 64. By performing ion implantation into the first trench 70 using the mask 64, the fourth impurity region 40 that is in contact with the first impurity region 10 and has the second conductivity type is formed. The first trench 70 is expanded by performing thermal etching on the third impurity region 30, the second impurity region 20, the first region 11, and the fourth impurity region 40 in an atmosphere containing a halogen gas. Thus, a second trench 5 is formed. Second trench 5 has side surface 3 continuing to first main surface 1 and bottom 4 located in fourth impurity region 40. Angle θ between first main surface 1 and side surface 3 is greater than 90 °.

(2)上記(1)に係る炭化珪素半導体装置200の製造方法において、マスク64を用いて、第1トレンチ70に対してイオン注入を行うことにより、第4不純物領域40に接し、第1導電型を有し、かつ第1領域11よりも高い不純物濃度を有する第3領域13が形成されてもよい。第3領域13は、側面3に接していてもよい。   (2) In the method for manufacturing silicon carbide semiconductor device 200 according to (1), ion implantation is performed on first trench 70 using mask 64 to be in contact with fourth impurity region 40 and to have a first conductivity type. A third region 13 having a mold and having a higher impurity concentration than the first region 11 may be formed. The third region 13 may be in contact with the side surface 3.

(3)上記(1)または(2)に係る炭化珪素半導体装置200の製造方法において、第1主面1は、(000−1)面または(000−1)面に対して8°以下傾斜した面であってもよい。   (3) In the method for manufacturing silicon carbide semiconductor device 200 according to the above (1) or (2), first main surface 1 is inclined by 8 ° or less with respect to the (000-1) plane or the (000-1) plane. Surface may be used.

(4)上記(1)〜(3)のいずれかに係る炭化珪素半導体装置200の製造方法において、第2不純物領域20の厚みは、0.3μm以上0.7μm以下であってもよい。   (4) In the method of manufacturing silicon carbide semiconductor device 200 according to any one of (1) to (3), the thickness of second impurity region 20 may be 0.3 μm or more and 0.7 μm or less.

(5)上記(1)〜(4)のいずれかに係る炭化珪素半導体装置200の製造方法において、第2トレンチ5を形成する工程は、マスク64を用いて行われてもよい。
[本開示の実施形態の詳細]
以下、本開示の実施形態の詳細について説明する。以下の説明では、同一または対応する要素には同一の符号を付し、それらについて同じ説明は繰り返さない。
(5) In the method for manufacturing silicon carbide semiconductor device 200 according to any one of (1) to (4), the step of forming second trench 5 may be performed using mask 64.
[Details of Embodiment of the Present Disclosure]
Hereinafter, details of the embodiment of the present disclosure will be described. In the following description, the same or corresponding elements have the same reference characters allotted, and the same description will not be repeated.

本実施形態に係る炭化珪素半導体装置200としてのMOSFETの構成について説明する。   A configuration of a MOSFET as silicon carbide semiconductor device 200 according to the present embodiment will be described.

図1に示されるように、本実施形態に係る炭化珪素半導体装置200は、炭化珪素基板100と、ゲート電極7と、ゲート絶縁膜6と、層間絶縁膜23と、ソース電極8と、ソース配線21と、ドレイン電極9と、保護膜22とを主に有している。炭化珪素基板100は、第1主面1と、第1主面1と反対側の第2主面2とを有している。炭化珪素基板100は、炭化珪素単結晶基板15と、炭化珪素単結晶基板15上に設けられた炭化珪素エピタキシャル層16とを含んでいる。炭化珪素単結晶基板15は、炭化珪素基板100の第2主面2を構成している。炭化珪素エピタキシャル層16は、炭化珪素基板100の第1主面1を構成している。   As shown in FIG. 1, silicon carbide semiconductor device 200 according to the present embodiment includes silicon carbide substrate 100, gate electrode 7, gate insulating film 6, interlayer insulating film 23, source electrode 8, and source wiring 21, a drain electrode 9, and a protective film 22. Silicon carbide substrate 100 has a first main surface 1 and a second main surface 2 opposite to first main surface 1. Silicon carbide substrate 100 includes a silicon carbide single crystal substrate 15 and a silicon carbide epitaxial layer 16 provided on silicon carbide single crystal substrate 15. Silicon carbide single crystal substrate 15 forms second main surface 2 of silicon carbide substrate 100. Silicon carbide epitaxial layer 16 forms first main surface 1 of silicon carbide substrate 100.

炭化珪素単結晶基板15は、たとえばポリタイプ4Hの六方晶炭化珪素から構成されている。炭化珪素基板100の第1主面1の最大径は、たとえば150mmであり、好ましくは150mm以上である。第1主面1は、たとえば(000−1)面または(000−1)面に対して8°以下オフした面であってもよい。炭化珪素単結晶基板15の厚みは、たとえば400μmである。炭化珪素単結晶基板15の抵抗率はたとえば0.017Ωcmである。   Silicon carbide single crystal substrate 15 is made of, for example, hexagonal silicon carbide of polytype 4H. The maximum diameter of first main surface 1 of silicon carbide substrate 100 is, for example, 150 mm, and preferably 150 mm or more. The first main surface 1 may be, for example, a (000-1) plane or a plane turned off by 8 ° or less with respect to the (000-1) plane. Silicon carbide single crystal substrate 15 has a thickness of, for example, 400 μm. Silicon carbide single crystal substrate 15 has a resistivity of, for example, 0.017 Ωcm.

炭化珪素エピタキシャル層16は、第1不純物領域10と、ベース領域20(第2不純物領域20)と、ソース領域30(第3不純物領域30)と、コンタクト領域42と、第4不純物領域40とを主に有している。第1不純物領域10は、窒素などのn型を付与するためのn型不純物(ドナー)を含むn型(第1導電型)の領域である。   Silicon carbide epitaxial layer 16 includes first impurity region 10, base region 20 (second impurity region 20), source region 30 (third impurity region 30), contact region 42, and fourth impurity region 40. Mainly have. The first impurity region 10 is an n-type (first conductivity type) region including an n-type impurity (donor) for imparting an n-type such as nitrogen.

第1不純物領域10は、第1領域11と、第2領域12と、第3領域13とを主に有している。第1領域11は、電流拡がり層である。第1領域11は、第2不純物領域20に接している。第1領域11は、第1不純物濃度を有している。第1領域11が含むn型不純物の濃度(第1不純物濃度)は、たとえば3×1016cm-3以上3×1017cm-3以下である。第1領域11の厚みは、たとえば0.2μm以上0.5μm以下である。 The first impurity region 10 mainly has a first region 11, a second region 12, and a third region 13. The first region 11 is a current spreading layer. The first region 11 is in contact with the second impurity region 20. The first region 11 has a first impurity concentration. The concentration of the n-type impurity (first impurity concentration) included in first region 11 is, for example, not less than 3 × 10 16 cm −3 and not more than 3 × 10 17 cm −3 . The thickness of the first region 11 is, for example, not less than 0.2 μm and not more than 0.5 μm.

第2領域12は、ドリフト層である。第2領域12は、第1領域11と第2主面2との間に設けられている。第2領域12は、第1不純物濃度よりも低い第2不純物濃度を有している。第2領域12が含むn型不純物の濃度(第2不純物濃度)は、たとえば8×1015cm-3である。第2領域12の厚みは、第1領域11の厚みよりも大きくてもよい。 The second region 12 is a drift layer. The second region 12 is provided between the first region 11 and the second main surface 2. The second region 12 has a second impurity concentration lower than the first impurity concentration. The concentration of the n-type impurity (second impurity concentration) included in second region 12 is, for example, 8 × 10 15 cm −3 . The thickness of the second region 12 may be larger than the thickness of the first region 11.

第3領域13は、局所電流拡がり領域である。第3領域13は、第1領域11に連なっている。第3領域13の厚みは、第1領域11の厚みよりも小さくてもよい。第3領域13は、第1不純物濃度よりも高い第3不純物濃度を有している。第3領域13が含むn型不純物の濃度(第3不純物濃度)は、たとえば2×1016cm-3以上5×1017cm-3以下である。第2領域12が含むn型不純物の濃度(第2不純物濃度)は、炭化珪素単結晶基板が含むn型不純物の濃度よりも低い。第1領域11が含むn型不純物の濃度を高くしすぎると、パンチスルー(リーチスルー)が発生しやすくなる。第1領域11が含むn型不純物の濃度を低く抑えつつ、第3領域13が含むn型不純物の濃度を高くすることで、パンチスルーを抑制しつつ、チャネル出口付近において電流の広がりを確保することができる。そのため、炭化珪素半導体装置200のオン抵抗を低減することができる。 The third region 13 is a local current spreading region. The third area 13 is continuous with the first area 11. The thickness of the third region 13 may be smaller than the thickness of the first region 11. The third region 13 has a third impurity concentration higher than the first impurity concentration. The concentration of the n-type impurity (third impurity concentration) included in third region 13 is, for example, not less than 2 × 10 16 cm −3 and not more than 5 × 10 17 cm −3 . The concentration of the n-type impurity (second impurity concentration) included in second region 12 is lower than the concentration of the n-type impurity included in the silicon carbide single crystal substrate. If the concentration of the n-type impurity contained in the first region 11 is too high, punch-through (reach-through) tends to occur. By increasing the concentration of the n-type impurity contained in the third region 13 while keeping the concentration of the n-type impurity contained in the first region 11 low, the spread of current near the channel exit is ensured while suppressing punch-through. be able to. Therefore, on-resistance of silicon carbide semiconductor device 200 can be reduced.

ベース領域20は、第1不純物領域10と接している。ベース領域20は、第1不純物領域10上に設けられている。ベース領域20は、n型とは異なるp型(第2導電型)を有する。ベース領域20は、たとえばAl(アルミニウム)またはB(ホウ素)などのp型を付与するためのp型不純物(アクセプタ)を含んでいる。ベース領域20が含むp型不純物の濃度は、たとえば1×1017cm-3以上2×1018cm-3以下である。ベース領域20の厚みは、たとえば0.3μm以上0.7μm以下である。 Base region 20 is in contact with first impurity region 10. Base region 20 is provided on first impurity region 10. Base region 20 has a p-type (second conductivity type) different from the n-type. Base region 20 includes a p-type impurity (acceptor) for imparting a p-type such as Al (aluminum) or B (boron). The concentration of the p-type impurity contained in base region 20 is, for example, not less than 1 × 10 17 cm −3 and not more than 2 × 10 18 cm −3 . The thickness of base region 20 is, for example, not less than 0.3 μm and not more than 0.7 μm.

ソース領域30は、ベース領域20によって第1不純物領域10から隔てられるようにベース領域20上に設けられている。ソース領域30は、リンなどのn型を付与するためのn型不純物を含んでおり、n型を有する。ソース領域30が含むn型不純物の濃度は、第2領域12が含むn型不純物の濃度よりも高い。ソース領域30が含むリンなどのn型不純物の濃度は、たとえば2×1018cm-3以上1×1019cm-3以下である。ソース領域30の厚みは、たとえば0.1μm以上0.2μm以下である。 Source region 30 is provided on base region 20 so as to be separated from first impurity region 10 by base region 20. The source region 30 contains an n-type impurity for imparting an n-type such as phosphorus and has an n-type. The concentration of the n-type impurity contained in the source region 30 is higher than the concentration of the n-type impurity contained in the second region 12. The concentration of an n-type impurity such as phosphorus contained in the source region 30 is, for example, not less than 2 × 10 18 cm −3 and not more than 1 × 10 19 cm −3 . Source region 30 has a thickness of, for example, 0.1 μm or more and 0.2 μm or less.

コンタクト領域42は、たとえばアルミニウムまたはホウ素などのp型不純物を含むp型領域である。コンタクト領域42は、ソース領域30およびベース領域20の各々に接している。コンタクト領域42が含むp型不純物の濃度は、ベース領域20が含むp型不純物の濃度よりも高い。コンタクト領域42が含むアルミニウムなどのp型不純物の濃度は、たとえば2×1018cm-3以上1×1019cm-3以下である。コンタクト領域42の厚みは、たとえば0.1μm以上1.3μm以下である。 Contact region 42 is a p-type region containing a p-type impurity such as aluminum or boron. Contact region 42 is in contact with each of source region 30 and base region 20. The concentration of the p-type impurity contained in contact region 42 is higher than the concentration of the p-type impurity contained in base region 20. The concentration of a p-type impurity such as aluminum contained in contact region 42 is, for example, not less than 2 × 10 18 cm −3 and not more than 1 × 10 19 cm −3 . Contact region 42 has a thickness of, for example, 0.1 μm or more and 1.3 μm or less.

炭化珪素基板100の第1主面1には、トレンチ5(ゲートトレンチ)が設けられている。トレンチ5は、側面3と、底4とを有している。底4は、側面3に連なっている。側面3は、第1主面1の法線に対して傾斜する方向に延在している。トレンチ5の深さは、たとえば0.5μm以上1.0μm以下である。第1主面1と側面3とがなす角度θは、90°よりも大きい。断面視において、トレンチ5は、たとえばV字型である。トレンチ5は、たとえば第2主面2に向かって尖っている。   On first main surface 1 of silicon carbide substrate 100, trench 5 (gate trench) is provided. The trench 5 has a side surface 3 and a bottom 4. The bottom 4 is continuous with the side surface 3. The side surface 3 extends in a direction inclined with respect to a normal line of the first main surface 1. The depth of trench 5 is, for example, 0.5 μm or more and 1.0 μm or less. Angle θ between first main surface 1 and side surface 3 is greater than 90 °. In a sectional view, trench 5 is, for example, V-shaped. The trench 5 is pointed toward the second main surface 2, for example.

第4不純物領域40は、第2主面2とトレンチ5の底4との間に設けられている。図1に示されるように、第4不純物領域40は、底4に接していてもよい。第4不純物領域40は、たとえばアルミニウムまたはホウ素などのp型不純物を含み、p型(第2導電型)を有している。第4不純物領域40は、ベース領域20よりも高い不純物濃度を有している。第4不純物領域40は、ソース電極8と電気的に接続されていてもよい。第4不純物領域40が含むアルミニウムなどのp型不純物の濃度は、たとえば1×1018cm-3以上9×1018cm-3以下である。 The fourth impurity region 40 is provided between the second main surface 2 and the bottom 4 of the trench 5. As shown in FIG. 1, the fourth impurity region 40 may be in contact with the bottom 4. Fourth impurity region 40 includes a p-type impurity such as aluminum or boron, and has a p-type (second conductivity type). The fourth impurity region 40 has a higher impurity concentration than the base region 20. The fourth impurity region 40 may be electrically connected to the source electrode 8. The concentration of a p-type impurity such as aluminum contained in fourth impurity region 40 is, for example, not less than 1 × 10 18 cm −3 and not more than 9 × 10 18 cm −3 .

図1に示されるように、トレンチ5の側面3は、第3領域13と、第2不純物領域20と、第3不純物領域30と、第4不純物領域40とに接している。第1領域11は、側面3に接していてもよいし、側面3から離間していてもよい。第2領域12は、側面3から離間している。第3領域13は、第1領域11に接している。第3領域13は、第2不純物領域20に接していてもよい。第3領域13は、側面3に接し、かつ側面3から離れる方向に突出している。第1領域11は、第2領域12に接している。第2領域12は、電気的には第3領域13に接続されているが、物理的に第3領域13から離間していてもよい。   As shown in FIG. 1, side surface 3 of trench 5 is in contact with third region 13, second impurity region 20, third impurity region 30, and fourth impurity region 40. The first region 11 may be in contact with the side surface 3 or may be separated from the side surface 3. The second region 12 is separated from the side surface 3. The third region 13 is in contact with the first region 11. Third region 13 may be in contact with second impurity region 20. The third region 13 is in contact with the side surface 3 and protrudes in a direction away from the side surface 3. The first area 11 is in contact with the second area 12. The second region 12 is electrically connected to the third region 13, but may be physically separated from the third region 13.

トレンチ5の底4は、第4不純物領域40に接している。図2に示されるように、第1主面1に平行な方向において、トレンチ5の底4から第3領域13の端部までの距離(第1距離111)は、トレンチ5の底4から第4不純物領域40の端部までの距離(第2距離112)よりも短い。   The bottom 4 of the trench 5 is in contact with the fourth impurity region 40. As shown in FIG. 2, in the direction parallel to the first main surface 1, the distance (first distance 111) from the bottom 4 of the trench 5 to the end of the third region 13 is the first distance from the bottom 4 of the trench 5. It is shorter than the distance to the end of the four impurity region 40 (second distance 112).

なお、第3領域13の端部とは、第3領域13中におけるn型不純物の濃度の最大値の1/eの濃度を有し、かつトレンチ5の底4から第1主面1に平行な方向に最も離れた位置である。なお、「e」はネイピア数である。第4不純物領域40の端部とは、隣接する第1不純物領域10のn型不純物と第4不純物領域40のp型不純物とが打ち消されることでキャリア濃度が極小値を示し、かつトレンチ5の底4から第1主面1に平行な方向に最も離れた位置である。   Note that the end of the third region 13 has a concentration of 1 / e of the maximum value of the concentration of the n-type impurity in the third region 13 and is parallel to the first main surface 1 from the bottom 4 of the trench 5. The most distant position in the direction. Note that “e” is the Napier number. The end of the fourth impurity region 40 has a minimum carrier concentration due to the n-type impurity in the adjacent first impurity region 10 and the p-type impurity in the fourth impurity region 40 being canceled out, and the trench 5 has This is the position farthest from the bottom 4 in the direction parallel to the first main surface 1.

図2に示されるように、第2主面2に対して垂直な方向から見て、トレンチ5は、実質的に長方形状であってもよい。トレンチ5は、第1方向101と、第2方向102とに沿って延在している。第1方向101は、トレンチ5の短手方向である。第2方向102は、トレンチ5の長手方向である。第1方向101は、たとえば<1−100>方向である。第2方向102は、たとえば<11−20>方向である。第1方向101は、たとえば<1−100>方向を第1主面1に投影した方向であってもよい。第2方向102は、たとえば<11−20>方向を第1主面1に投影した方向であってもよい。   As shown in FIG. 2, when viewed from a direction perpendicular to second main surface 2, trench 5 may be substantially rectangular. The trench 5 extends along a first direction 101 and a second direction 102. The first direction 101 is a short direction of the trench 5. The second direction 102 is a longitudinal direction of the trench 5. The first direction 101 is, for example, a <1-100> direction. The second direction 102 is, for example, a <11-20> direction. The first direction 101 may be, for example, a direction in which the <1-100> direction is projected on the first main surface 1. The second direction 102 may be, for example, a direction in which the <11-20> direction is projected on the first main surface 1.

図2に示されるように、第3領域13および第4不純物領域40の各々は、トレンチ5の延在方向に沿って延在している。第3領域13の長手方向は、トレンチ5の長手方向と同じである。第3領域13の短手方向は、トレンチ5の短手方向と同じである。第4不純物領域40の長手方向は、トレンチ5の長手方向と同じである。第4不純物領域40の短手方向は、トレンチ5の短手方向と同じである。図2に示されるように、第2主面2に対して垂直な方向から見て、第4不純物領域40は、トレンチ5の底4と重なっている。トレンチ5の短手方向において、第4不純物領域40の幅は、トレンチ5の開口部の幅よりも小さくてもよい。同様に、トレンチ5の長手方向において、第4不純物領域40の幅は、トレンチ5の開口部の幅よりも小さくてもよい。   As shown in FIG. 2, each of third region 13 and fourth impurity region 40 extends along the direction in which trench 5 extends. The longitudinal direction of the third region 13 is the same as the longitudinal direction of the trench 5. The short direction of the third region 13 is the same as the short direction of the trench 5. The longitudinal direction of the fourth impurity region 40 is the same as the longitudinal direction of the trench 5. The short direction of the fourth impurity region 40 is the same as the short direction of the trench 5. As shown in FIG. 2, the fourth impurity region 40 overlaps the bottom 4 of the trench 5 when viewed from a direction perpendicular to the second main surface 2. The width of the fourth impurity region 40 in the short direction of the trench 5 may be smaller than the width of the opening of the trench 5. Similarly, the width of the fourth impurity region 40 in the longitudinal direction of the trench 5 may be smaller than the width of the opening of the trench 5.

ゲート絶縁膜6は、たとえば二酸化珪素から構成されている。ゲート絶縁膜6は、トレンチ5の側面3と、底4とに接するように設けられている。ゲート絶縁膜6は、トレンチ5の側面3において、第3領域13と、ベース領域20と、ソース領域30と、第4不純物領域40とに接している。ゲート絶縁膜6は、トレンチ5の底4において、第4不純物領域40に接している。ゲート絶縁膜6に接するベース領域20にチャネル領域が形成可能に構成されている。ゲート絶縁膜6の厚みは、たとえば40nm以上150nm以下である。   Gate insulating film 6 is made of, for example, silicon dioxide. The gate insulating film 6 is provided so as to be in contact with the side surface 3 and the bottom 4 of the trench 5. Gate insulating film 6 is in contact with third region 13, base region 20, source region 30, and fourth impurity region 40 on side surface 3 of trench 5. Gate insulating film 6 is in contact with fourth impurity region 40 at bottom 4 of trench 5. A channel region can be formed in the base region 20 in contact with the gate insulating film 6. Gate insulating film 6 has a thickness of, for example, not less than 40 nm and not more than 150 nm.

ゲート電極7は、ゲート絶縁膜6上に設けられている。ゲート電極7は、ゲート絶縁膜6に接触して配置されている。ゲート電極7は、ゲート絶縁膜6により形成される溝を埋めるように設けられている。ゲート電極7は、たとえば不純物がドーピングされたポリシリコンなどの導電体から構成されている。   The gate electrode 7 is provided on the gate insulating film 6. Gate electrode 7 is arranged in contact with gate insulating film 6. The gate electrode 7 is provided so as to fill a groove formed by the gate insulating film 6. Gate electrode 7 is made of, for example, a conductor such as polysilicon doped with an impurity.

ソース電極8は、たとえばNi合金により構成されている。ソース電極8は、炭化珪素基板100の第1主面1側においてソース領域30と電気的に接続されている。ソース電極8は、コンタクト領域42と接する。ソース電極8は、ソース領域30とオーミック接合している合金層を含む。合金層は、たとえばソース電極8が含む金属とのシリサイドである。ソース電極8は、Tiと、Alと、Siを含む材料から構成されていてもよい。   Source electrode 8 is made of, for example, a Ni alloy. Source electrode 8 is electrically connected to source region 30 on first main surface 1 side of silicon carbide substrate 100. Source electrode 8 is in contact with contact region 42. Source electrode 8 includes an alloy layer that is in ohmic contact with source region 30. The alloy layer is, for example, silicide with the metal included in the source electrode 8. The source electrode 8 may be made of a material containing Ti, Al, and Si.

層間絶縁膜23は、炭化珪素基板100の第1主面1に対向する位置に設けられている。具体的には、層間絶縁膜23は、ゲート電極7を覆うようにゲート電極7およびゲート絶縁膜6の各々に接して設けられている。層間絶縁膜23は、たとえばNSG(None−doped Silicate Glass)膜と、PSG(Phosphorus Silicate Glass)膜とを含んでいる。NSGは、PSG上に設けられていてもよい。層間絶縁膜23は、ゲート電極7とソース電極8とを電気的に絶縁している。ソース配線21は、層間絶縁膜23を覆い、かつソース電極8に接するように設けられている。ソース配線21は、ソース電極8を介してソース領域30と電気的に接続されている。ソース配線21は、たとえばAlSiCuを含む材料から構成されている。保護膜22は、ソース配線21を覆うように、ソース配線21上に設けられている。保護膜22は、たとえば窒化膜とポリイミドとを含んでいる。   Interlayer insulating film 23 is provided at a position facing first main surface 1 of silicon carbide substrate 100. Specifically, interlayer insulating film 23 is provided in contact with each of gate electrode 7 and gate insulating film 6 so as to cover gate electrode 7. The interlayer insulating film 23 includes, for example, an NSG (None-doped Silicate Glass) film and a PSG (Phosphorus Silicate Glass) film. The NSG may be provided on the PSG. Interlayer insulating film 23 electrically insulates gate electrode 7 and source electrode 8. Source wiring 21 is provided so as to cover interlayer insulating film 23 and to be in contact with source electrode 8. Source wiring 21 is electrically connected to source region 30 via source electrode 8. Source wiring 21 is made of, for example, a material containing AlSiCu. The protection film 22 is provided on the source wiring 21 so as to cover the source wiring 21. The protective film 22 includes, for example, a nitride film and polyimide.

ドレイン電極9は、炭化珪素基板100の第2主面2に接して設けられている。ドレイン電極9は、第2主面2側において、第1不純物領域10と電気的に接続されている。ドレイン電極9は、たとえばNiSi(ニッケルシリサイド)など、n型の炭化珪素単結晶基板15とオーミック接合可能な材料から構成されている。ドレイン電極9は炭化珪素単結晶基板15と電気的に接続されている。   Drain electrode 9 is provided in contact with second main surface 2 of silicon carbide substrate 100. The drain electrode 9 is electrically connected to the first impurity region 10 on the second main surface 2 side. Drain electrode 9 is made of a material such as NiSi (nickel silicide) capable of ohmic junction with n-type silicon carbide single crystal substrate 15. Drain electrode 9 is electrically connected to silicon carbide single crystal substrate 15.

次に、本実施形態に係るMOSFET200の動作について説明する。ゲート電極7に印加された電圧が閾値電圧未満の状態、すなわちオフ状態では、ソース電極8とドレイン電極9との間に電圧が印加されても、ベース領域20と第1不純物領域10との間に形成されるpn接合が逆バイアスとなり、非導通状態となる。一方、ゲート電極7に閾値電圧以上の電圧が印加されると、ベース領域20のゲート絶縁膜6と接触する付近であるチャネル領域において反転層が形成される。その結果、ソース領域30と第1不純物領域10とが電気的に接続され、ソース電極8とドレイン電極9との間に電流が流れる。以上のようにして、MOSFET200は動作する。   Next, the operation of the MOSFET 200 according to the present embodiment will be described. In a state where the voltage applied to the gate electrode 7 is lower than the threshold voltage, that is, in an off state, even if a voltage is applied between the source electrode 8 and the drain electrode 9, the voltage between the base region 20 and the first impurity region 10 is reduced. The pn junction formed at the same time becomes reverse biased and becomes non-conductive. On the other hand, when a voltage equal to or higher than the threshold voltage is applied to the gate electrode 7, an inversion layer is formed in the channel region of the base region 20 near the contact with the gate insulating film 6. As a result, the source region 30 and the first impurity region 10 are electrically connected, and a current flows between the source electrode 8 and the drain electrode 9. As described above, MOSFET 200 operates.

次に、本実施形態に係る炭化珪素半導体装置200の製造方法について説明する。図3は、本実施形態に係る炭化珪素半導体装置200の製造方法を概略的に示すフローチャートである。   Next, a method for manufacturing silicon carbide semiconductor device 200 according to the present embodiment will be described. FIG. 3 is a flowchart schematically showing a method for manufacturing silicon carbide semiconductor device 200 according to the present embodiment.

まず、炭化珪素基板を準備する工程(図3:S10)が実施される。たとえば改良レーリー法により成長させた炭化珪素単結晶インゴットをスライスして基板を切り出し、基板の表面に対して鏡面研磨を行うことにより、炭化珪素単結晶基板15が準備される(図4参照)。炭化珪素単結晶基板15は、たとえばポリタイプ4Hの六方晶炭化珪素である。炭化珪素単結晶基板15は、第3主面51と、第3主面51の反対側の第2主面2とを有している。第3主面51の直径は、たとえば150mmである。第3主面51は、たとえば(000−1)面または(000−1)面から8°以下程度オフした面である。炭化珪素単結晶基板15の厚みは、たとえば400μmである。   First, a step of preparing a silicon carbide substrate (FIG. 3: S10) is performed. For example, a silicon carbide single crystal ingot grown by the improved Rayleigh method is sliced to cut out a substrate, and the surface of the substrate is mirror-polished to prepare a silicon carbide single crystal substrate 15 (see FIG. 4). Silicon carbide single crystal substrate 15 is, for example, hexagonal silicon carbide of polytype 4H. Silicon carbide single crystal substrate 15 has a third main surface 51 and a second main surface 2 opposite to third main surface 51. The diameter of third main surface 51 is, for example, 150 mm. The third main surface 51 is, for example, a (000-1) plane or a plane off by about 8 ° or less from the (000-1) plane. Silicon carbide single crystal substrate 15 has a thickness of, for example, 400 μm.

次に、炭化珪素エピタキシャル層を形成する工程が実施される。たとえば、炭化珪素単結晶基板15上に、水素を含むキャリアガスと、シラン、プロパンを含む原料ガスと、窒素を含むドーパントガスが供給され、100mbar(10kPa)の圧力下、炭化珪素単結晶基板15が、たとえば1550℃程度に加熱される。これにより、図5に示されるように、n型を有する炭化珪素エピタキシャル層16が炭化珪素単結晶基板15上に形成される。炭化珪素エピタキシャル層16にはn型不純物としての窒素がドーピングされている。n型不純物の濃度は、たとえば8.0×1015cm-3である。炭化珪素エピタキシャル層16の厚みは、たとえば10μmである。 Next, a step of forming a silicon carbide epitaxial layer is performed. For example, a carrier gas containing hydrogen, a source gas containing silane and propane, and a dopant gas containing nitrogen are supplied onto silicon carbide single crystal substrate 15, and silicon carbide single crystal substrate 15 is supplied under a pressure of 100 mbar (10 kPa). Is heated, for example, to about 1550 ° C. Thereby, silicon carbide epitaxial layer 16 having n-type is formed on silicon carbide single crystal substrate 15 as shown in FIG. Silicon carbide epitaxial layer 16 is doped with nitrogen as an n-type impurity. The concentration of the n-type impurity is, for example, 8.0 × 10 15 cm −3 . Silicon carbide epitaxial layer 16 has a thickness of, for example, 10 μm.

次に、イオン注入スルーマスク60が形成される。イオン注入スルーマスク60は、たとえば熱酸化膜と堆積酸化膜とを組み合わせて形成される。イオン注入スルーマスク60の厚みは、たとえば50nm程度である。次に、炭化珪素エピタキシャル層16に対してイオン注入が実施される。たとえばN(窒素)イオンが、イオン注入スルーマスク60を通して炭化珪素エピタキシャル層16内に対して矢印の方向(第3主面51に対して垂直な方向)にイオン注入される。これにより、n型を有する第1領域11が形成される。第1領域11が含むn型不純物の濃度は、たとえば3×1016cm-3以上3×1017cm-3以下である。第1領域11の厚みは、たとえば0.2μm以上0.5μm以下である。 Next, an ion implantation through mask 60 is formed. The ion implantation through mask 60 is formed, for example, by combining a thermal oxide film and a deposited oxide film. The thickness of the ion implantation through mask 60 is, for example, about 50 nm. Next, ion implantation is performed on silicon carbide epitaxial layer 16. For example, N (nitrogen) ions are implanted into silicon carbide epitaxial layer 16 through ion implantation through mask 60 in the direction of the arrow (the direction perpendicular to third main surface 51). Thereby, the first region 11 having the n-type is formed. The concentration of the n-type impurity included in first region 11 is, for example, not less than 3 × 10 16 cm −3 and not more than 3 × 10 17 cm −3 . The thickness of the first region 11 is, for example, not less than 0.2 μm and not more than 0.5 μm.

次に、たとえばAl(アルミニウム)イオンが、イオン注入スルーマスク60を通して炭化珪素エピタキシャル層16の第1領域11の一部に対して矢印の方向にイオン注入される。これにより、p型を有する第2不純物領域20が形成される。第2不純物領域20が含むp型不純物の濃度は、たとえば5×1016cm-3以上2×1018cm-3以下である。第2不純物領域20の厚みは、たとえば0.3μm以上0.7μm以下である。第2不純物領域20の厚みは、たとえば0.5μm以下であってもよいし、0.4μm以下であってもよい。 Next, for example, Al (aluminum) ions are ion-implanted in the direction of the arrow into a part of first region 11 of silicon carbide epitaxial layer 16 through ion implantation through mask 60. As a result, a second impurity region 20 having p-type is formed. The concentration of the p-type impurity contained in second impurity region 20 is, for example, not less than 5 × 10 16 cm −3 and not more than 2 × 10 18 cm −3 . The thickness of second impurity region 20 is, for example, not less than 0.3 μm and not more than 0.7 μm. The thickness of the second impurity region 20 may be, for example, 0.5 μm or less, or may be 0.4 μm or less.

次に、たとえばP(リン)イオンが、イオン注入スルーマスク60を通して炭化珪素エピタキシャル層16の第2不純物領域20の一部に対して矢印の方向にイオン注入される。これにより、n型を有する第3不純物領域30が形成される(図7参照)。第3不純物領域30が含むn型不純物の濃度は、たとえば2×1018cm-3以上1×1019cm-3以下である。第3不純物領域30の厚みは、たとえば0.1μm以上0.2μm以下である。 Next, for example, P (phosphorus) ions are ion-implanted into a part of second impurity region 20 of silicon carbide epitaxial layer 16 in the direction of the arrow through ion implantation through mask 60. Thus, an n-type third impurity region 30 is formed (see FIG. 7). The concentration of the n-type impurity contained in third impurity region 30 is, for example, not less than 2 × 10 18 cm −3 and not more than 1 × 10 19 cm −3 . The thickness of third impurity region 30 is, for example, 0.1 μm or more and 0.2 μm or less.

次に、イオン注入スルーマスク60が、たとえばウェットエッチングにより除去される。イオン注入スルーマスク60が除去された後、酸化膜マスク63が形成される。酸化膜マスク63は、第1部分61と、第2部分62とを有する。第2部分62の厚みは、第1部分61の厚みよりも大きい。たとえばAl(アルミニウム)イオンが、酸化膜マスク63を通して炭化珪素エピタキシャル層16の第2不純物領域20の一部および第3不純物領域30の一部に対してイオン注入される。これにより、p型を有するコンタクト領域42が形成される(図8参照)。コンタクト領域42が含むp型不純物の濃度は、たとえば2×1018cm-3以上1×1019cm-3以下である。コンタクト領域42の厚みは、たとえば0.1μm以上0.3μm以下である。コンタクト領域42は、第3不純物領域30を貫通し、第2不純物領域20に達している。 Next, ion implantation through mask 60 is removed by, for example, wet etching. After the ion implantation through mask 60 is removed, an oxide film mask 63 is formed. The oxide film mask 63 has a first portion 61 and a second portion 62. The thickness of the second portion 62 is larger than the thickness of the first portion 61. For example, Al (aluminum) ions are ion-implanted into a part of second impurity region 20 and a part of third impurity region 30 of silicon carbide epitaxial layer 16 through oxide film mask 63. Thus, a p-type contact region 42 is formed (see FIG. 8). The concentration of the p-type impurity contained in contact region 42 is, for example, not less than 2 × 10 18 cm −3 and not more than 1 × 10 19 cm −3 . The thickness of contact region 42 is, for example, 0.1 μm or more and 0.3 μm or less. The contact region 42 penetrates through the third impurity region 30 and reaches the second impurity region 20.

以上により、第1主面1と、第1主面1と反対側の第2主面2とを有する炭化珪素基板100が準備される。炭化珪素基板100は、第1導電型を有する第1不純物領域10と、第1不純物領域10上に設けられ、かつ第1導電型と異なる第2導電型を有する第2不純物領域20と、第1不純物領域10から隔てられるように第2不純物領域20上に設けられ、第1主面1に接しかつ第1導電型を有する第3不純物領域30とを含んでいる。第1不純物領域10は、第2不純物領域20に接する第1領域11と、第1領域11に対して第2不純物領域20とは反対側に位置する第2領域12とを有している。第1主面1は、たとえば(000−1)面または(000−1)面から8°以下程度オフした面である。   Thus, silicon carbide substrate 100 having first main surface 1 and second main surface 2 opposite to first main surface 1 is prepared. Silicon carbide substrate 100 includes a first impurity region 10 having a first conductivity type, a second impurity region 20 provided on first impurity region 10 and having a second conductivity type different from the first conductivity type, A third impurity region provided on second impurity region and separated from first impurity region and in contact with first main surface and having a first conductivity type. The first impurity region 10 has a first region 11 in contact with the second impurity region 20 and a second region 12 located on the opposite side of the first region 11 from the second impurity region 20. The first main surface 1 is, for example, a (000-1) plane or a plane off by about 8 ° or less from the (000-1) plane.

次に、第1主面上にマスクを形成する工程(S20:図3)が実施される。具体的には、第1主面1上にマスク64が形成される。マスク64は、エッチングマスクとして機能する。マスク64は、たとえば堆積酸化膜を含む材料から構成されている。マスク64の厚みは、たとえば1μmである。次に、CHF3およびO2を用いて、第1トレンチ70が形成される領域上のマスク64に対してRFエッチングが行われることにより、マスク64に開口が形成される。 Next, a step of forming a mask on the first main surface (S20: FIG. 3) is performed. Specifically, mask 64 is formed on first main surface 1. The mask 64 functions as an etching mask. The mask 64 is made of, for example, a material containing a deposited oxide film. The thickness of the mask 64 is, for example, 1 μm. Next, by using CHF 3 and O 2 , RF etching is performed on the mask 64 on the region where the first trench 70 is to be formed, so that an opening is formed in the mask 64.

次に、第1トレンチを形成する工程(S30:図3)が実施される。第1トレンチ70が形成される領域上に開口が形成されたマスク64を用いて、炭化珪素基板100に対してエッチングが行われる。たとえば、マスク64を用いた状態で、SF6およびO2雰囲気下において、第3不純物領域30と第2不純物領域20とに対して異方性エッチングが行われる。異方性エッチングは、たとえばECR(Electron Cyclotron Resonance)プラズマエッチングである。これにより、炭化珪素基板100の第1主面1に第1トレンチ70が形成される。 Next, a step of forming the first trench (S30: FIG. 3) is performed. Etching is performed on silicon carbide substrate 100 using mask 64 having an opening formed in a region where first trench 70 is formed. For example, anisotropic etching is performed on third impurity region 30 and second impurity region 20 in an atmosphere of SF 6 and O 2 using mask 64. The anisotropic etching is, for example, ECR (Electron Cyclotron Resonance) plasma etching. Thereby, first trench 70 is formed in first main surface 1 of silicon carbide substrate 100.

図9に示されるように、第1トレンチ70は、第1側面71と、第1底面72とを有している。第1側面71は、第2不純物領域20と、第3不純物領域30とに接している。第1底面72は、第1領域11に接している。第1トレンチ70の深さは、たとえば0.2μm以上0.7μm以下である。第1トレンチ70の幅は、たとえば0.7μm以上1μm以下である。   As shown in FIG. 9, the first trench 70 has a first side surface 71 and a first bottom surface 72. First side surface 71 is in contact with second impurity region 20 and third impurity region 30. The first bottom surface 72 is in contact with the first region 11. The depth of first trench 70 is, for example, not less than 0.2 μm and not more than 0.7 μm. The width of first trench 70 is, for example, not less than 0.7 μm and not more than 1 μm.

次に、イオン注入により第4不純物領域を形成する工程(S40:図3)が実施される。具体的には、マスク64を用いて、第1トレンチ70に対してイオン注入が行われる。この工程では、マスク64は、イオン注入マスクとして機能する。具体的には、マスク64が第1主面1に設けられた状態で、Al(アルミニウム)イオンが、第1領域11の一部および第2領域12の一部に対してイオン注入される。イオン注入エネルギーは、たとえば700keV以上である。これにより、p型を有する第4不純物領域40が形成される。   Next, a step of forming a fourth impurity region by ion implantation (S40: FIG. 3) is performed. Specifically, ion implantation is performed on the first trench 70 using the mask 64. In this step, the mask 64 functions as an ion implantation mask. Specifically, Al (aluminum) ions are ion-implanted into a part of the first region 11 and a part of the second region 12 with the mask 64 provided on the first main surface 1. The ion implantation energy is, for example, 700 keV or more. As a result, a fourth impurity region 40 having p-type is formed.

第4不純物領域40は、第1不純物領域10に接している。具体的には、第4不純物領域40は、第1領域11および第2領域12の各々に接している。第1主面1に平行な方向において、第4不純物領域40の幅は、第1トレンチ70の第1底面72の幅よりも大きい。第4不純物領域40は、第1トレンチ70の一対の第1側面71の各々から0.2μm程度広がっている。第4不純物領域40が含むp型不純物の濃度は、たとえば1×1018cm-3以上9×1018cm-3以下である。第4不純物領域40の厚みは、たとえば0.5μm以上1.5μm以下である。 The fourth impurity region 40 is in contact with the first impurity region 10. Specifically, fourth impurity region 40 is in contact with each of first region 11 and second region 12. In the direction parallel to the first main surface 1, the width of the fourth impurity region 40 is larger than the width of the first bottom surface 72 of the first trench 70. The fourth impurity region 40 extends from each of the pair of first side surfaces 71 of the first trench 70 by about 0.2 μm. The concentration of the p-type impurity contained in fourth impurity region 40 is, for example, not less than 1 × 10 18 cm −3 and not more than 9 × 10 18 cm −3 . The thickness of fourth impurity region 40 is, for example, 0.5 μm or more and 1.5 μm or less.

次に、イオン注入により第3領域を形成する工程(S50:図3)が実施される。具体的には、マスク64を用いて、第1トレンチ70に対してイオン注入が行われる。この工程では、マスク64は、イオン注入マスクとして機能する。具体的には、マスク64が第1主面1に設けられた状態で、N(窒素)イオンが、第1領域11の一部と、第2不純物領域20の一部と、第4不純物領域40の一部とに対してイオン注入される。イオン注入エネルギーは、たとえば400keV以上である。これにより、n型を有する第3領域13が形成される。イオン注入により第3領域を形成する工程(S50:図3)のイオン注入エネルギーは、イオン注入により第4不純物領域を形成する工程(S40:図3)のイオン注入エネルギーよりも小さい。第3領域13は、第4不純物領域40に対して第1主面1側に形成される。   Next, a step of forming a third region by ion implantation (S50: FIG. 3) is performed. Specifically, ion implantation is performed on the first trench 70 using the mask 64. In this step, the mask 64 functions as an ion implantation mask. Specifically, in a state where the mask 64 is provided on the first main surface 1, N (nitrogen) ions are supplied to a part of the first region 11, a part of the second impurity region 20, and a fourth impurity region. Ion is implanted into a part of 40. The ion implantation energy is, for example, 400 keV or more. Thereby, the third region 13 having the n-type is formed. The ion implantation energy of the step of forming the third region by ion implantation (S50: FIG. 3) is smaller than the ion implantation energy of the step of forming the fourth impurity region by ion implantation (S40: FIG. 3). Third region 13 is formed on first main surface 1 side with respect to fourth impurity region 40.

図10に示されるように、第3領域13は、第4不純物領域40に接している。具体的には、第3領域13は、第1領域11および第4不純物領域40の各々に接している。第1主面1に平行な方向において、第3領域13の幅は、第1トレンチ70の第1底面72の幅よりも大きく、かつ第4不純物領域40の幅よりも小さい。第3領域13は、第1トレンチ70の一対の第1側面71の各々から0.1μm程度広がっている。第3領域13の不純物濃度は、第1領域11の不純物濃度よりも高い。第3領域13が含むn型不純物の濃度は、たとえば2×1016cm-3以上5×1017cm-3以下である。第3領域13の厚みは、たとえば0.3μm以上1μm以下である。 As shown in FIG. 10, the third region 13 is in contact with the fourth impurity region 40. Specifically, third region 13 is in contact with each of first region 11 and fourth impurity region 40. In the direction parallel to the first main surface 1, the width of the third region 13 is larger than the width of the first bottom surface 72 of the first trench 70 and smaller than the width of the fourth impurity region 40. The third region 13 extends from each of the pair of first side surfaces 71 of the first trench 70 by about 0.1 μm. The impurity concentration of the third region 13 is higher than the impurity concentration of the first region 11. The concentration of the n-type impurity included in third region 13 is, for example, not less than 2 × 10 16 cm −3 and not more than 5 × 10 17 cm −3 . The thickness of third region 13 is, for example, not less than 0.3 μm and not more than 1 μm.

なお、第1主面1が(000−1)面に対して傾斜している炭化珪素基板100(オフ基板)を用いる場合には、チャネリングを抑制することができる。これにより、第1主面1に対して垂直な方向に効果的にイオン注入を行うことが可能である。第1主面1の法線に対して傾斜した方向にイオン注入を行う場合には、横方向の広がりを促進することができる。   When silicon carbide substrate 100 (off substrate) having first main surface 1 inclined with respect to the (000-1) plane is used, channeling can be suppressed. Thereby, it is possible to effectively perform ion implantation in a direction perpendicular to the first main surface 1. When the ions are implanted in a direction inclined with respect to the normal line of the first main surface 1, the lateral spread can be promoted.

次に、第1トレンチを拡張して第2トレンチを形成する工程(S60:図3)が実施される。具体的には、たとえばマスク64を用いた状態で、第3不純物領域30と、第2不純物領域20と、第1領域11と、第4不純物領域40とに対して、ハロゲンガスを含む雰囲気で熱エッチングが行われる。熱エッチングは、少なくとも1種類以上のハロゲン原子を有する反応性ガスを含む雰囲気中で行われる。少なくとも1種類以上のハロゲン原子は、たとえば塩素(Cl)原子およびフッ素(F)原子の少なくともいずれかを含む。当該雰囲気は、たとえば、塩素(Cl2)、三塩化ホウ素(BCl3)、六フッ化硫黄(SF6)または四フッ化炭素(CF4)を含む。たとえば、塩素ガスと酸素ガスとの混合ガスを反応ガスとして用い、熱処理温度を、たとえば800℃以上900℃以下として、熱エッチングが行われる。なお、反応ガスは、上述した塩素ガスと酸素ガスとに加えて、キャリアガスを含んでいてもよい。キャリアガスとしては、たとえば窒素ガス、アルゴンガスまたはヘリウムガスなどを用いることができる。これにより、第1トレンチ70が拡張されて第2トレンチ5が形成される。第1トレンチ70は、深さ方向および幅方向の各々において拡張される。 Next, a step of forming the second trench by expanding the first trench (S60: FIG. 3) is performed. Specifically, for example, with the mask 64 used, the third impurity region 30, the second impurity region 20, the first region 11, and the fourth impurity region 40 are exposed to an atmosphere containing a halogen gas. Thermal etching is performed. Thermal etching is performed in an atmosphere containing a reactive gas having at least one or more halogen atoms. The at least one or more halogen atoms include, for example, at least one of a chlorine (Cl) atom and a fluorine (F) atom. The atmosphere includes, for example, chlorine (Cl 2 ), boron trichloride (BCl 3 ), sulfur hexafluoride (SF 6 ), or carbon tetrafluoride (CF 4 ). For example, thermal etching is performed by using a mixed gas of chlorine gas and oxygen gas as a reaction gas and setting the heat treatment temperature to, for example, 800 ° C. or more and 900 ° C. or less. Note that the reaction gas may include a carrier gas in addition to the chlorine gas and the oxygen gas described above. As the carrier gas, for example, nitrogen gas, argon gas, helium gas, or the like can be used. Thereby, the first trench 70 is expanded to form the second trench 5. The first trench 70 is extended in each of the depth direction and the width direction.

図11に示されるように、断面視において、第2トレンチ5は、たとえばV字型である。第2トレンチ5は、たとえば第2主面2に向かって尖っている。第2トレンチ5は、第2側面3と、第2底4とを有している。第2側面3は、第3領域13と、第2不純物領域20と、第3不純物領域30と、第4不純物領域40とに接している。第2側面3は、第1主面1に連なっている。第2底4は、第4不純物領域40に接している。別の観点から言えば、第2底4は、第4不純物領域40に位置している。第2トレンチ5の深さは、第1トレンチ70の深さよりも大きい。第2トレンチ5の深さは、たとえば0.5μm以上1.0μm以下である。第2トレンチ5の開口部の幅は、第1トレンチ70の開口部の幅よりも大きい。第1主面1と第2側面とがなす角度θは、90°よりも大きい。第1主面1と第2側面とがなす角度θは、たとえば115°以上135°以下である。角度θは、120°以上であってもよい。角度θは、130°以下であってもよい。   As shown in FIG. 11, the second trench 5 is, for example, V-shaped in a cross-sectional view. The second trench 5 is pointed, for example, toward the second main surface 2. The second trench 5 has a second side surface 3 and a second bottom 4. The second side surface 3 is in contact with the third region 13, the second impurity region 20, the third impurity region 30, and the fourth impurity region 40. The second side surface 3 is continuous with the first main surface 1. The second bottom 4 is in contact with the fourth impurity region 40. In other words, the second bottom 4 is located in the fourth impurity region 40. The depth of the second trench 5 is larger than the depth of the first trench 70. The depth of second trench 5 is, for example, 0.5 μm or more and 1.0 μm or less. The width of the opening of the second trench 5 is larger than the width of the opening of the first trench 70. The angle θ between the first main surface 1 and the second side surface is larger than 90 °. Angle θ between first main surface 1 and second side surface is, for example, not less than 115 ° and not more than 135 °. Angle θ may be greater than or equal to 120 °. Angle θ may be equal to or smaller than 130 °.

次に、炭化珪素基板をアニールする工程(S70:図3)が実施される。まず、マスク64が、炭化珪素基板100の第1主面1から除去される。次に、炭化珪素基板100が、炭化珪素製のケース80内に配置される(図12参照)。ケース80は、収容部81と蓋部82とを有している。炭化珪素基板100は、収容部81に配置される。収容部81上には蓋部82が配置される。これにより、炭化珪素基板100は、ケース80内に密閉される。   Next, a step of annealing the silicon carbide substrate (S70: FIG. 3) is performed. First, mask 64 is removed from first main surface 1 of silicon carbide substrate 100. Next, silicon carbide substrate 100 is arranged in case 80 made of silicon carbide (see FIG. 12). The case 80 has a housing section 81 and a lid section 82. Silicon carbide substrate 100 is arranged in accommodation portion 81. A lid part 82 is arranged on the accommodation part 81. Thereby, silicon carbide substrate 100 is sealed in case 80.

炭化珪素基板100は、ケース80内に密閉された状態で、炭化珪素基板100が加熱される。炭化珪素基板100は炭化珪素製のケース80内に配置されているため、炭化珪素基板100は、炭化珪素雰囲気において加熱される。これにより、炭化珪素の熱平衡状態が維持される。炭化珪素雰囲気において、炭化珪素基板100が1400°以上1900°以下でアニールされる。好ましくは、炭化珪素基板100が1500°以上1800°以下でアニールされる。炭化珪素基板100のアニール温度は、たとえば1700°である。アニール時間は、たとえば10分である。   Silicon carbide substrate 100 is heated in a state where silicon carbide substrate 100 is sealed in case 80. Since silicon carbide substrate 100 is arranged in silicon carbide case 80, silicon carbide substrate 100 is heated in a silicon carbide atmosphere. Thereby, the thermal equilibrium state of silicon carbide is maintained. In a silicon carbide atmosphere, silicon carbide substrate 100 is annealed at 1400 ° or more and 1900 ° or less. Preferably, silicon carbide substrate 100 is annealed at 1500 ° or more and 1800 ° or less. The annealing temperature of silicon carbide substrate 100 is, for example, 1700 °. The annealing time is, for example, 10 minutes.

以上により、第2トレンチ5の熱エッチングと、イオン注入された不純物の活性化とが同時に行われる。熱エッチングにより、第2トレンチ5の第2側面3および第2底4の各々におけるダメージ層が除去される。   As described above, the thermal etching of the second trench 5 and the activation of the ion-implanted impurity are simultaneously performed. The damage layer on each of the second side surface 3 and the second bottom 4 of the second trench 5 is removed by thermal etching.

次に、ゲート絶縁膜を形成する工程(S80:図3)が実施される。具体的には、第1主面1と、第2側面3と、第2底4とに接するゲート絶縁膜6が形成される。ゲート絶縁膜6は、たとえば堆積酸化膜である。ゲート絶縁膜6は、第2側面3において、第3領域13と、第4不純物領域40と、ベース領域20と、ソース領域30とに接している。ゲート絶縁膜6は、第2底4において、第4不純物領域40と接している。ゲート絶縁膜6は、第1主面1において、ソース領域30に接している。ゲート絶縁膜6の厚みは、たとえば40nm以上150nm以下である。   Next, a step of forming a gate insulating film (S80: FIG. 3) is performed. Specifically, a gate insulating film 6 in contact with the first main surface 1, the second side surface 3, and the second bottom 4 is formed. Gate insulating film 6 is, for example, a deposited oxide film. Gate insulating film 6 is in contact with third region 13, fourth impurity region 40, base region 20, and source region 30 on second side surface 3. The gate insulating film 6 is in contact with the fourth impurity region 40 at the second bottom 4. Gate insulating film 6 is in contact with source region 30 on first main surface 1. Gate insulating film 6 has a thickness of, for example, not less than 40 nm and not more than 150 nm.

次に、NOアニール工程が実施される。具体的には、窒素を含む雰囲気中において第1主面1においてゲート絶縁膜6が形成された炭化珪素基板100が、たとえば1100℃以上1300℃以下の温度で熱処理される。窒素を含む気体とは、たとえば窒素で10%希釈された一酸化窒素などである。炭化珪素基板100が、窒素を含む気体中において、たとえば30分以上360分以下の間アニールされる。   Next, a NO annealing step is performed. Specifically, silicon carbide substrate 100 having gate insulating film 6 formed on first main surface 1 in an atmosphere containing nitrogen is subjected to a heat treatment at a temperature of, for example, 1100 ° C. or more and 1300 ° C. or less. The gas containing nitrogen is, for example, nitric oxide diluted by 10% with nitrogen. Silicon carbide substrate 100 is annealed in a gas containing nitrogen for, for example, 30 minutes or more and 360 minutes or less.

次に、ゲート電極を形成する工程(S90:図3)が実施される。具体的には、ゲート絶縁膜6により形成された溝を埋めるようにゲート絶縁膜6上にゲート電極7が形成される。ゲート電極7は、たとえば不純物を含むポリシリコンを含む材料から構成される。次に、ゲート電極7を覆うように層間絶縁膜23が形成される。層間絶縁膜23は、たとえばNSG膜と、PSG膜とを含んでいる。   Next, a step of forming a gate electrode (S90: FIG. 3) is performed. Specifically, a gate electrode 7 is formed on gate insulating film 6 so as to fill a groove formed by gate insulating film 6. Gate electrode 7 is made of, for example, a material containing polysilicon containing impurities. Next, an interlayer insulating film 23 is formed so as to cover the gate electrode 7. The interlayer insulating film 23 includes, for example, an NSG film and a PSG film.

次に、ソース電極を形成する工程(S100:図3)が実施される。具体的には、ソース電極8が形成される予定の領域において層間絶縁膜23およびゲート絶縁膜6が除去されることにより、ソース領域30およびコンタクト領域42の各々が、層間絶縁膜23から露出する。次に、ソース電極8が、第1主面1において、ソース領域30およびコンタクト領域42の双方と接するように、たとえばスパッタリングにより形成される。ソース電極8は、たとえばNi合金を含んでいる。ソース電極8は、TiAlSiを含む材料から構成されていてもよい。次に、ソース電極8が形成された炭化珪素基板100に対して、たとえば900℃以上1100℃以下のRTA(Rapid Thermal Anneal)が2分程度実施される。これにより、ソース電極8の少なくとも一部が、炭化珪素基板100が含む珪素と反応してシリサイド化する。これにより、ソース領域30とオーミック接合するソース電極8が形成される。好ましくは、ソース電極8は、ソース領域30およびコンタクト領域42の各々とオーミック接合する。   Next, a step of forming a source electrode (S100: FIG. 3) is performed. Specifically, by removing interlayer insulating film 23 and gate insulating film 6 in a region where source electrode 8 is to be formed, each of source region 30 and contact region 42 is exposed from interlayer insulating film 23. . Next, source electrode 8 is formed on first main surface 1 by, for example, sputtering so as to be in contact with both source region 30 and contact region 42. Source electrode 8 contains, for example, a Ni alloy. Source electrode 8 may be made of a material containing TiAlSi. Next, RTA (Rapid Thermal Anneal) of, for example, 900 ° C. or higher and 1100 ° C. or lower is performed on silicon carbide substrate 100 on which source electrode 8 is formed for about 2 minutes. Thereby, at least a part of source electrode 8 reacts with silicon contained in silicon carbide substrate 100 to be silicided. As a result, the source electrode 8 that forms an ohmic junction with the source region 30 is formed. Preferably, source electrode 8 makes ohmic contact with each of source region 30 and contact region 42.

次に、ソース電極8に接し、かつ層間絶縁膜23を覆うようにソース配線21が形成される。ソース配線21は、好ましくはAlを含む材料からなり、たとえばAlSiCuを含む材料からなる。次に、ソース配線21を覆うように保護膜22が形成される。保護膜22は、たとえば窒化膜とポリイミドとを含む材料からなる。   Next, source wiring 21 is formed so as to be in contact with source electrode 8 and to cover interlayer insulating film 23. Source wiring 21 is preferably made of a material containing Al, for example, a material containing AlSiCu. Next, a protective film 22 is formed so as to cover the source wiring 21. The protection film 22 is made of a material containing, for example, a nitride film and polyimide.

次に、ドレイン電極を形成する工程(S110:図3)が実施される。具体的には、炭化珪素基板100の第2主面2と接して、たとえばNiSiからなるドレイン電極9が形成される。ドレイン電極9は、たとえばTiAlSiなどであっても構わない。ドレイン電極9の形成は、好ましくはスパッタリング法により実施されるが、蒸着により実施されても構わない。当該ドレイン電極9が形成された後、当該ドレイン電極9がたとえばレーザーアニールにより加熱される。これにより、当該ドレイン電極9の少なくとも一部がシリサイド化し、炭化珪素単結晶基板15とオーミック接合する。以上のように、図1に示すMOSFET200が製造される。   Next, a step of forming a drain electrode (S110: FIG. 3) is performed. Specifically, drain electrode 9 made of, for example, NiSi is formed in contact with second main surface 2 of silicon carbide substrate 100. The drain electrode 9 may be, for example, TiAlSi. The drain electrode 9 is preferably formed by a sputtering method, but may be formed by vapor deposition. After the formation of the drain electrode 9, the drain electrode 9 is heated by, for example, laser annealing. Thereby, at least a part of the drain electrode 9 is silicided, and forms an ohmic junction with the silicon carbide single crystal substrate 15. As described above, the MOSFET 200 shown in FIG. 1 is manufactured.

なお、図10に示されるように、マスク64が第1主面1に設けられた状態で、第4不純物領域40および第3領域13の各々がイオン注入により形成された後、マスク64が除去されてもよい。次に、マスク64とは異なるマスク65が第1主面1上に形成されてもよい(図13)。マスク65の開口部の幅は、マスク64の開口部の幅よりも大きい。マスク65は、第1主面1において、ソース領域30およびコンタクト領域42の各々に接して形成される。第1主面1の一部は、マスク65から露出している。   As shown in FIG. 10, after each of fourth impurity region 40 and third region 13 is formed by ion implantation with mask 64 provided on first main surface 1, mask 64 is removed. May be done. Next, a mask 65 different from the mask 64 may be formed on the first main surface 1 (FIG. 13). The width of the opening of the mask 65 is larger than the width of the opening of the mask 64. Mask 65 is formed on first main surface 1 in contact with each of source region 30 and contact region 42. Part of the first main surface 1 is exposed from the mask 65.

次に、第1トレンチを拡張して第2トレンチを形成する工程(S60:図3)が実施される。具体的には、たとえばマスク64を用いた状態で、第3不純物領域30と、第2不純物領域20と、第1領域11と、第4不純物領域40とに対して、ハロゲンガスを含む雰囲気で熱エッチングが行われる。ハロゲンガスの種類および熱エッチングの温度は、上述の通りである。これにより、第1トレンチ70が拡張されて第2トレンチ5が形成される(図14参照)。図14に示されるように、第2トレンチ5の開口部の幅は、マスク65の幅とほぼ同じであってもよい。   Next, a step of forming the second trench by expanding the first trench (S60: FIG. 3) is performed. Specifically, for example, with the mask 64 used, the third impurity region 30, the second impurity region 20, the first region 11, and the fourth impurity region 40 are exposed to an atmosphere containing a halogen gas. Thermal etching is performed. The type of halogen gas and the temperature of thermal etching are as described above. Thereby, the first trench 70 is expanded to form the second trench 5 (see FIG. 14). As shown in FIG. 14, the width of the opening of the second trench 5 may be substantially the same as the width of the mask 65.

また上記においては、トレンチ5を有するMOSFETを例示して、本開示に係る炭化珪素半導体装置200を説明したが、本開示に係る炭化珪素半導体装置200はこれに限定されない。本開示に係る炭化珪素半導体装置200は、たとえばIGBT(Insulated Gate Bipolar Transistor)等であってもよい。また上記においては、n型を第1導電型とし、かつp型を第2導電型して説明したが、p型を第1導電型とし、かつn型を第2導電型としてもよい。また上記各不純物領域におけるp型不純物の濃度およびn型不純物の濃度は、たとえばSCM(Scanning Capacitance Microscope)またはSIMS(Secondary Ion Mass Spectrometry)などにより測定可能である。   Further, in the above description, silicon carbide semiconductor device 200 according to the present disclosure has been described using a MOSFET having trench 5 as an example, but silicon carbide semiconductor device 200 according to the present disclosure is not limited to this. Silicon carbide semiconductor device 200 according to the present disclosure may be, for example, an IGBT (Insulated Gate Bipolar Transistor) or the like. In the above description, the n-type is the first conductivity type and the p-type is the second conductivity type. However, the p-type may be the first conductivity type and the n-type may be the second conductivity type. The concentration of the p-type impurity and the concentration of the n-type impurity in each of the above impurity regions can be measured by, for example, SCM (Scanning Capacity Microscope) or SIMS (Secondary Ion Mass Spectrometry).

次に、上記実施形態に係る炭化珪素半導体装置の製造方法の作用効果について説明する。   Next, the function and effect of the method for manufacturing a silicon carbide semiconductor device according to the above embodiment will be described.

上記実施形態に係る炭化珪素半導体装置200の製造方法によれば、マスクを用いて、第3不純物領域30と、第2不純物領域20とに対して異方性エッチングを行うことにより、第1主面1に第1トレンチ70が形成される。マスクを用いて、第1トレンチ70に対してイオン注入を行うことにより、第1不純物領域10に接しかつ第2導電型を有する第4不純物領域40が形成される。上記のように、同じマスク64を用いてエッチングおよびイオン注入を行うこと(セルフアライン)により、アライメントずれの発生を抑制することができる。そのため、精度良く、第4不純物領域40を形成することができる。また工程数を低減することで、プロセスコストを低減することができる。   According to the method for manufacturing silicon carbide semiconductor device 200 according to the above embodiment, anisotropic etching is performed on third impurity region 30 and second impurity region 20 using a mask, whereby the first main region is formed. The first trench 70 is formed in the surface 1. By performing ion implantation on the first trench 70 using the mask, the fourth impurity region 40 having the second conductivity type and being in contact with the first impurity region 10 is formed. As described above, by performing etching and ion implantation using the same mask 64 (self-alignment), occurrence of misalignment can be suppressed. Therefore, the fourth impurity region 40 can be formed with high accuracy. In addition, the process cost can be reduced by reducing the number of steps.

さらに上記実施形態に係る炭化珪素半導体装置200の製造方法によれば、第2トレンチ5の側面と第1主面1とがなす角度は、90°よりも大きい。これにより、ベース領域20の厚みが薄い場合であっても、長いチャネル長を確保することができる。そのため、ベース領域20を形成するためにエピタキシャル成長を使用する必要がなくなる。結果として、プロセスコストを低減することができる。さらに上記実施形態に係る炭化珪素半導体装置200によれば、第4不純物領域40は、第2トレンチ5の底に位置している。これにより、底4付近のゲート絶縁膜6に高電界が印加されることで、ゲート絶縁膜6が破壊されることを抑制することができる。結果として、炭化珪素半導体装置200の耐圧を高く維持することができる。   Further, according to the method for manufacturing silicon carbide semiconductor device 200 according to the above embodiment, the angle formed between the side surface of second trench 5 and first main surface 1 is greater than 90 °. Accordingly, even when the thickness of the base region 20 is small, a long channel length can be secured. Therefore, it is not necessary to use epitaxial growth to form base region 20. As a result, process costs can be reduced. Further, in silicon carbide semiconductor device 200 according to the above embodiment, fourth impurity region 40 is located at the bottom of second trench 5. This can prevent the gate insulating film 6 from being broken by applying a high electric field to the gate insulating film 6 near the bottom 4. As a result, the breakdown voltage of silicon carbide semiconductor device 200 can be maintained high.

また上記実施形態に係る炭化珪素半導体装置200の製造方法によれば、マスクを用いて、第1トレンチ70に対してイオン注入を行うことにより、第1不純物領域10に接しかつ第1導電型を有する第3領域13が形成されてもよい。第3領域13は、側面に接していてもよい。第1領域11よりも高い不純物濃度を有する第3領域13を設けることで、チャネル出口付近における電流の狭窄を抑制することができる。そのため、炭化珪素半導体装置200のオン抵抗を低減することができる。   According to the method for manufacturing silicon carbide semiconductor device 200 according to the above embodiment, ion implantation is performed on first trench 70 using a mask, so that first trench 70 is in contact with first impurity region 10 and has the first conductivity type. May be formed. The third region 13 may be in contact with the side surface. By providing the third region 13 having a higher impurity concentration than the first region 11, current constriction near the channel outlet can be suppressed. Therefore, on-resistance of silicon carbide semiconductor device 200 can be reduced.

さらに上記実施形態に係る炭化珪素半導体装置200の製造方法によれば、第2トレンチ5を形成する工程は、マスクを用いて行われてもよい。同じマスク64を用いて第1トレンチ70および第2トレンチ5の各々を形成することにより、アライメントずれの発生をさらに抑制することができる。   Further, according to the method for manufacturing silicon carbide semiconductor device 200 according to the above embodiment, the step of forming second trench 5 may be performed using a mask. By forming each of the first trench 70 and the second trench 5 using the same mask 64, the occurrence of misalignment can be further suppressed.

本実施形態に係るMOSFET(図1参照)における第1距離111(第2主面2に対して平行な方向における、トレンチ5の底4から第3領域13の端部までの距離)を変化させた場合におけるMOSFETの特性オン抵抗および耐圧をシミュレーションによって計算した結果について説明する。第1距離111の値を0μmから0.7μmまで変化させながら、MOSFETの特性オン抵抗および耐圧を計算した。第1領域11のn型不純物濃度を1×1017cm-3とした。第2領域12のn型不純物濃度を8×1015cm-3とした。第3領域13のn型不純物濃度を2×1017cm-3とした。第4不純物領域40のp型不純物濃度を3×1018cm-3とした。 The first distance 111 (the distance from the bottom 4 of the trench 5 to the end of the third region 13 in the direction parallel to the second main surface 2) in the MOSFET (see FIG. 1) according to the present embodiment is changed. The result of calculating the characteristic on-resistance and the withstand voltage of the MOSFET in the above case by simulation will be described. The characteristic on-resistance and breakdown voltage of the MOSFET were calculated while changing the value of the first distance 111 from 0 μm to 0.7 μm. The n-type impurity concentration of the first region 11 was set to 1 × 10 17 cm −3 . The n-type impurity concentration of the second region 12 was set to 8 × 10 15 cm −3 . The n-type impurity concentration of the third region 13 was set to 2 × 10 17 cm −3 . The p-type impurity concentration of the fourth impurity region 40 was set to 3 × 10 18 cm −3 .

図15を参照しながら、トレンチ5の底4からの距離(第1距離111)と特性オン抵抗との関係およびトレンチ5の底4からの距離(第1距離111)と耐圧との関係について説明する。図中において横軸はトレンチ5の底4からの距離(μm)を示し、左側縦軸がMOSFETの特性オン抵抗(mΩcm2)を示し、かつ右側縦軸はMOSFETの耐圧(V)を示している。図中において白丸は耐圧の値を示しており、白三角は特性オン抵抗の値を示している。なお、耐圧のスペックは、1200Vである。 The relationship between the distance from the bottom 4 of the trench 5 (first distance 111) and the characteristic on-resistance and the relationship between the distance from the bottom 4 of the trench 5 (first distance 111) and the breakdown voltage will be described with reference to FIG. I do. In the figure, the horizontal axis represents the distance (μm) from the bottom 4 of the trench 5, the left vertical axis represents the characteristic on-resistance (mΩcm 2 ) of the MOSFET, and the right vertical axis represents the breakdown voltage (V) of the MOSFET. I have. In the figure, white circles indicate the value of the withstand voltage, and white triangles indicate the value of the characteristic on-resistance. The specification of the withstand voltage is 1200V.

トレンチ5の底4からの距離が0μm以上0.4μm未満の範囲においては、特性オン抵抗は徐々に低下する。しかしながら、トレンチ5の底4からの距離が0.4μm以上になると特性オン抵抗はほぼ一定の値を維持する。耐圧に関しては、全ての範囲においてスペックを満たしている。トレンチ5の底4からの距離が0μm以上0.3μm以下の範囲においては、耐圧は特に高い値を示している。しかしながら、トレンチ5の底4からの距離が0.3μmを超えると、耐圧が徐々に低下する。以上の結果より、第3領域13が設けられていないMOSFETと比較して、第3領域13が設けられているMOSFETは、耐圧を高く維持しつつ、特性オン抵抗を低減可能であることが確認された。   In a range where the distance from the bottom 4 of the trench 5 is 0 μm or more and less than 0.4 μm, the characteristic on-resistance gradually decreases. However, when the distance from the bottom 4 of the trench 5 becomes 0.4 μm or more, the characteristic on-resistance maintains a substantially constant value. The breakdown voltage satisfies the specifications in all ranges. In the range where the distance from the bottom 4 of the trench 5 is 0 μm or more and 0.3 μm or less, the withstand voltage shows a particularly high value. However, when the distance from the bottom 4 of the trench 5 exceeds 0.3 μm, the breakdown voltage gradually decreases. From the above results, it has been confirmed that the MOSFET provided with the third region 13 can reduce the characteristic on-resistance while maintaining a high withstand voltage as compared with the MOSFET provided with no third region 13. Was done.

今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed this time are illustrative in all aspects and are not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 第1主面
2 第2主面
3 第2側面(側面)
4 第2底(底)
5 第2トレンチ(トレンチ)
6 ゲート絶縁膜
7 ゲート電極
8 ソース電極
9 ドレイン電極
10 第1不純物領域
11 第1領域
12 第2領域
13 第3領域
15 炭化珪素単結晶基板
16 炭化珪素エピタキシャル層
20 ベース領域(第2不純物領域)
21 ソース配線
22 保護膜
23 層間絶縁膜
30 ソース領域(第3不純物領域)
40 第4不純物領域
42 コンタクト領域
51 第3主面
60 イオン注入スルーマスク
61 第1部分
62 第2部分
63 酸化膜マスク
64,65 マスク
70 第1トレンチ
71 第1側面
72 第1底面
80 ケース
81 収容部
82 蓋部
100 炭化珪素基板
101 第1方向
102 第2方向
111 第1距離
112 第2距離
200 炭化珪素半導体装置(MOSFET)
1 1st main surface 2 2nd main surface 3 2nd side surface (side surface)
4 2nd bottom (bottom)
5 Second trench (trench)
Reference Signs List 6 gate insulating film 7 gate electrode 8 source electrode 9 drain electrode 10 first impurity region 11 first region 12 second region 13 third region 15 silicon carbide single crystal substrate 16 silicon carbide epitaxial layer 20 base region (second impurity region)
DESCRIPTION OF SYMBOLS 21 Source wiring 22 Protective film 23 Interlayer insulating film 30 Source region (third impurity region)
40 fourth impurity region 42 contact region 51 third main surface 60 ion implantation through mask 61 first portion 62 second portion 63 oxide film mask 64, 65 mask 70 first trench 71 first side surface 72 first bottom surface 80 case 81 accommodation Part 82 Cover 100 Silicon carbide substrate 101 First direction 102 Second direction 111 First distance 112 Second distance 200 Silicon carbide semiconductor device (MOSFET)

Claims (5)

第1主面と、前記第1主面と反対側の第2主面とを有する炭化珪素基板を準備する工程を備え、
前記炭化珪素基板は、
第1導電型を有する第1不純物領域と、
前記第1不純物領域上に設けられ、かつ前記第1導電型と異なる第2導電型を有する第2不純物領域と、
前記第1不純物領域から隔てられるように前記第2不純物領域上に設けられ、前記第1主面に接しかつ前記第1導電型を有する第3不純物領域とを含み、
前記第1不純物領域は、前記第2不純物領域に接する第1領域と、前記第1領域に対して前記第2不純物領域とは反対側に位置する第2領域とを有し、さらに、
前記第1主面上にマスクを形成する工程と、
前記マスクを用いて、前記第3不純物領域と、前記第2不純物領域とに対して異方性エッチングを行うことにより、前記第1主面に第1トレンチを形成する工程と、
前記マスクを用いて、前記第1トレンチに対してイオン注入を行うことにより、前記第1不純物領域に接しかつ前記第2導電型を有する第4不純物領域を形成する工程と、
前記第3不純物領域と、前記第2不純物領域と、前記第1領域と、前記第4不純物領域とに対して、ハロゲンガスを含む雰囲気で熱エッチングを行うことにより、前記第1トレンチを拡張して第2トレンチを形成する工程とを備え、
前記第2トレンチは、前記第1主面に連なる側面と、前記第4不純物領域に位置する底とを有し、前記第1主面と前記側面とがなす角度は、90°よりも大きい、炭化珪素半導体装置の製造方法。
Providing a silicon carbide substrate having a first main surface and a second main surface opposite to the first main surface,
The silicon carbide substrate,
A first impurity region having a first conductivity type;
A second impurity region provided on the first impurity region and having a second conductivity type different from the first conductivity type;
A third impurity region provided on the second impurity region so as to be separated from the first impurity region and in contact with the first main surface and having the first conductivity type;
The first impurity region has a first region in contact with the second impurity region, and a second region located on the opposite side of the first region from the second impurity region,
Forming a mask on the first main surface;
Forming a first trench in the first main surface by performing anisotropic etching on the third impurity region and the second impurity region using the mask;
Forming a fourth impurity region in contact with the first impurity region and having the second conductivity type by performing ion implantation on the first trench using the mask;
The first trench is expanded by performing thermal etching on the third impurity region, the second impurity region, the first region, and the fourth impurity region in an atmosphere containing a halogen gas. Forming a second trench by using
The second trench has a side surface connected to the first main surface and a bottom located in the fourth impurity region, and an angle formed by the first main surface and the side surface is larger than 90 °. A method for manufacturing a silicon carbide semiconductor device.
前記マスクを用いて、前記第1トレンチに対してイオン注入を行うことにより、前記第4不純物領域に接し、前記第1導電型を有し、かつ前記第1領域よりも高い不純物濃度を有する第3領域を形成する工程をさらに備え、
前記第3領域は、前記側面に接する、請求項1に記載の炭化珪素半導体装置の製造方法。
By performing ion implantation on the first trench using the mask, the first trench is in contact with the fourth impurity region, has the first conductivity type, and has a higher impurity concentration than the first region. Further comprising a step of forming three regions,
The method of manufacturing a silicon carbide semiconductor device according to claim 1, wherein said third region is in contact with said side surface.
前記第1主面は、(000−1)面または(000−1)面に対して8°以下傾斜した面である、請求項1または請求項2に記載の炭化珪素半導体装置の製造方法。   3. The method of manufacturing a silicon carbide semiconductor device according to claim 1, wherein the first main surface is a (000-1) plane or a plane inclined by 8 ° or less with respect to the (000-1) plane. 4. 前記第2不純物領域の厚みは、0.3μm以上0.7μm以下である、請求項1〜請求項3のいずれか1項に記載の炭化珪素半導体装置の製造方法。   4. The method of manufacturing a silicon carbide semiconductor device according to claim 1, wherein said second impurity region has a thickness of 0.3 μm or more and 0.7 μm or less. 5. 前記第2トレンチを形成する工程は、前記マスクを用いて行われる、請求項1〜請求項4のいずれか1項に記載の炭化珪素半導体装置の製造方法。   The method of manufacturing a silicon carbide semiconductor device according to claim 1, wherein the step of forming the second trench is performed using the mask.
JP2018159023A 2018-08-28 2018-08-28 Method of manufacturing silicon carbide semiconductor device Pending JP2020035807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018159023A JP2020035807A (en) 2018-08-28 2018-08-28 Method of manufacturing silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018159023A JP2020035807A (en) 2018-08-28 2018-08-28 Method of manufacturing silicon carbide semiconductor device

Publications (1)

Publication Number Publication Date
JP2020035807A true JP2020035807A (en) 2020-03-05

Family

ID=69668580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018159023A Pending JP2020035807A (en) 2018-08-28 2018-08-28 Method of manufacturing silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JP2020035807A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131084A1 (en) * 2020-12-18 2022-06-23 住友電気工業株式会社 Silicon carbide semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131084A1 (en) * 2020-12-18 2022-06-23 住友電気工業株式会社 Silicon carbide semiconductor device

Similar Documents

Publication Publication Date Title
JP6579104B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP6627757B2 (en) Silicon carbide semiconductor device and method of manufacturing the same
JP6287469B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
EP2693484A1 (en) Igbt
EP2927960A1 (en) Silicon carbide semiconductor device, and manufacturing method for same
EP3125297B1 (en) Silicon carbide semiconductor device, and method for manufacturing same
JP6508369B2 (en) Silicon carbide semiconductor device and method of manufacturing the same
WO2020031446A1 (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
EP2784825B1 (en) Semiconductor device and method for manufacturing same
US20130119407A1 (en) Method for manufacturing semiconductor device, and semiconductor device
JP5870672B2 (en) Semiconductor device
JP6950398B2 (en) Silicon carbide semiconductor device
US9806167B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2015204409A (en) Silicon carbide semiconductor device and manufacturing method of the same
JP2020035807A (en) Method of manufacturing silicon carbide semiconductor device
JP7395972B2 (en) silicon carbide semiconductor device
JP7255344B2 (en) Silicon carbide semiconductor module and method for manufacturing silicon carbide semiconductor module
JP6070790B2 (en) Semiconductor device manufacturing method and semiconductor device
WO2022270245A1 (en) Silicon carbide semiconductor device
JP7255343B2 (en) Silicon carbide semiconductor module and method for manufacturing silicon carbide semiconductor module
JP2023023614A (en) Silicon carbide semiconductor device
JP2017022218A (en) Silicon carbide semiconductor device manufacturing method