JP2020035678A - Composite solid electrolyte powder for all solid lithium ion battery and all solid lithium ion battery - Google Patents

Composite solid electrolyte powder for all solid lithium ion battery and all solid lithium ion battery Download PDF

Info

Publication number
JP2020035678A
JP2020035678A JP2018161968A JP2018161968A JP2020035678A JP 2020035678 A JP2020035678 A JP 2020035678A JP 2018161968 A JP2018161968 A JP 2018161968A JP 2018161968 A JP2018161968 A JP 2018161968A JP 2020035678 A JP2020035678 A JP 2020035678A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte powder
garnet
average particle
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018161968A
Other languages
Japanese (ja)
Other versions
JP7045289B2 (en
Inventor
悠貴友 山本
Yukitomo Yamamoto
悠貴友 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018161968A priority Critical patent/JP7045289B2/en
Publication of JP2020035678A publication Critical patent/JP2020035678A/en
Application granted granted Critical
Publication of JP7045289B2 publication Critical patent/JP7045289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a composite solid electrolyte powder for an all solid lithium ion battery, which is sintered in a short time at a low temperature and has a dense and good ionic conductivity.SOLUTION: A composite solid electrolyte powder for an all solid lithium ion battery includes a first garnet-type solid electrolyte powder and a second garnet-type solid electrolyte powder, and the average particle size of the first garnet-type solid electrolyte powder is 1 to 13 μm, and the coefficient of variation represented by the standard deviation (μm)/average diameter (μm)×100 is less than 20%, and the average particle diameter of the second garnet-type solid electrolyte powder is 0.1 to 1.5 μm, and when the average particle diameter of the first garnet-type solid electrolyte powder is Dc, and the average particle diameter of the second garnet-type solid electrolyte powder is Dm, Dm<(((2/√3)-1)Dc is satisfied.SELECTED DRAWING: Figure 2

Description

本発明は、全固体リチウムイオン電池用複合固体電解質粉末及び全固体リチウムイオン電池に関する。   The present invention relates to a composite solid electrolyte powder for an all-solid-state lithium-ion battery and an all-solid-state lithium-ion battery.

近年におけるパソコン、ビデオカメラ、及び携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。該電池の中でも、エネルギー密度が高いという観点から、リチウム電池が注目を浴びている。また、車載用等の動力源やロードレべリング用といった大型用途におけるリチウム二次電池についても、高エネルギー密度、電池特性向上が求められている。   With the rapid spread of information-related devices and communication devices such as personal computers, video cameras, and mobile phones in recent years, the development of batteries used as power sources for them has been regarded as important. Among these batteries, lithium batteries have attracted attention from the viewpoint of high energy density. In addition, high energy density and improved battery characteristics are also required for lithium secondary batteries for large-scale applications such as power sources for vehicles and load leveling.

ただ、リチウムイオン電池の場合は、電解液は有機化合物が大半であり、たとえ難燃性の化合物を用いたとしても火災に至る危険性が全くなくなるとは言いきれない。こうした液系リチウムイオン電池の代替候補として、電解質を固体とした全固体リチウムイオン電池が近年注目を集めている。その中でも、固体電解質としてLi2S−P25などの硫化物やそれにハロゲン化リチウムを添加した全固体リチウムイオン電池が主流となりつつある。 However, in the case of a lithium ion battery, most of the electrolyte is an organic compound, and even if a flame-retardant compound is used, it cannot be said that there is no danger of fire. As an alternative candidate for such a liquid lithium-ion battery, an all-solid-state lithium-ion battery having a solid electrolyte has attracted attention in recent years. Among them, sulfides such as Li 2 S—P 2 S 5 as solid electrolytes and all-solid lithium ion batteries to which lithium halide is added are becoming mainstream.

全固体リチウムイオン電池用の固体電解質として、立方晶のLi7La3Zr212(LLZ)は、バルクのリチウムイオン伝導度が10-4S/cm前後と高く、有力視されている。 Cubic Li 7 La 3 Zr 2 O 12 (LLZ) is regarded as a promising solid electrolyte for all-solid lithium-ion batteries because of its high lithium ion conductivity of about 10 −4 S / cm.

特開2015−138741号公報JP 2015-138741 A

LLZが10-4S/cm前後のリチウムイオン伝導度を得るためには、ペレット化した後に1100℃以上での緻密化焼結を必要とする。しかしながら、これには多大な電力コスト及び設備コストを必要とするという問題がある。 In order to obtain a lithium ion conductivity of LLZ of about 10 −4 S / cm, densification sintering at 1100 ° C. or more after pelletization is required. However, this has the problem of requiring significant power and equipment costs.

また、全固体電池を作製する際、電解質−電極間の界面抵抗を低減するために、正極、固体電解質、及び負極を合わせた状態で焼結することが有効である。しかしながら、固体電解質としてLLZを用いる場合、10-4S/cm前後のリチウムイオン伝導度を得るために一体型焼結を1100℃で36時間行う必要があるため、コスト削減の観点から焼結温度の低下と焼結時間の短縮が望まれている。 In addition, when manufacturing an all-solid battery, it is effective to sinter in a state where the positive electrode, the solid electrolyte, and the negative electrode are combined in order to reduce the interface resistance between the electrolyte and the electrode. However, when LLZ is used as the solid electrolyte, it is necessary to perform integral sintering at 1100 ° C. for 36 hours in order to obtain lithium ion conductivity of about 10 −4 S / cm. It is desired to reduce the sintering time and the sintering time.

また、LLZの平均粒径が13.0μmを超えると、固体電解質中の空隙が大きくなり、焼結し難くなる。加えて、LLZの平均粒径が0.01μm未満では、粒子同士が凝集しやすくなり、固体電解質の特性のばらつきを抑制することが困難となる場合がある。そのため、市場では粒子径の制御のしやすさと紛体の取り扱いやすさの観点から、平均粒径が0.1〜13.0μmのLLZからなる固体電解質が求められている。   On the other hand, when the average particle size of LLZ exceeds 13.0 μm, voids in the solid electrolyte become large, and sintering becomes difficult. In addition, when the average particle size of LLZ is less than 0.01 μm, the particles are likely to aggregate, and it may be difficult to suppress the variation in the characteristics of the solid electrolyte. For this reason, in the market, a solid electrolyte made of LLZ having an average particle diameter of 0.1 to 13.0 μm is required from the viewpoint of easy control of particle diameter and easy handling of powder.

このような問題に鑑み、本発明の実施形態では、平均粒径が0.1〜13.0μmを有し、低温にて短時間で焼結し、緻密で良好なイオン伝導度を有する全固体リチウムイオン電池用複合固体電解質粉末を提供することを目的とする。   In view of such problems, in the embodiment of the present invention, an all solid having an average particle diameter of 0.1 to 13.0 μm, sintered in a short time at a low temperature, and having a dense and good ionic conductivity. An object of the present invention is to provide a composite solid electrolyte powder for a lithium ion battery.

本発明者は、種々の検討を行った結果、第一ガーネット型固体電解質粉末と、第二ガーネット型固体電解質粉末とからなる複合固体電解質粉末であり、当該複合固体電解質粉末において第一ガーネット型固体電解質粉末の平均粒径及びその変動係数を所定範囲に制御し、第二ガーネット型固体電解質粉末の平均粒径を所定範囲に制御し、第一ガーネット型固体電解質粉末及び第二ガーネット型固体電解質粉末の平均粒径の大きさについて所定の関係を制御した複合固体電解質粉末によれば、上述の課題が解決されることを見出した。   The present inventor has conducted various studies and found that the first garnet-type solid electrolyte powder is a composite solid electrolyte powder composed of a second garnet-type solid electrolyte powder, and the first garnet-type solid electrolyte powder in the composite solid electrolyte powder. The average particle size of the electrolyte powder and its variation coefficient are controlled within a predetermined range, the average particle size of the second garnet-type solid electrolyte powder is controlled within a predetermined range, and the first garnet-type solid electrolyte powder and the second garnet-type solid electrolyte powder It has been found that the above-mentioned problems can be solved according to the composite solid electrolyte powder in which a predetermined relationship is controlled with respect to the size of the average particle size.

上記知見を基礎にして完成した本発明は実施形態において、第一ガーネット型固体電解質粉末と、第二ガーネット型固体電解質粉末とからなる複合固体電解質粉末であり、前記第一ガーネット型固体電解質粉末の平均粒径が1〜13μmであり、標準偏差(μm)/平均径(μm)×100で示される変動係数が20%未満であり、前記第二ガーネット型固体電解質粉末の平均粒径が0.1〜1.5μmであり、前記第一ガーネット型固体電解質粉末の平均粒径をDcとし、前記第二ガーネット型固体電解質粉末の平均粒径をDmとしたとき、Dm<((2/√3)−1)Dcを満たす全固体リチウムイオン電池用複合固体電解質粉末である。   The present invention completed on the basis of the above findings is, in an embodiment, a composite solid electrolyte powder comprising a first garnet-type solid electrolyte powder and a second garnet-type solid electrolyte powder, wherein the first garnet-type solid electrolyte powder The average particle diameter is 1 to 13 μm, the coefficient of variation represented by the standard deviation (μm) / average diameter (μm) × 100 is less than 20%, and the average particle diameter of the second garnet-type solid electrolyte powder is 0.1 μm. When the average particle size of the first garnet-type solid electrolyte powder is Dc and the average particle size of the second garnet-type solid electrolyte powder is Dm, Dm <((2/3 ) -1) A composite solid electrolyte powder for an all-solid lithium ion battery satisfying Dc.

本発明の全固体リチウムイオン電池用複合固体電解質粉末は別の実施形態において、前記複合固体電解質粉末の全体を100質量部としたとき、前記第二ガーネット型固体電解質粉末を5〜60質量部含む。   In another embodiment, the composite solid electrolyte powder for an all-solid lithium-ion battery of the present invention includes 5 to 60 parts by mass of the second garnet-type solid electrolyte powder when the whole of the composite solid electrolyte powder is 100 parts by mass. .

本発明の全固体リチウムイオン電池用複合固体電解質粉末は更に別の実施形態において、溶融フラックスとしてLi2CO3、LiCl及びLi3BO3からなる群から選択されるいずれか一種以上を含む。 In still another embodiment, the composite solid electrolyte powder for an all-solid-state lithium ion battery of the present invention contains at least one selected from the group consisting of Li 2 CO 3 , LiCl and Li 3 BO 3 as a molten flux.

本発明の全固体リチウムイオン電池用複合固体電解質粉末は更に別の実施形態において、前記第一ガーネット型固体電解質粉末及び前記第二ガーネット型固体電解質粉末の一方又は両方が、組成式:Li7-3xLa3AlxZr212(式中、0≦x<3である)で示される。 In still another embodiment, the composite solid electrolyte powder for an all-solid-state lithium ion battery of the present invention has one or both of the first garnet-type solid electrolyte powder and the second garnet-type solid electrolyte powder having a composition formula: Li 7−. 3xLa 3 Al x Zr 2 O 12 (where 0 ≦ x <3).

本発明は別の実施形態において、正極層、負極層及び固体電解質層を備え、本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質粉末を前記固体電解質層に備えた全固体リチウムイオン電池である。   The present invention, in another embodiment, includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer, and the solid electrolyte layer includes the composite solid electrolyte powder for an all solid lithium ion battery according to the embodiment of the present invention. Battery.

本発明によれば、低温にて短時間で焼結し、緻密で良好なイオン伝導度を有する全固体リチウムイオン電池用複合固体電解質粉末を提供することができる。   According to the present invention, it is possible to provide a composite solid electrolyte powder for an all-solid-state lithium ion battery, which is sintered in a short time at a low temperature and has a dense and good ionic conductivity.

Burkeの式(式1)及び式1から算出した固体電解質粒子の成長速度を示すグラフである。5 is a graph showing the Burke equation (Equation 1) and the growth rate of solid electrolyte particles calculated from Equation 1. Franasのモデル(式2)及び大きな粒子に小さな粒子を添加していった場合の充填率を示すグラフである。It is a graph which shows the filling rate at the time of adding a small particle to a Franas's model (Formula 2) and a large particle. 実施例2−1、2−2及び2−3及び比較例1−1、1−2及び1−3のサンプルを900℃、1000℃及び1100℃にて焼結した場合の相対密度と焼結温度との関係を示すグラフである。Relative density and sintering when the samples of Examples 2-1, 2-2 and 2-3 and Comparative Examples 1-1, 1-2 and 1-3 were sintered at 900 ° C, 1000 ° C and 1100 ° C It is a graph which shows the relationship with temperature. 実施例2−1、2−2及び2−3及び比較例1−1、1−2及び1−3のサンプルを900℃、1000℃及び1100℃にて焼結した場合のイオン伝導度と焼結温度との関係を示すグラフである。Ion conductivity and sintering when the samples of Examples 2-1, 2-2 and 2-3 and Comparative Examples 1-1, 1-2 and 1-3 were sintered at 900 ° C, 1000 ° C and 1100 ° C. It is a graph which shows the relationship with sintering temperature. 実施例1、実施例2−3、実施例5、実施例6、実施例7、実施例8、実施例9、実施例10及び実施例11に係るDm/Dcとイオン伝導度の関係を示すグラフである。The relationship between Dm / Dc and ion conductivity according to Example 1, Example 2-3, Example 5, Example 6, Example 7, Example 8, Example 9, Example 10 and Example 11 is shown. It is a graph. 実施例1、実施例2−2及び実施例3に係る小粒子質量分率とイオン伝導度の関係を示すグラフである。It is a graph which shows the relationship between the small particle mass fraction and ionic conductivity concerning Example 1, Example 2-2, and Example 3.

(全固体リチウムイオン電池用複合固体電解質粉末)
固体電解質粒子が成長するための駆動力は表面自由エネルギーである。固体電解質粒子の成長速度は粒径の差が粒子の成長を支配しており、式1で表される(Burkeの式:図1)。図1のグラフに、式1から算出した固体電解質粒子の成長速度を示す。大きい方の固体電解質粒子の平均半径をRc、小さい方の固体電解質粒子の平均半径をRmとしたときにRm/Rcが小さくなるほど|v|は大きくなり、固体電解質粒子の成長速度は増大することがわかる。また、その結果として、焼結温度の低下と焼結時間を短縮することができる。
(Composite solid electrolyte powder for all solid lithium ion batteries)
The driving force for growing the solid electrolyte particles is surface free energy. As for the growth rate of the solid electrolyte particles, the difference in particle size governs the growth of the particles, and is expressed by Equation 1 (Burke's equation: FIG. 1). The graph of FIG. 1 shows the growth rate of the solid electrolyte particles calculated from Equation 1. Assuming that the average radius of the larger solid electrolyte particles is Rc and the average radius of the smaller solid electrolyte particles is Rm, as Rm / Rc becomes smaller, | v | becomes larger and the growth rate of the solid electrolyte particles increases. I understand. As a result, the sintering temperature can be lowered and the sintering time can be shortened.

また、大きい固体電解質粒子と小さい固体電解質粒子との接触面積が大きくなるとき、物質移動は多くなる。異なる大きさの粒子をランダムパッキングした場合の充填率は式2で示されるFranasのモデル(図2)が提唱されている。図2のグラフに大きな粒子に小さな粒子を添加していった場合の充填率を示す。ZはRm/Rcを示している(Z=Rm/Rc)。Rm/Rc=1では充填率は約63%であり、粒子同士の接触界面は少ない。Rm/Rc=0.15以下では小さい粒子の添加により充填率が増加し粒子同士の接触界面が増加する。   Further, when the contact area between the large solid electrolyte particles and the small solid electrolyte particles increases, the mass transfer increases. For the packing ratio in the case where particles of different sizes are randomly packed, a Franas model (FIG. 2) expressed by Equation 2 has been proposed. The graph in FIG. 2 shows the packing ratio when small particles are added to large particles. Z indicates Rm / Rc (Z = Rm / Rc). When Rm / Rc = 1, the packing ratio is about 63%, and the contact interface between particles is small. If Rm / Rc = 0.15 or less, the filling rate increases due to the addition of small particles, and the contact interface between the particles increases.

本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質粉末では以上の知見に基づき、第一ガーネット型固体電解質粉末と、第二ガーネット型固体電解質粉末とからなる複合固体電解質粉末で構成され、第一ガーネット型固体電解質粉末の平均粒径(D50)が1〜13μmであり、標準偏差(μm)/平均径(μm)×100で示される変動係数が20%未満であり、第二ガーネット型固体電解質粉末の平均粒径(D50)が0.1〜1.5μmであり、第一ガーネット型固体電解質粉末の平均粒径をDcとし、第二ガーネット型固体電解質粉末の平均粒径をDmとしたとき、Dm<((2/√3)−1)Dcを満たすように制御されている。   Based on the above findings, the composite solid electrolyte powder for an all-solid-state lithium ion battery according to the embodiment of the present invention is composed of a composite solid electrolyte powder composed of a first garnet-type solid electrolyte powder and a second garnet-type solid electrolyte powder. The average particle size (D50) of the first garnet-type solid electrolyte powder is 1 to 13 μm, and the coefficient of variation represented by standard deviation (μm) / average diameter (μm) × 100 is less than 20%; The average particle size of the first garnet-type solid electrolyte powder is Dc, and the average particle size of the second garnet-type solid electrolyte powder is Dm. Is controlled to satisfy Dm <((2 / √3) −1) Dc.

第一ガーネット型固体電解質粉末の平均粒径が1〜13μmであり、標準偏差(μm)/平均径(μm)×100で示される変動係数が20%未満である一方で、第二ガーネット型固体電解質粉末の平均粒径が0.1〜1.5μmであり、第一ガーネット型固体電解質粉末の粒径が第二ガーネット型固体電解質粉末の粒径より大きい。そして、大きい方の粒子である第一ガーネット型固体電解質粉末の平均粒径をDcとし、小さい方の粒子である第二ガーネット型固体電解質粉末の平均粒径をDmとしたとき、Dm<((2/√3)−1)Dcを満たすように制御することで、本発明の実施形態に係る複合固体電解質粉末は、粒子同士の接触界面が多くなり、粒子径の差によって粒成長速度が増大するため、低温にて短時間で焼結し緻密で高いイオン伝導度有する焼結体が得られる。   While the average particle size of the first garnet type solid electrolyte powder is 1 to 13 μm and the coefficient of variation represented by standard deviation (μm) / average diameter (μm) × 100 is less than 20%, the second garnet type solid electrolyte The average particle size of the electrolyte powder is 0.1 to 1.5 μm, and the particle size of the first garnet-type solid electrolyte powder is larger than the particle size of the second garnet-type solid electrolyte powder. When the average particle size of the first garnet-type solid electrolyte powder, which is the larger particle, is Dc and the average particle size of the second garnet-type solid electrolyte powder, which is the smaller particle, is Dm, Dm <(( 2 / よ う 3) -1) By controlling so as to satisfy Dc, in the composite solid electrolyte powder according to the embodiment of the present invention, the contact interface between particles increases, and the particle growth rate increases due to the difference in particle diameter. Therefore, a sintered body having a high density and a high ionic conductivity which is sintered in a short time at a low temperature can be obtained.

本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質粉末は、複合固体電解質粉末の全体を100質量部としたとき、前記第二ガーネット型固体電解質粉末を5〜60質量部含むことが好ましい。このような構成によれば、初期充填率が大きくなり焼結時間を短縮することができるという効果が得られる。複合固体電解質粉末の全体を100質量部としたとき、前記第二ガーネット型固体電解質粉末を5〜40質量部含むことがより好ましく、15〜40質量部含むことが更により好ましい。   The composite solid electrolyte powder for an all-solid lithium ion battery according to the embodiment of the present invention may include the second garnet-type solid electrolyte powder in an amount of 5 to 60 parts by mass, when the entire composite solid electrolyte powder is 100 parts by mass. preferable. According to such a configuration, it is possible to obtain an effect that the initial filling rate increases and the sintering time can be shortened. Assuming that the entire composite solid electrolyte powder is 100 parts by mass, the second garnet-type solid electrolyte powder preferably contains 5 to 40 parts by mass, and more preferably 15 to 40 parts by mass.

本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質粉末は、第一ガーネット型固体電解質粉末及び第二ガーネット型固体電解質粉末の一方又は両方が、組成式:Li7-3xLa3AlxZr212(式中、0≦x<3である)で示されてもよい。第一ガーネット型固体電解質粉末及び第二ガーネット型固体電解質粉末の一方又は両方が上記組成を有すると、当該固体電解質が常温にて立方晶となるため、常温にて高いイオン伝導度を有すことができるという効果が得られる。 In the composite solid electrolyte powder for an all-solid-state lithium ion battery according to the embodiment of the present invention, one or both of the first garnet-type solid electrolyte powder and the second garnet-type solid electrolyte powder have a composition formula: Li 7-3x La 3 Al x Zr 2 O 12 (where 0 ≦ x <3). When one or both of the first garnet-type solid electrolyte powder and the second garnet-type solid electrolyte powder have the above composition, the solid electrolyte becomes cubic at room temperature, and therefore has high ionic conductivity at room temperature. Is obtained.

本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質粉末は、溶融フラックスとしてLi2CO3、LiCl及びLi3BO3からなる群から選択されるいずれか一種以上を含むことが好ましい。これらの溶融フラックスを含有させることで、オストワルド成長により粒成長の高速化が可能となり、より低温で短い焼結時間で、緻密でイオン伝導度の高い焼結体を得ることができる。 The composite solid electrolyte powder for an all-solid lithium ion battery according to the embodiment of the present invention preferably contains at least one selected from the group consisting of Li 2 CO 3 , LiCl and Li 3 BO 3 as a molten flux. By incorporating these molten fluxes, the grain growth can be accelerated by Ostwald ripening, and a dense sintered body having high ion conductivity can be obtained at a lower temperature and in a shorter sintering time.

(全固体リチウムイオン電池)
本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質粉末を用いて固体電解質層を形成し、当該固体電解質層、正極層及び負極層を備えた全固体リチウムイオン電池を作製することができる。
(All-solid-state lithium-ion battery)
It is possible to form a solid electrolyte layer using the composite solid electrolyte powder for an all solid lithium ion battery according to the embodiment of the present invention, and to manufacture an all solid lithium ion battery including the solid electrolyte layer, the positive electrode layer, and the negative electrode layer. it can.

(全固体リチウムイオン電池用複合固体電解質粉末の製造方法)
次に、本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質粉末の製造方法について詳細に説明する。まず、ガーネット型固体電解質体を準備し、当該ガーネット型固体電解質体を粉砕することで、大きい方の粒子である第一ガーネット型固体電解質粉末と小さい方の粒子である第二ガーネット型固体電解質粉末とを作製する。第一ガーネット型固体電解質粉末は、平均粒径(D50)が1〜13μmであり、標準偏差(μm)/平均径(μm)×100で示される変動係数が20%未満となるように粒度を調整する。また、第二ガーネット型固体電解質粉末は、平均粒径(D50)が0.1〜1.5μmであり、大きい方の粒子である第一ガーネット型固体電解質粉末の平均粒径をDcとし、小さい方の粒子である第二ガーネット型固体電解質粉末の平均粒径をDmとしたとき、Dm<((2/√3)−1)Dcを満たすように粒度を調整する。当該調整後の第一ガーネット型固体電解質粉末と第二ガーネット型固体電解質粉末とを所望の割合で混合し、本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質粉末とする。
(Production method of composite solid electrolyte powder for all solid lithium ion battery)
Next, a method for producing a composite solid electrolyte powder for an all solid-state lithium ion battery according to an embodiment of the present invention will be described in detail. First, a garnet-type solid electrolyte body is prepared, and the garnet-type solid electrolyte body is pulverized, whereby the first garnet-type solid electrolyte powder that is a larger particle and the second garnet-type solid electrolyte powder that is a smaller particle. And are prepared. The first garnet-type solid electrolyte powder has an average particle diameter (D50) of 1 to 13 μm and a particle size such that a coefficient of variation represented by standard deviation (μm) / average diameter (μm) × 100 is less than 20%. adjust. The second garnet-type solid electrolyte powder has an average particle size (D50) of 0.1 to 1.5 μm, the average particle size of the larger garnet-type solid electrolyte powder being Dc, and When the average particle size of the second garnet-type solid electrolyte powder, which is the other particle, is Dm, the particle size is adjusted so as to satisfy Dm <((2/23) −1) Dc. The adjusted first garnet-type solid electrolyte powder and second garnet-type solid electrolyte powder are mixed at a desired ratio to obtain a composite solid electrolyte powder for an all-solid-state lithium-ion battery according to an embodiment of the present invention.

こうして得られた複合固体電解質粉末を金型中に入れ、所定の圧力で成形しペレットを作製し、当該ペレットを固体電解質層とし、これを用いて固体電解質層、正極層及び負極層を備えた全固体リチウムイオン電池を作製することができる。このとき、本発明の実施形態に係る全固体リチウムイオン電池用複合固体電解質粉末を用いることで、800〜1000℃で12〜18時間という低温且つ短時間の焼成時間であっても、緻密でイオン伝導度の高い焼結体を得ることができる。   The composite solid electrolyte powder thus obtained was placed in a mold, molded at a predetermined pressure to produce a pellet, the pellet was used as a solid electrolyte layer, and a solid electrolyte layer, a positive electrode layer, and a negative electrode layer were provided using the pellet. An all-solid lithium-ion battery can be manufactured. At this time, by using the composite solid electrolyte powder for an all-solid-state lithium ion battery according to the embodiment of the present invention, it is possible to obtain a dense and A sintered body having high conductivity can be obtained.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。   Hereinafter, examples for better understanding of the present invention and its advantages will be provided, but the present invention is not limited to these examples.

・LLZの合成法
Li2CO3、La(OH)3、ZrO2、Al23を出発原料とし、Li7-3xLa3AlxZr212(LLZ:式中、0≦x<3である)の基本組成の化学量論比になるようにこれら出発原料を秤量し、エタノール中にて遊星ボールミルで4時間、混合・粉砕を行った後、得られた混合粉末をボールとエタノールから分離した。続いて、白金るつぼ中にて、当該混合粉末を700℃で仮焼してガス成分を蒸発させた後、1300℃で本焼成を行い溶解させて板状のガラスとし、その後600℃程度でキャストし、LLZの結晶を析出させた。次に、得られた結晶を遊星ボールミルで粉砕し、平均粒径10.3μm、12.6μm及び8.2μmの固体電解質粉末を作製した。また、標準偏差(μm)/平均径(μm)×100で示される変動係数を測定した。なお、以下、特に説明の無い限り「平均粒径」はD50を示す。
· Synthesis Li 2 CO 3 of LLZ, La a (OH) 3, ZrO 2, Al 2 O 3 as starting material, Li 7-3x La 3 Al x Zr 2 O 12 (LLZ: wherein, 0 ≦ x < These starting materials were weighed so as to have a stoichiometric ratio of the basic composition of (3), mixed and pulverized in ethanol with a planetary ball mill for 4 hours, and the obtained mixed powder was mixed with balls and ethanol. Separated from Subsequently, in a platinum crucible, the mixed powder is calcined at 700 ° C. to evaporate gas components, and then main-baked at 1300 ° C. to be dissolved to form a plate-like glass, and then cast at about 600 ° C. Then, LLZ crystals were precipitated. Next, the obtained crystals were pulverized with a planetary ball mill to produce solid electrolyte powders having average particle diameters of 10.3 μm, 12.6 μm, and 8.2 μm. Further, a coefficient of variation represented by standard deviation (μm) / average diameter (μm) × 100 was measured. Hereinafter, the “average particle size” indicates D50 unless otherwise specified.

(実施例1)
上記平均粒径10.3μmのLLZをビーズミルにて粉砕し、平均粒径を1.4μmに制御した。全体の質量の10質量%となるように平均粒径10.3μmのLLZと秤量し、ボールミルにて均一に混合し複合固体電解質粉末を得た。得られた複合固体電解質粉末をペレットとした後に、1000℃で18時間熱処理し焼結体を得た。
(Example 1)
The LLZ having an average particle diameter of 10.3 μm was pulverized by a bead mill, and the average particle diameter was controlled to 1.4 μm. LLZ having an average particle diameter of 10.3 μm was weighed so as to be 10% by mass of the whole mass, and was uniformly mixed by a ball mill to obtain a composite solid electrolyte powder. After pelletizing the obtained composite solid electrolyte powder, a heat treatment was performed at 1000 ° C. for 18 hours to obtain a sintered body.

(実施例2−1)
平均粒径が1.4μmのLLZを、全体の質量に対して21質量%となるように、上記平均粒径10.3μmのLLZとボールミルにて均一に混合し複合固体電解質粉末を得た。得られた複合固体電解質粉末をペレットとした後に、900℃で18時間熱処理し焼結体を得た。
(Example 2-1)
LLZ having an average particle diameter of 1.4 μm was uniformly mixed with the LLZ having an average particle diameter of 10.3 μm by a ball mill so as to be 21% by mass with respect to the total mass to obtain a composite solid electrolyte powder. After pelletizing the obtained composite solid electrolyte powder, a heat treatment was performed at 900 ° C. for 18 hours to obtain a sintered body.

(実施例2−2)
実施例2−1と同様の手法で作製した複合固体電解質粉末をペレットとした後に、1000℃で18時間熱処理し焼結体を得た。
(Example 2-2)
The composite solid electrolyte powder produced in the same manner as in Example 2-1 was pelletized, and then heat-treated at 1000 ° C. for 18 hours to obtain a sintered body.

(実施例2−3)
実施例2−1と同様の手法で作製した複合固体電解質粉末をペレットとした後に、1100℃で18時間熱処理し焼結体を得た。
(Example 2-3)
The composite solid electrolyte powder produced in the same manner as in Example 2-1 was pelletized and then heat-treated at 1100 ° C. for 18 hours to obtain a sintered body.

(実施例3)
上記平均粒径10.3μmのLLZをビーズミルにて粉砕して平均粒径を1.4μmとし、全体の質量に対して30質量%となるように、平均粒径10.3μmのLLZとボールミルにて均一に混合し複合固体電解質粉末を得た。得られた複合固体電解質粉末をペレットとした後に、1000℃で18時間熱処理し焼結体を得た。
(Example 3)
The above-mentioned LLZ having an average particle diameter of 10.3 μm is pulverized by a bead mill to an average particle diameter of 1.4 μm. To obtain a composite solid electrolyte powder. After pelletizing the obtained composite solid electrolyte powder, a heat treatment was performed at 1000 ° C. for 18 hours to obtain a sintered body.

(実施例4)
上記平均粒径10.3μmのLLZをビーズミルにて粉砕して平均粒径を1.1μmとし、全体の質量に対して21質量%となるように、平均粒径10.3μmのLLZとボールミルにて均一に混合し複合固体電解質粉末を得た。得られた複合固体電解質粉末をペレットとした後に、1000℃で18時間熱処理し焼結体を得た。
(Example 4)
The above-mentioned LLZ having an average particle diameter of 10.3 μm is pulverized by a bead mill to an average particle diameter of 1.1 μm. To obtain a composite solid electrolyte powder. After pelletizing the obtained composite solid electrolyte powder, a heat treatment was performed at 1000 ° C. for 18 hours to obtain a sintered body.

(実施例5)
上記平均粒径10.3μmのLLZをビーズミルにて粉砕して平均粒径を0.5μmとし、全体の質量に対して20質量%となるように、平均粒径10.3μmのLLZとボールミルにて均一に混合し複合固体電解質粉末を得た。得られた複合固体電解質粉末をペレットとした後に、1000℃で18時間熱処理し焼結体を得た。
(Example 5)
The above-mentioned LLZ having an average particle diameter of 10.3 μm is pulverized with a bead mill to an average particle diameter of 0.5 μm. To obtain a composite solid electrolyte powder. After pelletizing the obtained composite solid electrolyte powder, a heat treatment was performed at 1000 ° C. for 18 hours to obtain a sintered body.

(実施例6)
上記平均粒径10.3μmのLLZをビーズミルにて粉砕して平均粒径を1.8μmとし、全体の質量に対して19質量%となるように、平均粒径12.6μmのLLZとボールミルにて均一に混合し複合固体電解質粉末を得た。得られた複合固体電解質粉末をペレットとした後に、1000℃で18時間熱処理し焼結体を得た。
(Example 6)
The above-mentioned LLZ having an average particle diameter of 10.3 μm is pulverized by a bead mill to have an average particle diameter of 1.8 μm. To obtain a composite solid electrolyte powder. After pelletizing the obtained composite solid electrolyte powder, a heat treatment was performed at 1000 ° C. for 18 hours to obtain a sintered body.

(実施例7)
上記平均粒径10.3μmのLLZをビーズミルにて粉砕して平均粒径を1.4μmとし、全体の質量に対して21質量%となるように、平均粒径12.6μmのLLZとボールミルにて均一に混合し複合固体電解質粉末を得た。得られた複合固体電解質粉末をペレットとした後に、1000℃で18時間熱処理し焼結体を得た。
(Example 7)
The above-mentioned LLZ having an average particle diameter of 10.3 μm is pulverized by a bead mill to an average particle diameter of 1.4 μm. To obtain a composite solid electrolyte powder. After pelletizing the obtained composite solid electrolyte powder, a heat treatment was performed at 1000 ° C. for 18 hours to obtain a sintered body.

(実施例8)
上記平均粒径10.3μmのLLZをビーズミルにて粉砕して平均粒径を0.6μmとし、全体の質量に対して20質量%となるように、平均粒径12.6μmのLLZとボールミルにて均一に混合し複合固体電解質粉末を得た。得られた複合固体電解質粉末をペレットとした後に、1000℃で18時間熱処理し焼結体を得た。
(Example 8)
The above-mentioned LLZ having an average particle diameter of 10.3 μm is pulverized with a bead mill to have an average particle diameter of 0.6 μm. To obtain a composite solid electrolyte powder. After pelletizing the obtained composite solid electrolyte powder, a heat treatment was performed at 1000 ° C. for 18 hours to obtain a sintered body.

(実施例9)
上記平均粒径10.3μmのLLZをビーズミルにて粉砕して平均粒径を1.1μmとし、全体の質量に対して20質量%となるように、平均粒径8.2μmのLLZとボールミルにて均一に混合し複合固体電解質粉末を得た。得られた複合固体電解質粉末をペレットとした後に、1000℃で18時間熱処理し焼結体を得た。
(Example 9)
The above-mentioned LLZ having an average particle diameter of 10.3 μm is pulverized with a bead mill to have an average particle diameter of 1.1 μm. To obtain a composite solid electrolyte powder. After pelletizing the obtained composite solid electrolyte powder, a heat treatment was performed at 1000 ° C. for 18 hours to obtain a sintered body.

(実施例10)
上記平均粒径10.3μmのLLZをビーズミルにて粉砕して平均粒径を0.9μmとし、全体の質量に対して21質量%となるように、平均粒径8.2μmのLLZとボールミルにて均一に混合し複合固体電解質粉末を得た。得られた複合固体電解質粉末をペレットとした後に、1000℃で18時間熱処理し焼結体を得た。
(Example 10)
The above-mentioned LLZ having an average particle diameter of 10.3 μm is pulverized with a bead mill to an average particle diameter of 0.9 μm. To obtain a composite solid electrolyte powder. After pelletizing the obtained composite solid electrolyte powder, a heat treatment was performed at 1000 ° C. for 18 hours to obtain a sintered body.

(実施例11)
上記平均粒径10.3μmのLLZをビーズミルにて粉砕して平均粒径を0.4μmとし、全体の質量に対して20質量%となるように、平均粒径8.2μmのLLZとボールミルにて均一に混合し複合固体電解質粉末を得た。得られた複合固体電解質粉末をペレットとした後に、1000℃で18時間熱処理し焼結体を得た。
(Example 11)
The above-mentioned LLZ having an average particle diameter of 10.3 μm is pulverized by a bead mill to have an average particle diameter of 0.4 μm. To obtain a composite solid electrolyte powder. After pelletizing the obtained composite solid electrolyte powder, a heat treatment was performed at 1000 ° C. for 18 hours to obtain a sintered body.

また、上記実施例1〜11における粒径が大きい方と小さい方のLLZの混合について、粒径が大きい方のLLZの平均粒径Dcとし、粒径が小さい方のLLZの平均粒径をDmとして、Dm/Dcを表1に示す値になるように、また、粒径が大きい方のLLZの重量Wcと粒径が小さい方のLLZの重量Wmとして、Wm/Wm+Wcが表1に示す値になるように混合した。   Further, with respect to the mixture of the larger and smaller LLZs in Examples 1 to 11, the average particle diameter Dc of the larger LLZ and the average particle diameter of the smaller LLZ were Dm. Assuming that Dm / Dc is the value shown in Table 1, Wm / Wm + Wc is the value shown in Table 1 as the weight Wc of the LLZ having the larger particle size and the weight Wm of the LLZ having the smaller particle size. And mixed so that

(比較例1−1)
Li2CO3、La(OH)3、ZrO2、及び、Al23を出発原料とし、Li7-3xLa3AlxZr212(LLZ:式中、0≦x<3である)の基本組成の化学量論比になるように、これら出発原料を秤量し、エタノール中にて遊星ボールミルで4時間、混合・粉砕を行った後、得られた混合粉末をボールとエタノールから分離した。次に、当該混合粉末を白金るつぼ中にて、700℃で仮焼してガス成分を蒸発させた後、1300℃で本焼成を行い溶解させて板状のガラスとし、その後600℃程度でキャストし、LLZの結晶を析出させた。次に、得られた結晶を遊星ボールミルで粉砕し、平均粒径10.3μmのLLZを得た。得られた固体電解質粉末をペレットとした後に、900℃で18時間熱処理し焼結体を得た。
(Comparative Example 1-1)
Using Li 2 CO 3 , La (OH) 3 , ZrO 2, and Al 2 O 3 as starting materials, Li 7-3x La 3 Al x Zr 2 O 12 (LLZ: where 0 ≦ x <3 These starting materials are weighed so as to have the stoichiometric ratio of the basic composition of the above), mixed and pulverized in ethanol with a planetary ball mill for 4 hours, and then the obtained mixed powder is separated from the balls and ethanol. did. Next, the mixed powder is calcined in a platinum crucible at 700 ° C. to evaporate gas components, and then main-baked at 1300 ° C. to be dissolved to form a plate-like glass, and then cast at about 600 ° C. Then, LLZ crystals were precipitated. Next, the obtained crystal was pulverized with a planetary ball mill to obtain LLZ having an average particle diameter of 10.3 μm. After pelletizing the obtained solid electrolyte powder, it was heat-treated at 900 ° C. for 18 hours to obtain a sintered body.

(比較例1−2)
比較例1−1と同様の方法で作製した固体電解質粉末ペレットを1000℃で18時間熱処理し焼結体を得た。
(Comparative Example 1-2)
The solid electrolyte powder pellets produced in the same manner as in Comparative Example 1-1 were heat-treated at 1000 ° C. for 18 hours to obtain a sintered body.

(比較例1−3)
比較例1−1と同様の方法で作製した固体電解質粉末ペレットを1100℃で18時間熱処理し焼結体を得た。
(Comparative Example 1-3)
The solid electrolyte powder pellets produced in the same manner as in Comparative Example 1-1 were heat-treated at 1100 ° C. for 18 hours to obtain a sintered body.

(評価)
こうしてできた各実施例及び比較例のサンプルを用いて下記の条件にて各評価を実施した。
−イオン伝導度の評価−
各サンプルの伝導度は、25℃設定の恒温槽中にてACインピーダンスアナライザーを用い、周波数が30MHz〜40Hz、振幅電圧が500mVとなるような条件で、ナイキストプロットの円弧より抵抗値を求め、伝導度を算出した。ACインピーダンスアナライザーで測定する際のブロッキング電極にはAg電極を用いた。Ag電極は市販のAgペーストを100℃30分の条件でそれぞれの試料へ焼き付けることで形成した。
(Evaluation)
Each evaluation was carried out under the following conditions using the samples of the examples and comparative examples thus obtained.
−Evaluation of ionic conductivity−
The conductivity of each sample was determined by using an AC impedance analyzer in a constant temperature bath set at 25 ° C. and determining the resistance from the arc of the Nyquist plot under the conditions that the frequency was 30 MHz to 40 Hz and the amplitude voltage was 500 mV. The degree was calculated. An Ag electrode was used as a blocking electrode when measuring with an AC impedance analyzer. The Ag electrode was formed by baking a commercially available Ag paste on each sample at 100 ° C. for 30 minutes.

−相対密度の評価−
各サンプルに対して、電子天秤にて測定した乾燥重量を、ノギスを用いて測定した実寸から求めた体積で除算することにより見かけ密度を算出すると共に、理論密度を算出し、見かけ密度を理論密度で除算し100を乗算することにより計算した値を相対密度(%)とした。焼結前のペレットの相対密度を「初期密度」とし、焼結後のペレットの相対密度を「焼結後密度」とした。
評価条件及び結果を表1に示す。
-Evaluation of relative density-
For each sample, calculate the apparent density by dividing the dry weight measured by an electronic balance by the volume obtained from the actual size measured using a caliper, calculate the theoretical density, and calculate the apparent density by the theoretical density. And the value calculated by multiplying by 100 was defined as the relative density (%). The relative density of the pellet before sintering was defined as “initial density”, and the relative density of the pellet after sintering was defined as “density after sintering”.
Table 1 shows the evaluation conditions and results.

Figure 2020035678
Figure 2020035678

(評価結果)
図3に実施例2−1、2−2及び2−3及び比較例1−1、1−2及び1−3のサンプルを900℃、1000℃及び1100℃にて焼結した場合の相対密度と焼結温度との関係を示す。小粒径のLLZを含有した実施例2−1、2−2及び2−3は、当該小粒径のLLZを含有していない比較例1−1、1−2及び1−3に比べ相対密度が大きくなった。
図4に実施例2−1、2−2及び2−3及び比較例1−1、1−2及び1−3のサンプルを900℃、1000℃及び1100℃にて焼結した場合のイオン伝導度と焼結温度との関係を示す。実施例2−1、2−2及び2−3では、小粒径のLLZを含有することで緻密化が促進され、比較例1−1、1−2及び1−3に比べイオン伝導度が高くなった。
図5に実施例1、実施例2−3、実施例5、実施例6、実施例7、実施例8、実施例9、実施例10及び実施例11に係るDm/Dcとイオン伝導度の関係を示した。大粒径のLLZの粒径とDm/Dcが小さいほどイオン伝導度は上昇した。
図6に実施例1、実施例2−2及び実施例3に係る小粒子質量分率とイオン伝導度の関係を示した。小粒子質量分率が約20質量%でイオン伝導度は最大となった。
また、実施例1において、第一粒子と第二粒子をボールミルにて混合する段階で、溶融フラックスとしてLi3BO3を添加したところ、より低温で短い焼結時間で、緻密でイオン伝導度の高い焼結体を得ることができた。
(Evaluation results)
FIG. 3 shows the relative densities of the samples of Examples 2-1, 2-2 and 2-3 and Comparative Examples 1-1, 1-2 and 1-3 when sintered at 900 ° C., 1000 ° C. and 1100 ° C. The relationship between the temperature and the sintering temperature is shown. Examples 2-1 2-2 and 2-3 containing LLZ having a small particle diameter are relatively different from Comparative Examples 1-1, 1-2 and 1-3 not containing LLZ having the small particle diameter. Density increased.
FIG. 4 shows ionic conduction when the samples of Examples 2-1, 2-2 and 2-3 and Comparative Examples 1-1, 1-2 and 1-3 were sintered at 900 ° C., 1000 ° C. and 1100 ° C. The relationship between the degree and the sintering temperature is shown. In Examples 2-1, 2-2, and 2-3, the inclusion of LLZ having a small particle diameter promotes densification, and the ionic conductivity is higher than that of Comparative Examples 1-1, 1-2, and 1-3. Got higher.
FIG. 5 shows Dm / Dc and ionic conductivity of Example 1, Example 2-3, Example 5, Example 6, Example 7, Example 8, Example 9, Example 10 and Example 11. The relationship was shown. The ion conductivity increased as the particle diameter of the large particle diameter LLZ and Dm / Dc became smaller.
FIG. 6 shows the relationship between the small particle mass fraction and the ionic conductivity according to Example 1, Example 2-2, and Example 3. The ionic conductivity became maximum when the small particle mass fraction was about 20 mass%.
Further, in Example 1, when Li 3 BO 3 was added as a molten flux at the stage of mixing the first particles and the second particles with a ball mill, the sintering was performed at a lower temperature, with a shorter sintering time, and with a higher ionic conductivity. A high sintered body could be obtained.

Claims (5)

第一ガーネット型固体電解質粉末と、第二ガーネット型固体電解質粉末とからなる複合固体電解質粉末であり、
前記第一ガーネット型固体電解質粉末の平均粒径が1〜13μmであり、標準偏差(μm)/平均径(μm)×100で示される変動係数が20%未満であり、
前記第二ガーネット型固体電解質粉末の平均粒径が0.1〜1.5μmであり、
前記第一ガーネット型固体電解質粉末の平均粒径をDcとし、前記第二ガーネット型固体電解質粉末の平均粒径をDmとしたとき、Dm<((2/√3)−1)Dcを満たす全固体リチウムイオン電池用複合固体電解質粉末。
A first garnet-type solid electrolyte powder, a composite solid electrolyte powder consisting of a second garnet-type solid electrolyte powder,
The first garnet-type solid electrolyte powder has an average particle size of 1 to 13 μm, and a coefficient of variation represented by standard deviation (μm) / average diameter (μm) × 100 is less than 20%;
The average particle size of the second garnet type solid electrolyte powder is 0.1 to 1.5 μm,
When the average particle size of the first garnet-type solid electrolyte powder is Dc and the average particle size of the second garnet-type solid electrolyte powder is Dm, the total satisfies Dm <((2/3) -1) Dc. Composite solid electrolyte powder for solid lithium ion batteries.
前記複合固体電解質粉末の全体を100質量部としたとき、前記第二ガーネット型固体電解質粉末を5〜60質量部含む請求項1に記載の全固体リチウムイオン電池用複合固体電解質粉末。   2. The composite solid electrolyte powder for an all-solid lithium ion battery according to claim 1, wherein the total amount of the composite solid electrolyte powder is 100 parts by mass, and the amount of the second garnet-type solid electrolyte powder is 5 to 60 parts by mass. 溶融フラックスとしてLi2CO3、LiCl及びLi3BO3からなる群から選択されるいずれか一種以上を含む請求項1又は2に記載の全固体リチウムイオン電池用複合固体電解質粉末。 All-solid-state lithium-ion batteries for hybrid solid electrolyte powder according to claim 1 or 2 comprising any one or more selected from the group consisting of Li 2 CO 3, LiCl and Li 3 BO 3 as a molten flux. 前記第一ガーネット型固体電解質粉末及び前記第二ガーネット型固体電解質粉末の一方又は両方が、組成式:Li7-3xLa3AlxZr212
(式中、0≦x<3である)
で示される請求項1〜3のいずれか一項に記載の全固体リチウムイオン電池用複合固体電解質粉末。
One or both of the first garnet type solid electrolyte powder and the second garnet type solid electrolyte powder have a composition formula: Li 7-3x La 3 Al x Zr 2 O 12
(Where 0 ≦ x <3)
The composite solid electrolyte powder for an all-solid lithium-ion battery according to any one of claims 1 to 3, which is represented by:
正極層、負極層及び固体電解質層を備え、請求項1〜4のいずれか一項に記載の全固体リチウムイオン電池用複合固体電解質粉末を前記固体電解質層に備えた全固体リチウムイオン電池。   An all-solid lithium-ion battery comprising a positive electrode layer, a negative electrode layer, and a solid electrolyte layer, wherein the solid electrolyte layer comprises the composite solid electrolyte powder for an all-solid lithium-ion battery according to claim 1.
JP2018161968A 2018-08-30 2018-08-30 Composite solid electrolyte powder for all-solid-state lithium-ion batteries and all-solid-state lithium-ion batteries Active JP7045289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018161968A JP7045289B2 (en) 2018-08-30 2018-08-30 Composite solid electrolyte powder for all-solid-state lithium-ion batteries and all-solid-state lithium-ion batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018161968A JP7045289B2 (en) 2018-08-30 2018-08-30 Composite solid electrolyte powder for all-solid-state lithium-ion batteries and all-solid-state lithium-ion batteries

Publications (2)

Publication Number Publication Date
JP2020035678A true JP2020035678A (en) 2020-03-05
JP7045289B2 JP7045289B2 (en) 2022-03-31

Family

ID=69668471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018161968A Active JP7045289B2 (en) 2018-08-30 2018-08-30 Composite solid electrolyte powder for all-solid-state lithium-ion batteries and all-solid-state lithium-ion batteries

Country Status (1)

Country Link
JP (1) JP7045289B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276712A1 (en) * 2021-06-30 2023-01-05 日本化学工業株式会社 Lithium silicophosphate powder and method for producing same
WO2024004587A1 (en) * 2022-06-29 2024-01-04 キヤノン株式会社 Solid electrolyte, positive electrode, electrolyte layer and secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161055A1 (en) * 2011-05-23 2012-11-29 国立大学法人名古屋工業大学 Production method for material employed in energy device and/or electrical storage device, and material employed in energy device and/or electrical storage device
JP2015138741A (en) * 2014-01-24 2015-07-30 富士通株式会社 Composite solid electrolyte and all-solid-state battery
WO2018195011A1 (en) * 2017-04-17 2018-10-25 Corning Incorporated Lithium-garnet solid electrolyte composite, tape articles, and methods thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161055A1 (en) * 2011-05-23 2012-11-29 国立大学法人名古屋工業大学 Production method for material employed in energy device and/or electrical storage device, and material employed in energy device and/or electrical storage device
JP2015138741A (en) * 2014-01-24 2015-07-30 富士通株式会社 Composite solid electrolyte and all-solid-state battery
WO2018195011A1 (en) * 2017-04-17 2018-10-25 Corning Incorporated Lithium-garnet solid electrolyte composite, tape articles, and methods thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276712A1 (en) * 2021-06-30 2023-01-05 日本化学工業株式会社 Lithium silicophosphate powder and method for producing same
WO2024004587A1 (en) * 2022-06-29 2024-01-04 キヤノン株式会社 Solid electrolyte, positive electrode, electrolyte layer and secondary battery

Also Published As

Publication number Publication date
JP7045289B2 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
JP6595152B2 (en) Solid electrolyte for lithium secondary battery and sulfide compound for solid electrolyte
KR102162070B1 (en) Sulfide-based solid electrolyte for lithium secondary batteries
JP6997216B2 (en) Solid electrolyte
JP6418145B2 (en) Composite solid electrolyte
TWI623136B (en) Cathode material for rechargeable solid state lithium ion battery
JP2015204215A (en) Lithium ion-conducting solid electrolyte, manufacturing method thereof, and all-solid battery
JP2019033067A (en) Positive electrode composite material and manufacturing method thereof
JP2010177024A (en) Positive electrode for nonaqueous electrolyte battery, method for manufacturing the same, and nonaqueous electrolyte battery
JPWO2019212026A1 (en) Ion-conductive powder, ion-conductive compact, and power storage device
CN114789993B (en) Modified sulfur silver germanium mineral solid electrolyte and preparation method and application thereof
JP2017182949A (en) Method for manufacturing positive electrode substance material for all-solid battery, and positive electrode active substance material for all-solid battery
JP2015056382A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP7045289B2 (en) Composite solid electrolyte powder for all-solid-state lithium-ion batteries and all-solid-state lithium-ion batteries
CN114933331A (en) Sulfide solid electrolyte and preparation method thereof
WO2011093129A1 (en) Electrode active material for all-solid-state secondary battery, and all-solid-state secondary battery using same
JP7045280B2 (en) Composite solid electrolyte and all-solid-state lithium-ion battery
JP2015185462A (en) Method for manufacturing solid electrolytic member for solid batteries
JP7365947B2 (en) Method for manufacturing garnet-type solid electrolyte sintered body for all-solid-state lithium-ion battery and method for manufacturing all-solid-state lithium-ion battery
JP2019021571A (en) Negative electrode active material for all-solid-state battery
JP7217615B2 (en) Composite solid electrolyte pellet for unsintered all-solid-state lithium-ion battery and all-solid-state lithium-ion battery
JP7107888B2 (en) Negative electrode active material for solid battery, negative electrode and solid battery using the active material
JP7301005B2 (en) Sulfide-based solid electrolyte and all-solid lithium-ion battery
JP2020024850A (en) Composite solid electrolyte and all-solid lithium ion battery
JP2020021681A (en) Solid electrolyte layer for all-solid lithium ion battery and all-solid lithium ion battery
JP7301013B2 (en) Sulfide-based solid electrolyte and all-solid lithium-ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220318

R151 Written notification of patent or utility model registration

Ref document number: 7045289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151