JP2020021681A - Solid electrolyte layer for all-solid lithium ion battery and all-solid lithium ion battery - Google Patents

Solid electrolyte layer for all-solid lithium ion battery and all-solid lithium ion battery Download PDF

Info

Publication number
JP2020021681A
JP2020021681A JP2018146094A JP2018146094A JP2020021681A JP 2020021681 A JP2020021681 A JP 2020021681A JP 2018146094 A JP2018146094 A JP 2018146094A JP 2018146094 A JP2018146094 A JP 2018146094A JP 2020021681 A JP2020021681 A JP 2020021681A
Authority
JP
Japan
Prior art keywords
electrolyte layer
solid
ion battery
layer
lgps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018146094A
Other languages
Japanese (ja)
Other versions
JP7014685B2 (en
Inventor
樫村 利英
Toshihide Kashimura
利英 樫村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018146094A priority Critical patent/JP7014685B2/en
Publication of JP2020021681A publication Critical patent/JP2020021681A/en
Application granted granted Critical
Publication of JP7014685B2 publication Critical patent/JP7014685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a solid electrolyte layer for an all-solid lithium ion battery that has small battery internal resistance and that has a good output characteristic and a good cycle characteristic when it is applied to the all-solid lithium ion battery.SOLUTION: A solid electrolyte layer for an all-solid lithium ion battery comprises: an electrolyte layer A contacting with a positive electrode side; an electrolyte layer B contacting with a negative electrode side; and an intermediate electrolyte layer C that are provided between the electrolyte layer A and the electrolyte layer B. The electrolyte layer A is made of a solid electrolyte expressed by a composition formula: LGPS, the electrolyte layer B is made of a solid electrolyte expressed by a composition formula: LPS, and the intermediate electrolyte layer C is made by mixing the solid electrolyte expressed by the LGPS and the solid electrolyte expressed by the composition formula: LPS. Thickness of the electrolyte layer B is more than or equal to 50nm. A total material amount of Ge and P in the LGPS at an intermediate electrolyte layer C side in a boundary surface contacting the electrolyte layer A and the intermediate electrolyte layer C is more than or the same as a material amount of P in the LPS, and a total material amount of Ge and P in the LGPS at an intermediate electrolyte layer C side in a boundary surface contacting the electrolyte layer B and the intermediate electrolyte layer C is smaller than or the same as a material amount of P in the LPS.SELECTED DRAWING: None

Description

本発明は、全固体リチウムイオン電池用固体電解質層及び全固体リチウムイオン電池に関する。   The present invention relates to a solid electrolyte layer for an all-solid-state lithium-ion battery and an all-solid-state lithium-ion battery.

近年におけるパソコン、ビデオカメラ、及び携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。該電池の中でも、エネルギー密度が高いという観点から、リチウム電池が注目を浴びている。また、車載用等の動力源やロードレベリング用といった大型用途におけるリチウム二次電池についても、高エネルギー密度、電池特性向上が求められている。   With the rapid spread of information-related devices and communication devices such as personal computers, video cameras, and mobile phones in recent years, the development of batteries used as power sources for them has been regarded as important. Among these batteries, lithium batteries have attracted attention from the viewpoint of high energy density. In addition, high energy density and improved battery characteristics are also required for lithium secondary batteries for large-scale applications such as power sources for vehicles and load leveling.

ただ、リチウムイオン電池の場合は、電解液は有機化合物が大半であり、たとえ難燃性の化合物を用いたとしても火災に至る危険性が全くなくなるとは言いきれない。こうした液系リチウムイオン電池の代替候補として、電解質を固体とした全固体リチウムイオン電池が近年注目を集めている(特許文献1等)。その中でも、固体電解質としてLi2S−P25などのリチウムイオン伝導性の高い硫化物を添加した全固体リチウムイオン電池が主流となりつつある。 However, in the case of a lithium ion battery, most of the electrolyte is an organic compound, and even if a flame-retardant compound is used, it cannot be said that there is no danger of fire. As an alternative candidate for such a liquid lithium-ion battery, an all-solid-state lithium-ion battery having a solid electrolyte has recently attracted attention (Patent Document 1 and the like). Among them, an all-solid-state lithium ion battery to which a sulfide having a high lithium ion conductivity such as Li 2 SP 2 S 5 is added as a solid electrolyte is becoming mainstream.

このような硫化物を添加した全固体リチウムイオン電池の固体電解質として、LiGePS系の固体電解質(LGPS)が知られているが、LGPSのGeは負極で還元してしまうという問題が生じる。このような問題に対し、特許文献1では固体電解質を2層構造とすることで対応しようとした技術が記載されている。   As a solid electrolyte of such a sulfide-added all solid lithium ion battery, a LiGePS-based solid electrolyte (LGPS) is known. However, there is a problem that Ge of LGPS is reduced at a negative electrode. Patent Literature 1 describes a technique to cope with such a problem by forming the solid electrolyte into a two-layer structure.

特開2003−217663号公報JP-A-2003-217663

特許文献1では固体電解質を、正極側と負極側とで異なる種類の硫化物系電解質からなる2層構造としている。しかしながら、このような構成では、正極合剤と負極合剤の間の電解質のリチウムイオン伝導率が低下し、電池の内部抵抗が増加するという問題が生じるおそれがある。   In Patent Literature 1, the solid electrolyte has a two-layer structure including different types of sulfide-based electrolytes on the positive electrode side and the negative electrode side. However, in such a configuration, there is a possibility that the lithium ion conductivity of the electrolyte between the positive electrode mixture and the negative electrode mixture decreases, and the internal resistance of the battery increases.

本発明の実施形態では、全固体リチウムイオン電池に適用したときに、電池内部抵抗が小さくなり、良好な出力特性及びサイクル特性を有する全固体リチウムイオン電池用固体電解質層を提供することを目的とする。   An object of the embodiments of the present invention is to provide a solid electrolyte layer for an all-solid-state lithium-ion battery having a low internal resistance when applied to an all-solid-state lithium-ion battery and having good output characteristics and cycle characteristics. I do.

本発明者は、種々の検討を行った結果、固体電解質層を正極側に接する電解質層A、負極側に接する電解質層B、及び、電解質層Aと電解質層Bとの間に設けられた中間電解質層Cとで構成し、電解質層Bの厚みを制御し、さらに各電解質層の組成を制御することで、上述の課題が解決されることを見出した。   As a result of various studies, the present inventor has found that the solid electrolyte layer has an electrolyte layer A in contact with the positive electrode side, an electrolyte layer B in contact with the negative electrode side, and an intermediate layer provided between the electrolyte layer A and the electrolyte layer B. It has been found that the above-mentioned problems can be solved by forming the electrolyte layer C and the electrolyte layer B, controlling the thickness of the electrolyte layer B, and further controlling the composition of each electrolyte layer.

上記知見を基礎にして完成した本発明は実施形態において、正極側に接する電解質層A、負極側に接する電解質層B、及び、前記電解質層Aと前記電解質層Bとの間に設けられた中間電解質層Cを有し、前記電解質層Aは、組成式:Li(4-x)Ge(1-x)x4(式中、xは、0.6<x<0.8)で表される固体電解質からなり、前記電解質層Bは、組成式:(70〜80)Li2S−(30〜20)P25で表される固体電解質からなり、前記中間電解質層Cは、Li(4-x)Ge(1-x)x4(式中、xは、0.6<x<0.8)で表される固体電解質と組成式:(70〜80)Li2S−(30〜20)P25で表される固体電解質とが混合してなり、前記電解質層Bの厚みが50nm以上であり、前記電解質層Aと前記中間電解質層Cとが接する界面での前記中間電解質層C側の前記Li(4-x)Ge(1-x)x4中のGeとPとの総物質量は、前記(70〜80)Li2S−(30〜20)P25中のPの物質量よりも多いか同じであり、前記電解質層Bと前記中間電解質層Cとが接する界面での前記中間電解質層C側の前記Li(4-x)Ge(1-x)x4中のGeとPとの総物質量は、前記(70〜80)Li2S−(30〜20)P25中のPの物質量よりも少ないか同じである全固体リチウムイオン電池用固体電解質層である。 The present invention, which has been completed based on the above findings, in the embodiment, is an electrolyte layer A in contact with the positive electrode side, an electrolyte layer B in contact with the negative electrode side, and an intermediate layer provided between the electrolyte layer A and the electrolyte layer B. It has an electrolyte layer C, and the electrolyte layer A has a composition formula: Li (4-x) Ge (1-x) P x S 4 (where x is 0.6 <x <0.8). made from a solid electrolyte represented, the electrolyte layer B is a composition formula: (70~80) Li 2 S- ( 30~20) made of a solid electrolyte represented by P 2 S 5, the intermediate electrolyte layer C , Li (4-x) Ge (1-x) P x S 4 (where x is 0.6 <x <0.8) and a composition formula: (70-80) Li 2 S- (30~20) P 2 S becomes 5 were mixed and the solid electrolyte represented, the thickness of the electrolyte layer B is not less 50nm or more, the electrolyte layer a and the intermediate electrolyte The total amount of substance of Ge and P of the intermediate electrolyte layer C side the Li (4-x) Ge ( 1-x) in P x S 4 at the interface where the C contact, the (70 to 80) Li 2 S- (30-20) P 2 S 5 The amount of P is greater than or equal to the amount of P, and at the interface where the electrolyte layer B and the intermediate electrolyte layer C are in contact with the intermediate electrolyte layer C side. The total amount of Ge and P in Li (4-x) Ge (1-x) P x S 4 is determined by the amount of P in the (70-80) Li 2 S- (30-20) P 2 S 5. Is a solid electrolyte layer for an all-solid-state lithium-ion battery that is less than or equal to the amount of the substance.

本発明の全固体リチウムイオン電池用固体電解質層は別の実施形態において、前記電解質層Aと前記中間電解質層Cとが接する界面での前記中間電解質層C側の前記Li(4-x)Ge(1-x)x4中のGeとPの総物質量と前記(70〜80)Li2S−(30〜20)P25中のPの物質量の比率が3:1〜1:1であり、前記電解質層Bと前記中間電解質層Cとが接する界面での前記中間電解質層C側の前記Li(4-x)Ge(1-x)x4中のGeとPとの総物質量と前記(70〜80)Li2S−(30〜20)P25中のPの物質量の比率が1:1〜1:3である。 In another embodiment, the solid electrolyte layer for an all-solid-state lithium ion battery of the present invention is configured such that the Li (4-x) Ge on the side of the intermediate electrolyte layer C at the interface where the electrolyte layer A and the intermediate electrolyte layer C are in contact with each other. (1-x) P x S wherein Ge and total material amount of P in 4 (70~80) Li 2 S- ( 30~20) P 2 ratio of the amount of substance of P in S 5 3: 1 Ge in the Li (4-x) Ge (1-x) P x S 4 on the side of the intermediate electrolyte layer C at the interface where the electrolyte layer B and the intermediate electrolyte layer C are in contact with each other. the ratio between the total material amount and the (70~80) Li 2 S- (30~20 ) P 2 S material of P out of 5 in the P 1: 1 to 1: 3.

本発明は別の実施形態において、正極層、負極層、及び、本発明の実施形態に係る全固体リチウムイオン電池用固体電解質層を備えた全固体リチウムイオン電池である。   In another embodiment, the present invention is an all-solid lithium-ion battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer for an all-solid lithium-ion battery according to the embodiment of the present invention.

本発明によれば、全固体リチウムイオン電池に適用したときに、電池内部抵抗が小さくなり、良好な出力特性及びサイクル特性を有する全固体リチウムイオン電池用固体電解質層を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, when applied to an all-solid-state lithium-ion battery, the internal resistance of a battery becomes small and the solid electrolyte layer for all-solid-state lithium-ion batteries which has favorable output characteristics and cycle characteristics can be provided.

(全固体リチウムイオン電池用固体電解質層)
本発明の実施形態に係る全固体リチウムイオン電池用固体電解質層は、正極側に接する電解質層A、負極側に接する電解質層B、及び、電解質層Aと電解質層Bとの間に設けられた中間電解質層Cを有している。電解質層Aは、組成式:Li(4-x)Ge(1-x)x4(式中、xは、0.6<x<0.8)[以下、LGPSとも称する]で表される固体電解質からなる。電解質層Bは、組成式:(70〜80)Li2S−(30〜20)P25[以下、LPSとも称する]で表される固体電解質からなる。中間電解質層Cは、Li(4-x)Ge(1-x)x4(式中、xは、0.6<x<0.8)で表される固体電解質と組成式:(70〜80)Li2S−(30〜20)P25で表される固体電解質とが混合してなる。
(Solid electrolyte layer for all solid lithium ion battery)
The solid electrolyte layer for an all solid lithium ion battery according to the embodiment of the present invention is provided with an electrolyte layer A in contact with the positive electrode side, an electrolyte layer B in contact with the negative electrode side, and between the electrolyte layer A and the electrolyte layer B. It has an intermediate electrolyte layer C. The electrolyte layer A is represented by a composition formula: Li (4-x) Ge (1-x) P x S 4 (where x is 0.6 <x <0.8) [hereinafter, also referred to as LGPS]. Consisting of a solid electrolyte. The electrolyte layer B is a composition formula: (70~80) Li 2 S- ( 30~20) P 2 S 5 [ hereinafter, also referred to as LPS] made of a solid electrolyte represented by. The intermediate electrolyte layer C is composed of a solid electrolyte represented by Li (4-x) Ge (1-x) P x S 4 (where x is 0.6 <x <0.8) and a composition formula: ( 70-80) and Li 2 S- (30 to 20) solid electrolyte represented by P 2 S 5 is formed by mixing.

本発明の実施形態に係る全固体リチウムイオン電池用固体電解質層は、電解質層Aと中間電解質層Cとが接する界面での中間電解質層C側のLi(4-x)Ge(1-x)x4中のGeとPとの総物質量が、(70〜80)Li2S−(30〜20)P25中のPの物質量よりも多いか同じである。すなわち、本発明の実施形態に係る全固体リチウムイオン電池用固体電解質層は、電解質層A側から中間電解質層C側へ向かって(深さ方向とする)元素分析を進めたとき、ある深さでLi(4-x)Ge(1-x)x4中のGeとPとの総物質量が、(70〜80)Li2S−(30〜20)P25中のPの物質量よりも多いか同じである境界に出会う。当該境界が上記界面の中間電解質層C側まで元素分析が進んだことを示している。 The solid electrolyte layer for an all-solid-state lithium ion battery according to the embodiment of the present invention includes Li (4-x) Ge (1-x) on the side of the intermediate electrolyte layer C at the interface where the electrolyte layer A and the intermediate electrolyte layer C are in contact with each other. the total amount of substance of the P x S 4 in Ge and P is the same or (70~80) Li 2 S- (30~20 ) P 2 S greater than the amount of substance of P in 5. That is, the solid electrolyte layer for an all-solid-state lithium ion battery according to the embodiment of the present invention has a certain depth when the elemental analysis is performed from the electrolyte layer A side to the intermediate electrolyte layer C side (depth direction). And the total amount of Ge and P in Li (4-x) Ge (1-x) P x S 4 is P (70-80) Li 2 S- (30-20) P 2 S 5 Meet a boundary that is greater than or equal to the amount of material in. The boundary indicates that the elemental analysis has progressed to the intermediate electrolyte layer C side of the interface.

本発明の実施形態に係る全固体リチウムイオン電池用固体電解質層は、電解質層Bと中間電解質層Cとが接する界面での中間電解質層C側のLi(4-x)Ge(1-x)x4中のGeとPとの総物質量が、(70〜80)Li2S−(30〜20)P25中のPの物質量よりも少ないか同じである。すなわち、本発明の実施形態に係る全固体リチウムイオン電池用固体電解質層は、電解質層B側から中間電解質層C側へ向かって(深さ方向とする)元素分析を進めたとき、ある深さでLi(4-x)Ge(1-x)x4中のGeとPとの総物質量が、(70〜80)Li2S−(30〜20)P25中のPの物質量よりも少ないか同じである境界に出会う。当該境界が上記界面の中間電解質層C側まで元素分析が進んだことを示している。 The solid electrolyte layer for an all-solid-state lithium ion battery according to the embodiment of the present invention includes Li (4-x) Ge (1-x) on the side of the intermediate electrolyte layer C at the interface where the electrolyte layer B and the intermediate electrolyte layer C are in contact with each other. the total amount of substance of the P x S in 4 Ge and P is the same or less than (70~80) Li 2 S- (30~20 ) substance of P in P 2 S 5. That is, the solid electrolyte layer for an all-solid lithium ion battery according to the embodiment of the present invention has a certain depth when the elemental analysis is performed from the electrolyte layer B side to the intermediate electrolyte layer C side (depth direction). And the total amount of Ge and P in Li (4-x) Ge (1-x) P x S 4 is P (70-80) Li 2 S- (30-20) P 2 S 5 Encounter a boundary that is less than or equal to the amount of material in. The boundary indicates that the elemental analysis has progressed to the intermediate electrolyte layer C side of the interface.

また、LGPSはLPSよりもイオン導電率が大きいが、LGPS中に含まれるGeは耐還元性が低く、負極活物質に金属Liやカーボンを使用した場合は、Geは還元されてしまう。そこで、Geが負極活物質に接触しないようにするため、負極側に接する電解質層BをLPSで表される固体電解質で構成している。   In addition, LGPS has a higher ionic conductivity than LPS, but Ge contained in LGPS has low resistance to reduction. When metal Li or carbon is used as the negative electrode active material, Ge is reduced. Therefore, in order to prevent Ge from contacting the negative electrode active material, the electrolyte layer B in contact with the negative electrode side is formed of a solid electrolyte represented by LPS.

また、電解質層Bの厚みは50nm以上に制御されている。通常、元素拡散は接触した界面から50nmの範囲で起きることが多く、負極側に接する電解質層Bの厚みを50nm以上とすることで、より効果的に負極活物質へのGe等の元素の接触を抑制することができる。   The thickness of the electrolyte layer B is controlled to 50 nm or more. Usually, element diffusion often occurs within a range of 50 nm from the contact interface, and by setting the thickness of the electrolyte layer B in contact with the negative electrode side to 50 nm or more, contact of an element such as Ge with the negative electrode active material can be more effectively performed. Can be suppressed.

種類の異なる電解質層を積層させた場合、その界面は、リチウムイオンが移動するときの律速になる。これは、化学ポテンシャルが異なる電解質層が接しているためである。本発明の実施形態に係る全固体リチウムイオン電池用固体電解質層は、正極側に接する電解質層A、負極側に接する電解質層B、及び、電解質層Aと電解質層Bとの間に設けられた中間電解質層Cを有しており、且つ、各電解質層が互いに異なる種類の電解質層となっている(電解質層A:LGPS、電解質層B:LPS、中間電解質層C:LGPS及びLPS)。このように、化学ポテンシャルの変化を緩和することで、固体電解質層におけるリチウムイオンの移動がスムースになり、全固体リチウムイオン電池に適用したときに、電池内部抵抗が小さくなり、良好な出力特性を有する全固体リチウムイオン電池用固体電解質層を提供することができる。また、電解質層Bの厚みを50nm以上に制御することで、負極活物質へのGe等の元素の接触を抑制することで、良好なサイクル特性を有する全固体リチウムイオン電池用固体電解質層を提供することができる。   When different types of electrolyte layers are stacked, the interface thereof becomes a rate-determining factor when lithium ions move. This is because electrolyte layers having different chemical potentials are in contact with each other. The solid electrolyte layer for an all solid lithium ion battery according to the embodiment of the present invention is provided with an electrolyte layer A in contact with the positive electrode side, an electrolyte layer B in contact with the negative electrode side, and between the electrolyte layer A and the electrolyte layer B. It has an intermediate electrolyte layer C, and each electrolyte layer is a different type of electrolyte layer (electrolyte layer A: LGPS, electrolyte layer B: LPS, intermediate electrolyte layer C: LGPS and LPS). In this way, by mitigating the change in chemical potential, the movement of lithium ions in the solid electrolyte layer becomes smooth, and when applied to an all-solid-state lithium-ion battery, the internal resistance of the battery is reduced and good output characteristics are obtained. A solid electrolyte layer for an all-solid-state lithium-ion battery can be provided. In addition, by controlling the thickness of the electrolyte layer B to 50 nm or more, contact of elements such as Ge with the negative electrode active material is suppressed, thereby providing a solid electrolyte layer for an all-solid-state lithium ion battery having good cycle characteristics. can do.

電解質層Aと中間電解質層Cとが接する界面での中間電解質層C側のLi(4-x)Ge(1-x)x4中のGeとPの総物質量とLPS((70〜80)Li2S−(30〜20)P25)中のPの物質量の比率が3:1〜1:1であり、電解質層Bと中間電解質層Cとが接する界面での中間電解質層C側のLi(4-x)Ge(1-x)x4中のGeとPとの総物質量とLPS((70〜80)Li2S−(30〜20)P25)中のPの物質量の比率が1:1〜1:3であるのが好ましい。このような構成によれば、化学ポテンシャル変化がより緩和され、リチウムイオン伝導率がより高くなるという効果が得られる。 The total amount of Ge and P in Li (4-x) Ge (1-x) P x S 4 on the intermediate electrolyte layer C side at the interface where the electrolyte layer A and the intermediate electrolyte layer C are in contact with LPS ((70 ~80) Li 2 S- (30~20) the ratio of P 2 S 5) the amount of substance of P in 3: 1 to 1: 1, at the interface of the electrolyte layer B and the intermediate electrolyte layer C is in contact The total amount of Ge and P in Li (4-x) Ge (1-x) P x S 4 on the side of the intermediate electrolyte layer C and LPS ((70-80) Li 2 S- (30-20) P It is preferable that the ratio of the substance amount of P in 2 S 5 ) is 1: 1 to 1: 3. According to such a configuration, it is possible to obtain the effect that the change in chemical potential is further reduced and the lithium ion conductivity is further increased.

(リチウムイオン電池)
本発明の実施形態に係る全固体リチウムイオン電池用固体電解質層と、正極層及び負極層とを用いて全固体リチウムイオン電池を作製することができる。
(Lithium ion battery)
An all-solid-state lithium-ion battery can be manufactured using the solid electrolyte layer for an all-solid-state lithium-ion battery according to the embodiment of the present invention, and the positive electrode layer and the negative electrode layer.

(全固体リチウムイオン電池用固体電解質層の製造方法)
次に、本発明の実施形態に係る全固体リチウムイオン電池用固体電解質層の製造方法について詳細に説明する。
(1)電解質層A材料:LGPSの製造工程
出発原料として、硫化リチウム(Li2S)と、五硫化二リン(P25)と、硫化ゲルマニウム(GeS2)とを用いる。これらの粉末をアルゴン雰囲気下のグローブボックス内で、Li(4-x)Ge(1-x)x4(式中、xは、0.6<x<0.8)の組成となるように秤量、混合し、原料組成物を得る。次に、原料組成物を、ジルコニアボールとともに、ジルコニア製のポットに入れ、ポットを完全に密閉する。このポットを遊星型ボールミル機に取り付け、メカニカルミリングを行う。これにより非晶質化したイオン伝導性材料を得る。
次に、得られたイオン伝導性材料をペレット状に成型し、得られたペレットを、カーボンコートした石英管に入れ真空封入する。次に、石英管を焼成炉に設置し、6時間かけて室温から550℃まで昇温し、550℃を8時間維持し、その後室温まで徐冷する。これにより、Li(4-x)Ge(1-x)x4(式中、xは、0.6<x<0.8)の組成を有する結晶質の硫化物固体電解質材料を得る。
(Method of manufacturing solid electrolyte layer for all solid lithium ion battery)
Next, a method for producing a solid electrolyte layer for an all-solid lithium-ion battery according to an embodiment of the present invention will be described in detail.
(1) Electrolyte layer A material: LGPS manufacturing process As starting materials, lithium sulfide (Li 2 S), diphosphorus pentasulfide (P 2 S 5 ), and germanium sulfide (GeS 2 ) are used. These powders have a composition of Li (4-x) Ge (1-x) P x S 4 (where x is 0.6 <x <0.8) in a glove box under an argon atmosphere. And weighing to obtain a raw material composition. Next, the raw material composition is put into a zirconia pot together with zirconia balls, and the pot is completely sealed. This pot is attached to a planetary ball mill, and mechanical milling is performed. Thus, an amorphous ion-conductive material is obtained.
Next, the obtained ion-conductive material is molded into a pellet shape, and the obtained pellet is placed in a carbon-coated quartz tube and vacuum-sealed. Next, the quartz tube is placed in a firing furnace, and the temperature is raised from room temperature to 550 ° C. over 6 hours, maintained at 550 ° C. for 8 hours, and then gradually cooled to room temperature. Thereby, a crystalline sulfide solid electrolyte material having a composition of Li (4-x) Ge (1-x) P x S 4 (where x is 0.6 <x <0.8) is obtained. .

(2)電解質層B材料:LPS((70〜80)Li2S−(30〜20)P25)の製造工程
アルゴン雰囲気下のグローブボックス内で、Li2SとP25とを(70〜80)Li2S−(30〜20)P25の組成比となるよう秤量し、乳鉢で混合、粉砕する。この後、ZrO2ボールとともにZrO2ポットに入れ、遊星型ボールミルで10〜20時間メカニカルミリング処理することでガラス状の固体電解質を得る。
(2) electrolyte layer B material: with LPS ((70~80) Li 2 S- (30~20) P 2 S 5) of the manufacturing process in a glove box under argon atmosphere, and Li 2 S and P 2 S 5 the (70-80) were weighed Li 2 S- (30 to 20) so that the composition ratio of P 2 S 5, mixed in a mortar and ground. Then, placed in a ZrO 2 pot with ZrO 2 balls, obtaining a glassy solid electrolyte by 10-20 hours mechanical milling with a planetary ball mill.

(3)中間電解質層C材料1、2の製造工程
中間電解質層C材料を形成するために、LGPS中のGeとPとの総物質量とLPS中のPの物質量の比率、および、LGPS中のGeとPとの総物質量とLPS中のPの物質量の比率を所定値となるようにLGPS、LPSをそれぞれ秤量、混合し、2種類のLGPS中のGeとPとの総物質量とLPS中のPの物質量の比率を有する中間電解質層C材料1、2を作製する。
(3) Manufacturing Process of Intermediate Electrolyte Layer C Materials 1 and 2 In order to form the intermediate electrolyte layer C material, the ratio of the total amount of Ge and P in LGPS to the amount of P in LPS, and LGPS LGPS and LPS were weighed and mixed so that the ratio of the total amount of Ge and P in the substance to the substance amount of P in the LPS became a predetermined value, and the total substance of Ge and P in the two types of LGPS The intermediate electrolyte layer C materials 1 and 2 having the ratio of the amount of P to the amount of P in LPS are prepared.

(4)全固体リチウムイオン電池用固体電解質層の製造工程
次に、電解質層A材料、中間電解質層C材料1、2をこの順に金型に入れてプレスし、電解質層A/中間電解質層C材料1/中間電解質層C材料2の構成の電解質層ペレットを作製する。
次に、電解質層B材料のターゲットを準備し、例えば、気相法の一つであるパルスレーザー堆積法を用いて、真空チャンバ内で電解質層ペレットの中間電解質層C材料2側に電解質層Bの厚みが50nm以上となるように、製膜処理を行う。これにより、全固体リチウムイオン電池用固体電解質層が得られる。
(4) Manufacturing Process of Solid Electrolyte Layer for All-Solid-State Lithium-Ion Battery Next, the electrolyte layer A material and the intermediate electrolyte layer C materials 1 and 2 are placed in a mold in this order and pressed, and the electrolyte layer A / intermediate electrolyte layer C An electrolyte layer pellet having a configuration of material 1 / intermediate electrolyte layer C material 2 is prepared.
Next, a target of the electrolyte layer B material is prepared, and for example, a pulse laser deposition method, which is one of the gas phase methods, is used to place the electrolyte layer B on the intermediate electrolyte layer C material 2 side of the electrolyte layer pellet in a vacuum chamber. Is performed so that the thickness of the film becomes 50 nm or more. Thereby, a solid electrolyte layer for an all-solid-state lithium ion battery is obtained.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。
(実施例1)
中間電解質層Cを形成するために、LGPS(Li3.25Ge0.250.754)中のGeとPとの総物質量とLPS(75Li2S−25P25)中のPの物質量の比率が3:1、および、LGPS(Li3.25Ge0.250.754)中のGeとPとの総物質量とLPS(75Li2S−25P25)中のPの物質量の比率が1:3となるようにLGPS、LPSをそれぞれ秤量、混合し、それぞれ中間電解質層C(3:1)材料、中間電解質層C(1:3)材料とした。
次に、LGPS(Li3.25Ge0.250.754)、中間電解質層C(3:1)材料、中間電解質層C(1:3)材料を内径10mmの金型を用いてプレスをして、電解質層A/中間電解質層C(3:1)/中間電解質層C(1:3)の構成の電解質層ペレットを作製した。
次に、LPS(75Li2S−25P25)のターゲットを準備し、気相法の一つであるパルスレーザー堆積法を用いて、真空チャンバ内で前記電解質層ペレットの中間電解質層C(1:3)側にLPSの厚みが1000nmとなるように、製膜処理を行った。
以上のようにして、正極側に接する電解質層の固体電解質をLGPS(Li3.25Ge0.250.754)、負極側に接する電解質層の電解質を75Li2S−25P25、中間層をLGPSと75Li2S−25P25の混合品とし、正極側に接する電解質層と中間電解質層と接する界面での中間電解質層側のLGPS中のGeとPとの総物質量と75Li2S−25P25中のPの物質量の比率を3:1、負極側に接する電解質層と中間電解質層と接する界面での中間電解質層側のLGPS中のGeとPとの総物質量と75Li2S−25P25中のPの物質量の比率を1:3、負極側に接する電解質LPSの厚みを1000nmとして全固体リチウムイオン電池用固体電解質層を作製した。
Hereinafter, examples for better understanding of the present invention and its advantages will be provided, but the present invention is not limited to these examples.
(Example 1)
In order to form the intermediate electrolyte layer C, the total amount of Ge and P in LGPS (Li 3.25 Ge 0.25 P 0.75 S 4 ) and the amount of P in LPS (75Li 2 S-25P 2 S 5 ) were determined. The ratio is 3: 1, and the ratio of the total amount of Ge and P in LGPS (Li 3.25 Ge 0.25 P 0.75 S 4 ) to the amount of P in LPS (75Li 2 S-25P 2 S 5 ) is LGPS and LPS were weighed and mixed so as to be 1: 3, respectively, to obtain an intermediate electrolyte layer C (3: 1) material and an intermediate electrolyte layer C (1: 3) material, respectively.
Next, LGPS (Li 3.25 Ge 0.25 P 0.75 S 4 ), the intermediate electrolyte layer C (3: 1) material, and the intermediate electrolyte layer C (1: 3) material were pressed using a mold having an inner diameter of 10 mm, An electrolyte layer pellet having a structure of electrolyte layer A / intermediate electrolyte layer C (3: 1) / intermediate electrolyte layer C (1: 3) was produced.
Next, a target of LPS (75Li 2 S-25P 2 S 5 ) is prepared, and the intermediate electrolyte layer C (of the electrolyte layer pellets) is prepared in a vacuum chamber by using a pulse laser deposition method, which is one of the gas phase methods. A film forming process was performed so that the thickness of the LPS on the 1: 3) side was 1000 nm.
As described above, the solid electrolyte of the electrolyte layer in contact with the positive electrode side is LGPS (Li 3.25 Ge 0.25 P 0.75 S 4 ), the electrolyte of the electrolyte layer in contact with the negative electrode side is 75 Li 2 S-25P 2 S 5 , and the intermediate layer is LGPS. And 75Li 2 S-25P 2 S 5 , the total amount of Ge and P in LGPS on the intermediate electrolyte layer side at the interface between the electrolyte layer in contact with the positive electrode side and the intermediate electrolyte layer, and 75Li 2 S- The ratio of the amount of P in 25P 2 S 5 is 3: 1, the total amount of Ge and P in the LGPS on the intermediate electrolyte layer side at the interface between the electrolyte layer in contact with the negative electrode side and the intermediate electrolyte layer is 75Li. A solid electrolyte layer for an all-solid-state lithium-ion battery was prepared by setting the ratio of the amount of P in 2 S-25P 2 S 5 to 1: 3 and the thickness of the electrolyte LPS in contact with the negative electrode side to 1000 nm.

(実施例2)
中間電解質層Cを形成するために、LGPS(Li3.25Ge0.250.754)中のGeとPとの総物質量とLPS(75Li2S−25P25)中のPの物質量の比率が1:1となるようにLGPS、LPSをそれぞれ秤量、混合し、中間電解質層C(1:1)材料とした。次に、LGPS、中間電解質層C(1:1)材料を内径10mmの金型を用いてプレスをして、電解質層A/中間電解質層C(1:1)の構成の電解質層ペレットを作製した。
次に、LPS(75Li2S−25P25)のターゲットを準備し、気相法の一つであるパルスレーザー堆積法を用いて、真空チャンバ内で前記電解質層ペレットの中間電解質層C(1:1)側にLPSの厚みが1000nmとなるように、製膜処理を行った。
以上のようにして、正極側に接する電解質層と中間電解質層と接する界面での中間電解質層側のLGPS(Li3.25Ge0.250.754)中のGeとPとの総物質量と75Li2S−25P25中のPの物質量の比率を1:1、負極側に接する電解質層と中間電解質層と接する界面での中間電解質層側のLGPS中のGeとPとの総物質量と75Li2S−25P25中のPの物質量の比率を1:1として全固体リチウムイオン電池用固体電解質層を作製した。
(Example 2)
In order to form the intermediate electrolyte layer C, the total amount of Ge and P in LGPS (Li 3.25 Ge 0.25 P 0.75 S 4 ) and the amount of P in LPS (75Li 2 S-25P 2 S 5 ) were determined. LGPS and LPS were weighed and mixed so that the ratio became 1: 1 to obtain a material for the intermediate electrolyte layer C (1: 1). Next, an LGPS and an intermediate electrolyte layer C (1: 1) material are pressed using a mold having an inner diameter of 10 mm to produce an electrolyte layer pellet having a configuration of electrolyte layer A / intermediate electrolyte layer C (1: 1). did.
Next, a target of LPS (75Li 2 S-25P 2 S 5 ) is prepared, and the intermediate electrolyte layer C (of the electrolyte layer pellets) is prepared in a vacuum chamber by using a pulse laser deposition method, which is one of the gas phase methods. A film forming process was performed so that the thickness of the LPS on the 1: 1) side was 1000 nm.
As described above, the total amount of Ge and P in the LGPS (Li 3.25 Ge 0.25 P 0.75 S 4 ) on the intermediate electrolyte layer side at the interface between the electrolyte layer in contact with the positive electrode side and the intermediate electrolyte layer is 75 Li 2 The ratio of the amount of P in S-25P 2 S 5 is 1: 1, and the total amount of Ge and P in the LGPS on the intermediate electrolyte layer side at the interface between the electrolyte layer in contact with the negative electrode and the intermediate electrolyte layer the a 75Li 2 S-25P 2 ratio of the amount of substance of P in S 5 1: to prepare a solid electrolyte layer for all-solid-state lithium-ion batteries as one.

(実施例3)
実施例1において、負極側に接する電解質LPS(75Li2S−25P25)の厚みを50nmとして全固体リチウムイオン電池用固体電解質層を作製した。
(Example 3)
In Example 1, to prepare a solid electrolyte layer for all-solid-state lithium-ion batteries the thickness of the electrolyte LPS (75Li 2 S-25P 2 S 5) in contact with the negative electrode side as 50nm.

(実施例4)
中間電解質層Cを形成するために、LGPS(Li3.25Ge0.250.754)中のGeとPとの総物質量とLPS(75Li2S−25P25)中のPの物質量の比率が3:1、および、LGPS中のGeとPとの総物質量とLPS中のPの物質量の比率が1:3となるようにLGPS、LPSをそれぞれ秤量、混合し、それぞれ中間電解質層C(3:1)材料、中間電解質層C(1:3)材料とした。
次に、LGPS(Li3.25Ge0.250.754)、中間電解質層C(3:1)材料、中間電解質層C(1:3)材料、LPS(75Li2S−25P25)を内径10mmの金型を用いてプレスをして、電解質層A/中間電解質層C(3:1)/中間電解質層C(1:3)/電解質層Bの構成の電解質層ペレットを作製した。
以上のようにして、負極側に接する電解質LPS(75Li2S−25P25)の厚みを10000nmとして全固体リチウムイオン電池用固体電解質層を作製した。
(Example 4)
In order to form the intermediate electrolyte layer C, the total amount of Ge and P in LGPS (Li 3.25 Ge 0.25 P 0.75 S 4 ) and the amount of P in LPS (75Li 2 S-25P 2 S 5 ) were determined. LGPS and LPS were weighed and mixed so that the ratio was 3: 1, and the ratio of the total amount of Ge and P in LGPS to the amount of P in LPS was 1: 3, and the intermediate electrolytes were mixed. The layer C (3: 1) material and the intermediate electrolyte layer C (1: 3) material were used.
Next, LGPS (Li 3.25 Ge 0.25 P 0.75 S 4 ), intermediate electrolyte layer C (3: 1) material, intermediate electrolyte layer C (1: 3) material, and LPS (75Li 2 S-25P 2 S 5 ) Pressing was performed using a 10 mm mold to prepare an electrolyte layer pellet having a structure of electrolyte layer A / intermediate electrolyte layer C (3: 1) / intermediate electrolyte layer C (1: 3) / electrolyte layer B.
As described above, the thickness of the electrolyte LPS (75Li 2 S-25P 2 S 5 ) in contact with the negative electrode side was set to 10000 nm to prepare a solid electrolyte layer for an all-solid lithium ion battery.

(比較例1)
実施例1において、電解質の中間層を設けず、全固体リチウムイオン電池用固体電解質層を作製した。
(Comparative Example 1)
In Example 1, a solid electrolyte layer for an all-solid lithium-ion battery was produced without providing an electrolyte intermediate layer.

(比較例2)
実施例1において、パルスレーザー堆積法でのLPS製膜を実施せず、負極側に接する電解質LPSの厚みを0として、全固体リチウムイオン電池用固体電解質層を作製した。
(Comparative Example 2)
In Example 1, an LPS film was not formed by the pulsed laser deposition method, and the thickness of the electrolyte LPS in contact with the negative electrode side was set to 0 to produce a solid electrolyte layer for an all-solid-state lithium ion battery.

(比較例3)
実施例1において、正極側に接する電解質層と中間電解質層と接する界面での中間電解質層側のLGPS(Li3.25Ge0.250.754)中のGeとPとの総物質量と75Li2S−25P25中のPの物質量の比率を1:3、負極側に接する電解質層と中間電解質層と接する界面での中間電解質層側のLGPS中のGeとPとの総物質量と75Li2S−25P25中のPの物質量の比率を3:1として、全固体リチウムイオン電池用固体電解質層を作製した。
(Comparative Example 3)
In Example 1, the total amount of Ge and P in LGPS (Li 3.25 Ge 0.25 P 0.75 S 4 ) on the intermediate electrolyte layer side at the interface between the electrolyte layer in contact with the positive electrode side and the intermediate electrolyte layer and 75Li 2 S The ratio of the amount of P in -25P 2 S 5 is 1: 3, and the total amount of Ge and P in the LGPS on the intermediate electrolyte layer side at the interface between the electrolyte layer in contact with the negative electrode side and the intermediate electrolyte layer is the ratio of 75Li 2 S-25P 2 S material of P in 3: as 1, to prepare a solid electrolyte layer for all-solid-state lithium-ion batteries.

(比較例4)
実施例1において、電解質層を全てLPS(75Li2S−25P25)として、全固体リチウムイオン電池用固体電解質層を作製した。
(Comparative Example 4)
In Example 1, the electrolyte layer as all LPS (75Li 2 S-25P 2 S 5), to prepare a solid electrolyte layer for all-solid-state lithium-ion batteries.

(評価)
こうしてできた各実施例及び比較例のサンプルを用いて下記の条件にて各評価を実施した。
−電池特性の評価(全固体リチウムイオン電池)−
得られた電解質層を使用し、正極活物質としてニオブ酸リチウムで表面処理を行ったLiNi0.82Co0.15Mn0.032を使用し、正極活物質:LGPS=7:3を混合し、正極層とし、負極にLi金属を使用して、内径10mmの金型中に正極層、電解質層、Liを充填し、500MPaでプレスした。このプレス後の成形体を、金属製治具を用いて100MPaで拘束することにより、全固体リチウムイオン電池を作製した。
次に、当該電池について、電池内部抵抗として、1kHz交流インピーダンスを測定した。次に、充放電レート0.05Cで得られた初期容量(25℃、充電上限電圧:3.7V、放電下限電圧:2.5V)を測定して放電容量1とした。次に充放電レート1Cで充放電を10回繰り返した(25℃、充電上限電圧:3.7V、放電下限電圧:2.5V)。充放電レート1Cでの1回目の放電で得られた容量を放電容量2とし、(放電容量2)/(放電容量1)の比を百分率として出力特性(%)とした。また、充放電レート1Cでの10回目の放電で得られた容量を放電容量3とし、(放電容量3)/(放電容量2)の比を百分率としてサイクル特性(%)とした。
評価条件及び結果を表1に示す。
(Evaluation)
Each evaluation was carried out under the following conditions using the samples of the examples and comparative examples thus obtained.
-Evaluation of battery characteristics (All-solid-state lithium-ion battery)-
Using the obtained electrolyte layer, LiNi 0.82 Co 0.15 Mn 0.03 O 2 surface-treated with lithium niobate was used as a positive electrode active material, and a positive electrode active material: LGPS = 7: 3 was mixed to form a positive electrode layer. Using a Li metal for the negative electrode, a positive electrode layer, an electrolyte layer, and Li were filled in a mold having an inner diameter of 10 mm and pressed at 500 MPa. The pressed compact was restrained at 100 MPa using a metal jig to produce an all-solid lithium-ion battery.
Next, 1 kHz AC impedance was measured as the internal resistance of the battery. Next, the initial capacity (25 ° C., charge upper limit voltage: 3.7 V, discharge lower limit voltage: 2.5 V) obtained at a charge / discharge rate of 0.05 C was measured and set as discharge capacity 1. Next, charge / discharge was repeated 10 times at a charge / discharge rate of 1 C (25 ° C., charge upper limit voltage: 3.7 V, discharge lower limit voltage: 2.5 V). The capacity obtained by the first discharge at a charge / discharge rate of 1 C was defined as discharge capacity 2, and the ratio of (discharge capacity 2) / (discharge capacity 1) was defined as a percentage and output characteristics (%). The capacity obtained by the 10th discharge at a charge / discharge rate of 1 C was defined as a discharge capacity 3, and the ratio of (discharge capacity 3) / (discharge capacity 2) was defined as a percentage and defined as cycle characteristics (%).
Table 1 shows the evaluation conditions and results.

Figure 2020021681
Figure 2020021681

Claims (3)

正極側に接する電解質層A、負極側に接する電解質層B、及び、前記電解質層Aと前記電解質層Bとの間に設けられた中間電解質層Cを有し、
前記電解質層Aは、組成式:Li(4-x)Ge(1-x)x4(式中、xは、0.6<x<0.8)で表される固体電解質からなり、
前記電解質層Bは、組成式:(70〜80)Li2S−(30〜20)P25で表される固体電解質からなり、
前記中間電解質層Cは、Li(4-x)Ge(1-x)x4(式中、xは、0.6<x<0.8)で表される固体電解質と組成式:(70〜80)Li2S−(30〜20)P25で表される固体電解質とが混合してなり、
前記電解質層Bの厚みが50nm以上であり、
前記電解質層Aと前記中間電解質層Cとが接する界面での前記中間電解質層C側の前記Li(4-x)Ge(1-x)x4中のGeとPとの総物質量は、前記(70〜80)Li2S−(30〜20)P25中のPの物質量よりも多いか同じであり、
前記電解質層Bと前記中間電解質層Cとが接する界面での前記中間電解質層C側の前記Li(4-x)Ge(1-x)x4中のGeとPとの総物質量は、前記(70〜80)Li2S−(30〜20)P25中のPの物質量よりも少ないか同じである全固体リチウムイオン電池用固体電解質層。
An electrolyte layer A in contact with the positive electrode side, an electrolyte layer B in contact with the negative electrode side, and an intermediate electrolyte layer C provided between the electrolyte layer A and the electrolyte layer B,
The electrolyte layer A is composed of a solid electrolyte represented by a composition formula: Li (4-x) Ge (1-x) P x S 4 (where x is 0.6 <x <0.8). ,
The electrolyte layer B is a composition formula: (70-80) consists of Li 2 S- (30 to 20) solid electrolyte represented by P 2 S 5,
The intermediate electrolyte layer C is composed of a solid electrolyte represented by Li (4-x) Ge (1-x) P x S 4 (where x is 0.6 <x <0.8) and a composition formula: (70-80) Li 2 S- (30-20) P 2 S 5 and a solid electrolyte mixed,
The thickness of the electrolyte layer B is 50 nm or more,
The total amount of Ge and P in the Li (4-x) Ge (1-x) P x S 4 on the intermediate electrolyte layer C side at the interface where the electrolyte layer A and the intermediate electrolyte layer C are in contact with each other. , the (70~80) Li 2 S- (30~20 ) are the same or P 2 S greater than the amount of substance of P in 5,
The total amount of Ge and P in the Li (4-x) Ge (1-x) P x S 4 on the side of the intermediate electrolyte layer C at the interface where the electrolyte layer B and the intermediate electrolyte layer C are in contact with each other. , the (70~80) Li 2 S- (30~20 ) P 2 S all-solid-state lithium-ion batteries for a solid electrolyte layer is the same or less than the amount of substance of P in 5.
前記電解質層Aと前記中間電解質層Cとが接する界面での前記中間電解質層C側の前記Li(4-x)Ge(1-x)x4中のGeとPの総物質量と前記(70〜80)Li2S−(30〜20)P25中のPの物質量の比率が3:1〜1:1であり、
前記電解質層Bと前記中間電解質層Cとが接する界面での前記中間電解質層C側の前記Li(4-x)Ge(1-x)x4中のGeとPとの総物質量と前記(70〜80)Li2S−(30〜20)P25中のPの物質量の比率が1:1〜1:3である請求項1に記載の全固体リチウムイオン電池用固体電解質層。
The total amount of Ge and P in the Li (4-x) Ge (1-x) P x S 4 on the intermediate electrolyte layer C side at the interface where the electrolyte layer A and the intermediate electrolyte layer C are in contact with each other; wherein (70~80) Li 2 S- (30~20 ) P 2 ratio of the amount of substance of P in S 5 3: 1 to 1: 1,
The total amount of Ge and P in the Li (4-x) Ge (1-x) P x S 4 on the side of the intermediate electrolyte layer C at the interface where the electrolyte layer B and the intermediate electrolyte layer C are in contact with each other. ratio of the (70~80) Li 2 S- (30~20 ) P 2 S material of P in 5 and 1: 1 to 1: for all-solid-state lithium-ion battery according to claim 1 which is 3 Solid electrolyte layer.
正極層、負極層、及び、請求項1又は2に記載の全固体リチウムイオン電池用固体電解質層を備えた全固体リチウムイオン電池。   An all-solid lithium-ion battery comprising a positive electrode layer, a negative electrode layer, and the solid electrolyte layer for an all-solid lithium-ion battery according to claim 1.
JP2018146094A 2018-08-02 2018-08-02 Solid electrolyte layer for all-solid-state lithium-ion battery and all-solid-state lithium-ion battery Active JP7014685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018146094A JP7014685B2 (en) 2018-08-02 2018-08-02 Solid electrolyte layer for all-solid-state lithium-ion battery and all-solid-state lithium-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018146094A JP7014685B2 (en) 2018-08-02 2018-08-02 Solid electrolyte layer for all-solid-state lithium-ion battery and all-solid-state lithium-ion battery

Publications (2)

Publication Number Publication Date
JP2020021681A true JP2020021681A (en) 2020-02-06
JP7014685B2 JP7014685B2 (en) 2022-02-01

Family

ID=69589976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018146094A Active JP7014685B2 (en) 2018-08-02 2018-08-02 Solid electrolyte layer for all-solid-state lithium-ion battery and all-solid-state lithium-ion battery

Country Status (1)

Country Link
JP (1) JP7014685B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111193058A (en) * 2018-11-15 2020-05-22 丰田自动车株式会社 All-solid-state lithium secondary battery and method for determining deterioration of all-solid-state lithium secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217663A (en) * 2002-01-16 2003-07-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2013012416A (en) * 2011-06-29 2013-01-17 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and nonaqueous electrolyte battery manufacturing method
JP2014086303A (en) * 2012-10-24 2014-05-12 Kyocera Corp Secondary battery and method for manufacturing the same
JP2015028854A (en) * 2013-07-30 2015-02-12 日本特殊陶業株式会社 All-solid-state battery
JP2015220012A (en) * 2014-05-15 2015-12-07 富士通株式会社 Solid electrolyte structure and all-solid-state battery
JP2016024967A (en) * 2014-07-22 2016-02-08 トヨタ自動車株式会社 Sulfide solid electrolyte material, battery and manufacturing method of sulfide solid electrolyte material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217663A (en) * 2002-01-16 2003-07-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2013012416A (en) * 2011-06-29 2013-01-17 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and nonaqueous electrolyte battery manufacturing method
JP2014086303A (en) * 2012-10-24 2014-05-12 Kyocera Corp Secondary battery and method for manufacturing the same
JP2015028854A (en) * 2013-07-30 2015-02-12 日本特殊陶業株式会社 All-solid-state battery
JP2015220012A (en) * 2014-05-15 2015-12-07 富士通株式会社 Solid electrolyte structure and all-solid-state battery
JP2016024967A (en) * 2014-07-22 2016-02-08 トヨタ自動車株式会社 Sulfide solid electrolyte material, battery and manufacturing method of sulfide solid electrolyte material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111193058A (en) * 2018-11-15 2020-05-22 丰田自动车株式会社 All-solid-state lithium secondary battery and method for determining deterioration of all-solid-state lithium secondary battery
JP2020087524A (en) * 2018-11-15 2020-06-04 トヨタ自動車株式会社 All-solid type lithium secondary battery and method for determining degradation of all-solid type lithium secondary battery
JP7172486B2 (en) 2018-11-15 2022-11-16 トヨタ自動車株式会社 All-solid lithium secondary battery and method for determining deterioration of all-solid lithium secondary battery
CN111193058B (en) * 2018-11-15 2023-05-23 丰田自动车株式会社 All-solid-state lithium secondary battery and degradation determination method for all-solid-state lithium secondary battery

Also Published As

Publication number Publication date
JP7014685B2 (en) 2022-02-01

Similar Documents

Publication Publication Date Title
CN110800149B (en) Solid electrolyte for lithium secondary battery and sulfide-based compound for the solid electrolyte
JP5691401B2 (en) Sulfide solid electrolyte particles
JP7129075B2 (en) Inorganic sulfide solid electrolyte with high atmospheric stability, its production method, and its application
JP5985120B1 (en) Sulfide solid electrolyte and solid electrolyte compound for lithium ion battery
KR101807583B1 (en) Sulfide-based solid electrolyte for lithium ion batteries
US11688879B2 (en) Sulfide-based solid electrolyte particles
CN107768612A (en) Electrode material and battery
JPWO2011040118A1 (en) Solid electrolyte battery
JP6648649B2 (en) Manufacturing method of all solid lithium sulfur battery
JP2010140664A (en) Method of manufacturing sintered cathode body and sintered cathode body
JP2017182949A (en) Method for manufacturing positive electrode substance material for all-solid battery, and positive electrode active substance material for all-solid battery
JP7045280B2 (en) Composite solid electrolyte and all-solid-state lithium-ion battery
JPWO2011093129A1 (en) Electrode active material for all-solid-state secondary battery and all-solid-state secondary battery using the same
CN111864256A (en) Sulfide solid electrolyte and all-solid-state lithium secondary battery
JP2012230810A (en) Lithium titanate, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP7014685B2 (en) Solid electrolyte layer for all-solid-state lithium-ion battery and all-solid-state lithium-ion battery
JP7301005B2 (en) Sulfide-based solid electrolyte and all-solid lithium-ion battery
JP7365947B2 (en) Method for manufacturing garnet-type solid electrolyte sintered body for all-solid-state lithium-ion battery and method for manufacturing all-solid-state lithium-ion battery
JP2018116776A (en) All-solid battery and manufacturing method of all-solid battery
JP7217615B2 (en) Composite solid electrolyte pellet for unsintered all-solid-state lithium-ion battery and all-solid-state lithium-ion battery
JP7045289B2 (en) Composite solid electrolyte powder for all-solid-state lithium-ion batteries and all-solid-state lithium-ion batteries
JP7301013B2 (en) Sulfide-based solid electrolyte and all-solid lithium-ion battery
KR102180352B1 (en) Sulfide glass ceramic, process for producing the same, and all-solid secondary battery containing the solid electrolyte
JP2020061259A (en) Solid electrolyte for all-solid lithium ion battery and all-solid lithium ion battery
JP2011090877A (en) Solid electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220120

R151 Written notification of patent or utility model registration

Ref document number: 7014685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151