JP2020035649A - Induction heating apparatus - Google Patents

Induction heating apparatus Download PDF

Info

Publication number
JP2020035649A
JP2020035649A JP2018161171A JP2018161171A JP2020035649A JP 2020035649 A JP2020035649 A JP 2020035649A JP 2018161171 A JP2018161171 A JP 2018161171A JP 2018161171 A JP2018161171 A JP 2018161171A JP 2020035649 A JP2020035649 A JP 2020035649A
Authority
JP
Japan
Prior art keywords
shaft member
induction coil
induction
tip
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018161171A
Other languages
Japanese (ja)
Inventor
功二 稲垣
Koji Inagaki
功二 稲垣
輝明 横関
Teruaki Yokozeki
輝明 横関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018161171A priority Critical patent/JP2020035649A/en
Publication of JP2020035649A publication Critical patent/JP2020035649A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

To perform induction heating of a shaft member having a step, without adjusting a current being fed to an induction coil.SOLUTION: An induction heating apparatus for induction-heating a shaft member 4, having a step on the lateral face, by inserting into an annular induction coil 2, includes: a rolling mechanism 7 for rotating the shaft member 4 with a medial axis A thereof as the rotational axis; an axial direction movement mechanism 8 for translating at least one of the induction coil 2 and the shaft member 4 in the medial axis A direction; a radial direction movement mechanism 9 for moving at least one of the induction coil 2 and the shaft member 4 in the radial direction of the shaft member 4; and a guide member 3 attached to the induction coil 2 and keeping a gap of the shaft member 4 and the induction coil 2 constant. When induction-heating the shaft member 4, the shaft member 4 is brought into contact with the guide member 3 by using the radial direction movement mechanism 9, and while keeping the gap of the shaft member 4 and the induction coil 2 constant, the rolling mechanism 7 and the axial direction movement mechanism 8 are operated.SELECTED DRAWING: Figure 1

Description

本発明は、誘導加熱装置に関する。   The present invention relates to an induction heating device.

誘導コイルを用いて金属製のワークを誘導加熱する装置が知られている。
例えば、特許文献1には、環状の誘導コイルを用いて段差を有する軸部材を誘導加熱する装置が開示されている。
2. Description of the Related Art A device for inductively heating a metal workpiece using an induction coil is known.
For example, Patent Literature 1 discloses an apparatus for inductively heating a shaft member having a step using an annular induction coil.

特開2017−106050号公報JP 2017-106050 A

発明者らは、誘導加熱装置に関し、以下の課題を見出した。
環状の誘導コイルを用いて軸部材を誘導加熱する際には、軸部材を誘導コイルに挿通させ、誘導コイル及び軸部材の少なくとも一方を軸部材の中心軸方向に平行移動させつつ、誘導コイルに電流を流す。
The inventors have found the following problems with respect to an induction heating device.
When the shaft member is induction-heated using the annular induction coil, the shaft member is inserted into the induction coil, and at least one of the induction coil and the shaft member is moved in parallel in the central axis direction of the shaft member. Apply current.

段差を有する軸部材は、直径が大きい部分と直径が小さい部分とを備える。直径が小さい部分を誘導加熱する際には、直径が大きい部分を誘導加熱する際に比較して、軸部材と誘導コイルとの間隙が大きくなる。誘導加熱の効率は、軸部材と誘導コイルとの間隙が大きくなると、低下する。したがって、直径が小さい部分を誘導加熱する際には、直径が大きい部分を誘導加熱する際に比較して、誘導コイルに流す電流を増やす必要がある。そのため、誘導コイルに流す電流を軸部材の直径に応じて調節する必要がある。   The shaft member having a step includes a portion having a large diameter and a portion having a small diameter. When induction heating is performed on a portion having a small diameter, the gap between the shaft member and the induction coil is larger than when induction heating is performed on a portion having a large diameter. The efficiency of induction heating decreases as the gap between the shaft member and the induction coil increases. Therefore, it is necessary to increase the current flowing through the induction coil when induction heating a portion having a small diameter compared to when induction heating a portion having a large diameter. Therefore, it is necessary to adjust the current flowing through the induction coil according to the diameter of the shaft member.

本発明は、このような課題に鑑みなされたものであり、誘導コイルに流す電流を調節することなく、段差を有する軸部材を誘導加熱することができる誘導加熱装置を提供することを目的とする。   The present invention has been made in view of such a problem, and an object of the present invention is to provide an induction heating device capable of induction heating a shaft member having a step without adjusting a current flowing through an induction coil. .

上記目的を達成するための一態様は、側面に段差が設けられた軸部材を環状の誘導コイルに挿通させて誘導加熱する誘導加熱装置であって、前記軸部材を、前記軸部材の中心軸を回転軸として回転させる回転機構と、前記誘導コイル及び前記軸部材の少なくとも一方を、前記中心軸方向に平行移動させる軸方向移動機構と、前記誘導コイル及び前記軸部材の少なくとも一方を、前記軸部材の径方向に移動させる径方向移動機構と、前記誘導コイルに取り付けられて前記軸部材と前記誘導コイルとの間隙を一定に保つガイド部材と、を備え、前記軸部材を誘導加熱する際には、前記径方向移動機構を用いて前記ガイド部材に前記軸部材を接触させて前記ガイド部材側における前記軸部材と前記誘導コイルとの間隙を一定に保ちつつ、前記回転機構を用いて前記回転軸を中心として前記軸部材を回転させると共に、前記軸方向移動機構を用いて前記誘導コイル及び前記軸部材の少なくとも一方を前記中心軸方向に平行移動させる。   One aspect for achieving the above object is an induction heating device for performing induction heating by inserting a shaft member having a step on a side surface into an annular induction coil, wherein the shaft member is provided with a central shaft of the shaft member. A rotation mechanism that rotates the rotation axis as a rotation axis, an axial movement mechanism that translates at least one of the induction coil and the shaft member in the central axis direction, and at least one of the induction coil and the shaft member, A radial moving mechanism for moving the member in the radial direction, and a guide member attached to the induction coil to keep a constant gap between the shaft member and the induction coil, and when the shaft member is induction-heated, The rotating machine while maintaining a constant gap between the shaft member and the induction coil on the guide member side by using the radial moving mechanism to contact the shaft member with the guide member. With rotating the shaft member about said rotation axis with, to translate at least one of said induction coil and the shaft member with the axial direction moving mechanism to said central axis.

本発明に係る誘導加熱装置は、軸部材を誘導加熱する際に、径方向移動機構を用いてガイド部材に軸部材を接触させてガイド部材側における軸部材と誘導コイルとの間隙を一定に保ちつつ、回転機構を用いて回転軸を中心として軸部材を回転させると共に、軸方向移動機構を用いて誘導コイル及び軸部材の少なくとも一方を中心軸方向に平行移動させる。したがって、軸部材の直径に応じて誘導コイル2に流す電流を調節する必要がない。   In the induction heating apparatus according to the present invention, when the shaft member is induction-heated, the gap between the shaft member and the induction coil on the guide member side is kept constant by contacting the shaft member with the guide member by using the radial movement mechanism. While rotating the shaft member about the rotation axis using the rotation mechanism, at least one of the induction coil and the shaft member is translated in the center axis direction using the axial movement mechanism. Therefore, there is no need to adjust the current flowing through the induction coil 2 according to the diameter of the shaft member.

本発明によれば、誘導コイルに流す電流を調節することなく、段差を有する軸部材を誘導加熱することができる誘導加熱装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the induction heating apparatus which can induction-heat the shaft member which has a level | step difference, without adjusting the electric current which flows into an induction coil can be provided.

本実施の形態に係る誘導加熱装置の全体図である。1 is an overall view of an induction heating device according to the present embodiment. 誘導コイルの平面図である。It is a top view of an induction coil. 誘導コイルの正面図である。It is a front view of an induction coil. 軸部材の斜視図である。It is a perspective view of a shaft member. 誘導加熱時の誘導コイル及び軸部材の断面図である。It is sectional drawing of an induction coil and a shaft member at the time of induction heating. 加熱効率の計測結果を示すグラフである。It is a graph which shows the measurement result of heating efficiency.

以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments. In addition, in order to clarify the description, the following description and drawings are simplified as appropriate.

まず、図1〜4を参照して、本実施の形態に係る誘導加熱装置の構成について説明する。図1は、本実施の形態に係る誘導加熱装置の全体図である。図2は、誘導コイルの平面図である。図3は、誘導コイルの正面図である。図4は、軸部材の斜視図である。   First, the configuration of the induction heating device according to the present embodiment will be described with reference to FIGS. FIG. 1 is an overall view of an induction heating device according to the present embodiment. FIG. 2 is a plan view of the induction coil. FIG. 3 is a front view of the induction coil. FIG. 4 is a perspective view of the shaft member.

誘導加熱装置1は、図1に示すように、誘導コイル2、ガイド部材3、発振器5、制御部6、回転機構7、軸方向移動機構8、及び径方向移動機構9を備える。なお、図1では、軸部材4も図示している。ガイド部材3は、図2に示すように、チップ31a〜31c、32a〜32cを有する。軸部材4は、図4に示すように、端部41、途中部42、及び端部43を有する。なお、図4に示す中心軸Aは、軸部材4の中心軸である。   As shown in FIG. 1, the induction heating device 1 includes an induction coil 2, a guide member 3, an oscillator 5, a control unit 6, a rotating mechanism 7, an axial moving mechanism 8, and a radial moving mechanism 9. FIG. 1 also shows the shaft member 4. The guide member 3 has chips 31a to 31c and 32a to 32c as shown in FIG. The shaft member 4 has an end 41, a middle part 42, and an end 43, as shown in FIG. The center axis A shown in FIG. 4 is the center axis of the shaft member 4.

なお、当然のことながら、図2及びその他の図面に示した右手系xyz直交座標は、構成要素の位置関係を説明するための便宜的なものである。通常、z軸正方向が鉛直上向き、xy平面が水平面であり、図面間で共通である。   It should be noted that the right-handed xyz rectangular coordinates shown in FIG. 2 and other drawings are for convenience in describing the positional relationship of the components. Usually, the positive direction of the z-axis is vertically upward and the xy plane is the horizontal plane, which is common between the drawings.

誘導加熱装置1は、誘導コイル2を用いて軸部材4を誘導加熱する装置である。誘導コイル2は、図1に示すように、環状の金属部材である。誘導コイル2は、例えば、銅や銅合金から構成される。誘導コイル2には、ガイド部材3が取り付けられている。ガイド部材3は、誘導コイル2の一部に取り付けられている。ガイド部材3は、例えば、図3に示すように、ガイド部材3のz軸正方向側すなわち上側に取り付けられる。   The induction heating device 1 is a device for induction heating the shaft member 4 using the induction coil 2. The induction coil 2 is an annular metal member as shown in FIG. The induction coil 2 is made of, for example, copper or a copper alloy. A guide member 3 is attached to the induction coil 2. The guide member 3 is attached to a part of the induction coil 2. The guide member 3 is attached, for example, on the z-axis positive direction side of the guide member 3, that is, on the upper side, as shown in FIG.

ガイド部材3は、図2に示すように、チップ31a〜31c、32a〜32cを有する。チップ31a〜31c、32a〜32cは、図3に示すように、それぞれ略台形状の部材である。チップ31a〜31c、32a〜32cは、先端が根元側の端に比較して、細い。チップ31a〜31c、32a〜32cは、誘導加熱の影響を受けない材料から構成される。チップ31a〜31c、32a〜32cは、例えば、セラミックから構成される。   The guide member 3 has chips 31a to 31c and 32a to 32c as shown in FIG. The chips 31a to 31c and 32a to 32c are substantially trapezoidal members as shown in FIG. The tips of the tips 31a to 31c and 32a to 32c are thinner than the tip on the base side. The chips 31a to 31c and 32a to 32c are made of a material that is not affected by induction heating. The chips 31a to 31c and 32a to 32c are made of, for example, ceramic.

チップ31a〜31cは、図2に示すように、誘導コイル2のx軸正方向側の面に取り付けられている。チップ32a〜32cは、誘導コイル2のx軸負方向側の面に取り付けられる。チップ31bは、図3に示すように、先端が誘導コイル2の中心に向かうように、誘導コイル2の上側の頂点に取り付けられる。チップ31bは、誘導コイル2の内周面よりも誘導コイル2の中心側に、先端が突出するように取り付けられている。   The chips 31a to 31c are attached to the surface of the induction coil 2 on the x-axis positive direction side, as shown in FIG. The chips 32a to 32c are attached to the surface of the induction coil 2 on the negative side in the x-axis direction. The tip 31b is attached to the upper vertex of the induction coil 2 so that the tip is directed toward the center of the induction coil 2 as shown in FIG. The tip 31b is attached to the center of the induction coil 2 with respect to the inner peripheral surface of the induction coil 2 so that the tip protrudes.

チップ31aは、図3に示すように、先端が誘導コイル2の中心に向かうように、チップ31bよりもy軸負方向側に取り付けられている。また、チップ31cは、先端が誘導コイル2の中心に向かうように、チップ31bよりもy軸正方向側に取り付けられている。チップ31b及びチップ31cは、誘導コイル2の内周面よりも誘導コイル2の中心側に、先端が突出するように取り付けられている。   As shown in FIG. 3, the tip 31a is attached to the y-axis negative direction side of the tip 31b such that the tip is directed toward the center of the induction coil 2. The tip 31c is attached to the y-axis positive direction side of the tip 31b such that the tip is directed toward the center of the induction coil 2. The tip 31b and the tip 31c are attached to the center side of the induction coil 2 with respect to the inner peripheral surface of the induction coil 2 so that the tips protrude.

チップ32bは、先端が誘導コイル2の中心に向かうように、誘導コイル2の上側の頂点に取り付けられている。チップ32aは、図2に示すように、先端が誘導コイル2の中心に向かうように、チップ32bよりもy軸負方向側に取り付けられている。チップ32cは、先端が誘導コイル2の中心に向かうように、チップ32bよりもy軸正方向側に取り付けられている。チップ32a〜32cは、誘導コイル2の内周面よりも誘導コイル2の中心側に先端が突出するように取り付けられている。   The tip 32b is attached to the upper vertex of the induction coil 2 so that the tip is directed toward the center of the induction coil 2. As shown in FIG. 2, the tip 32a is attached to the y-axis negative direction side of the tip 32b so that the tip is directed toward the center of the induction coil 2. The tip 32c is attached to the y-axis positive direction side of the tip 32b such that the tip is directed toward the center of the induction coil 2. The chips 32 a to 32 c are attached so that the tips project from the inner peripheral surface of the induction coil 2 toward the center of the induction coil 2.

チップ31a〜31c、32a〜32cは、それぞれの先端から誘導コイル2の中心までの距離が等しくなるように取り付けられている。また、チップ31aとチップ31bとの間隙、チップ31bとチップ31cとの間隙、チップ32aとチップ32bとの間隙、及びチップ32bとチップ32cとの間隙は、軸部材4が入り込めない大きさである。   The chips 31a to 31c and 32a to 32c are attached so that the distances from the respective tips to the center of the induction coil 2 are equal. The gap between the chip 31a and the chip 31b, the gap between the chip 31b and the chip 31c, the gap between the chip 32a and the chip 32b, and the gap between the chip 32b and the chip 32c are so large that the shaft member 4 cannot enter. is there.

詳細は後述するが、軸部材4を誘導加熱する際には、チップ31bの先端及びチップ32bの先端に軸部材4を接触させる。チップ31b及びチップ32bの先端から誘導コイル2の中心までの距離が等しいため、チップ31bの先端及びチップ32bの先端に軸部材4を接触させることによって、誘導コイル2を軸部材4の中心軸Aに垂直な方向に配置することができる。   Although details will be described later, when the shaft member 4 is induction-heated, the shaft member 4 is brought into contact with the tip of the tip 31b and the tip of the tip 32b. Since the distances from the tips of the tip 31b and the tip 32b to the center of the induction coil 2 are equal, by bringing the shaft member 4 into contact with the tip of the tip 31b and the tip of the tip 32b, the induction coil 2 is moved to the center axis A of the shaft member 4. Can be arranged in a direction perpendicular to the direction.

また、チップ31a〜31c、32a〜32cの先端よりも誘導コイル2の内周面側に軸部材4が入り込めないため、軸部材4と誘導コイル2との間隙は所定以上に保たれる。つまり、誘導コイル2にガイド部材3を取り付けることによって、軸部材4と誘導コイル2との間隙を所定以上に保つことができる。   Further, since the shaft member 4 cannot enter the inner peripheral surface side of the induction coil 2 beyond the tips of the chips 31a to 31c and 32a to 32c, the gap between the shaft member 4 and the induction coil 2 is maintained at a predetermined value or more. That is, by attaching the guide member 3 to the induction coil 2, the gap between the shaft member 4 and the induction coil 2 can be maintained at a predetermined value or more.

誘導コイル2は、図1に示すように、軸部材4を挿通可能である。誘導コイル2は、挿通された軸部材4を誘導加熱することができる。軸部材4は、金属製の円柱状部材である。軸部材4は、図4に示すように、端部41、途中部42、及び端部43を備える。軸部材4の直径は、端部41、途中部42、端部43の順に大きい。したがって、軸部材4は、端部41と途中部42との境界及び途中部42と端部43との境界に、段差を有する。   The induction coil 2 can insert the shaft member 4 as shown in FIG. The induction coil 2 can induction heat the inserted shaft member 4. The shaft member 4 is a metal columnar member. The shaft member 4 includes an end 41, a middle part 42, and an end 43, as shown in FIG. The diameter of the shaft member 4 is larger in the order of the end portion 41, the middle portion 42, and the end portion 43. Therefore, the shaft member 4 has steps at the boundary between the end portion 41 and the middle portion 42 and at the boundary between the middle portion 42 and the end portion 43.

誘導コイル2を用いて軸部材4を誘導加熱する際には、誘導コイル2に交流電流が流される。誘導コイル2は、図1に示すように、発振器5に接続されている。発振器5は、誘導コイル2に交流電流を流すことができる。発振器5は、図1に示すように、制御部6に接続されている。制御部6は、発振器5の出力を制御している。   When the shaft member 4 is induction-heated using the induction coil 2, an alternating current is passed through the induction coil 2. The induction coil 2 is connected to an oscillator 5, as shown in FIG. The oscillator 5 can supply an alternating current to the induction coil 2. The oscillator 5 is connected to the control unit 6, as shown in FIG. The control section 6 controls the output of the oscillator 5.

制御部6は、回転機構7、軸方向移動機構8、及び径方向移動機構9に接続されている。回転機構7は、軸部材4に接続されている。径方向移動機構9及び軸方向移動機構8は、誘導コイル2及び軸部材4の少なくとも一方にそれぞれ接続されている。制御部6は、回転機構7、軸方向移動機構8、及び径方向移動機構9を操作することによって、誘導コイル2と軸部材4との相対位置を制御する。   The control unit 6 is connected to a rotating mechanism 7, an axial moving mechanism 8, and a radial moving mechanism 9. The rotation mechanism 7 is connected to the shaft member 4. The radial moving mechanism 9 and the axial moving mechanism 8 are connected to at least one of the induction coil 2 and the shaft member 4, respectively. The control unit 6 controls the relative position between the induction coil 2 and the shaft member 4 by operating the rotation mechanism 7, the axial movement mechanism 8, and the radial movement mechanism 9.

回転機構7は、中心軸Aを回転軸として軸部材4を回転させることができる。発振器5の出力に応じた交流電流が流されている誘導コイル2の周囲には、磁束が生じている。誘導コイル2の周囲に生じている磁束は、誘導コイル2に流されている交流電流の周波数に応じて、方向が常に切り替わっている。したがって、周囲に磁束が生じている誘導コイル2に軸部材4を挿通すると、軸部材4の誘導コイル2に挿通されている部分近傍が誘導加熱される。   The rotation mechanism 7 can rotate the shaft member 4 around the center axis A. A magnetic flux is generated around the induction coil 2 through which an alternating current according to the output of the oscillator 5 flows. The direction of the magnetic flux generated around the induction coil 2 is always switched according to the frequency of the alternating current flowing through the induction coil 2. Therefore, when the shaft member 4 is inserted into the induction coil 2 around which the magnetic flux is generated, the vicinity of the portion of the shaft member 4 inserted into the induction coil 2 is induction-heated.

誘導加熱の効率は、軸部材4と誘導コイル2との間隙が小さいほど向上する。詳細は後述するが、本実施の形態に係る誘導加熱装置1では、軸部材4が常にチップ31bの先端及びチップ32bの先端に接触する状態で、軸部材4の誘導加熱を行う。   The efficiency of induction heating increases as the gap between the shaft member 4 and the induction coil 2 decreases. Although details will be described later, in the induction heating device 1 according to the present embodiment, the shaft member 4 is induction-heated in a state where the shaft member 4 is always in contact with the tip of the tip 31b and the tip of the tip 32b.

したがって、例えば、端部41のように誘導コイル2の内周面の直径に対して軸部材4の直径が小さい場合、軸部材4の下側における軸部材4と誘導コイル2との間隙が、軸部材4の上側に比較して、大きくなる。したがって、軸部材4の下側は、軸部材4の上側に比較して、誘導加熱の効率が低い。つまり、端部41のように誘導コイル2の内周面の直径に対して軸部材4の直径が小さい場合、加熱ムラが発生する虞がある。   Therefore, for example, when the diameter of the shaft member 4 is smaller than the diameter of the inner peripheral surface of the induction coil 2 such as the end portion 41, the gap between the shaft member 4 and the induction coil 2 on the lower side of the shaft member 4 is: It is larger than the upper side of the shaft member 4. Therefore, the efficiency of induction heating on the lower side of the shaft member 4 is lower than that on the upper side of the shaft member 4. That is, when the diameter of the shaft member 4 is smaller than the diameter of the inner peripheral surface of the induction coil 2 as in the end portion 41, there is a possibility that uneven heating may occur.

そこで、軸部材4を誘導加熱する際には、回転機構7を用いて中心軸Aを回転軸として軸部材4を回転させる。回転機構7を用いて中心軸Aを回転軸として軸部材4を回転させつつ誘導加熱を行うと、軸部材4と誘導コイル2との間隙の大きさに起因する加熱ムラを抑制することができる。   Therefore, when the shaft member 4 is induction-heated, the rotation mechanism 7 is used to rotate the shaft member 4 about the central axis A as the rotation axis. When induction heating is performed while rotating the shaft member 4 about the central axis A using the rotation mechanism 7 as the rotation axis, uneven heating due to the size of the gap between the shaft member 4 and the induction coil 2 can be suppressed. .

軸方向移動機構8は、誘導コイル2及び軸部材4の少なくとも一方を、軸部材4の中心軸A方向に平行移動させることができる。軸方向移動機構8は、図1に示す例では、軸部材4に接続されている。図1に示す軸方向移動機構8は、軸部材4を中心軸A方向に平行移動させることができる。交流電流が流されている誘導コイル2に挿通された軸部材4を中心軸A方向に平行移動させると、軸部材4の側面全体を誘導加熱することができる。   The axial movement mechanism 8 can move at least one of the induction coil 2 and the shaft member 4 in parallel in the direction of the central axis A of the shaft member 4. The axial movement mechanism 8 is connected to the shaft member 4 in the example shown in FIG. The axial moving mechanism 8 shown in FIG. 1 can move the shaft member 4 in parallel with the direction of the central axis A. When the shaft member 4 inserted in the induction coil 2 through which the alternating current is passed is moved in parallel in the direction of the central axis A, the entire side surface of the shaft member 4 can be induction-heated.

図1に示す例では、軸方向移動機構8が軸部材4に接続されている場合について示している。しかしながら、軸方向移動機構8は、誘導コイル2に接続されていてもよい。誘導コイル2に接続された軸方向移動機構8は、誘導コイル2を中心軸A方向に平行移動することができる。   The example shown in FIG. 1 shows a case where the axial moving mechanism 8 is connected to the shaft member 4. However, the axial movement mechanism 8 may be connected to the induction coil 2. The axial movement mechanism 8 connected to the induction coil 2 can move the induction coil 2 parallel to the center axis A.

径方向移動機構9は、誘導コイル2及び軸部材4の少なくとも一方を、中心軸Aに垂直な方向すなわち軸部材4の径方向に移動させることができる。径方向移動機構9は、図1に示す例では、誘導コイル2に接続されている。図1に示す径方向移動機構9は、誘導コイル2を軸部材4の径方向に移動させることができる。具体的には、図1に示す径方向移動機構9は、誘導コイル2に荷重をかけて下に移動させることができる。   The radial moving mechanism 9 can move at least one of the induction coil 2 and the shaft member 4 in a direction perpendicular to the center axis A, that is, in a radial direction of the shaft member 4. The radial movement mechanism 9 is connected to the induction coil 2 in the example shown in FIG. The radial moving mechanism 9 shown in FIG. 1 can move the induction coil 2 in the radial direction of the shaft member 4. Specifically, the radial moving mechanism 9 shown in FIG. 1 can move the induction coil 2 downward while applying a load.

軸部材4が挿通された状態で誘導コイル2が下に移動すると、チップ31bの先端及びチップ32bの先端が軸部材4に接触する。径方向移動機構9を用いてチップ31bの先端及びチップ32bの先端に軸部材4が接触した状態を保つことによって、ガイド部材3側における軸部材4と誘導コイル2との間隙を一定に保つことができる。   When the induction coil 2 moves downward with the shaft member 4 inserted, the tip of the tip 31b and the tip of the tip 32b contact the shaft member 4. By keeping the shaft member 4 in contact with the tip of the tip 31b and the tip of the tip 32b using the radial movement mechanism 9, the gap between the shaft member 4 and the induction coil 2 on the guide member 3 side is kept constant. Can be.

図1に示す例では、径方向移動機構9が誘導コイル2に接続されている場合について示している。しかしながら、径方向移動機構9は、軸部材4に接続されていてもよい。径方向移動機構9を軸部材4に接続する場合、例えば、ガイド部材3を誘導コイル2の下側に取り付ける。   The example shown in FIG. 1 shows a case where the radial movement mechanism 9 is connected to the induction coil 2. However, the radial movement mechanism 9 may be connected to the shaft member 4. When connecting the radial movement mechanism 9 to the shaft member 4, for example, the guide member 3 is attached to the lower side of the induction coil 2.

径方向移動機構9を用いて軸部材4を下に移動させると、誘導コイル2の下側に取り付けられたガイド部材3の先端に軸部材4が接触する。ガイド部材3の先端に軸部材4が接触した状態を保つことによって、ガイド部材3側における軸部材4と誘導コイル2との間隙を一定に保つことができる。   When the shaft member 4 is moved downward by using the radial movement mechanism 9, the shaft member 4 comes into contact with the tip of the guide member 3 attached below the induction coil 2. By keeping the shaft member 4 in contact with the tip of the guide member 3, the gap between the shaft member 4 and the induction coil 2 on the guide member 3 side can be kept constant.

次に、図5を参照して、本実施の形態に係る誘導加熱装置を用いて軸部材を加熱する際の動作について説明する。図5は、誘導加熱時の誘導コイル及び軸部材の断面図である。   Next, an operation when heating the shaft member using the induction heating device according to the present embodiment will be described with reference to FIG. FIG. 5 is a cross-sectional view of the induction coil and the shaft member during induction heating.

図5に示す例では、軸部材4の平行移動をx軸正方向すなわち端部41から端部43に向かう方向に行う。したがって、軸部材4は、端部43、途中部42、端部41の順に誘導加熱される。端部41の直径を、直径φD1とする。途中部42の直径を、直径φD2とする。端部43の直径を、直径φD3とする。   In the example illustrated in FIG. 5, the parallel movement of the shaft member 4 is performed in the positive x-axis direction, that is, in the direction from the end 41 to the end 43. Therefore, the shaft member 4 is induction-heated in the order of the end 43, the middle 42, and the end 41. The diameter of the end portion 41 is a diameter φD1. The diameter of the intermediate portion 42 is set to a diameter φD2. The diameter of the end 43 is assumed to be a diameter φD3.

また、図5に示すように、ガイド部材3側における端部41と誘導コイル2との間隙を、間隙L1とする。ガイド部材3側における途中部42と誘導コイル2との間隙を、間隙L2とする。ガイド部材3側における端部43と誘導コイル2との間隙を、間隙L3とする。   As shown in FIG. 5, a gap between the end portion 41 and the induction coil 2 on the guide member 3 side is defined as a gap L1. The gap between the intermediate portion 42 and the induction coil 2 on the guide member 3 side is defined as a gap L2. The gap between the end portion 43 and the induction coil 2 on the guide member 3 side is defined as a gap L3.

軸部材4を誘導加熱する際には、まず、軸方向移動機構8を用いて端部43を誘導コイル2に挿通し、端部43を誘導加熱する。端部43を誘導加熱する際には、誘導コイル2を、図5に示すように、径方向移動機構9を用いてチップ31bの先端及びチップ32bの先端が端部43に常に接触するように配置する。つまり、端部43を誘導加熱する際には、誘導コイル2の内周面からチップ31bの先端までの距離と間隙L3の大きさとが等しい状態が保たれている。   When the shaft member 4 is induction-heated, first, the end portion 43 is inserted into the induction coil 2 using the axial movement mechanism 8, and the end portion 43 is induction-heated. When the end 43 is induction-heated, the induction coil 2 is moved by using the radial moving mechanism 9 so that the tip of the tip 31b and the tip of the tip 32b always contact the end 43 as shown in FIG. Deploy. That is, when the end portion 43 is induction-heated, the state where the distance from the inner peripheral surface of the induction coil 2 to the tip of the tip 31b is equal to the size of the gap L3 is maintained.

さらに、端部43を誘導加熱する際には、回転機構7を用いて中心軸Aを回転軸として軸部材4を回転させると共に、軸方向移動機構8を用いて軸部材4をx軸正方向に平行移動させる。このような構成によって、端部43の側面全体が誘導加熱される。   Further, when the end portion 43 is induction-heated, the shaft member 4 is rotated around the center axis A using the rotation mechanism 7 and the shaft member 4 is moved in the positive x-axis direction using the axial movement mechanism 8. To translate. With such a configuration, the entire side surface of the end portion 43 is induction-heated.

次に、途中部42を誘導加熱する。端部43の側面全体が誘導加熱された後に、軸方向移動機構8を用いて途中部42を誘導コイル2に挿通し、途中部42を誘導加熱する。途中部42を誘導加熱する際には、誘導コイル2を、図5に示すように、径方向移動機構9を用いてチップ31bの先端及びチップ32bの先端が途中部42に常に接触するように配置する。つまり、途中部42を誘導加熱する際には、誘導コイル2の内周面からチップ31bの先端までの距離と間隙L2の大きさとが等しい状態が保たれている。   Next, the middle part 42 is induction-heated. After the entire side surface of the end portion 43 is induction-heated, the middle portion 42 is inserted into the induction coil 2 by using the axial moving mechanism 8, and the middle portion 42 is induction-heated. When the intermediate portion 42 is induction-heated, the induction coil 2 is moved by using the radial moving mechanism 9 so that the tip of the tip 31b and the tip of the chip 32b always contact the intermediate portion 42 as shown in FIG. Deploy. That is, when the intermediate portion 42 is induction-heated, the state where the distance from the inner peripheral surface of the induction coil 2 to the tip of the tip 31b is equal to the size of the gap L2 is maintained.

さらに、途中部42を誘導加熱する際には、回転機構7を用いて中心軸Aを回転軸として軸部材4を回転させると共に、軸方向移動機構8を用いて軸部材4をx軸正方向に平行移動させる。このような構成によって、途中部42の側面全体が誘導加熱される。   Further, when the intermediate portion 42 is induction-heated, the shaft member 4 is rotated around the central axis A using the rotation mechanism 7 and the shaft member 4 is moved in the positive x-axis direction using the axial movement mechanism 8. To translate. With such a configuration, the entire side surface of the intermediate portion 42 is induction-heated.

次に、端部41を誘導加熱する。途中部42の側面全体が誘導加熱された後に、軸方向移動機構8を用いて端部41を誘導コイル2に挿通し、端部41を誘導加熱する。端部41を誘導加熱する際には、誘導コイル2を、図5に示すように、径方向移動機構9を用いてチップ31bの先端及びチップ32bの先端が端部41に常に接触するように配置する。つまり、端部41を誘導加熱する際には、誘導コイル2の内周面からチップ31bの先端までの距離と間隙L1の大きさとが等しい状態が保たれている。   Next, the end 41 is induction-heated. After the entire side surface of the middle portion 42 is induction-heated, the end portion 41 is inserted into the induction coil 2 using the axial movement mechanism 8, and the end portion 41 is induction-heated. When the end 41 is induction-heated, the induction coil 2 is moved by using the radial moving mechanism 9 so that the tip of the tip 31b and the tip of the tip 32b always contact the end 41 as shown in FIG. Deploy. That is, when the end portion 41 is induction-heated, the state where the distance from the inner peripheral surface of the induction coil 2 to the tip of the tip 31b is equal to the size of the gap L1 is maintained.

さらに、端部41を誘導加熱する際には、回転機構7を用いて中心軸Aを回転軸として軸部材4を回転させると共に、軸方向移動機構8を用いて軸部材4をx軸正方向に平行移動させる。このような構成によって、端部41の側面全体が誘導加熱される。   Further, when the end portion 41 is induction-heated, the shaft member 4 is rotated around the central axis A using the rotation mechanism 7, and the shaft member 4 is moved in the positive x-axis direction using the axial movement mechanism 8. To translate. With such a configuration, the entire side surface of the end portion 41 is induction-heated.

以上で説明したように、本実施の形態に係る誘導加熱装置1は、軸部材4を誘導加熱することができる。誘導加熱装置1を用いて軸部材4を誘導加熱する際には、上記で説明したように、ガイド部材3側における誘導コイル2と軸部材4との間隙の大きさが常に一定に保ちつつ、回転機構7を用いて中心軸Aを回転軸として軸部材4を回転させる。したがって、軸部材4の直径に合わせて発振器5の出力を調節する必要がない。そのため、誘導加熱装置1は、誘導コイル2に流す電流を調節することなく、段差を有する軸部材4を誘導加熱することができる。   As described above, the induction heating device 1 according to the present embodiment can induction heat the shaft member 4. When the shaft member 4 is induction-heated using the induction heating device 1, as described above, the size of the gap between the induction coil 2 and the shaft member 4 on the guide member 3 side is always kept constant. The shaft member 4 is rotated around the center axis A using the rotation mechanism 7. Therefore, it is not necessary to adjust the output of the oscillator 5 according to the diameter of the shaft member 4. Therefore, the induction heating device 1 can induction-heat the shaft member 4 having the step without adjusting the current flowing through the induction coil 2.

以下、本発明について実施例を示して具体的に説明する。なお、これらの記載は、本発明を限定するものではない。   Hereinafter, the present invention will be described specifically with reference to examples. Note that these descriptions do not limit the present invention.

[実施例1]
実施例1では、図1に示した構成の誘導加熱装置1を用いて軸部材4を誘導加熱した。実施例1において使用された軸部材4は、φD1:φD2:φD3=1:2:3であった。また、誘導加熱する際には、ガイド部材3側における誘導コイル2と軸部材4との距離が一定(L1=L2=L3)であった。
[Example 1]
In Example 1, the shaft member 4 was induction-heated using the induction heating device 1 having the configuration shown in FIG. The shaft member 4 used in Example 1 had φD1: φD2: φD3 = 1: 2: 3. Further, during induction heating, the distance between the induction coil 2 and the shaft member 4 on the guide member 3 side was constant (L1 = L2 = L3).

[比較例1]
比較例1では、軸部材4の中心軸Aが常に誘導コイル2の中心に配置されている状態で軸部材4を誘導加熱した点以外は、実施例1と同様に軸部材4の誘導加熱を行った。比較例1では、L1:L2:L3=3:2:1であった。なお、実施例1におけるガイド部材3側における誘導コイル2と軸部材4との距離は、比較例1における間隙L3と等しかった。
[Comparative Example 1]
In Comparative Example 1, the induction heating of the shaft member 4 was performed in the same manner as in Example 1 except that the shaft member 4 was induction-heated while the center axis A of the shaft member 4 was always arranged at the center of the induction coil 2. went. In Comparative Example 1, L1: L2: L3 = 3: 2: 1. Note that the distance between the induction coil 2 and the shaft member 4 on the guide member 3 side in Example 1 was equal to the gap L3 in Comparative Example 1.

(加熱効率の算出)
実施例1及び比較例1における加熱効率を、誘導加熱後の軸部材4の温度を投入熱量で割ることによって算出した。投入熱量は、誘導加熱装置1に投入された電力量から算出された。加熱効率の算出結果を図6に示す。
(Calculation of heating efficiency)
The heating efficiency in Example 1 and Comparative Example 1 was calculated by dividing the temperature of the shaft member 4 after induction heating by the amount of heat input. The amount of heat input was calculated from the amount of power input to the induction heating device 1. FIG. 6 shows the calculation results of the heating efficiency.

図6における菱形(◇)は、端部41における加熱効率を示す。正方形(□)は、途中部42における加熱効率を示す。三角形(△)は、端部43における加熱効率を示す。図6に示すように、実施例1は、比較例1に比較して、加熱効率が向上していた。特に、端部41における加熱効率は、30%程度向上していた。   The diamond (◇) in FIG. 6 indicates the heating efficiency at the end 41. A square (□) indicates the heating efficiency in the middle part 42. The triangle (△) indicates the heating efficiency at the end 43. As shown in FIG. 6, the heating efficiency of Example 1 was improved as compared with Comparative Example 1. In particular, the heating efficiency at the end 41 was improved by about 30%.

以上で説明した本実施の形態に係る発明により、誘導コイルに流す電流を調節することなく、段差を有する軸部材を誘導加熱することができる誘導加熱装置を提供することができる。   According to the invention according to the present embodiment described above, it is possible to provide an induction heating device that can induction heat a shaft member having a step without adjusting the current flowing through the induction coil.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   It should be noted that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist.

1 誘導加熱装置
2 誘導コイル
3 ガイド部材
31a〜31c、32a〜32c チップ
4 軸部材
41 端部
42 途中部
43 端部
5 発振器
6 制御部
7 回転機構
8 軸方向移動機構
9 径方向移動機構
DESCRIPTION OF SYMBOLS 1 Induction heating apparatus 2 Induction coil 3 Guide member 31a-31c, 32a-32c Chip 4 Shaft member 41 End part 42 Intermediate part 43 End part 5 Oscillator 6 Control part 7 Rotation mechanism 8 Axial movement mechanism 9 Radial movement mechanism

Claims (1)

側面に段差が設けられた軸部材を環状の誘導コイルに挿通させて誘導加熱する誘導加熱装置であって、
前記軸部材を、前記軸部材の中心軸を回転軸として回転させる回転機構と、
前記誘導コイル及び前記軸部材の少なくとも一方を、前記中心軸方向に平行移動させる軸方向移動機構と、
前記誘導コイル及び前記軸部材の少なくとも一方を、前記軸部材の径方向に移動させる径方向移動機構と、
前記誘導コイルに取り付けられて前記軸部材と前記誘導コイルとの間隙を一定に保つガイド部材と、を備え、
前記軸部材を誘導加熱する際には、前記径方向移動機構を用いて前記ガイド部材に前記軸部材を接触させて前記ガイド部材側における前記軸部材と前記誘導コイルとの間隙を一定に保ちつつ、前記回転機構を用いて前記回転軸を中心として前記軸部材を回転させると共に、前記軸方向移動機構を用いて前記誘導コイル及び前記軸部材の少なくとも一方を前記中心軸方向に平行移動させる、
誘導加熱装置。
An induction heating device that performs induction heating by inserting a shaft member having a step on a side surface into an annular induction coil,
A rotation mechanism that rotates the shaft member around a center axis of the shaft member as a rotation axis,
An axial moving mechanism that translates at least one of the induction coil and the shaft member in the central axis direction;
A radial moving mechanism that moves at least one of the induction coil and the shaft member in a radial direction of the shaft member;
A guide member attached to the induction coil and keeping a constant gap between the shaft member and the induction coil,
When the shaft member is induction-heated, the radial member is used to contact the guide member with the shaft member so that the gap between the shaft member and the induction coil on the guide member side is kept constant. Rotating the shaft member around the rotation axis using the rotation mechanism, and moving at least one of the induction coil and the shaft member in the central axis direction using the axial movement mechanism.
Induction heating device.
JP2018161171A 2018-08-30 2018-08-30 Induction heating apparatus Pending JP2020035649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018161171A JP2020035649A (en) 2018-08-30 2018-08-30 Induction heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018161171A JP2020035649A (en) 2018-08-30 2018-08-30 Induction heating apparatus

Publications (1)

Publication Number Publication Date
JP2020035649A true JP2020035649A (en) 2020-03-05

Family

ID=69668495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018161171A Pending JP2020035649A (en) 2018-08-30 2018-08-30 Induction heating apparatus

Country Status (1)

Country Link
JP (1) JP2020035649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293008A (en) * 2021-12-30 2022-04-08 秦皇岛华宇通电力设备制造有限公司 Stepped shaft heat treatment device and heat treatment method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293008A (en) * 2021-12-30 2022-04-08 秦皇岛华宇通电力设备制造有限公司 Stepped shaft heat treatment device and heat treatment method thereof
CN114293008B (en) * 2021-12-30 2024-02-02 秦皇岛华宇通电力设备制造有限公司 Stepped shaft heat treatment device and heat treatment method thereof

Similar Documents

Publication Publication Date Title
JP6570711B2 (en) Film thickness signal processing apparatus, polishing apparatus, film thickness signal processing method, and polishing method
KR20200039840A (en) Processing with power edge ring
JP6622389B2 (en) Non-contact power supply mechanism and method for rotary table and wafer rotation holding device
JP5369773B2 (en) Induction heating device
JP2005325409A (en) High frequency heat treatment method and device for ring-shaped product
JP2020035649A (en) Induction heating apparatus
EP2832486A1 (en) Arc welding control method and arc welding device
JP2012136740A (en) Induction hardening device and induction hardening method
JP2016083692A (en) Spinning molding method
KR101731904B1 (en) Friction welding method and preheating means having friction welding device
JP2019534383A (en) Epitaxial deposition reactor heating method and epitaxial deposition reactor
JP6146139B2 (en) Multistage shaft member heating apparatus, heating method, and heating coil
JP6459721B2 (en) Part table index table, manufacturing method thereof, and part transport device
JP5667786B2 (en) Induction heating apparatus and induction heating method
JP2009164303A (en) Soldering device and soldering method
EP3626360A1 (en) Quenching treatment apparatus
JP2019079644A (en) Induction heating apparatus
JP2007294466A (en) High-frequency induction heating method
JP2020009603A (en) Induction heating apparatus
JP2022044338A (en) Heat treatment device and heat treatment method
JP2019115113A (en) Core annealing method, core annealing system, and stator core
JP7332336B2 (en) heating device
Russell Technologies advancing scan and single-shot induction hardening capabilities
JP2022090445A (en) Induction heating coil and induction heating device
JP6801394B2 (en) Rotor core heating device