JP6801394B2 - Rotor core heating device - Google Patents

Rotor core heating device Download PDF

Info

Publication number
JP6801394B2
JP6801394B2 JP2016228202A JP2016228202A JP6801394B2 JP 6801394 B2 JP6801394 B2 JP 6801394B2 JP 2016228202 A JP2016228202 A JP 2016228202A JP 2016228202 A JP2016228202 A JP 2016228202A JP 6801394 B2 JP6801394 B2 JP 6801394B2
Authority
JP
Japan
Prior art keywords
rotor core
temperature
coil
outer peripheral
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016228202A
Other languages
Japanese (ja)
Other versions
JP2018085256A (en
Inventor
芳賀 正宜
正宜 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016228202A priority Critical patent/JP6801394B2/en
Publication of JP2018085256A publication Critical patent/JP2018085256A/en
Application granted granted Critical
Publication of JP6801394B2 publication Critical patent/JP6801394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

本発明は、ロータコアの加熱装置に関する。 The present invention relates to a rotor core heating device.

特許文献1には、ロータコアの内周側に配置された内周側コイルと、ロータコアの外周側に配置された外周側コイルとに交流電流を供給することによって、ロータコアに誘導電流を発生させ、ロータコアを加熱する技術が記載されている。 In Patent Document 1, an induced current is generated in the rotor core by supplying an alternating current to the inner peripheral coil arranged on the inner peripheral side of the rotor core and the outer peripheral coil arranged on the outer peripheral side of the rotor core. Techniques for heating the rotor core are described.

特開2015−084312号公報Japanese Unexamined Patent Publication No. 2015-084312

通常、特許文献1に記載の内周側コイルと外周側コイルは、直列に接続されている。そして、内周側コイル及び外周側コイルには、当該電源から同じタイミングで交流電流が供給される。一方、ロータコアの内径側は、ロータコアの外径側よりも温度上昇率が低い。そのため、内周側コイルと外周側コイルとに同時に交流電流が供給されると、ロータコアの内径側の昇温と外径側の昇温とがアンバランス(不均衡)になってしまう。そこで、従来では、ロータコアの外径側が目標温度を超えて制限温度に到達した後、ロータコアの内径側が目標温度に到達するように、電流を断続的に供給する制御を行う。そのため、電流を遮断している時間によって、ロータコアの内径側の温度が目標温度に到達する時間(昇温時間)が増加してしまうという問題がある。 Usually, the inner peripheral side coil and the outer peripheral side coil described in Patent Document 1 are connected in series. Then, an alternating current is supplied from the power source to the inner peripheral coil and the outer coil at the same timing. On the other hand, the temperature rise rate on the inner diameter side of the rotor core is lower than that on the outer diameter side of the rotor core. Therefore, if an alternating current is supplied to the inner peripheral coil and the outer coil at the same time, the temperature rise on the inner diameter side and the temperature rise on the outer diameter side of the rotor core become unbalanced. Therefore, conventionally, after the outer diameter side of the rotor core exceeds the target temperature and reaches the limit temperature, the current is intermittently supplied so that the inner diameter side of the rotor core reaches the target temperature. Therefore, there is a problem that the time for the temperature on the inner diameter side of the rotor core to reach the target temperature (heating time) increases depending on the time during which the current is cut off.

本発明は、このような問題を解決するためになされたものであり、昇温時間をより短縮することができるロータコアの加熱装置を提供することを目的とするものである。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a rotor core heating device capable of further shortening the heating time.

本発明に係るロータコアの加熱装置は、中空円柱状に形成されるロータコアの内周側に配置される内周側コイルと、前記ロータコアの外周側に配置される外周側コイルと、に電流を供給することにより、前記ロータコアを加熱するロータコアの加熱装置である。また、ロータコアの加熱装置は、前記ロータコアの内周面の温度と前記ロータコアの外周面の温度とを監視する温度監視手段と、前記温度監視手段によって監視された前記内周面の温度と前記外周面の温度とに基づいて、前記内周側コイルへの電流供給と前記外周側コイルへの電流供給とを切り替える切替手段と、を備える。 The rotor core heating device according to the present invention supplies an electric current to an inner peripheral coil arranged on the inner peripheral side of the rotor core formed in a hollow columnar shape and an outer peripheral coil arranged on the outer peripheral side of the rotor core. This is a rotor core heating device that heats the rotor core. Further, the rotor core heating device includes a temperature monitoring means for monitoring the temperature of the inner peripheral surface of the rotor core and the temperature of the outer peripheral surface of the rotor core, and the temperature of the inner peripheral surface and the outer peripheral surface monitored by the temperature monitoring means. A switching means for switching between the current supply to the inner peripheral coil and the current supply to the outer peripheral coil based on the surface temperature is provided.

本発明に係るロータコアの加熱装置によれば、ロータコアの内周面の温度と外周面の温度とに基づいて、内周側コイルへの電流供給と外周側コイルへの電流供給とが切り替えられる。そのため、ロータコアの内径側の昇温と外径側の昇温とがアンバランス(不均衡)になってしまうのを防ぐように、内周側コイルへの電流供給と外周側コイルへの電流供給とを切り替えることができる。これにより、昇温時間をより短縮することができるロータコアの加熱装置を提供することができる。 According to the rotor core heating device according to the present invention, the current supply to the inner peripheral side coil and the current supply to the outer peripheral side coil can be switched based on the temperature of the inner peripheral surface and the temperature of the outer peripheral surface of the rotor core. Therefore, the current is supplied to the inner peripheral coil and the current is supplied to the outer peripheral coil so as to prevent the temperature rise on the inner diameter side and the temperature rise on the outer diameter side of the rotor core from becoming unbalanced. And can be switched. This makes it possible to provide a rotor core heating device capable of further shortening the heating time.

本発明の実施の形態1に係るロータコアの加熱装置を簡略的に示す側方から見た断面図である。It is sectional drawing which saw from the side simply showing the heating apparatus of the rotor core which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るロータコアの加熱装置における内周側コイル及び外周側コイルに電流を供給する電気回路を簡略的に示す図である。It is a figure which shows simply the electric circuit which supplies the electric current to the inner peripheral side coil and the outer peripheral side coil in the heating apparatus of the rotor core which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る内周側コイル及び外周側コイルへの電流供給のタイミングチャートと、ロータコアの内径側の温度及び外径側の温度の時間変化を示すグラフである。It is a timing chart of the current supply to the inner peripheral side coil and the outer peripheral side coil which concerns on Embodiment 1 of this invention, and is a graph which shows the time change of the temperature of the inner diameter side and the temperature of the outer diameter side of a rotor core. 従来のロータコアの加熱装置における内周側コイル及び外周側コイルに電流を供給する電気回路を簡略的に示す図である。It is a figure which shows simply showing the electric circuit which supplies the electric current to the inner peripheral side coil and the outer peripheral side coil in the heating device of the conventional rotor core. 従来の内周側コイル及び外周側コイルへの電流供給のタイミングチャートと、ロータコアの内径側の温度及び外径側の温度の時間変化を示すグラフである。It is the timing chart of the current supply to the conventional inner circumference side coil and the outer circumference side coil, and the graph which shows the time change of the temperature of the inner diameter side and the temperature of the outer diameter side of a rotor core.

実施の形態1
以下、図面を参照して本発明の実施の形態について説明する。図1は、本発明の実施の形態1に係るロータコア200の加熱装置100を簡略的に示す側方から見た断面図である。なお、図1において、内周側コイル1及び外周側コイル2の断面を示すハッチングは省略されている。また、図2は、実施の形態1に係るロータコア200の加熱装置100における内周側コイル1及び外周側コイル2に電流を供給する電気回路を簡略的に示す図である。
Embodiment 1
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a side sectional view of the heating device 100 of the rotor core 200 according to the first embodiment of the present invention, which is simply shown. Note that in FIG. 1, hatching showing a cross section of the inner peripheral coil 1 and the outer peripheral coil 2 is omitted. Further, FIG. 2 is a diagram simply showing an electric circuit for supplying an electric current to the inner peripheral side coil 1 and the outer peripheral side coil 2 in the heating device 100 of the rotor core 200 according to the first embodiment.

実施の形態1に係るロータコア200の加熱装置100は、内周側コイル1、外周側コイル2、高周波電源3、切替手段としての切替スイッチ4、温度監視手段5等を備える。
また、ロータコア200は、中空円柱状に形成されている。換言すれば、ロータコア200は、円柱の略中央に貫通孔201が形成された形状を有する。ロータコア200は、例えば、複数の鋼板が積層されて構成されている。
そして、ロータコア200の加熱装置100は、例えば、ロータコア200に挿嵌されるシャフト(図示省略)を焼き嵌めするために、ロータコア200を加熱する。
The heating device 100 of the rotor core 200 according to the first embodiment includes an inner peripheral coil 1, an outer peripheral coil 2, a high frequency power supply 3, a changeover switch 4 as a changeover means, a temperature monitoring means 5, and the like.
Further, the rotor core 200 is formed in a hollow columnar shape. In other words, the rotor core 200 has a shape in which a through hole 201 is formed substantially in the center of the cylinder. The rotor core 200 is configured by, for example, laminating a plurality of steel plates.
Then, the heating device 100 of the rotor core 200 heats the rotor core 200, for example, in order to shrink-fit a shaft (not shown) to be inserted into the rotor core 200.

内周側コイル1は、ロータコア200の軸を螺旋軸とする螺旋状に形成され、ロータコア200の内周側に配置される。つまり、内周側コイル1は、ロータコア200の貫通孔201内に配置される。また、内周側コイル1の螺旋の直径は、貫通孔201の直径より小さい。 The inner peripheral side coil 1 is formed in a spiral shape with the axis of the rotor core 200 as a spiral axis, and is arranged on the inner peripheral side of the rotor core 200. That is, the inner peripheral side coil 1 is arranged in the through hole 201 of the rotor core 200. Further, the diameter of the spiral of the inner peripheral coil 1 is smaller than the diameter of the through hole 201.

外周側コイル2は、ロータコア200の軸を螺旋軸とする螺旋状に形成され、ロータコア200の外周側に配置される。つまり、外周側コイル2の螺旋の内側にロータコア200が配置される。また、外周側コイル2の螺旋の直径は、ロータコア200の外径より大きい。 The outer peripheral coil 2 is formed in a spiral shape with the axis of the rotor core 200 as a spiral axis, and is arranged on the outer peripheral side of the rotor core 200. That is, the rotor core 200 is arranged inside the spiral of the outer peripheral coil 2. Further, the diameter of the spiral of the outer peripheral coil 2 is larger than the outer diameter of the rotor core 200.

高周波電源3は、内周側コイル1と外周側コイル2とに交流電流を供給する。また、高周波電源3と、内周側コイル1とは、切替スイッチ4を介して接続されている。また、高周波電源3と、外周側コイル2とは、切替スイッチ4を介して接続されている。換言すれば、高周波電源3は、内周側コイル1と外周側コイル2のうち、切替スイッチ4によって接続された方に、交流電流を供給する。 The high-frequency power supply 3 supplies an alternating current to the inner peripheral coil 1 and the outer peripheral coil 2. Further, the high frequency power supply 3 and the inner peripheral side coil 1 are connected via a changeover switch 4. Further, the high frequency power supply 3 and the outer peripheral coil 2 are connected via a changeover switch 4. In other words, the high-frequency power supply 3 supplies an alternating current to the inner peripheral side coil 1 and the outer peripheral side coil 2 connected by the changeover switch 4.

切替スイッチ4は、内周側コイル1と外周側コイル2とを切り替えて、高周波電源3と接続する。これにより、切替スイッチ4は、高周波電源3からの内周側コイル1への電流供給と、高周波電源3からの外周側コイル2への電流供給とを切り替える。
また、切替スイッチ4は、後述する温度監視手段5から入力される制御信号に従って、内周側コイル1と外周側コイル2とを切り替えて、高周波電源3と接続する。具体的には、切替スイッチ4は、温度監視手段5によって監視されたロータコア200の内周面の温度と外周面の温度とに基づいて、高周波電源3からの内周側コイル1への電流供給と、高周波電源3からの外周側コイル2への電流供給とを切り替える。
The changeover switch 4 switches between the inner peripheral side coil 1 and the outer peripheral side coil 2 and connects to the high frequency power supply 3. As a result, the changeover switch 4 switches between the current supply from the high frequency power supply 3 to the inner peripheral coil 1 and the current supply from the high frequency power supply 3 to the outer peripheral coil 2.
Further, the changeover switch 4 switches between the inner peripheral side coil 1 and the outer peripheral side coil 2 according to a control signal input from the temperature monitoring means 5 described later, and connects to the high frequency power supply 3. Specifically, the changeover switch 4 supplies a current from the high-frequency power supply 3 to the inner peripheral coil 1 based on the temperature of the inner peripheral surface and the temperature of the outer peripheral surface of the rotor core 200 monitored by the temperature monitoring means 5. And the current supply from the high frequency power supply 3 to the outer coil 2 is switched.

温度監視手段5は、ロータコア200の内周面及び外周面に設けられた接触式温度計、非接触式温度計等であり、ロータコア200の内周面の温度と外周面の温度とを監視する。また、温度監視手段5は、ロータコア200の内周面の温度と外周面の温度とに基づいて、切替スイッチ4に、内周側コイル1と外周側コイル2との何れかを高周波電源3と接続するための制御信号を入力する。 The temperature monitoring means 5 is a contact type thermometer, a non-contact type thermometer, or the like provided on the inner peripheral surface and the outer peripheral surface of the rotor core 200, and monitors the temperature of the inner peripheral surface and the temperature of the outer peripheral surface of the rotor core 200. .. Further, the temperature monitoring means 5 sets one of the inner peripheral coil 1 and the outer peripheral coil 2 to the high frequency power supply 3 on the changeover switch 4 based on the temperature of the inner peripheral surface and the temperature of the outer peripheral surface of the rotor core 200. Input the control signal for connection.

具体的には、温度監視手段5は、例えば、監視した内周面の温度の時間変化から内径側の昇温速度を推定し、監視した外周面の温度の時間変化から外径側の昇温速度を推定し、推定した内径側の昇温速度及び外径側の昇温速度に基づいて、内周側コイル1と外周側コイル2とに電流を供給する時間のDuty比を決定し、当該Duty比に基づいて、切替スイッチ4に、内周側コイル1と外周側コイル2とを切り替えて、高周波電源3と接続するための制御信号を入力する。 Specifically, the temperature monitoring means 5 estimates, for example, the rate of temperature rise on the inner diameter side from the time change of the temperature of the monitored inner peripheral surface, and raises the temperature of the outer diameter side from the time change of the temperature of the monitored outer peripheral surface. The speed is estimated, and based on the estimated temperature rise rate on the inner diameter side and the temperature rise rate on the outer diameter side, the duty ratio of the time for supplying the current to the inner peripheral side coil 1 and the outer peripheral side coil 2 is determined. Based on the Duty ratio, the changeover switch 4 is switched between the inner peripheral side coil 1 and the outer peripheral side coil 2 and inputs a control signal for connecting to the high frequency power supply 3.

また、温度監視手段5は、ロータコア200の内径側の昇温と外径側の昇温とがアンバランス(不均衡)になってしまうのを防ぐように、当該Duty比を決定する。例えば、温度監視手段5は、ロータコア200の内周面の温度と外周面の温度とが、それぞれの目標温度にほぼ同時に到達するように、推定した内径側の昇温速度及び外径側の昇温速度に基づいて、Duty比を決定する。これにより、昇温時間をより短縮することができるロータコア200の加熱装置100を提供することができる。 Further, the temperature monitoring means 5 determines the duty ratio so as to prevent the temperature rise on the inner diameter side and the temperature rise on the outer diameter side of the rotor core 200 from becoming unbalanced. For example, in the temperature monitoring means 5, the temperature rise rate on the inner diameter side and the rise on the outer diameter side are estimated so that the temperature of the inner peripheral surface and the temperature of the outer peripheral surface of the rotor core 200 reach their respective target temperatures almost at the same time. The duty ratio is determined based on the temperature rate. Thereby, it is possible to provide the heating device 100 of the rotor core 200 which can further shorten the heating time.

例えば、温度監視手段5は、図3のタイミングチャートに示すように、内周側コイル1に電流を供給する時間と外周側コイル2に電流を供給する時間のDuty比が約7対3となるように、切替スイッチ4に、内周側コイル1と外周側コイル2とを切り替えて、高周波電源3と接続するための制御信号を入力する。これにより、図3の下の2つのグラフに示すように、ロータコア200の内周面の温度と外周面の温度とが、それぞれの目標温度にほぼ同時に到達する。 For example, in the temperature monitoring means 5, as shown in the timing chart of FIG. 3, the duty ratio of the time for supplying the current to the inner peripheral coil 1 and the time for supplying the current to the outer peripheral coil 2 is about 7: 3. As described above, a control signal for switching between the inner peripheral coil 1 and the outer peripheral coil 2 and connecting to the high frequency power supply 3 is input to the changeover switch 4. As a result, as shown in the two graphs at the bottom of FIG. 3, the temperature of the inner peripheral surface and the temperature of the outer peripheral surface of the rotor core 200 reach their respective target temperatures almost at the same time.

図4に、従来のロータコアの加熱装置における内周側コイル6及び外周側コイル7に電流を供給する電気回路を簡略的に示す。従来のロータコアの加熱装置では、内周側コイル6と外周側コイル7とが直列に接続されており、同じタイミングで、高周波電源8から交流電流が供給される。 FIG. 4 briefly shows an electric circuit that supplies an electric current to the inner peripheral coil 6 and the outer peripheral coil 7 in a conventional rotor core heating device. In the conventional rotor core heating device, the inner peripheral side coil 6 and the outer peripheral side coil 7 are connected in series, and an alternating current is supplied from the high frequency power supply 8 at the same timing.

従来のロータコアの加熱装置では、内周側コイル6と外周側コイル7とに、高周波電源8から交流電流が同時に供給されるため、図5の下の2つのグラフに示すように、ロータコア200の内径側の温度より外径側の温度が早く目標温度に到達する。これは、外周側コイル7の内側に磁束が集中しやすく、内周側コイル6の外側には磁束が集中しにくいため、ロータコア200の外径側よりも内径側の方が昇温しにくいためである。そこで、従来では、ロータコア200の外径側の温度が目標温度を超えて制限温度に到達した後、図5のタイミングチャートに示すように、電流を断続的に供給し、外径側の温度が制限温度よりも高くに上がりすぎないようにしながら、内径側の温度を徐々に昇温させていた。そのため、ロータコア200の昇温に時間がかかってしまうという問題が生じていた。 In the conventional rotor core heating device, alternating current is simultaneously supplied from the high frequency power supply 8 to the inner peripheral side coil 6 and the outer peripheral side coil 7, and therefore, as shown in the two graphs at the bottom of FIG. 5, the rotor core 200 The temperature on the outer diameter side reaches the target temperature earlier than the temperature on the inner diameter side. This is because the magnetic flux tends to concentrate on the inside of the outer peripheral coil 7, and the magnetic flux does not easily concentrate on the outer side of the inner coil 6, so that the temperature rises more on the inner diameter side than on the outer diameter side of the rotor core 200. Is. Therefore, conventionally, after the temperature on the outer diameter side of the rotor core 200 exceeds the target temperature and reaches the limit temperature, a current is intermittently supplied as shown in the timing chart of FIG. 5, and the temperature on the outer diameter side is raised. The temperature on the inner diameter side was gradually raised while preventing the temperature from rising too high above the limit temperature. Therefore, there is a problem that it takes time to raise the temperature of the rotor core 200.

一方、本実施の形態1に係るロータコア200の加熱装置100では、ロータコア200の内周面の温度と外周面の温度とに基づいて、内周側コイル1への電流供給と外周側コイル2への電流供給とが切り替えられる。そのため、ロータコア200の内径側の昇温と外径側の昇温とがアンバランス(不均衡)になってしまうのを防ぐように、内周側コイル1への電流供給と外周側コイル2への電流供給とを切り替えることができる。これにより、昇温時間をより短縮することができるロータコア200の加熱装置100を提供することができる。 On the other hand, in the heating device 100 of the rotor core 200 according to the first embodiment, the current is supplied to the inner peripheral coil 1 and the outer peripheral coil 2 is supplied based on the temperature of the inner peripheral surface and the temperature of the outer peripheral surface of the rotor core 200. The current supply is switched. Therefore, in order to prevent the temperature rise on the inner diameter side and the temperature rise on the outer diameter side of the rotor core 200 from becoming unbalanced, the current is supplied to the inner peripheral side coil 1 and the outer diameter side coil 2 is supplied. It is possible to switch between the current supply and the current supply. Thereby, it is possible to provide the heating device 100 of the rotor core 200 which can further shorten the heating time.

また、ロータコア200の外周面の温度が目標温度を超えて制限温度までに昇温されずに済む。 Further, the temperature of the outer peripheral surface of the rotor core 200 does not exceed the target temperature and does not rise to the limit temperature.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 The present invention is not limited to the above embodiment, and can be appropriately modified without departing from the spirit.

1、6 内周側コイル
2、7 外周側コイル
3、8 高周波電源
4 切替スイッチ(切替手段)
5 温度監視手段
100 加熱装置
200 ロータコア
201 貫通孔
1, 6 Inner circumference side coil 2, 7 Outer circumference side coil 3, 8 High frequency power supply 4 Changeover switch (switching means)
5 Temperature monitoring means 100 Heating device 200 Rotor core 201 Through hole

Claims (1)

中空円柱状に形成されるロータコアの内周側に配置される内周側コイルと、前記ロータコアの外周側に配置される外周側コイルと、に電流を供給することにより、前記ロータコアを加熱するロータコアの加熱装置であって、
前記ロータコアの内周面の温度と前記ロータコアの外周面の温度とを監視する温度監視手段と、
前記外周側コイルと前記内周側コイルとを切り替えて高周波電源に接続する切り替えスイッチと、
を備え、
前記切り替えスイッチは、前記温度監視手段によって監視された前記内周面の温度と前記外周面の温度とに基づいて、前記高周波電源からの前記内周側コイルへの電流供給と前記外周側コイルへの電流供給とを切り替え
前記温度監視手段は、監視した前記内周面の温度の時間変化から内径側の昇温速度を推定し、監視した外周面の温度の時間変化から外径側の昇温速度を推定し、推定した前記内径側の昇温速度及び前記外径側の昇温速度に基づいて、前記内周側コイルと前記外周側コイルとに電流を供給する時間のDuty比を決定し、前記Duty比に基づいて、前記切り替えスイッチは、前記内周側コイルへの電流供給と前記外周側コイルへの電流供給とを切り替える、ロータコアの加熱装置。
A rotor core that heats the rotor core by supplying an electric current to an inner peripheral coil arranged on the inner peripheral side of the rotor core formed in a hollow columnar shape and an outer peripheral coil arranged on the outer peripheral side of the rotor core. It is a heating device of
A temperature monitoring means for monitoring the temperature of the inner peripheral surface of the rotor core and the temperature of the outer peripheral surface of the rotor core, and
A changeover switch that switches between the outer peripheral coil and the inner coil and connects to a high-frequency power supply.
With
The changeover switch supplies current from the high-frequency power supply to the inner peripheral coil and to the outer peripheral coil based on the temperature of the inner peripheral surface and the temperature of the outer peripheral surface monitored by the temperature monitoring means. switch between the current supply of,
The temperature monitoring means estimates the temperature rise rate on the inner diameter side from the time change of the monitored inner peripheral surface temperature, and estimates and estimates the temperature rise rate on the outer diameter side from the time change of the monitored outer peripheral surface temperature. Based on the temperature rise rate on the inner diameter side and the temperature rise rate on the outer diameter side, the duty ratio of the time for supplying the current to the inner peripheral side coil and the outer peripheral side coil is determined, and based on the duty ratio. The changeover switch is a rotor core heating device that switches between supplying a current to the inner peripheral coil and supplying a current to the outer peripheral coil .
JP2016228202A 2016-11-24 2016-11-24 Rotor core heating device Active JP6801394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016228202A JP6801394B2 (en) 2016-11-24 2016-11-24 Rotor core heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016228202A JP6801394B2 (en) 2016-11-24 2016-11-24 Rotor core heating device

Publications (2)

Publication Number Publication Date
JP2018085256A JP2018085256A (en) 2018-05-31
JP6801394B2 true JP6801394B2 (en) 2020-12-16

Family

ID=62236665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016228202A Active JP6801394B2 (en) 2016-11-24 2016-11-24 Rotor core heating device

Country Status (1)

Country Link
JP (1) JP6801394B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3274911B2 (en) * 1993-07-02 2002-04-15 東芝キヤリア株式会社 Work heating apparatus and motor manufacturing method
JP2000353458A (en) * 1999-06-10 2000-12-19 Shihen Tech Corp Soft switching device for high frequency
JP5799759B2 (en) * 2011-11-09 2015-10-28 日産自動車株式会社 Heat treatment method and heat treatment apparatus for rotor core

Also Published As

Publication number Publication date
JP2018085256A (en) 2018-05-31

Similar Documents

Publication Publication Date Title
JP3938197B2 (en) Induction heating device
US20150230294A1 (en) Induction heated roll apparatus and induction coil temperature detecting mechanism
JP2016047549A (en) Friction stir welding apparatus
JP2008118731A (en) Heating device and heating method for stator coil and core
JP6801394B2 (en) Rotor core heating device
JP5277545B2 (en) Induction heat treatment method and induction heat treatment apparatus
JP4023623B2 (en) Camshaft high frequency induction heating coil and camshaft high frequency induction heating method using the heating coil
US20160233750A1 (en) Rotor core heating device and rotor core shrink-fitting method
JP2017050169A (en) Shrink fitting method for rotor core
JP5874747B2 (en) Rotor core heating device and rotor core shrink fitting method
JP5395706B2 (en) Induction heating method and induction heating apparatus
JP2015084312A5 (en)
JP2011023251A (en) Annular metal heating device
JP6525140B2 (en) Magnetic treatment device
JP7106856B2 (en) Core annealing method and core annealing system
JP2019175759A (en) Induction heating device and method of attaching and detaching by induction heating
JP2016058176A (en) Induction heating device
JP2014162936A (en) Heat treatment method and heating furnace
JP6286317B2 (en) Heating coil
JP5888351B2 (en) Rotor core heating device
JP4187635B2 (en) High frequency induction heating coil
JP5616271B2 (en) Induction heating device and magnetic pole
JP6464051B2 (en) Induction heating apparatus and induction heating method
JP2007262461A (en) Method and apparatus for induction-heating using stepwise heating
JP5901013B2 (en) Non-oxidation induction heat treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R151 Written notification of patent or utility model registration

Ref document number: 6801394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151