JP2020033481A - Foamable polystyrene resin particle, polystyrene resin pre-foamed particle, and polystyrene resin foam molding - Google Patents

Foamable polystyrene resin particle, polystyrene resin pre-foamed particle, and polystyrene resin foam molding Download PDF

Info

Publication number
JP2020033481A
JP2020033481A JP2018162244A JP2018162244A JP2020033481A JP 2020033481 A JP2020033481 A JP 2020033481A JP 2018162244 A JP2018162244 A JP 2018162244A JP 2018162244 A JP2018162244 A JP 2018162244A JP 2020033481 A JP2020033481 A JP 2020033481A
Authority
JP
Japan
Prior art keywords
polystyrene resin
resin particles
expandable polystyrene
weight
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018162244A
Other languages
Japanese (ja)
Other versions
JP7194535B2 (en
Inventor
中川 拓也
Takuya Nakagawa
拓也 中川
矢野 義仁
Yoshihito Yano
義仁 矢野
竜太 沓水
Ryuta Kutsumizu
竜太 沓水
丸橋 正太郎
Shotaro Maruhashi
正太郎 丸橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2018162244A priority Critical patent/JP7194535B2/en
Publication of JP2020033481A publication Critical patent/JP2020033481A/en
Application granted granted Critical
Publication of JP7194535B2 publication Critical patent/JP7194535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

To provide a foamable polystyrene resin particle that can give a polystyrene resin foam molding having both of a high expansion ratio and high heat insulation performance.SOLUTION: A foamable polystyrene resin particle has a polystyrene resin composition containing a carbon-based radiation heat transfer inhibitor and a foaming agent, the foamable polystyrene resin particles having an aspect ratio of 0.95 or less and a sphericity of 0.970 or more.SELECTED DRAWING: None

Description

本発明は発泡性ポリスチレン系樹脂粒子、その予備発泡粒子、およびそれを用いた発泡成形体に関する。   The present invention relates to expandable polystyrene resin particles, pre-expanded particles thereof, and a foam molded article using the same.

ポリスチレン系樹脂発泡体は、軽量性、断熱性、及び緩衝性等を有するバランスに優れた発泡体であり、従来から食品容器箱、保冷箱、緩衝材、及び住宅等の断熱材として広く利用されている。   Polystyrene resin foam is a foam having excellent balance, such as light weight, heat insulation, and cushioning properties, and has been widely used as a heat insulation material for food container boxes, cool boxes, cushioning materials, and houses. ing.

中でも、近年、地球温暖化等の諸問題に関連し、住宅等建築物の断熱性向上による省エネルギー化が志向されつつあり、発泡性ポリスチレン系樹脂粒子を用いて得られるポリスチレン系樹脂発泡成形体の需要拡大が期待される。そのため、当該ポリスチレン系樹脂発泡体の発泡性や断熱性の向上について種々の検討がなされている。   Above all, in recent years, in connection with various problems such as global warming, energy saving by improving the heat insulating property of buildings such as houses has been pursued, and a polystyrene resin foam molded article obtained using expandable polystyrene resin particles has been developed. Demand expansion is expected. Therefore, various studies have been made on the improvement of the foaming property and heat insulating property of the polystyrene resin foam.

例えば、特許文献1の発明によれば、輻射伝熱抑制剤を添加した発泡性ポリスチレン系樹脂粒子において、輻射抑制剤含有量に対する臭素系難燃剤に由来する臭素原子含有量の比率である臭素原子含有量/輻射伝熱抑制剤含有量を特定範囲にすることで、断熱性と難燃性を両立することができる。   For example, according to the invention of Patent Document 1, in an expandable polystyrene resin particle to which a radiation heat transfer inhibitor is added, a bromine atom is a ratio of a bromine atom content derived from a bromine-based flame retardant to a radiation inhibitor content. By setting the content / radiation heat transfer inhibitor content in a specific range, both heat insulation and flame retardancy can be achieved.

特許文献2の発明によれば、発泡性ポリスチレン系樹脂粒子中の炭素数4の炭化水素と炭素数5の炭化水素の含有比率が2/98〜20/80であることで、難燃性の低下がみられず、環境適合性にも優れた難燃剤を使用していると共に、輻射伝熱抑制剤も含有している為、低い熱伝導率を有する、高い難燃性および断熱性が両立でき、さらには熟成期間を必要としない発泡性ポリスチレン系樹脂粒子を提供することができる。   According to the invention of Patent Literature 2, the content ratio of the hydrocarbon having 4 carbon atoms and the hydrocarbon having 5 carbon atoms in the expandable polystyrene resin particles is 2/98 to 20/80, so that the flame-retardant resin is used. Uses a flame retardant that has not been reduced and has excellent environmental compatibility, and also contains a radiant heat transfer inhibitor, so it has low thermal conductivity, high flame retardancy and heat insulation It is possible to provide expandable polystyrene-based resin particles which do not require an aging period.

また、特許文献3では、熱可塑性樹脂発泡性粒子の製造方法であって、ダイの小孔ランド部を通過する際の発泡剤含有溶融樹脂の剪断速度が12000〜35000sec−1、且つ樹脂の見かけ溶融粘度が100〜700ポイズとなるように押し出すことによって、樹脂粒子の形状が真球状で、機械的強度に優れた発泡成形品を製造できる熱可塑性樹脂発泡性粒子の製造方法が開示されている。 Patent Document 3 describes a method for producing thermoplastic resin expandable particles, in which the shearing rate of the blowing agent-containing molten resin when passing through the small-hole land portion of the die is 12000 to 35000 sec −1 , and the resin is apparent. Disclosed is a method for producing thermoplastic resin expandable particles capable of producing an expanded molded article having a perfect spherical shape and excellent mechanical strength by extruding a melt viscosity of 100 to 700 poise. .

特開2014−080514号公報JP 2014-080514 A 特開2014−118474号公報JP 2014-118474 A 国際公開第WO2005/028173International Publication No. WO2005 / 028173

本発明は、高発泡倍率および高断熱性を両立したポリスチレン系樹脂発泡成形体を提供することである。   An object of the present invention is to provide a polystyrene resin foam molded article having both high expansion ratio and high heat insulation.

ポリスチレン系樹脂発泡成形体は発泡倍率が高いほど原料である発泡性ポリスチレン系樹脂粒子の使用量が少なくなることから、ポリスチレン系樹脂発泡成形体の断熱特性を維持しつつ、高発泡化されることが望まれる。しかし、特許文献1および2は難燃性と高断熱性を両立したポリスチレン系樹脂発泡成形体を得る発明であるが、高倍発泡時の発泡性に関しては検討されていない。そのため、発泡性に関しては未だ改善の余地がある。   The higher the expansion ratio, the lower the amount of expandable polystyrene-based resin particles used in the raw material of the polystyrene-based resin foam. Therefore, the foam of the polystyrene-based resin must be highly foamed while maintaining the heat insulating properties of the polystyrene-based resin foam. Is desired. However, Patent Documents 1 and 2 are inventions for obtaining a polystyrene-based resin foam molded article having both flame retardancy and high heat insulation, but the foaming property at the time of high magnification foaming is not studied. Therefore, there is still room for improvement in foamability.

また、特許文献3は、樹脂粒子の形状が真球状で機械的強度に優れた発泡成形品を製造できる熱可塑性樹脂発泡性粒子の製造方法であるが、発泡倍率40倍程度の発泡性が確認されているにすぎず、グラファイト等の輻射伝熱抑制剤が配合された場合における高発泡時の発泡性に関して検討されていない。   Patent Document 3 discloses a method for producing a thermoplastic resin expandable particle capable of producing an expanded molded article having a resin particle having a true spherical shape and excellent mechanical strength. However, no study has been made on the foaming property at the time of high foaming when a radiation heat transfer inhibitor such as graphite is blended.

輻射伝熱抑制剤を含有する発泡性ポリスチレン系樹脂粒子を製造する方法としては、大別して、スチレン単量体の重合工程において輻射伝熱抑制剤を含有させる方法(以下、「重合法」と称する)と、押出機等の混練設備を用いて予め重合されたポリスチレン系樹脂と輻射伝熱抑制剤を溶融混練する方法とがある(以下「溶融混練法」と称する)。   The method for producing expandable polystyrene resin particles containing a radiation heat transfer inhibitor is roughly classified into a method of including a radiation heat transfer inhibitor in a polymerization step of a styrene monomer (hereinafter, referred to as a “polymerization method”). ) And a method of melt-kneading a styrene-based resin and a radiation heat transfer inhibitor that have been polymerized in advance using a kneading facility such as an extruder (hereinafter, referred to as “melt kneading method”).

さらに溶融混練法としては、大きく2つの製法に分類される。   Further, the melt-kneading method is roughly classified into two production methods.

第一の溶融混練法は、ポリスチレン系樹脂、輻射伝熱抑制剤、その他添加剤を押出機に供給、溶融混練し、発泡剤を前記押出機もしくは、押出機以降の分散設備によって樹脂に溶解、分散させ、小孔を多数有するダイスを通じて、加圧循環水で満たされたカッターチャンバー内に発泡剤含有溶融樹脂を押し出し、押し出し直後から、ダイスと接する回転カッターにより溶融樹脂を切断すると共に加圧循環水により冷却固化することで発泡性スチレン系樹脂粒子を得る方法である。   In the first melt-kneading method, a polystyrene resin, a radiant heat transfer inhibitor, and other additives are supplied to an extruder, melt-kneaded, and the foaming agent is dissolved in the resin by the extruder or a dispersing device after the extruder, Disperse and extrude the blowing agent-containing molten resin into a cutter chamber filled with pressurized circulating water through a die having many small holes. Immediately after the extrusion, the molten resin is cut by a rotary cutter in contact with the dies and pressurized and circulated. This is a method of obtaining expandable styrene resin particles by cooling and solidifying with water.

第二の溶融混練法は、ポリスチレン系樹脂、輻射伝熱抑制剤、その他添加剤を押出機で溶融混練し、小孔を有するダイスを通じて樹脂溶融物を押し出し、カッターで切断することによりポリスチレン系樹脂粒子を得た後、該ポリスチレン系樹脂粒子を水中に懸濁させると共に、発泡剤を供給して、発泡剤をポリスチレン系樹脂粒子に含有させることで、発泡性スチレン系樹脂粒子を得る方法である。   The second melt-kneading method involves melting and kneading a polystyrene-based resin, a radiation heat transfer inhibitor, and other additives with an extruder, extruding the resin melt through a die having small holes, and cutting the resin with a cutter. After obtaining the particles, the polystyrene resin particles are suspended in water, a blowing agent is supplied, and the blowing agent is contained in the polystyrene resin particles to obtain expandable styrene resin particles. .

これらの製造方法のうち、押出混練設備を用いた溶融混練法は、重合法と比較すると初期投資額及び製造の簡便性の観点から優れる。更に、生産性の観点から、第一の溶融混練法は第二の溶融混練法よりも優れる。   Among these production methods, the melt-kneading method using the extrusion kneading equipment is superior to the polymerization method in terms of initial investment and simplicity of production. Further, from the viewpoint of productivity, the first melt-kneading method is superior to the second melt-kneading method.

一方、重合法または第二の溶融混練法で得られる発泡性ポリスチレン系樹脂粒子はアスペクト比が1に極めて近い値を実現するのに対して、第一の溶融混練法で得られる発泡性ポリスチレン系樹脂粒子はアスペクト比が1から外れ、歪な形状になりやすい傾向にある。本発明者らが検討を行った結果、第一の溶融混練法で得られるアスペクト比が1から外れている発泡性ポリスチレン系樹脂粒子は、重合法または第二の溶融混練法で得られる発泡性ポリスチレン系樹脂粒子よりも予備発泡粒子の収縮が生じやすい傾向にあることが判った。   On the other hand, the expandable polystyrene resin particles obtained by the polymerization method or the second melt kneading method achieve an aspect ratio extremely close to 1, whereas the expandable polystyrene resin particles obtained by the first melt kneading method. Resin particles have an aspect ratio out of 1 and tend to be distorted. As a result of the study by the present inventors, the expandable polystyrene resin particles having an aspect ratio obtained by the first melt-kneading method deviating from 1 are obtained by the polymerization method or the second melt-kneading method. It was found that the pre-expanded particles tended to shrink more easily than the polystyrene resin particles.

上記の理由より、生産コスト面で優れる第一の溶融混練法で得られる発泡性ポリスチレン系樹脂粒子の発泡性については更なる改善が望まれる。   For the above reasons, further improvement is desired for the expandability of the expandable polystyrene resin particles obtained by the first melt-kneading method which is excellent in production cost.

本発明者らが上述した課題を解決すべく検討をしたところ、驚くべきことに、一般的にアスペクト比が1に近ければ近いほど発泡性に優れると考えられるところ、アスペクト比が1から若干外れる発泡性ポリスチレン系樹脂粒子であっても、発泡性ポリスチレン系樹脂粒子の真球度を制御することによって、発泡直後のポリスチレン系樹脂予備発泡粒子の収縮を抑制でき、高発泡倍率のポリスチレン系樹脂予備発泡粒子、ひいてはポリスチレン系樹脂発泡成形体が得られることを見出し、本発明を完成するに至った。   The present inventors have studied to solve the above-mentioned problem, and surprisingly, it is surprising that the foaming property is generally considered to be better as the aspect ratio is closer to 1, but the aspect ratio slightly deviates from 1. Even for expandable polystyrene resin particles, by controlling the sphericity of the expandable polystyrene resin particles, the shrinkage of the polystyrene resin pre-expanded particles immediately after foaming can be suppressed, and the high expansion ratio polystyrene resin It has been found that foamed particles, and thus a polystyrene resin foam molded article, can be obtained, and the present invention has been completed.

すなわち、本発明は、炭素系輻射伝熱抑制剤を含む発泡性ポリスチレン系樹脂粒子であって、アスペクト比が0.95以下であり、真球度が0.970以上である発泡性ポリスチレン系樹脂粒子(以下、「本発明の発泡性ポリスチレン系樹脂粒子」と称することがある。)に関する。ここで、アスペクト比とは、発泡性ポリスチレン系樹脂粒子の投影図の短径と長径の比である。真球度とは、発泡性ポリスチレン系樹脂粒子の投影図の周囲長と面積の比から求められる値である。アスペクト比と比較して、真球度は発泡性ポリスチレン系樹脂粒子表面の凹凸状態などの影響も考慮できる。尚、アスペクト比及び真球度の詳細な測定方法については後述する。   That is, the present invention relates to expandable polystyrene-based resin particles containing a carbon-based radiant heat transfer inhibitor, and has an aspect ratio of 0.95 or less and a sphericity of 0.970 or more. Particles (hereinafter sometimes referred to as “expandable polystyrene resin particles of the present invention”). Here, the aspect ratio is the ratio of the minor axis to the major axis of the projected view of the expandable polystyrene resin particles. The sphericity is a value determined from the ratio of the peripheral length to the area of the projected view of the expandable polystyrene resin particles. Compared to the aspect ratio, the sphericity can also consider the influence of the unevenness of the surface of the expandable polystyrene resin particles. The detailed method of measuring the aspect ratio and sphericity will be described later.

本発明の発泡性ポリスチレン系樹脂粒子において、真球度が0.980以上であることが好ましい。   In the expandable polystyrene resin particles of the present invention, the sphericity is preferably 0.980 or more.

本発明の発泡性ポリスチレン系樹脂粒子において、前記炭素系輻射伝熱抑制剤が、ポリスチレン系樹脂組成物100重量%において2〜10重量%であることが好ましい。   In the expandable polystyrene resin particles of the present invention, the carbon-based radiation heat transfer inhibitor is preferably 2 to 10% by weight based on 100% by weight of the polystyrene-based resin composition.

本発明の発泡性ポリスチレン系樹脂粒子において、前記炭素系輻射伝熱抑制剤が、グラファイト、グラフェン、カーボンブラック、カーボンナノチューブ、活性炭、および、膨張黒鉛からなる群から選ばれる少なくとも1種であることが好ましい。   In the expandable polystyrene resin particles of the present invention, the carbon-based radiation heat transfer inhibitor is at least one selected from the group consisting of graphite, graphene, carbon black, carbon nanotubes, activated carbon, and expanded graphite. preferable.

本発明の発泡性ポリスチレン系樹脂粒子において、前記発泡剤が、ペンタン及び/またはブタンを含むことが好ましい。   In the expandable polystyrene resin particles of the present invention, the blowing agent preferably contains pentane and / or butane.

本発明の発泡性ポリスチレン系樹脂粒子において、前記発泡剤がイソブタンを含むことが好ましい。   In the expandable polystyrene resin particles of the present invention, the blowing agent preferably contains isobutane.

本発明の発泡性ポリスチレン系樹脂粒子において、前記発泡剤が、イソブタンをペンタンおよびブタンの総量100重量%に対して20重量%超50重量%以下含むことが好ましい。   In the expandable polystyrene resin particles of the present invention, it is preferable that the blowing agent contains more than 20% by weight and 50% by weight or less of isobutane based on 100% by weight of the total amount of pentane and butane.

本発明の発泡性ポリスチレン系樹脂粒子において、前記ペンタンがノルマルペンタンおよびイソペンタンの重量比が100/0〜60/40であることが好ましい。   In the expandable polystyrene resin particles of the present invention, the pentane preferably has a weight ratio of normal pentane and isopentane of 100/0 to 60/40.

本発明の発泡性ポリスチレン系樹脂粒子において、前記発泡性ポリスチレン系樹脂粒子の真密度が950〜1060kg/mであることが好ましい。 In the expandable polystyrene resin particles of the present invention, it is preferable that the true density of the expandable polystyrene resin particles is 950 to 1060 kg / m 3 .

本発明の発泡性ポリスチレン系樹脂粒子において、前記発泡性ポリスチレン系樹脂粒子を予備発泡させたかさ倍率75cm/g以上85cm/g以下の予備発泡粒子を発泡成形した時における発泡成形体の熱伝導率が0.0330W/m・K以下であることが好ましい。 In the expandable polystyrene resin particles of the present invention, the heat of the expanded molded article when the expandable polystyrene resin particles are pre-expanded and the pre-expanded particles having a bulk magnification of 75 cm 3 / g or more and 85 cm 3 / g or less are foam-formed. Preferably, the conductivity is 0.0330 W / m · K or less.

本発明の予備発泡粒子は、本発明の発泡性ポリスチレン系樹脂粒子の予備発泡粒子である。   The pre-expanded particles of the present invention are pre-expanded particles of the expandable polystyrene resin particles of the present invention.

本発明の予備発泡粒子において、本発明の発泡性ポリスチレン系樹脂粒子の予備発泡粒子であり、かさ倍率が75cm/g以上であることが好ましい。 The pre-expanded particles of the present invention are pre-expanded particles of the expandable polystyrene resin particles of the present invention, and preferably have a bulk magnification of 75 cm 3 / g or more.

本発明の発泡成形体は、本発明の発泡性ポリスチレン系樹脂粒子、または本発明の予備発泡粒子を成形して得られるポリスチレン系樹脂発泡成形体である。   The expanded molded article of the present invention is an expanded polystyrene resin molded article obtained by molding the expandable polystyrene resin particles of the present invention or the pre-expanded particles of the present invention.

本発明の発泡性ポリスチレン系樹脂粒子によれば、高発泡倍率および高断熱性を両立する発泡成形体を得ることができる。   According to the expandable polystyrene resin particles of the present invention, it is possible to obtain a foamed molded article having both high expansion ratio and high heat insulation.

[発泡性ポリスチレン系樹脂粒子]
本発明の発泡性ポリスチレン系樹脂粒子は、炭素系輻射伝熱抑制剤を含む発泡性ポリスチレン系樹脂粒子であって、ポリスチレン系樹脂粒子中に炭素系輻射伝熱抑制剤および発泡剤を含有させたものである。
[Expandable polystyrene resin particles]
The expandable polystyrene-based resin particles of the present invention are expandable polystyrene-based resin particles containing a carbon-based radiation heat transfer inhibitor, and the carbon-based radiation heat transfer inhibitor and the foaming agent are contained in the polystyrene-based resin particles. Things.

本発明の発泡性ポリスチレン系樹脂粒子は、真球度0.970以上であり、かつ、アスペクト比が0.95以下である。一般的にはアスペクト比が上記範囲であると発泡後の収縮が生じやすくなるが、真球度が上記範囲を満たすことにより、発泡性ポリスチレン系樹脂粒子を高倍率発泡した場合においても得られる予備発泡粒子において予備発泡直後の収縮が抑制され、養生後に所望の発泡倍率まで回復しうる。また、本発明の発泡性ポリスチレン系樹脂粒子は収縮が抑制されるため、予備発泡粒子を高温で養生する必要がなくなり、更に養生後の倍率管理が容易となる。   The expandable polystyrene resin particles of the present invention have a sphericity of 0.970 or more and an aspect ratio of 0.95 or less. In general, when the aspect ratio is in the above range, shrinkage after foaming is likely to occur, but when the sphericity satisfies the above range, the preliminary ratio obtained even when the expandable polystyrene resin particles are foamed at a high magnification. In the expanded particles, the shrinkage immediately after the pre-expansion is suppressed, and the cured particles can recover to a desired expansion ratio after curing. In addition, since the expandable polystyrene resin particles of the present invention are suppressed from shrinking, it is not necessary to cure the pre-expanded particles at a high temperature, and it becomes easier to control the magnification after curing.

本発明におけるアスペクト比とは、発泡性ポリスチレン系樹脂粒子の投影図の短径、及び長径から以下の式によって算出される。
アスペクト比 =(短径)/(長径)
第一の溶融混練法の特徴から、アスペクト比は0.95以下である。一方、真球度0.970以上を満たすために、アスペクト比は0.75以上であることが好ましい。
The aspect ratio in the present invention is calculated by the following formula from the minor axis and major axis of the projected view of the expandable polystyrene resin particles.
Aspect ratio = (minor axis) / (major axis)
From the characteristics of the first melt-kneading method, the aspect ratio is 0.95 or less. On the other hand, in order to satisfy the sphericity of 0.970 or more, the aspect ratio is preferably 0.75 or more.

本発明における真球度とは、発泡性ポリスチレン系樹脂粒子の投影図の周囲長と面積から以下の式によって算出される。
真球度 = 4×π×(面積)/(周囲長)
収縮抑制の観点から、真球度は0.970以上であることが好ましく、更に0.980以上であることがより好ましい。真球度が0.980以上であると、発泡性ポリスチレン系樹脂粒子の製造から時間が経過して揮発分が低下した状態でも高倍率まで回復することができる。尚、発泡性ポリスチレン系樹脂粒子のアスペクト比及び真球度の詳細な測定方法については後述する。
The sphericity in the present invention is calculated from the perimeter and the area of the projected view of the expandable polystyrene resin particles by the following formula.
Sphericity = 4 x π x (area) / (perimeter) 2
From the viewpoint of suppressing shrinkage, the sphericity is preferably 0.970 or more, and more preferably 0.980 or more. When the sphericity is 0.980 or more, it is possible to recover to a high magnification even in a state where the volatile component has been reduced after a lapse of time since the production of the expandable polystyrene resin particles. The detailed method of measuring the aspect ratio and sphericity of the expandable polystyrene resin particles will be described later.

(ポリスチレン系樹脂)
ポリスチレン系樹脂としては、スチレン単独重合体(ポリスチレンホモポリマー)のみならず、本発明の効果を損なわない範囲で、スチレンと共重合可能な他の単量体又はその誘導体とスチレンとの共重合体であっても良い。これらは一種のみであってもよいし、2種以上を組みあせて使用してもよい。ただし、後述する臭素化ポリスチレン・ブタジエン共重合体は除く。
(Polystyrene resin)
As the polystyrene-based resin, not only a styrene homopolymer (polystyrene homopolymer) but also a copolymer of styrene with another monomer copolymerizable with styrene or a derivative thereof, as long as the effects of the present invention are not impaired. It may be. These may be used alone or in combination of two or more. However, a brominated polystyrene / butadiene copolymer described below is excluded.

スチレンと共重合可能な他の単量体又はその誘導体としては、例えば、メチルスチレン、ジメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、ブロモスチレン、ジブロモスチレン、トリブロモスチレン、クロロスチレン、ジクロロスチレン、トリクロロスチレン等のスチレン誘導体;ジビニルベンゼン等の多官能性ビニル化合物;アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル等の(メタ)アクリル酸エステル化合物;(メタ)アクリロニトリル等のシアン化ビニル化合物;ブタジエン等のジエン系化合物又はその誘導体;無水マレイン酸、無水イタコン酸等の不飽和カルボン酸無水物;N−メチルマレイミド、N−ブチルマレイミド、N−シクロヘキシルマレイミド、N−フェニルマレイミド、N−(2)−クロロフェニルマレイミド、N−(4)−ブロモフェニルマレイミド、N−(1)−ナフチルマレイミド等のN−アルキル置換マレイミド化合物等があげられる。これらは単独で使用してもよく、2種以上を組み合わせて使用してもよい。   Other monomers copolymerizable with styrene or derivatives thereof include, for example, methylstyrene, dimethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene, dichlorostyrene, Styrene derivatives such as trichlorostyrene; polyfunctional vinyl compounds such as divinylbenzene; (meth) acrylate compounds such as methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate; Vinyl cyanide compounds such as (meth) acrylonitrile; diene compounds such as butadiene or derivatives thereof; unsaturated carboxylic anhydrides such as maleic anhydride and itaconic anhydride; N-methylmaleimide, N-butylmaleimide N- cyclohexyl maleimide, N- phenylmaleimide, N- (2) - chlorophenyl maleimide, N- (4) - bromo-phenyl maleimide, N- (1) - N- alkyl-substituted maleimide compounds such as naphthyl maleimide, and the like. These may be used alone or in combination of two or more.

本発明で用いられるポリスチレン系樹脂としては、比較的安価で、特殊な方法を用いずに低圧の水蒸気等で発泡成形ができ、断熱性、難燃性、緩衝性のバランスに優れることから、スチレンホモポリマーを含むことが好ましい。   The polystyrene resin used in the present invention is relatively inexpensive, can be foam-molded with low-pressure steam or the like without using a special method, and has a good balance of heat insulation, flame retardancy, and buffering properties. Preferably, it contains a homopolymer.

本発明においては、本発明の効果を損なわない範囲であれば、ポリスチレン系樹脂を主成分としながら、他の樹脂を併用してもよい。他の樹脂としては、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、アクリル系樹脂など、上述のスチレンと共重合可能な他の単量体又はその誘導体の単独重合体や、それらの共重合体が挙げられる。耐衝撃吸収性や耐熱性の観点から、例えば、ジエン系ゴム強化ポリスチレン、アクリル系ゴム強化ポリスチレン、ポリフェニレンエーテル系樹脂等をブレンドすることもできる。   In the present invention, a polystyrene-based resin may be used as a main component, and another resin may be used in combination as long as the effects of the present invention are not impaired. As other resins, such as polyolefin resins, polyester resins, polycarbonate resins, acrylic resins, homopolymers of the above-mentioned other monomers copolymerizable with styrene or derivatives thereof, and copolymers thereof Is mentioned. From the viewpoint of shock absorption and heat resistance, for example, a diene rubber reinforced polystyrene, an acrylic rubber reinforced polystyrene, a polyphenylene ether resin, or the like can be blended.

(炭素系輻射伝熱抑制剤)
本発明においては、炭素系輻射伝熱抑制剤を発泡性ポリスチレン系樹脂粒子に含有させることにより、高い断熱性を有するポリスチレン系樹脂発泡成形体が得られる。ここで、炭素系輻射伝熱抑制剤とは、近赤外又は赤外領域(例えば、800〜3000nm程度の波長域)の光を反射、散乱又は吸収する特性を有する炭素材料をいう。
(Carbon-based radiation heat transfer inhibitor)
In the present invention, a foamed polystyrene resin article having high heat insulating properties can be obtained by incorporating the carbon-based radiation heat transfer inhibitor into the foamable polystyrene resin particles. Here, the carbon-based radiation heat transfer inhibitor refers to a carbon material having a property of reflecting, scattering, or absorbing light in a near-infrared region or an infrared region (for example, a wavelength region of about 800 to 3000 nm).

炭素系輻射伝熱抑制剤としては、例えば、黒鉛(グラファイト)、グラフェン、カーボンブラック、膨張黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー等が挙げられるが、中でもポリスチレン系樹脂中への分散性とコストの点からグラファイトが好ましい。   Examples of the carbon-based radiant heat transfer inhibitor include graphite (graphite), graphene, carbon black, expanded graphite, activated carbon, carbon nanotube, and carbon nanofiber. Among them, dispersibility in polystyrene resin and cost In view of this, graphite is preferred.

グラファイトとしては、例えば、鱗片状黒鉛、土状黒鉛、球状黒鉛、人造黒鉛等が挙げられる。なお、本明細書において、「鱗片状」という用語は、鱗状、薄片状又は板状のものをも包含する。これらの黒鉛は1種を単独で又は2種以上を組み合わせて使用できる。これらの中でも、輻射伝熱抑制効果が高い点から、鱗片状黒鉛を主成分とする黒鉛混合物が好ましく、鱗片状黒鉛がより好ましい。高発泡化、断熱性、および成形性の観点から、グラファイトの平均粒径が1〜9μmであることが好ましく、2〜6μmであることがより好ましい。グラファイトは平均粒径が小さいほど製造コストが高くなる。平均粒径1μm未満のグラファイトは粉砕のコストを含む製造コストが高いため、非常に高価であり発泡性ポリスチレン系樹脂粒子のコストが高くなる傾向がある。一方、平均粒径が9μmを超えると、発泡性ポリスチレン系樹脂粒子から予備発泡粒子及びポリスチレン系樹脂発泡成形体を製造する際にセル膜が破れやすくなるため、高発泡化が難しくなったり、成形容易性が低下したり、ポリスチレン系樹脂発泡成形体の圧縮強度が低下したりする傾向がある。ここでいう、グラファイトの平均粒径は、JIS Z8825−1に準拠したMie理論に基づきレーザー回折・散乱法により算出されるD50粒径を指す。 Examples of graphite include flaky graphite, earthy graphite, spherical graphite, artificial graphite, and the like. In this specification, the term “scale” includes scale, flake or plate. These graphites can be used alone or in combination of two or more. Among these, a graphite mixture containing flaky graphite as a main component is preferable, and flaky graphite is more preferable, from the viewpoint of high radiation heat transfer suppressing effect. From the viewpoints of high foaming, heat insulation, and moldability, the average particle size of graphite is preferably 1 to 9 μm, and more preferably 2 to 6 μm. As the average particle size of graphite decreases, the production cost increases. Since graphite having an average particle size of less than 1 μm has a high production cost including the cost of pulverization, it is very expensive and the cost of expandable polystyrene resin particles tends to be high. On the other hand, when the average particle size exceeds 9 μm, the cell membrane is easily broken when the pre-expanded particles and the polystyrene resin foam molded article are produced from the expandable polystyrene resin particles, so that high foaming becomes difficult or the molding becomes difficult. There is a tendency that easiness is reduced or the compressive strength of the polystyrene resin foam molded article is reduced. Here, the average particle size of the graphite refers to D 50 particle diameter calculated by a laser diffraction scattering method based on Mie theory conforming to JIS Z8825-1.

本発明の発泡性ポリスチレン系樹脂粒子における炭素系輻射伝熱抑制剤の含有量は、ポリスチレン系樹脂組成物100重量%において2〜10重量%であることが好ましい。目的とする発泡倍率に制御しやすいと共に、熱伝導率低減効果等のバランスの点から、3〜7重量%であることがより好ましく、3〜6重量%がさらに好ましい。炭素系輻射伝熱抑制剤の含有量が2重量%以上であれば熱伝導率低減効果が十分であり、一方、10重量%以下であれば、発泡性ポリスチレン系樹脂粒子から予備発泡粒子及びポリスチレン系樹脂発泡成形体を製造する際にセル膜が破れにくくなるため、高発泡化がし易くなり、発泡倍率の制御が容易になる。   The content of the carbon-based radiation heat transfer inhibitor in the expandable polystyrene-based resin particles of the present invention is preferably 2 to 10% by weight based on 100% by weight of the polystyrene-based resin composition. It is more preferably 3 to 7% by weight, and still more preferably 3 to 6% by weight, from the viewpoint of easy control of the desired expansion ratio and the balance of the effect of reducing the thermal conductivity. When the content of the carbon-based radiant heat transfer inhibitor is 2% by weight or more, the effect of reducing the thermal conductivity is sufficient. On the other hand, when the content is 10% by weight or less, the expandable polystyrene-based resin particles are converted into pre-expanded particles and polystyrene. Since the cell membrane is less likely to be broken during the production of the resin-based foamed molded article, foaming is easily performed, and the control of the expansion ratio is facilitated.

本発明においては、本発明の効果を損なわない範囲であれば、炭素系輻射伝熱抑制剤の他に、他の輻射伝熱抑制剤を添加してもよい。公知の輻射伝熱抑制剤であれば特に限定されないが、例えば、アルミニウム系化合物、亜鉛系化合物、マグネシウム系化合物、チタン系化合物、熱線反射剤、硫酸金属塩、アンチモン系化合物、金属酸化物、熱線吸収剤、金属粒子等が挙げられる。   In the present invention, other radiation heat transfer suppressors may be added in addition to the carbon-based radiation heat transfer suppressor as long as the effects of the present invention are not impaired. Although it is not particularly limited as long as it is a known radiation heat transfer inhibitor, for example, aluminum compounds, zinc compounds, magnesium compounds, titanium compounds, heat ray reflectors, metal sulfates, antimony compounds, metal oxides, heat rays Absorbents, metal particles and the like can be mentioned.

(発泡剤)
本発明で用いられる発泡剤は、特に限定されないが、発泡性と製品ライフのバランスが良く、実際に使用する際に高倍率化しやすい観点から、炭素数3〜6の炭化水素が望ましく、更に望ましくは炭素数4〜5の炭化水素である。発泡剤の炭素数が3以上であると揮発性が低くなり、発泡性ポリスチレン系樹脂粒子にした場合に発泡剤が逸散しにくくなるため、実際に使用する際に発泡工程で発泡剤が十分に残り、十分な発泡力を得ることが可能となり、高倍率化が容易となるため好ましい。また、炭素数が6以下であると、発泡剤の沸点が高すぎないため、予備発泡時の加熱で十分な発泡力を得やすく、高発泡化が易しい傾向となる。炭素数3〜6の炭化水素としては、例えばプロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン、ノルマルヘキサン、又はシクロヘキサン等の炭化水素が挙げられる。これらは1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
(Foaming agent)
The foaming agent used in the present invention is not particularly limited, but is preferably a hydrocarbon having 3 to 6 carbon atoms, and more preferably, from the viewpoint that the foaming property and the product life are well-balanced, and the magnification is easily increased when actually used. Is a hydrocarbon having 4 to 5 carbon atoms. When the carbon number of the foaming agent is 3 or more, the volatility becomes low, and when the foaming polystyrene resin particles are used, the foaming agent does not easily dissipate. This is preferable because sufficient foaming power can be obtained and high magnification can be easily achieved. If the number of carbon atoms is 6 or less, the boiling point of the foaming agent is not too high, so that sufficient foaming power is easily obtained by heating at the time of preliminary foaming, and the foaming tends to be easily performed. Examples of the hydrocarbon having 3 to 6 carbon atoms include hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, neopentane, cyclopentane, normal hexane, and cyclohexane. These may be used alone or in combination of two or more.

また炭化水素以外の発泡剤も使用してもよい。例えば、ジメチルエーテル、ジエチルエーテル等のエーテル類、メタノール、エタノール等のアルコール類、炭酸ガス、窒素、水等が使用可能である。これら発泡剤は1種類のみを単独で使用してよいし、2種以上を混合して使用してもよい。また、上記炭化水素と併用してもよい。   Further, foaming agents other than hydrocarbons may be used. For example, ethers such as dimethyl ether and diethyl ether, alcohols such as methanol and ethanol, carbon dioxide, nitrogen, and water can be used. These foaming agents may be used alone or in a combination of two or more. Moreover, you may use together with the said hydrocarbon.

より高倍率化しやすい観点から、ブタンとペンタンを併用するのがより好ましい。   It is more preferable to use butane and pentane in combination from the viewpoint of easily increasing the magnification.

ブタンとしては、より高倍発泡しやすい観点から、イソブタンを用いることが好ましい。さらに、ペンタンおよびブタンの総量100重量%において、イソブタンが20重量%超50重量%以下含まれることが好ましい。予備発泡直後の収縮抑制による高倍率化と生産安定性の観点から、イソブタンは25重量%〜45重量%がより好ましく、25重量%〜40重量%がさらに好ましく、25重量%〜30重量%が特に好ましい。前記イソブタンが20重量%超であれば、高倍率化しやすく、一方、50重量%以下であれば、溶融混練法で製造する場合において、発泡性ポリスチレン系樹脂粒子作製時の発泡を抑制することができ、発泡性ポリスチレン系樹脂粒子の採取が安定化する。   As butane, it is preferable to use isobutane from the viewpoint of foaming more easily. Further, it is preferable that isobutane is contained in an amount of more than 20% by weight and 50% by weight or less in the total amount of pentane and butane of 100% by weight. From the viewpoint of increasing the magnification by suppressing shrinkage immediately after prefoaming and increasing production stability, isobutane is more preferably 25% by weight to 45% by weight, still more preferably 25% by weight to 40% by weight, and more preferably 25% by weight to 30% by weight. Particularly preferred. When the isobutane content is more than 20% by weight, it is easy to increase the magnification. On the other hand, when the isobutane content is 50% by weight or less, foaming during the production of expandable polystyrene resin particles can be suppressed in the case of production by a melt-kneading method. As a result, the collection of expandable polystyrene resin particles is stabilized.

ペンタンとしては、コストの点でノルマルペンタンおよび/又はイソペンタンを使用することが好ましい。尚、予備発泡後の収縮抑制と発泡成形体の難燃性能とのバランスを鑑みると、ノルマルペンタンとイソペンタンの重量比(ノルマルペンタン/イソペンタン)は100/0〜60/40であることが好ましく、98/2〜60/40がより好ましく、98/2〜70/30がさらに好ましい。   As pentane, it is preferable to use normal pentane and / or isopentane in terms of cost. In consideration of the balance between the suppression of shrinkage after prefoaming and the flame retardancy of the foamed molded article, the weight ratio of normal pentane and isopentane (normal pentane / isopentane) is preferably 100/0 to 60/40, 98/2 to 60/40 are more preferred, and 98/2 to 70/30 are even more preferred.

本発明における発泡剤の添加量は、ポリスチレン系樹脂組成物100重量部に対して、4〜10重量部であることが好ましく、4.5〜9重量部であることがより好ましく、5〜8重量部であることがさらに好ましい。発泡剤の添加量が4重量部以上では、発泡力が十分あり高発泡化し易くなり、高倍率のポリスチレン系樹脂発泡成形体を製造し易くなる。また、発泡剤の量が10重量部以下であれば難燃性能が悪化し難くなると共に、ポリスチレン系樹脂発泡成形体を製造する際の製造時間(成形サイクル)が短くなるため、製造コストを抑えることができる。   The addition amount of the blowing agent in the present invention is preferably 4 to 10 parts by weight, more preferably 4.5 to 9 parts by weight, and more preferably 5 to 8 parts by weight, based on 100 parts by weight of the polystyrene resin composition. More preferably, it is part by weight. When the amount of the foaming agent is 4 parts by weight or more, the foaming power is sufficient, the foaming is easily performed, and a polystyrene resin foam molded article having a high magnification is easily manufactured. Further, when the amount of the foaming agent is 10 parts by weight or less, the flame-retardant performance does not easily deteriorate, and the production time (molding cycle) for producing the polystyrene resin foam molded article is shortened, so that the production cost is suppressed. be able to.

本発明の発泡性ポリスチレン系樹脂粒子は、ポリスチレン系樹脂、炭素系輻射伝熱抑制剤及び発泡剤を含有し、必要に応じて、難燃剤、熱安定剤、ラジカル発生剤、造核剤及びその他の添加剤よりなる群から選ばれる少なくとも1種の任意成分を含有してもよい。   The expandable polystyrene-based resin particles of the present invention contain a polystyrene-based resin, a carbon-based radiant heat transfer inhibitor and a foaming agent, and, if necessary, a flame retardant, a heat stabilizer, a radical generator, a nucleating agent, and others. At least one optional component selected from the group consisting of the additives described above.

(難燃剤)
本発明で用いることができる難燃剤としては、特に限定されず、従来からポリスチレン系樹脂発泡成形体に用いられる公知の難燃剤をいずれも使用できるが、その中でも、難燃性付与効果が高い臭素系難燃剤が好ましい。本発明で用いることができる臭素系難燃剤としては、例えば、2,2−ビス[4−(2,3−ジブロモ−2−メチルプロポキシ)−3,5−ジブロモフェニル]プロパン(別名:テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル))、2,2−ビス[4−(2,3−ジブロモプロポキシ)−3,5−ジブロモフェニル]プロパン(別名:テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル))等の臭素化ビスフェノール系化合物、臭素化スチレン・ブタジエンブロック共重合体、臭素化ランダムスチレン・ブタジエン共重合体、臭素化スチレン・ブタジエングラフト共重合体等の臭素化ブタジエン・ビニル芳香族炭化水素共重合体(例えば、特表2009−516019号公報に開示されている)、テトラブロモシクロオクタン等が挙げられる。これら臭素系難燃剤は1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
(Flame retardants)
The flame retardant that can be used in the present invention is not particularly limited, and any known flame retardant conventionally used for polystyrene-based resin foam molded articles can be used. Among them, bromine having a high flame retardancy-imparting effect is particularly preferred. Flame retardants are preferred. As the brominated flame retardant that can be used in the present invention, for example, 2,2-bis [4- (2,3-dibromo-2-methylpropoxy) -3,5-dibromophenyl] propane (alias: tetrabromo Bisphenol A-bis (2,3-dibromo-2-methylpropyl ether)), 2,2-bis [4- (2,3-dibromopropoxy) -3,5-dibromophenyl] propane (alias: tetrabromobisphenol Brominated bisphenol compounds such as A-bis (2,3-dibromopropyl ether)), brominated styrene / butadiene block copolymer, brominated random styrene / butadiene copolymer, brominated styrene / butadiene graft copolymer Butadiene / vinyl aromatic hydrocarbon copolymers (for example, JP-T-2009-516019) Disclosed), tetrabromobisphenol cyclooctane and the like. One of these brominated flame retardants may be used alone, or two or more thereof may be used in combination.

難燃剤は、目的とする発泡倍率に制御しやすいと共に、炭素系輻射伝熱抑制剤添加時の難燃性等のバランスの点から、ポリスチレン系樹脂組成物100重量%において難燃剤は0.5〜6重量%である範囲で含有されることが好ましく、1〜4重量%であることがより好ましい。難燃剤含有量が0.5重量%以上であると、難燃性付与効果が小さくならず、6重量%以下である、得られるポリスチレン系樹脂発泡成形体の強度が低下し難い。   The flame retardant is easy to control to the desired expansion ratio, and from the viewpoint of the balance of the flame retardancy when the carbon-based radiation heat transfer inhibitor is added, the flame retardant is 0.5% in 100% by weight of the polystyrene resin composition. The content is preferably in the range of 6 to 6% by weight, and more preferably 1 to 4% by weight. When the content of the flame retardant is 0.5% by weight or more, the effect of imparting flame retardancy does not decrease, and when the content is 6% by weight or less, the strength of the obtained polystyrene-based resin foam molded article does not easily decrease.

(熱安定剤)
本発明の発泡性ポリスチレン系樹脂粒子においては、さらに、熱安定剤を併用することによって、製造工程における難燃剤の分解による難燃性の悪化及び発泡性ポリスチレン系樹脂粒子の劣化を抑制することができる。
(Heat stabilizer)
In the expandable polystyrene resin particles of the present invention, further, by using a heat stabilizer in combination, it is possible to suppress the deterioration of the flame retardancy and the deterioration of the expandable polystyrene resin particles due to the decomposition of the flame retardant in the manufacturing process. it can.

本発明における熱安定剤は、用いられるポリスチレン系樹脂の種類、発泡剤の種類及び含有量、炭素系輻射伝熱抑制剤の種類及び含有量、難燃剤の種類及び含有量等に応じて、適宜組み合わせて用いることができる。   The heat stabilizer in the present invention, depending on the type of polystyrene resin used, the type and content of the blowing agent, the type and content of the carbon-based radiant heat transfer inhibitor, the type and content of the flame retardant, etc. They can be used in combination.

本発明で用いられる熱安定剤としては、難燃剤含有混合物の熱重量分析における重量減少温度を任意に制御できる点から、ヒンダードアミン化合物、リン系化合物、エポキシ化合物が望ましい。熱安定剤は1種を単独で又は2種以上を組み合わせて使用できる。なお、これらの熱安定剤は、後述するように耐光性安定剤としても使用できる。   As the heat stabilizer used in the present invention, a hindered amine compound, a phosphorus compound, and an epoxy compound are preferable because the weight loss temperature in the thermogravimetric analysis of the mixture containing a flame retardant can be arbitrarily controlled. The heat stabilizers can be used alone or in combination of two or more. In addition, these heat stabilizers can also be used as a light resistance stabilizer as described later.

熱安定剤は、目的とする発泡倍率に制御しやすいと共に、炭素系輻射伝熱抑制剤添加時の難燃性等のバランスの点から、ポリスチレン系樹脂組成物100重量%において熱安定剤は0.5〜3重量%であることが好ましい。0.5重量%以上であると難燃剤の分解が生じ難く、難燃性付与効果が小さくならず、3重量%以下であると得られるポリスチレン系樹脂発泡成形体の強度が低下し難い。   The heat stabilizer is easily controlled to the desired expansion ratio, and from the viewpoint of the balance of flame retardancy when the carbon-based radiation heat transfer inhibitor is added, the heat stabilizer is 0% in 100% by weight of the polystyrene resin composition. It is preferably from 0.5 to 3% by weight. When the content is 0.5% by weight or more, the flame retardant is hardly decomposed, the effect of imparting flame retardancy is not reduced, and when the content is 3% by weight or less, the strength of the obtained polystyrene resin foam molded article is hard to decrease.

(その他の添加剤)
本発明の発泡性ポリスチレン系樹脂粒子には、上述の添加剤のほかに、本発明の効果を損なわない範囲で、必要に応じて、ラジカル発生剤、加工助剤、耐光性安定剤、造核剤、発泡助剤、帯電防止剤、顔料等の着色剤よりなる群から選ばれる1種以上のその他添加剤を含有していてもよい。ラジカル発生剤としては、例えば、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t−ブチルハイドロパーオキサイド、2,3−ジメチル−2,3−ジフェニルブタン、又はポリ−1,4−イソプロピルベンゼン等が挙げられる。加工助剤としては、ステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム、流動パラフィン等が挙げられる。耐光性安定剤としては、前述したヒンダードアミン類、リン系安定剤、エポキシ化合物の他、フェノール系抗酸化剤、窒素系安定剤、イオウ系安定剤、ベンゾトリアゾール類等が挙げられる。造核剤としては、シリカ、ケイ酸カルシウム、ワラストナイト、カオリン、クレイ、マイカ、酸化亜鉛、炭酸カルシウム、炭酸水素ナトリウム、タルク等の無機化合物、メタクリル酸メチル系共重合体、エチレン−酢酸ビニル共重合体樹脂等の高分子化合物、ポリエチレンワックス等のオレフィン系ワックス、メチレンビスステアリルアマイド、エチレンビスステアリルアマイド、ヘキサメチレンビスパルミチン酸アマイド、エチレンビスオレイン酸アマイド等の脂肪酸ビスアマイド等が挙げられる。発泡助剤としては、大気圧下での沸点が200℃以下である溶剤を望ましく使用でき、例えば、スチレン、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素、シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素、酢酸エチル、酢酸ブチル等の酢酸エステル等が挙げられる。なお、帯電防止剤及び着色剤としては、各種樹脂組成物に用いられるものを特に限定なく使用できる。これらの他の添加剤は、1種を単独で又は2種以上を組み合わせて使用できる。
(Other additives)
In addition to the above-mentioned additives, the expandable polystyrene-based resin particles of the present invention may further include a radical generator, a processing aid, a light-fast stabilizer, and a nucleating agent, as long as the effects of the present invention are not impaired. It may contain one or more other additives selected from the group consisting of a coloring agent such as an agent, a foaming aid, an antistatic agent, and a pigment. Examples of the radical generator include cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, 2,3-dimethyl-2,3-diphenylbutane, and poly-1,4-isopropylbenzene. Can be Examples of the processing aid include sodium stearate, magnesium stearate, calcium stearate, zinc stearate, barium stearate, and liquid paraffin. Examples of the light fastness stabilizer include the above-mentioned hindered amines, phosphorus stabilizers, epoxy compounds, phenolic antioxidants, nitrogen stabilizers, sulfur stabilizers, benzotriazoles and the like. As a nucleating agent, silica, calcium silicate, wollastonite, kaolin, clay, mica, zinc oxide, calcium carbonate, sodium hydrogen carbonate, inorganic compounds such as talc, methyl methacrylate copolymer, ethylene-vinyl acetate Examples thereof include polymer compounds such as copolymer resins, olefin-based waxes such as polyethylene wax, fatty acid bisamides such as methylene bisstearyl amide, ethylene bisstearyl amide, hexamethylene bispalmitic amide, and ethylene bis oleic amide. As the foaming aid, a solvent having a boiling point of 200 ° C. or less at atmospheric pressure can be desirably used. For example, aromatic hydrocarbons such as styrene, toluene, ethylbenzene, and xylene; and alicyclic hydrocarbons such as cyclohexane and methylcyclohexane. Examples include hydrogen, ethyl acetate, and acetic acid esters such as butyl acetate. In addition, as an antistatic agent and a coloring agent, those used for various resin compositions can be used without particular limitation. These other additives can be used alone or in combination of two or more.

本発明のポリスチレン系樹脂予備発泡粒子の平均セル径は、350μm以下となることが好ましく、80μm〜350μmであることがより好ましく、100μm〜300μmであることがさらに好ましく、130μm〜280μmが特に好ましい。平均セル径を350μm以下にすることにより、予備発泡粒子中に存在するセル数が増加し、輻射熱が小さくなり、熱伝導率が良好になる。   The average cell diameter of the polystyrene resin pre-expanded particles of the present invention is preferably 350 μm or less, more preferably 80 μm to 350 μm, further preferably 100 μm to 300 μm, and particularly preferably 130 μm to 280 μm. By setting the average cell diameter to 350 μm or less, the number of cells existing in the pre-expanded particles increases, radiant heat decreases, and thermal conductivity improves.

本発明の発泡性ポリスチレン系樹脂粒子は、輸送効率と保管スペースの観点から、真密度が950〜1060kg/mであることが好ましく、1000〜1055kg/mであることがより好ましく、1010〜1050kg/mがさらに好ましく、1010〜1040kg/mが特に好ましい。 The expandable polystyrene resin particles of the present invention preferably have a true density of 950 to 1060 kg / m 3 , more preferably 1000 to 1055 kg / m 3 , and more preferably 1010 to 1055 kg / m 3 , from the viewpoint of transportation efficiency and storage space. 1050 kg / m 3 is more preferable, and 1010 to 1040 kg / m 3 is particularly preferable.

本発明の発泡性ポリスチレン系樹脂粒子は、発泡性ポリスチレン系樹脂粒子を予備発泡させて10℃で24時間養生した時に予備発泡粒子の揮発分が4.5%〜5.8%であることが好ましく、4.5%〜5.4%であることがより好ましく、4.6%〜5.2%であることがさらに好ましい。ここで、予備発泡粒子の揮発分は、予備発泡粒子を150℃で30分加熱前後の質量変化量を、当該加熱前の予備発泡粒子質量で除した比を指し、当該揮発分が低いほど予備発泡粒子のセル内圧が低下し、収縮が生じやすくなることを意味する。   The expandable polystyrene resin particles of the present invention may have a volatile content of 4.5% to 5.8% when the expandable polystyrene resin particles are prefoamed and cured at 10 ° C. for 24 hours. Preferably, it is 4.5% to 5.4%, more preferably 4.6% to 5.2%. Here, the volatile content of the pre-expanded particles refers to a ratio obtained by dividing the mass change before and after heating the pre-expanded particles at 150 ° C. for 30 minutes by the mass of the pre-expanded particles before the heating. This means that the internal pressure of the expanded particles is reduced, and shrinkage is likely to occur.

上記予備発泡粒子の揮発分が4.5%〜5.8%を満たすことにより、予備発泡粒子の内圧が高くなり、予備発泡粒子のかさ倍率を75倍以上と高倍発泡させた場合においても収縮を抑制することが可能であり、ポリスチレン系樹脂発泡成形体の表面美麗性が良化する。   When the volatile content of the pre-expanded particles satisfies the range of 4.5% to 5.8%, the internal pressure of the pre-expanded particles increases, and the pre-expanded particles shrink even when the bulk ratio is increased to 75 times or more. Can be suppressed, and the surface beauty of the polystyrene-based resin foam molded article is improved.

本発明の発泡性ポリスチレン系樹脂粒子は、発泡性ポリスチレン系樹脂粒子を予備発泡し、養生したかさ倍率75倍以上の予備発泡粒子を発泡成形してポリスチレン系樹脂発泡成形体とした時に熱伝導率λが0.0330W/m・K以下であることが好ましい。ポリスチレン系樹脂発泡成形体の熱伝導率λが0.0330W/m・K以下であると、壁や屋根などの断熱材として用いる際に発泡成形体の厚みを薄くでき、グラスウール等の他の断熱材と同等にコストを抑えることができる。   The expandable polystyrene-based resin particles of the present invention are obtained by pre-expanding expandable polystyrene-based resin particles, and heat-curing the foamed pre-expanded particles having a bulk ratio of 75 times or more into a polystyrene-based resin foam molded article. λ is preferably 0.0330 W / m · K or less. When the thermal conductivity λ of the polystyrene resin foam molded article is 0.0330 W / m · K or less, the thickness of the foam molded article can be reduced when used as a heat insulating material for walls and roofs, and other heat insulating materials such as glass wool can be used. The cost can be reduced as much as the material.

[発泡性ポリスチレン系樹脂粒子の製造方法]
本発明の発泡性ポリスチレン系樹脂粒子は、公知の溶融混練法で得られることができ、具体的には、ポリスチレン系樹脂、炭素系輻射伝熱抑制剤および発泡剤を押出機で溶融混練し(溶融混練工程)、溶融混練物を押出機先端に取り付けられた小孔を有するダイスを通じて加圧循環水で満たされたチャンバー内に押出し(押出工程)、押出直後の溶融混練物を回転カッターにより切断すると共に、加圧循環水により冷却固化する(冷却工程)ことにより製造することができる(以下、「本発明の製法」と称することがある。)
本発明の製法においては、ポリスチレン系樹脂と各種成分との分散性の観点から、予め、二軸の攪拌機を備えた(例えばバンバリーミキサー等)混練装置を用いてポリスチレン系樹脂と各種成分とを荷重をかけて混練して混練物を作製し、得られた混練物とポリスチレン系樹脂とを押出機に投入して溶融混練した後、粒子状に切断することが好ましい。
[Method for producing expandable polystyrene resin particles]
The expandable polystyrene-based resin particles of the present invention can be obtained by a known melt-kneading method. Specifically, a polystyrene-based resin, a carbon-based radiation heat transfer inhibitor, and a foaming agent are melt-kneaded with an extruder ( Melt kneading process), extruding the melt-kneaded material through a die with small holes attached to the extruder tip into a chamber filled with pressurized circulating water (extrusion process), and cutting the melt-kneaded material immediately after extrusion with a rotary cutter In addition, it can be manufactured by cooling and solidifying (cooling step) with pressurized circulating water (hereinafter, may be referred to as “the manufacturing method of the present invention”).
In the production method of the present invention, from the viewpoint of the dispersibility of the polystyrene resin and the various components, the polystyrene resin and the various components are loaded in advance using a kneading apparatus equipped with a biaxial stirrer (for example, a Banbury mixer). It is preferable that the mixture is kneaded to prepare a kneaded product, the obtained kneaded product and a polystyrene resin are put into an extruder, melt-kneaded, and then cut into particles.

本発明の製法の好ましい一形態としては、、ポリスチレン系樹脂及び炭素系輻射伝熱抑制剤を、例えばバンバリーミキサー等の二軸の攪拌機を備えた混練装置により混練してマスターバッチを作製し、作製したマスターバッチと新たなポリスチレン系樹脂と、発泡剤と、必要に応じて難燃剤等その他の成分とを押出機で溶融混練し、得られた樹脂溶融物を押出機先端に取り付けられた小孔を有するダイスを通して加圧循環水で満たされたカッターチャンバー内に押出し、押出直後から回転カッターにより切断すると共に、加圧循環水により冷却固化する。この際、押出機での溶融混練は単独の押出機を使用する場合、押出機を複数連結する場合、押出機とスタティックミキサーやスクリューを有さない攪拌機など第二の混練装置を併用する場合があり、適宜選択することができる。   As a preferred embodiment of the manufacturing method of the present invention, a polystyrene-based resin and a carbon-based radiant heat transfer inhibitor are kneaded by a kneading apparatus equipped with a biaxial stirrer such as a Banbury mixer to prepare a masterbatch, and The masterbatch, a new polystyrene resin, a foaming agent, and other components such as a flame retardant, if necessary, are melt-kneaded with an extruder, and the resulting resin melt is injected into a small hole attached to the tip of the extruder. Is extruded into a cutter chamber filled with pressurized circulating water through a die having the above, cut immediately after extrusion by a rotary cutter, and cooled and solidified by pressurized circulating water. In this case, the melt-kneading in the extruder, when using a single extruder, when connecting a plurality of extruders, when using a second kneading device such as an extruder and a stirrer without a static mixer or a screw may be used in combination. Yes, and can be selected appropriately.

ポリスチレン系樹脂及び炭素系輻射伝熱抑制剤を、二軸の攪拌機を備えた混練装置、例えば荷重をかけた状態で樹脂の混練が可能なインテンシブミキサー、インターナルミキサー、又はバンバリーミキサー等、により混練してマスターバッチを作製することが好ましい。この場合、マスターバッチの濃度は特に限定されないが、炭素系輻射伝熱抑制剤の濃度20重量%〜80重量%で作製することが、混練性とコストとのバランスから好ましい。作製したマスターバッチ、ポリスチレン系樹脂、発泡剤、必要に応じて、難燃剤、熱安定剤、他の添加剤を第1の押出機及び必要に応じて押出機に付随する第2の混練装置で溶融混練し、得られた樹脂溶融物を所定の温度に冷却した後、小孔を有するダイスを通じて、加圧循環水で満たされたカッターチャンバー内に押出す。この押出直後から、回転カッターにより切断してペレット化すると共に、得られたペレット(樹脂粒子)を加圧循環水により冷却固化して発泡性ポリスチレン系樹脂粒子を得ることができる。なお、難燃剤、熱安定剤等の他の添加剤についても、同様に、予め、ポリスチレン系樹脂と他の添加剤とのマスターバッチを作製して、押出機等に投入するようにしても構わない。   Kneading the polystyrene-based resin and the carbon-based radiant heat transfer suppressor with a kneading device equipped with a biaxial stirrer, such as an intensive mixer, an internal mixer, or a Banbury mixer capable of kneading the resin under a load. To prepare a master batch. In this case, the concentration of the masterbatch is not particularly limited, but it is preferable to prepare the masterbatch at a concentration of the carbon-based radiation heat transfer inhibitor of 20% by weight to 80% by weight in view of the balance between kneading properties and cost. The prepared masterbatch, polystyrene resin, foaming agent, and if necessary, a flame retardant, a heat stabilizer, and other additives are added to the first extruder and, if necessary, the second kneading device attached to the extruder. After melt-kneading and cooling the obtained resin melt to a predetermined temperature, it is extruded through a die having small holes into a cutter chamber filled with pressurized circulating water. Immediately after the extrusion, pellets are formed by cutting with a rotary cutter, and the obtained pellets (resin particles) are cooled and solidified by pressurized circulating water to obtain expandable polystyrene resin particles. In addition, regarding other additives such as a flame retardant and a heat stabilizer, similarly, a master batch of a polystyrene-based resin and other additives may be prepared in advance and charged into an extruder or the like. Absent.

押出機の溶融混練部の設定温度は、100℃〜250℃が好ましい。また、押出機にポリスチレン系樹脂及び各種成分を供給してから溶融混練終了までの押出機内滞留時間が10分以下であることが好ましい。押出機の溶融混練部での設定温度が250℃以下、及び/又は溶融混練終了までの押出機内滞留時間が10分以下であれば、難燃剤を添加した場合に難燃剤の分解を生じることなく、所望の難燃性を得ることができ、所望の難燃性を付与する為に難燃剤を過剰に添加する必要もない。一方、押出機の溶融混練部での設定温度が100℃以上であると、押出機の負荷が大きくならず押出が安定になり、添加する成分の分散性が良好になる。   The set temperature of the melt-kneading section of the extruder is preferably from 100C to 250C. Further, it is preferable that the residence time in the extruder from the supply of the polystyrene resin and various components to the end of the melt kneading is 10 minutes or less. If the set temperature in the melt kneading section of the extruder is 250 ° C. or less, and / or the residence time in the extruder until the end of the melt kneading is 10 minutes or less, the flame retardant is not decomposed when the flame retardant is added. The desired flame retardancy can be obtained, and there is no need to add an excessive amount of a flame retardant to impart the desired flame retardancy. On the other hand, when the set temperature in the melt-kneading section of the extruder is 100 ° C. or higher, the load on the extruder is not increased, the extrusion is stabilized, and the dispersibility of the added component is improved.

ダイスに導入される直前の溶融混練物の樹脂温度としては、基材樹脂のガラス転移点(以下、Tg)に対して、Tg+50℃以上、Tg+90℃未満であることが好ましい。基材樹脂がスチレンホモポリマーの場合、150℃を超え、190℃未満であることが好ましい。基材樹脂がスチレンホモポリマーの場合、ダイスに導入される直前の溶融混練物の樹脂温度が190℃以上であると、ダイスでの樹脂切断時の樹脂温度が高くなることによって、発泡性スチレン系樹脂粒子の形状の歪が大きくなる恐れがあり、さらに210℃を超えるとカッターでの切断時にカッターに樹脂が巻きつきやすくなるため、切断が非常に困難になる恐れがある。一方、ダイスに導入される直前の溶融混練物の樹脂温度が150℃以下であると、押出された溶融樹脂の粘度が高くなり、小孔詰まりが発生しやすく、実質小孔開口率の低下が起きる恐れがある。   The resin temperature of the melt-kneaded product immediately before being introduced into the die is preferably Tg + 50 ° C. or higher and lower than Tg + 90 ° C. with respect to the glass transition point (hereinafter, Tg) of the base resin. When the base resin is a styrene homopolymer, the temperature is preferably higher than 150 ° C. and lower than 190 ° C. When the base resin is a styrene homopolymer, if the resin temperature of the melt-kneaded material immediately before being introduced into the die is 190 ° C. or higher, the resin temperature at the time of cutting the resin in the die increases, and the foamable styrene-based The distortion of the shape of the resin particles may increase, and if the temperature exceeds 210 ° C., the resin may be easily wound around the cutter during cutting with the cutter, and the cutting may be extremely difficult. On the other hand, when the resin temperature of the melt-kneaded product immediately before being introduced into the die is 150 ° C. or lower, the viscosity of the extruded molten resin increases, small pore clogging is likely to occur, and a substantial decrease in the small pore opening ratio is caused. There is a risk of getting up.

加圧循環水の水圧は、0.7MPa〜1.5MPaであることが好ましく、0.75〜1.4MPaであることがより好ましい。水圧が0.7MPa以上であれば、発泡を抑制でき、発泡性ポリスチレン系樹脂粒子の真密度が高くなり、発泡倍率の低下や輸送効率の低下が生じにくくなる。一方、水圧が1.5MPa以下であることにより、水圧によって回転カッターが押し戻されず、押出された溶融樹脂が回転カッターに巻きつくことがなく、安定生産できる。   The pressure of the pressurized circulating water is preferably 0.7 MPa to 1.5 MPa, more preferably 0.75 to 1.4 MPa. When the water pressure is 0.7 MPa or more, foaming can be suppressed, the true density of the expandable polystyrene-based resin particles increases, and a decrease in the expansion ratio and a decrease in transport efficiency hardly occur. On the other hand, when the water pressure is 1.5 MPa or less, the rotary cutter is not pushed back by the water pressure, and the extruded molten resin does not wind around the rotary cutter, thereby enabling stable production.

本発明で用いられるダイスは特に限定されないが、例えば、直径0.3mm〜2.0mm、望ましくは0.4mm〜1.0mmの小孔を有するものが挙げられる。   The die used in the present invention is not particularly limited, and examples thereof include a die having a small hole having a diameter of 0.3 mm to 2.0 mm, preferably 0.4 mm to 1.0 mm.

加圧循環水に押出された溶融樹脂を切断する切断装置としては、特に限定されないが、例えば、ダイリップに接触する回転カッターで切断されて小球化され、遠心脱水機まで移送されて脱水・集約される装置、等が挙げられる。   The cutting device for cutting the molten resin extruded into the pressurized circulating water is not particularly limited. For example, the cutting device is cut by a rotary cutter in contact with a die lip, pulverized, transferred to a centrifugal dehydrator, and dewatered / aggregated. And the like.

本発明の製法において、得られる発泡性ポリスチレン系樹脂粒子のアスペクト比および真球度は、溶融樹脂温度、冷却水の水温および水圧、せん断速度等を適宜制御することによって、制御することができる。   In the production method of the present invention, the aspect ratio and sphericity of the obtained expandable polystyrene resin particles can be controlled by appropriately controlling the temperature of the molten resin, the temperature and pressure of the cooling water, the shear rate, and the like.

[ポリスチレン系樹脂発泡成形体]
本発明の発泡性ポリスチレン系樹脂粒子は、特に限定されないが、発泡性ポリスチレン系樹脂粒子を所定の発泡倍率に発泡させて予備発泡粒子とし、この予備発泡粒子を用いて成形を行なう予備発泡法により、ポリスチレン系樹脂発泡成形体を製造することができる。
[Polystyrene resin foam molding]
The expandable polystyrene-based resin particles of the present invention are not particularly limited, but are formed by expanding the expandable polystyrene-based resin particles to a predetermined expansion ratio to form pre-expanded particles, and performing a molding using the pre-expanded particles by a pre-expansion method. Thus, a polystyrene-based resin foam molded article can be manufactured.

ポリスチレン系樹脂発泡成形体は発泡倍率が高いほど原料である発泡性ポリスチレン系樹脂粒子の使用量が少なくなることから、本発明によれば、高発泡倍率のポリスチレン系樹脂発泡成形体をより安価に製造することができる。なお、グラファイトを含有させた従来の発泡性ポリスチレン系樹脂粒子において高倍率発泡は困難であった。しかし、本発明の発泡性ポリスチレン系樹脂粒子及び本発明の製造方法で得られる発泡性ポリスチレン系樹脂粒子は、発泡性ポリスチレン系樹脂粒子の真球度を制御することによって、大きな収縮を伴わず高倍率発泡が可能となり、軽量で取扱性が良く、かつより安価な断熱材を供給することができる。   According to the present invention, a polystyrene-based resin foam molded article has a higher expansion ratio, and the amount of expandable polystyrene-based resin particles used as a raw material is smaller. Can be manufactured. It should be noted that high-expansion foaming was difficult in conventional expandable polystyrene resin particles containing graphite. However, the expandable polystyrene-based resin particles of the present invention and the expandable polystyrene-based resin particles obtained by the production method of the present invention have high shrinkage without significant shrinkage by controlling the sphericity of the expandable polystyrene-based resin particles. Foaming can be performed at a high magnification, and a light-weight, easy-to-handle and cheaper heat insulating material can be supplied.

本発明の発泡性ポリスチレン系樹脂粒子は、公知の予備発泡工程、例えば、水蒸気によって10〜110倍に発泡させて予備発泡粒子とし(予備発泡工程)、必要に応じて一定時間養生させた後、公知の成形機を用い、予備発泡粒子を水蒸気によって成形されてポリスチレン系樹脂発泡成形体が作製される。使用される金型の形状により、複雑な形の型物成形体やブロック状の成形体を得ることができる。   The expandable polystyrene-based resin particles of the present invention are formed in a known pre-expansion step, for example, by foaming 10 to 110 times with steam to obtain pre-expansion particles (pre-expansion step), and after curing for a certain period of time, if necessary, Using a known molding machine, the pre-expanded particles are molded with water vapor to produce a polystyrene resin foam molded article. Depending on the shape of the mold used, a molded article having a complicated shape or a block-shaped molded article can be obtained.

(予備発泡工程)
予備発泡工程は、予備発泡機を用い、従来の発泡性ポリスチレン系樹脂粒子の予備発泡と同様にして実施できる。
(Preliminary foaming process)
The pre-expansion step can be performed using a pre-expansion machine in the same manner as in the conventional pre-expansion of expandable polystyrene resin particles.

予備発泡機としては公知のものを使用でき、例えば、撹拌装置を備え、発泡性ポリスチレン系樹脂粒子が収容される缶と、該缶の下方に設置され、水蒸気を該缶に供給する蒸気チャンバーと、予備発泡粒子排出口とを備えた予備発泡機が用いられる。   As the pre-foaming machine, known ones can be used.For example, a can provided with a stirrer and containing expandable polystyrene resin particles, and a steam chamber installed below the can and supplying steam to the can And a pre-expanding machine provided with a pre-expanded particle discharge port.

水蒸気投入時の缶内圧力(ケージ圧)は特に限定されないが、好ましくは0.001〜0.15MPa、より好ましくは0.01〜0.10MPa、さらに好ましくは0.03〜0.08MPaである。缶内圧力が0.001MPa以上であると、高発泡倍率を得る場合に、予備発泡における水蒸気投入時間を500秒以下にすることができる。缶内圧力が0.15MPa以下であると、水蒸気の圧力を高くすることが必要なくなり、ブロッキング現象の発生数が低下し、予備発泡収率が高くなる。   The pressure in the can (cage pressure) at the time of introducing steam is not particularly limited, but is preferably 0.001 to 0.15 MPa, more preferably 0.01 to 0.10 MPa, and still more preferably 0.03 to 0.08 MPa. . When the pressure in the can is 0.001 MPa or more, the steam injection time in the pre-foaming can be made 500 seconds or less when a high foaming ratio is obtained. When the pressure in the can is 0.15 MPa or less, it is not necessary to increase the pressure of water vapor, the number of occurrences of the blocking phenomenon is reduced, and the prefoaming yield is increased.

また、予備発泡工程は、連続法及びバッチ法のいずれでも行なうことができる。   Further, the pre-foaming step can be performed by any of a continuous method and a batch method.

連続法は、缶内への発泡性ポリスチレン系樹脂粒子の供給、及び缶上部に設けられた排出口からの予備発泡粒子の排出を連続的に行なう方法である。予備発泡粒子の発泡倍率は、例えば、発泡性ポリスチレン系樹脂粒子の缶内への時間当たりの投入量(重量)を適宜選択することにより調整できる。連続法の場合は缶内へ発泡性ポリスチレン系樹脂粒子が供給されてから予備発泡粒子が排出されるまでの予備発泡機缶内での滞留時間を水蒸気投入時間とする。   The continuous method is a method of continuously supplying the expandable polystyrene resin particles into the can and discharging the pre-expanded particles from a discharge port provided at the top of the can. The expansion ratio of the pre-expanded particles can be adjusted, for example, by appropriately selecting the amount (weight) of the expandable polystyrene resin particles charged into the can per hour. In the case of the continuous method, the residence time in the prefoaming machine can from the supply of the expandable polystyrene resin particles into the can to the discharge of the prefoamed particles is defined as the steam injection time.

また、バッチ法は、缶内に所定量の発泡性ポリスチレン系樹脂粒子を入れ、これを所定の発泡倍率に予備発泡させた後に水蒸気の供給を停止し、次いで必要に応じて空気を缶内に吹き込んで予備発泡粒子を冷却及び乾燥し、缶内から取り出す方法である。予備発泡粒子の発泡倍率は、発泡性ポリスチレン系樹脂粒子のバッチあたりの缶内への投入量(重量)を適宜選択することにより調整できる。バッチ法は、投入された発泡性ポリスチレン系樹脂粒子を所定容積まで予備発泡させる方法であることから、バッチ当りの投入量を減らすほど、得られる予備発泡粒子の発泡倍率は高くなる。   In the batch method, a predetermined amount of expandable polystyrene resin particles are put in a can, and after pre-foaming the particles to a predetermined expansion ratio, the supply of water vapor is stopped, and then air is introduced into the can as necessary. This is a method in which the pre-expanded particles are blown, cooled and dried, and taken out of the can. The expansion ratio of the pre-expanded particles can be adjusted by appropriately selecting the amount (weight) of the expandable polystyrene resin particles charged into the can per batch. Since the batch method is a method of pre-expanding the charged expandable polystyrene resin particles to a predetermined volume, the expansion ratio of the obtained pre-expanded particles increases as the input amount per batch decreases.

また、予備発泡直後の予備発泡粒子は養生を行う方が良い。予備発泡時は発泡粒子内に水蒸気が存在するが、発泡後の冷却工程において水蒸気が水に凝縮するため予備発泡直後の予備発泡粒子内部は減圧状態となる。減圧状態では予備発泡粒子の強度が低く、収縮が容易に生じる場合があるため、予備発泡粒子内部を空気と置換し、大気圧に戻す養生工程が有効となる。   It is better to cure the pre-expanded particles immediately after the pre-expansion. At the time of prefoaming, steam is present in the foamed particles. However, in the cooling step after foaming, the steam is condensed into water, so that the inside of the prefoamed particles immediately after the prefoaming is in a reduced pressure state. Under reduced pressure, the strength of the pre-expanded particles is low and shrinkage may easily occur. Therefore, a curing step in which the inside of the pre-expanded particles is replaced with air and the pressure is returned to atmospheric pressure is effective.

養生時の温度は特に限定されないが、好ましくは5〜80℃、より好ましくは10〜70℃、さらに好ましくは23〜60℃である。養生温度が5℃以上であると、減圧状態であった予備発泡粒子内部に空気が導入され易くなり、発泡粒子内部が大気圧に戻り易くなる。養生温度が80℃以下であると、予備発泡粒子に存在する発泡剤が逸散し難くなり、発泡力が低下せず、成形体の表面美麗性が低下しない。   The temperature at the time of curing is not particularly limited, but is preferably 5 to 80 ° C, more preferably 10 to 70 ° C, and further preferably 23 to 60 ° C. When the curing temperature is 5 ° C. or higher, air is easily introduced into the pre-expanded particles that have been in a reduced pressure state, and the inside of the expanded particles is easily returned to the atmospheric pressure. When the curing temperature is 80 ° C. or lower, the foaming agent present in the pre-expanded particles does not easily escape, the foaming power does not decrease, and the surface beauty of the molded body does not decrease.

本発明の発泡性ポリスチレン系樹脂粒子を予備発泡させて予備発泡粒子を得る場合、予備発泡粒子のかさ倍率が75倍以上であることが好ましく、かさ倍率80倍以上がより好ましい。上記予備発泡粒子のかさ倍率が75倍以上であることで、上記予備発泡粒子を成形してなるポリスチレン系樹脂発泡成形体の密度が低下し、より軽量化されたポリスチレン系樹脂発泡成形体の作製が可能となる。また、かさ倍率を高くすることで使用する樹脂量を削減できるためコストダウンにも繋がる。   When the expandable polystyrene resin particles of the present invention are pre-expanded to obtain pre-expanded particles, the pre-expanded particles preferably have a bulk magnification of 75 times or more, more preferably 80 times or more. When the bulk expansion ratio of the pre-expanded particles is 75 times or more, the density of the polystyrene-based resin foam molded product obtained by molding the pre-expanded particles is reduced, and a lighter weight polystyrene-based resin foam molded product is produced. Becomes possible. In addition, increasing the bulk magnification can reduce the amount of resin used, leading to cost reduction.

本発明のポリスチレン系樹脂発泡成形体は、例えば、床、壁、屋根等に用いられる建築用断熱材、魚等の水産物を輸送する箱や野菜等の農産物を輸送する箱等の農水産箱、浴室用断熱材及び貯湯タンク断熱材のような各種用途に使用できる。   Polystyrene resin foam molded article of the present invention, for example, floors, walls, building insulation used for roofs, etc., agricultural and fishery boxes such as boxes for transporting marine products such as fish and boxes for transporting agricultural products such as vegetables, It can be used for various applications such as bathroom insulation and hot water storage tank insulation.

以下、実施例及び比較例に基づいて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例及び比較例における各物性・特性の測定方法及び評価方法は以下のとおりである。   Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited thereto. In addition, the measuring method and evaluation method of each physical property and characteristic in the following Examples and Comparative Examples are as follows.

(発泡性ポリスチレン系樹脂粒子の真球度・アスペクト比)
・ 測定装置;
Retsch Technology製 CAMSIZER P4
(2)設定条件;
フィーダーとファネルパラメーターを次の条件に設定した。
・前方へ高速で動かすときのコントロールレベル:55
・前方へ高速で動かすときの最大時間[秒]:60
・測定開始時のレベル:50
・最大コントロールレベル:75
・目標カバーエリア[%]:0.5
・フィーダの幅[mm]:60
・ガイダンスシートを使用
また以下の条件のとき、測定データとして採用した。
・ベーシックカメラのカバーエリア[%] < 3
・ズームカメラのカバーエリア[%] < 5
但し、撮影した投影図から次の条件を満たす粒子については、測定データから除外した。
・Convexity ≧ 0.99
粒子同士が重なって投影図測定箇所に落下した場合、各粒子の形状を正確に評価できないため、フィーダー及びファネルパラメータを上記条件に設定した。また、多量の粒子が同時に落下してしまうと、同様に各粒子形状の正確な評価ができない可能性がある。このことから、設定したカバーエリア以上の粒子が落ちたときは、その投影図・データを除外した。
更に、埃などの微小異物を影響を除外するため、Convexity(表面凹凸度)が0.99以上のデータは除外して解析を実施した。
(Sphericity and aspect ratio of expandable polystyrene resin particles)
· measuring device;
CAMSIZER P4 manufactured by Retsch Technology
(2) setting conditions;
The feeder and funnel parameters were set to the following conditions.
・ Control level when moving forward at high speed: 55
・ Maximum time when moving forward at high speed [sec]: 60
・ Level at the start of measurement: 50
・ Maximum control level: 75
・ Target coverage area [%]: 0.5
-Feeder width [mm]: 60
・ Guidance sheet was used Under the following conditions, it was adopted as measurement data.
-Basic camera cover area [%] <3
・ Zoom camera cover area [%] <5
However, particles satisfying the following conditions from the photographed projection view were excluded from the measurement data.
・ Convexity ≧ 0.99
When the particles overlap each other and fall to the measurement point of the projection view, the shape of each particle cannot be accurately evaluated. Therefore, the feeder and funnel parameters were set to the above conditions. In addition, if a large amount of particles drop at the same time, it may not be possible to accurately evaluate the shape of each particle. For this reason, when particles larger than the set cover area fell, the projections and data were excluded.
Further, in order to exclude the influence of minute foreign substances such as dust, the analysis was performed by excluding data having a convexity (surface unevenness) of 0.99 or more.

(3)測定方法;
約50gの発泡性ポリスチレン系樹脂粒子の投影図を上記のように設定したCAMSIZER P4によって撮影し、得られた各発泡性ポリスチレン系樹脂粒子の投影図の周囲長、面積、長径、短径を測定した。得られた各発泡性ポリスチレン系樹脂粒子の投影図の周囲長及び面積から以下の式に基づき、真球度の平均値を算出した。
(3) measurement method;
A projection view of about 50 g of expandable polystyrene resin particles was taken by CAMSIZER P4 set as described above, and the perimeter, area, major axis, and minor axis of each of the obtained expandable polystyrene resin particles were measured. did. The average value of the sphericity was calculated from the perimeter and the area of the projection of the obtained expandable polystyrene resin particles based on the following formula.

Figure 2020033481
Figure 2020033481

但し、Sをi番目の粒子の面積(mm)、Rをi番目の粒子の周囲長(mm)とする。 Here, S i is the area of the i-th particle (mm 2 ), and R i is the circumference of the i-th particle (mm).

また、得られた各発泡性ポリスチレン系樹脂粒子の投影図の長径と短径から以下の式に基づき、アスペクト比の平均値を算出した。   Further, the average value of the aspect ratio was calculated from the major axis and the minor axis of the projection view of each of the obtained expandable polystyrene resin particles based on the following equation.

Figure 2020033481
Figure 2020033481

但し、Sをi番目の粒子の短径(mm)、lをi番目の粒子の長径(mm)とする。 Here, S i is the minor axis (mm) of the i-th particle, and l i is the major axis (mm) of the i-th particle.

(発泡性ポリスチレン系樹脂粒子の粒重量)
発泡性ポリスチレン系樹脂粒子100粒の重量を測定し、以下の式に基づき、粒重量を算出した。
(Grain weight of expandable polystyrene resin particles)
The weight of 100 expandable polystyrene resin particles was measured, and the particle weight was calculated based on the following equation.

粒重量(mg/粒)=発泡性ポリスチレン系樹脂粒子100粒の重量(mg)/100   Particle weight (mg / particle) = weight of 100 expandable polystyrene resin particles (mg) / 100

(発泡性ポリスチレン系樹脂粒子の真密度)
発泡性ポリスチレン系樹脂粒子を測定試料としてW(kg)採取し、この測定試料をエタノールが入ったメスシリンダー内に自然落下させ、その質量(kg)と体積(m)を測定し、以下の式に基づき、真密度を測定した。
(True density of expandable polystyrene resin particles)
The expandable polystyrene resin particles were collected as W (kg) as a measurement sample, the measurement sample was naturally dropped into a graduated cylinder containing ethanol, and its mass (kg) and volume (m 3 ) were measured. The true density was measured based on the equation.

真密度(kg/m)=測定試料の重量(W)/測定試料の体積(V)。 True density (kg / m 3 ) = weight of measurement sample (W) / volume of measurement sample (V).

(発泡性ポリスチレン系樹脂粒子の揮発分)
発泡性ポリスチレン系樹脂粒子の揮発分は製造後7日後、及び製造後15日後の発泡性ポリスチレン系樹脂粒子を対象として測定した。
(Volatile content of expandable polystyrene resin particles)
The volatile content of the expandable polystyrene resin particles was measured on the expandable polystyrene resin particles 7 days after the production and 15 days after the production.

発泡性ポリスチレン系樹脂粒子を測定試料としてW(g)採取し、この測定試料をアルミ容器に投入し、150℃の恒温槽で30分加熱し、加熱前後の質量変化から揮発分を算出した。   Expandable polystyrene resin particles were collected as W (g) as a measurement sample, and the measurement sample was put into an aluminum container, heated in a thermostat at 150 ° C. for 30 minutes, and the volatile content was calculated from the change in mass before and after heating.

揮発分(%)={(W1―W2)/W1}×100
ここで、W1を加熱前の発泡性ポリスチレン系樹脂粒子の質量(g)とし、W2を加熱後の発泡性ポリスチレン系樹脂粒子の質量(g)とする。
Volatile content (%) = {(W1-W2) / W1} × 100
Here, W1 is the mass (g) of the expandable polystyrene resin particles before heating, and W2 is the mass (g) of the expandable polystyrene resin particles after heating.

(予備発泡粒子の測定)
以下に示す予備発泡粒子は製造後7日後の発泡性ポリスチレン系樹脂粒子を予備発泡させて得られた予備発泡粒子と製造後15日後の発泡性ポリスチレン系樹脂粒子を予備発泡させて得られた予備発泡粒子を対象として測定した。
(Measurement of pre-expanded particles)
The pre-expanded particles shown below are pre-expanded particles obtained by pre-expanding expandable polystyrene-based resin particles 7 days after production and pre-expanded by expanding foamable polystyrene-based resin particles 15 days after production. The measurement was performed on the expanded particles.

(予備発泡粒子のかさ倍率)
予備発泡粒子を各々測定試料としてW(g)採取し、この測定試料をメスシリンダー内に自然落下させた後にメスシリンダーをたたき試料の見掛け体積V(cm)を一定とし、その質量(g)と体積(cm)を測定し、以下の式に基づき、かさ倍率を測定した。
(Bulk magnification of pre-expanded particles)
Each of the pre-expanded particles was sampled as W (g) as a measurement sample, and the measurement sample was naturally dropped into a graduated cylinder. After the graduated cylinder was knocked, the apparent volume V (cm 3 ) of the sample was fixed, and its mass (g) was measured. And the volume (cm 3 ) were measured, and the bulk magnification was measured based on the following equation.

かさ倍率(cm/g)=測定試料の体積(V)/測定試料の重量(W) Bulk magnification (cm 3 / g) = volume of measurement sample (V) / weight of measurement sample (W)

尚、予備発泡粒子において、予備発泡機から予備発泡粒子が排出された後5〜10分以内に測定したかさ倍率を発泡直後のかさ倍率と定義する。
更に、発泡直後のかさ倍率の測定後、10℃で24時間養生した後の予備発泡粒子のかさ倍率を養生後のかさ倍率と定義する。
なお、ポリスチレン系樹脂予備発泡粒子のかさ倍率「倍」は慣習的に「cm/g」でも表されている。
In the pre-expanded particles, the bulk magnification measured within 5 to 10 minutes after the pre-expanded particles are discharged from the pre-expanding machine is defined as the bulk magnification immediately after foaming.
Furthermore, after measuring the bulk magnification immediately after foaming, the bulk magnification of the pre-expanded particles after curing at 10 ° C. for 24 hours is defined as the bulk magnification after curing.
Incidentally, the bulk magnification “times” of the polystyrene-based resin pre-expanded particles is conventionally also expressed in “cm 3 / g”.

(養生後の予備発泡粒子揮発分)
上記の10℃で24時間養生した後の予備発泡粒子を対象として測定を行った。10℃で24時間養生した後の予備発泡粒子を測定試料としてW(g)採取し、この測定試料をアルミ容器に投入し、150℃の恒温槽で30分加熱し、加熱前後の質量変化から揮発分を算出した。
揮発分(%)={(W3―W4)/W3}×100
ここで、W3を加熱前の予備発泡粒子の質量(g)とし、W4を加熱後の予備発泡粒子の質量(g)とする。
(Volatile content of pre-expanded particles after curing)
The measurement was performed on the pre-expanded particles after curing at 10 ° C. for 24 hours. The pre-expanded particles after curing at 10 ° C. for 24 hours were sampled as W (g) as a measurement sample, and the measurement sample was put into an aluminum container, heated in a thermostat at 150 ° C. for 30 minutes, and the change in mass before and after heating was measured. The volatile content was calculated.
Volatile content (%) = {(W3-W4) / W3} × 100
Here, W3 is the mass (g) of the pre-expanded particles before heating, and W4 is the mass (g) of the pre-expanded particles after heating.

(ポリスチレン系樹脂発泡成形体の測定)
以下の測定では、製造後7日後の発泡性ポリスチレン系樹脂粒子を予備発泡させて得られた予備発泡粒子を発泡成形した成形体と、製造後15日後の発泡性ポリスチレン系樹脂粒子を予備発泡させて得られた予備発泡粒子を発泡成形した成形体とを対象とした。
(Measurement of polystyrene resin foam molding)
In the following measurement, the molded article obtained by foaming the pre-expanded particles obtained by pre-expanding the expandable polystyrene resin particles 7 days after production and the expandable polystyrene resin particles 15 days after production were pre-expanded. And a molded article obtained by subjecting the pre-expanded particles obtained in this manner to foam molding.

(ポリスチレン系樹脂発泡成形体の発泡倍率)
成型金型から取り出したポリスチレン系樹脂発泡成形体を30℃で24時間乾燥させた後、発泡成形体の重量(g)を測定すると共に、ノギスを用いて、縦寸法、横寸法、厚さ寸法を測定した。測定された各寸法からポリスチレン系樹脂発泡成形体の体積(cm)を計算し、下記計算式に従って発泡倍率を算出した。
(Expansion ratio of foamed polystyrene resin)
After drying the polystyrene-based resin foam molded product taken out of the molding die at 30 ° C. for 24 hours, the weight (g) of the foam molded product is measured, and the vertical dimension, the horizontal dimension, and the thickness dimension are measured using calipers. Was measured. The volume (cm 3 ) of the polystyrene resin foam molded article was calculated from the measured dimensions, and the expansion ratio was calculated according to the following formula.

発泡倍率(cm/g)=試験片体積(cm)/試験片重量(g)
なお、ポリスチレン系樹脂発泡成形体の発泡倍率「倍」は慣習的に「cm/g」でも表されている。
Foaming ratio (cm 3 / g) = volume of test piece (cm 3 ) / weight of test piece (g)
In addition, the expansion ratio “times” of the polystyrene-based resin foam molded body is conventionally also expressed as “cm 3 / g”.

(ポリスチレン系樹脂発泡成形体の熱伝導率)
一般的に熱伝導率の測定平均温度が大きい方が熱伝導率の値は大きくなることが知られており、断熱性を比較するためには測定平均温度を定める必要がある。本明細書では発泡プラスチック保温材の規格であるJIS A9511:2006Rで定められた23℃を基準に採用している。
(Thermal conductivity of foamed polystyrene resin)
It is generally known that the larger the measured average temperature of the thermal conductivity is, the larger the value of the thermal conductivity is. It is necessary to determine the measured average temperature in order to compare the heat insulation properties. In this specification, 23 ° C. defined in JIS A9511: 2006R, which is a standard for foamed plastic heat insulating materials, is adopted as a reference.

ポリスチレン系樹脂発泡成形体の中層部から、長さ300mm×幅300mm×25mmのスキンなし試験片を切り出した。試験片を60℃にて48時間静置し、さらに、23℃にて24時間静置した後、熱伝導率測定装置(英弘精機(株)製、HC−074)を用いて、JIS A1412−2:1999に準拠して熱流計法にて平均温度23℃、温度差20℃で熱伝導率を測定した。   From the middle layer of the polystyrene resin foam molded article, a test piece without skin having a length of 300 mm × a width of 300 mm × 25 mm was cut out. The test piece was allowed to stand at 60 ° C. for 48 hours, and further allowed to stand at 23 ° C. for 24 hours. Then, using a thermal conductivity measuring device (manufactured by Eiko Seiki Co., Ltd., HC-074), JIS A1412- 2: The heat conductivity was measured at an average temperature of 23 ° C. and a temperature difference of 20 ° C. by a heat flow meter method according to 1999.

(ポリスチレン系樹脂発泡成形体の平均セル径)
(1)観察条件
装置:キーエンス社製 DIGITAL MICROSCOPE VHX−900
(2)測定条件
ポリスチレン系樹脂発泡成形体をカミソリで切削し、その断面をキーエンス社製 DIGITAL MICROSCOPEを用いて、観察倍率100倍で写真を撮影した。その断面の1000μm×1000μm四方の範囲内に存在するセル数をカウントした。そのセル数を用い、以下の式に基づき、平均セル径を算出した。
平均セル径(μm)=2×{1000μm×1000μm/(セル数×円周率)}0.5
以下に、実施例及び比較例で用いた原材料を示す。
(Average cell diameter of foamed polystyrene resin)
(1) Observation condition device: DIGITAL MICROSCOPE VHX-900 manufactured by KEYENCE CORPORATION
(2) Measurement conditions A polystyrene-based resin foam molded article was cut with a razor, and a cross section was photographed at 100 × magnification using DIGITAL MICROSCOPE manufactured by KEYENCE CORPORATION. The number of cells existing within a 1000 μm × 1000 μm square area of the cross section was counted. Using the number of cells, an average cell diameter was calculated based on the following equation.
Average cell diameter (μm) = 2 × {1000 μm × 1000 μm / (number of cells × pi)} 0.5
Hereinafter, raw materials used in Examples and Comparative Examples are shown.

(スチレン系樹脂)
(A)スチレンホモポリマー[PSジャパン(株)製、680]
(グラファイト)
(B)グラファイト[(株)丸豊鋳材製作所製、鱗片状黒鉛SGP−40B]
(臭素系難燃剤)
(C)2,2−ビス[4−(2,3−ジブロモ−2−メチルプロポキシ)−3,5−ジブロモフェニル]プロパン[第一工業製薬(株)製、SR−130、臭素含有量=66重量%]
(Styrene resin)
(A) Styrene homopolymer [680 g, manufactured by PS Japan Ltd.]
(Graphite)
(B) Graphite [Scaly graphite SGP-40B manufactured by Maruho Casting Co., Ltd.]
(Brominated flame retardant)
(C) 2,2-bis [4- (2,3-dibromo-2-methylpropoxy) -3,5-dibromophenyl] propane [Daiichi Kogyo Seiyaku Co., Ltd., SR-130, bromine content = 66% by weight]

(熱安定剤)
(D1)テトラキス(2,2,6,6−テトラメチルピペリジルオキシカルボニル)ブタン[(株)ADEKA製 LA−57]
(D2)ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト[(株)ADEKA製 PEP−36]
(Heat stabilizer)
(D1) Tetrakis (2,2,6,6-tetramethylpiperidyloxycarbonyl) butane [LA-57 manufactured by ADEKA Corporation]
(D2) Bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite [PEP-36 manufactured by ADEKA Corporation]

(発泡剤)
(E1)ノルマルペンタン[和光純薬工業(株)製、試薬品]
(E2)イソペンタン[和光純薬工業(株)製、試薬品]
(E3)イソブタン[三井化学(株)製]
(Foaming agent)
(E1) Normal pentane [Wako Pure Chemical Industries, Ltd., reagent product]
(E2) Isopentane [Wako Pure Chemical Industries, Ltd., reagent product]
(E3) Isobutane [manufactured by Mitsui Chemicals, Inc.]

(その他添加剤)
(F)エチレンビスステアリン酸アミド[日油(株)製、アルフローH−50S]
(Other additives)
(F) Ethylene bisstearic acid amide [NOF Corporation, Alflow H-50S]

(製造例1)(グラファイトマスターバッチ(G))
バンバリーミキサーに、ポリスチレン系樹脂(A)49重量部、グラファイト(B)50重量部、エチレンビスステアリン酸アミド(F)1重量部を投入して、5kgf/cmの荷重をかけた状態で加温冷却を行わずに20分間溶融混練した。この際、樹脂温度を測定したところ180℃であった。ルーダーに供給して先端に取り付けられた小穴を有するダイスを通して吐出250kg/hrで押出されたストランド状の樹脂を30℃の水槽で冷却固化させた後、切断してマスターバッチ(G)を得た。マスターバッチ(G)中のグラファイト含有量は50重量%であった。
(Production Example 1) (Graphite Masterbatch (G))
Into a Banbury mixer, 49 parts by weight of a polystyrene resin (A), 50 parts by weight of graphite (B), and 1 part by weight of ethylene bisstearic acid amide (F) were added, and a load of 5 kgf / cm 2 was applied. Melt kneading was performed for 20 minutes without performing cooling. At this time, the resin temperature was measured to be 180 ° C. A strand-like resin extruded at a discharge of 250 kg / hr through a die having a small hole attached to the tip by being supplied to a ruder is cooled and solidified in a water bath at 30 ° C., and then cut to obtain a master batch (G). . The graphite content in the masterbatch (G) was 50% by weight.

(製造例2)(臭素系難燃剤と熱安定剤との混合物のマスターバッチ(H))
二軸押出機に、ポリスチレン系樹脂(A)を供給して溶融混練した後、押出機途中より臭素系難燃剤(C)、安定剤(D1)及び(D2)の混合物を供給して、さらに溶融混練した。ただし、各材料の重量比率は、(A):(C):(D1):(D2)=70:28.5:0.6:0.9、(A)+(C)+(D1)+(D2)=100重量%とした。押出機先端に取り付けられた小穴を有するダイスを通して、吐出300kg/hrで押出されたストランド状の溶融物を20℃の水槽で冷却固化させた後、切断して臭素系難燃剤と熱安定剤との混合物のマスターバッチ(H)を得た。このとき押出機の設定温度は170℃で実施した。
(Production Example 2) (Master batch (H) of a mixture of a brominated flame retardant and a heat stabilizer)
After the polystyrene resin (A) is supplied to the twin screw extruder and melt-kneaded, a mixture of the bromine flame retardant (C), the stabilizer (D1) and the (D2) is supplied from the middle of the extruder. It was melt-kneaded. However, the weight ratio of each material is (A) :( C) :( D1) :( D2) = 70: 28.5: 0.6: 0.9, (A) + (C) + (D1) + (D2) = 100% by weight. A strand-like melt extruded at a discharge of 300 kg / hr is cooled and solidified in a water bath at 20 ° C. through a die having a small hole attached to the tip of the extruder, and then cut to obtain a brominated flame retardant and a heat stabilizer. To obtain a master batch (H). At this time, the set temperature of the extruder was 170 ° C.

(参考例1)
[ポリスチレン系樹脂粒子の作製]
ポリスチレン系樹脂(A)、マスターバッチ(H)、及び、グラファイトマスターバッチ(G)を、それぞれブレンダーに投入して、10分間ブレンドし、樹脂混合物を得た。各材料の重量比は、(A):(H):(G)=83.65:8.35:8.00、(A)+(H)+(G)=100重量%であった。得られた樹脂混合物を口径40mmの同方向2軸押出機に供給し、設定温度190℃、スクリュ回転数230rpmで溶融混練し、押出機先端に取り付けられた直径1.4mmの小穴が30穴設けられたダイスを通じて、吐出量70kg/時間で押出されたストランド状の樹脂を20℃の水槽で冷却固化させた後、ストランドカッターで切断し、スチレン系樹脂粒子を得た。この時の押出機先端での樹脂温度は220℃であった。
(Reference Example 1)
[Preparation of polystyrene resin particles]
The polystyrene-based resin (A), the masterbatch (H), and the graphite masterbatch (G) were each charged into a blender and blended for 10 minutes to obtain a resin mixture. The weight ratio of each material was (A) :( H) :( G) = 83.65: 8.35: 8.00, (A) + (H) + (G) = 100% by weight. The obtained resin mixture is supplied to a coaxial twin-screw extruder having a diameter of 40 mm, melt-kneaded at a set temperature of 190 ° C. and a screw rotation speed of 230 rpm, and 30 small holes having a diameter of 1.4 mm attached to the extruder tip are provided. The strand resin extruded at a discharge rate of 70 kg / hour through the die thus obtained was cooled and solidified in a water bath at 20 ° C., and then cut with a strand cutter to obtain styrene resin particles. At this time, the resin temperature at the extruder tip was 220 ° C.

[発泡性ポリスチレン系樹脂粒子の作製]
次いで,容積が6Lの撹拌装置付きオートクレーブに,得られたスチレン系樹脂粒子100重量部に対して脱イオン水200重量部、リン酸三カルシウム1重量部、ドデシルベンゼンスルホン酸ナトリウム0.03重量部、塩化ナトリウム1重量部を投入し圧力容器を密閉した。その後1時間で105℃まで加温し、発泡剤として混合ペンタン(ノルマルペンタン80%とイソペンタン20%の混合物)7重量部及びイソブタン1.5重量部を30分間かけて圧力容器内に添加した後、115℃まで10分かけて昇温し、そのまま4時間保持した。保持後室温まで冷却し、オートクレーブから発泡剤の含浸された樹脂粒子を取り出し、塩酸での酸洗、水洗し、遠心分離機で脱水後、気流乾燥機で樹脂粒子表面に付着している水分を乾燥させた。得られた発泡性ポリスチレン系樹脂粒子の粒重量は1.5mg/粒、アスペクト比は0.985、真球度は0.988であった。得られた発泡性ポリスチレン系樹脂粒子100重量部に対して、ステアリン酸亜鉛0.08重量部をドライブレンドした後、10℃で保管した。
[Preparation of expandable polystyrene resin particles]
Next, 200 parts by weight of deionized water, 1 part by weight of tricalcium phosphate, and 0.03 parts by weight of sodium dodecylbenzenesulfonate were added to an autoclave with a stirrer having a volume of 6 L based on 100 parts by weight of the obtained styrene resin particles. And 1 part by weight of sodium chloride, and the pressure vessel was sealed. Thereafter, the mixture was heated to 105 ° C. in 1 hour, and 7 parts by weight of mixed pentane (a mixture of 80% normal pentane and 20% isopentane) and 1.5 parts by weight of isobutane were added as a blowing agent to the pressure vessel over 30 minutes. The temperature was raised to 115 ° C. over 10 minutes, and the temperature was maintained for 4 hours. After holding, the mixture is cooled to room temperature, the resin particles impregnated with the foaming agent are taken out of the autoclave, pickled with hydrochloric acid, washed with water, dehydrated with a centrifugal separator, and then dried with a flash dryer to remove moisture adhering to the resin particle surfaces. Let dry. The particle weight of the obtained expandable polystyrene resin particles was 1.5 mg / particle, the aspect ratio was 0.985, and the sphericity was 0.988. After dry blending 0.08 parts by weight of zinc stearate with respect to 100 parts by weight of the obtained expandable polystyrene resin particles, the mixture was stored at 10 ° C.

[予備発泡粒子の作製]
発泡性ポリスチレン系樹脂粒子を作製し、10℃で保管してから15日後に発泡性ポリスチレン系樹脂粒子250gを大開工業(株)製バッチ式予備発泡機に投入し、0.1MPaの水蒸気を予備発泡機に導入して発泡させた。予備発泡直後のかさ倍率は80cm/gであった。その後、10℃で24時間養生した後の予備発泡粒子のかさ倍率は81cm/gであった。
[Preparation of pre-expanded particles]
Expandable polystyrene resin particles were prepared, and stored at 10 ° C., and 15 days later, 250 g of expandable polystyrene resin particles were charged into a batch type pre-expansion machine manufactured by Daikai Kogyo Co., Ltd. It was introduced into a foaming machine and foamed. The bulk magnification immediately after prefoaming was 80 cm 3 / g. Thereafter, the bulk ratio of the pre-expanded particles after curing at 10 ° C. for 24 hours was 81 cm 3 / g.

[ポリスチレン系樹脂発泡成形体の作製]
養生後の予備発泡粒子を、発泡スチロール用成形機[ダイセン工業(株)製、KR−57]に取り付けた型内成形用金型(長さ400mm×幅400mm×厚み50mm)内に充填して、0.06MPaの水蒸気を導入して型内発泡させた後、金型に水を噴霧して冷却した。ポリスチレン系樹脂発泡成形体が金型を押す圧力が0.01MPa(ゲージ圧力)なるまでポリスチレン系樹脂発泡成形体を金型内に保持した後に、ポリスチレン系樹脂発泡成形体取り出し、30℃にて24時間乾燥させ、ポリスチレン系樹脂発泡成形体を得た。得られたポリスチレン系樹脂発泡体の発泡倍率は81cm/gであった。
[Preparation of foamed polystyrene resin]
The pre-expanded particles after curing are filled in an in-mold molding die (length 400 mm × width 400 mm × thickness 50 mm) attached to a styrofoam molding machine [KR-57 manufactured by Daisen Industries Co., Ltd.] After introducing water vapor of 0.06 MPa to cause foaming in the mold, water was sprayed on a mold and cooled. After holding the polystyrene resin foam molded article in the mold until the pressure at which the polystyrene resin foam molded article presses the mold becomes 0.01 MPa (gauge pressure), take out the polystyrene resin foam molded article and remove it at 30 ° C. After drying for an hour, a polystyrene-based resin foam molded article was obtained. The expansion ratio of the obtained polystyrene resin foam was 81 cm 3 / g.

作製された発泡性ポリスチレン系樹脂粒子、予備発泡粒子、および、ポリスチレン系樹脂発泡成形体について、各種特性を上述の測定方法および評価方法により測定および評価した。測定結果及び評価結果を表1に示す。   Various characteristics of the produced expandable polystyrene-based resin particles, pre-expanded particles, and foamed polystyrene-based resin were measured and evaluated by the above-described measurement methods and evaluation methods. Table 1 shows the measurement results and the evaluation results.

(実施例1)
[発泡性ポリスチレン系樹脂粒子の作製]
ポリスチレン系樹脂(A)、マスターバッチ(H)、及び、グラファイトマスターバッチ(G)を、それぞれブレンダーに投入して、10分間ブレンドし、樹脂混合物を得た。各材料の重量比は、(A):(H):(G)=83.65:8.35:8.00((A)+(H)+(G)=100重量%)であった。
(Example 1)
[Production of expandable polystyrene resin particles]
The polystyrene-based resin (A), the masterbatch (H), and the graphite masterbatch (G) were each charged into a blender and blended for 10 minutes to obtain a resin mixture. The weight ratio of each material was (A) :( H) :( G) = 83.65: 8.35: 8.00 ((A) + (H) + (G) = 100% by weight). .

得られた樹脂混合物を口径40mmの同方向2軸押出機(第1押出機)と口径90mmの単軸押出機(第2押出機)を直列に連結したタンデム型二段押出機へ供給し、口径40mm押出機の設定温度190℃、回転数230rpmにて溶融混練した。口径40mm押出機(第1押出機)の途中から、上記樹脂混合物100重量部に対して、混合ペンタン[ノルマルペンタン(E1)80重量%とイソペンタン(E2)20重量%の混合物]を5.2重量部及びイソブタン(E3)を2.5重量部圧入し、合計7.7重量部の発泡剤を添加した。その後、200℃に設定された継続管を通じて、口径90mm押出機(第2押出機)に供給した。     The obtained resin mixture is supplied to a tandem-type two-stage extruder in which a coaxial twin-screw extruder (first extruder) having a diameter of 40 mm and a single-screw extruder (second extruder) having a diameter of 90 mm are connected in series, The mixture was melt-kneaded at a set temperature of 190 ° C. and a rotation number of 230 rpm in a 40 mm extruder. In the middle of a 40 mm-diameter extruder (first extruder), mixed pentane (a mixture of 80% by weight of normal pentane (E1) and 20% by weight of isopentane (E2)) was added to 100 parts by weight of the above resin mixture. Parts by weight and 2.5 parts by weight of isobutane (E3) were introduced, and a total of 7.7 parts by weight of a blowing agent was added. Then, it supplied to the 90-mm diameter extruder (2nd extruder) through the continuous pipe | tube set to 200 degreeC.

口径90mm押出機(第2押出機)にて樹脂温度を159℃まで溶融樹脂を冷却した後、250℃に設定した第2押出機の先端に取り付けられた直径0.65mm、ランド長5.0mmの小孔を78個有するダイスから、吐出量76kg/時間で、温度65℃及び1.4MPaの加圧循環水中に押出した。押出された溶融樹脂は、ダイスに接触する6枚の刃を有する回転カッターを用いて、2100rpmの条件にて切断・小粒化され、遠心脱水機に移送されて、発泡性ポリスチレン系樹脂粒子を得た。得られた発泡性ポリスチレン系樹脂粒子の粒重量は1.6mg/粒、アスペクト比は0.918、真球度は0.988であった。得られた発泡性ポリスチレン系樹脂粒子100重量部に対して、ステアリン酸亜鉛0.08重量部をドライブレンドした後、30℃で保管した。   After cooling the molten resin to a resin temperature of 159 ° C. with a 90 mm diameter extruder (second extruder), a diameter of 0.65 mm and a land length of 5.0 mm were attached to the tip of the second extruder set at 250 ° C. Was extruded from a die having 78 small holes into pressurized circulating water at a temperature of 65 ° C. and 1.4 MPa at a discharge rate of 76 kg / hour. The extruded molten resin is cut and reduced in size at 2100 rpm using a rotary cutter having six blades that come into contact with a die, and transferred to a centrifugal dehydrator to obtain expandable polystyrene resin particles. Was. The particle weight of the obtained expandable polystyrene resin particles was 1.6 mg / particle, the aspect ratio was 0.918, and the sphericity was 0.988. After dry blending 0.08 parts by weight of zinc stearate with respect to 100 parts by weight of the obtained expandable polystyrene resin particles, the mixture was stored at 30 ° C.

[予備発泡粒子の作製]
発泡性ポリスチレン系樹脂粒子を作製し、30℃で保管してから7日後に参考例1と同様に発泡性ポリスチレン系樹脂粒子250gを大開工業(株)製バッチ式予備発泡機に投入し、0.1MPaの水蒸気を予備発泡機に導入して発泡させた。予備発泡直後のかさ倍率は77cm/gであった。その後、10℃で24時間養生した後の予備発泡粒子のかさ倍率は83cm/gであった。
[Preparation of pre-expanded particles]
Seven days after producing expandable polystyrene resin particles and storing at 30 ° C., 250 g of expandable polystyrene resin particles were put into a batch type prefoaming machine manufactured by Daikai Kogyo Co., Ltd. 0.1 MPa of steam was introduced into a prefoaming machine to foam. The bulk magnification immediately after prefoaming was 77 cm 3 / g. Thereafter, the bulk magnification of the pre-expanded particles after curing at 10 ° C. for 24 hours was 83 cm 3 / g.

更に、発泡性ポリスチレン系樹脂粒子のビーズライフを確認するため、発泡性ポリスチレン系樹脂粒子を作製し、30℃で保管してから15日後に発泡性ポリスチレン系樹脂粒子250gを大開工業(株)製バッチ式予備発泡機に投入し、0.1MPaの水蒸気を予備発泡機に導入して発泡させた。予備発泡直後のかさ倍率は75cm/gであった。その後、10℃で24時間養生した後の予備発泡粒子のかさ倍率は80cm/gであった。 Further, in order to confirm the bead life of the expandable polystyrene resin particles, expandable polystyrene resin particles were prepared and stored at 30 ° C., and after 15 days, 250 g of expandable polystyrene resin particles were manufactured by Daikai Kogyo Co., Ltd. It was charged into a batch type prefoaming machine, and steam of 0.1 MPa was introduced into the prefoaming machine to foam. The bulk magnification immediately after prefoaming was 75 cm 3 / g. Thereafter, the bulk expansion ratio of the pre-expanded particles after curing at 10 ° C. for 24 hours was 80 cm 3 / g.

[ポリスチレン系樹脂発泡成形体の作製]
参考例1と同様の処理を行い、ポリスチレン系樹脂発泡成形体を作製した。参考例1と同様に評価し、その測定結果及び評価結果を表1に示す。
[Production of foamed polystyrene resin]
The same processing as in Reference Example 1 was performed to produce a polystyrene resin foam molded article. Evaluation was performed in the same manner as in Reference Example 1, and the measurement results and evaluation results are shown in Table 1.

(実施例2)
[ポリスチレン系樹脂粒子の作製]において、口径90mm押出機(第2押出機)にて168℃まで溶融樹脂の温度を冷却した以外は、実施例1と同様の処理によりポリスチレン系樹脂発泡成形体を作製した。実施例1と同様に評価し、その測定結果及び評価結果を表1に示す。
(Example 2)
Except that the temperature of the molten resin was cooled to 168 ° C. by a 90 mm diameter extruder (second extruder) in [Production of polystyrene resin particles], a foamed polystyrene resin article was obtained by the same treatment as in Example 1. Produced. Evaluation was performed in the same manner as in Example 1, and the measurement results and evaluation results are shown in Table 1.

(実施例3)
[ポリスチレン系樹脂粒子の作製]において、口径90mm押出機(第2押出機)にて177℃まで溶融樹脂の温度を冷却した以外は、実施例1と同様の処理によりポリスチレン系樹脂発泡成形体を作製した。実施例1と同様に評価し、その測定結果及び評価結果を表1に示す。
(Example 3)
In [Production of polystyrene-based resin particles], a polystyrene-based resin foam was formed by the same treatment as in Example 1 except that the temperature of the molten resin was cooled to 177 ° C. with a 90 mm-diameter extruder (second extruder). Produced. Evaluation was performed in the same manner as in Example 1, and the measurement results and evaluation results are shown in Table 1.

(実施例4)
[ポリスチレン系樹脂粒子の作製]において、口径90mm押出機(第2押出機)にて182℃まで溶融樹脂の温度を冷却した以外は、実施例1と同様の処理によりポリスチレン系樹脂発泡成形体を作製した。実施例1と同様に評価し、その測定結果及び評価結果を表1に示す。
(Example 4)
In [Production of polystyrene-based resin particles], a foamed polystyrene-based resin article was produced in the same manner as in Example 1 except that the temperature of the molten resin was cooled to 182 ° C. using a 90 mm-diameter extruder (second extruder). Produced. Evaluation was performed in the same manner as in Example 1, and the measurement results and evaluation results are shown in Table 1.

(実施例5)
[ポリスチレン系樹脂粒子の作製]において、口径90mm押出機(第2押出機)にて186℃まで溶融樹脂の温度を冷却した以外は、実施例1と同様の処理によりポリスチレン系樹脂発泡成形体を作製した。実施例1と同様に評価し、その測定結果及び評価結果を表1に示す。
(Example 5)
In [Production of polystyrene-based resin particles], a polystyrene-based resin foam was formed by the same treatment as in Example 1 except that the temperature of the molten resin was cooled to 186 ° C. by a 90 mm-diameter extruder (second extruder). Produced. Evaluation was performed in the same manner as in Example 1, and the measurement results and evaluation results are shown in Table 1.

(比較例1)
[ポリスチレン系樹脂粒子の作製]において、口径90mm押出機(第2押出機)にて190℃まで溶融樹脂の温度を冷却した以外は、実施例1と同様の処理によりポリスチレン系樹脂発泡成形体を作製した。実施例1と同様に評価し、その測定結果及び評価結果を表1に示す。
(Comparative Example 1)
In [Production of polystyrene-based resin particles], a polystyrene-based resin foam molded article was processed in the same manner as in Example 1 except that the temperature of the molten resin was cooled to 190 ° C. with a 90 mm-diameter extruder (second extruder). Produced. Evaluation was performed in the same manner as in Example 1, and the measurement results and evaluation results are shown in Table 1.

Figure 2020033481
Figure 2020033481

表1に示される各実施例の結果より、実施例1〜5で得られた発泡性ポリスチレン系樹脂粒子は、真球度が0.970以上であり、製造後7日後の発泡性ポリスチレン系樹脂粒子を予備発泡させてえられた予備発泡粒子の養生後のかさ倍率は、いずれも80倍以上の高倍率を達成できている。また真球度が0.980以上である実施例1、2では、製造後15日後の発泡性ポリスチレン系樹脂粒子を予備発泡させてえられた予備発泡粒子の養生後のかさ倍率も80倍以上の高倍率を達成できている。一方、真球度が0.970未満である比較例1は、予備発泡粒子の収縮が顕著であり、また、養生後のかさ倍率は80倍未満と発泡性に劣っていることが明らかである。
また、実施例1〜5で得られた発泡性ポリスチレン系樹脂粒子は、参考例1の発泡性ポリスチレン系樹脂粒子のアスペクト比よりも小さいものの、予備発泡粒子の収縮は抑えられ、同等の発泡性を有することが明らかである。つまり、発泡性ポリスチレン系樹脂粒子のアスペクト比が0.95以下であっても、発泡性ポリスチレン系樹脂粒子の真球度を本発明の要件を満たすように制御することによって、高い発泡倍率と、低い熱伝導率、即ち、高い断熱性能とを両立するポリスチレン系樹脂発泡成形体を与えうるポリスチレン発泡性スチレン系樹脂粒子が提供できることが判る。
From the results of the examples shown in Table 1, the expandable polystyrene resin particles obtained in Examples 1 to 5 have a sphericity of 0.970 or more, and the expandable polystyrene resin obtained 7 days after production. The bulk ratio of the pre-expanded particles obtained by pre-expanding the particles after curing is as high as 80 times or more. In Examples 1 and 2 in which the sphericity is 0.980 or more, the bulk magnification after curing of the pre-expanded particles obtained by pre-expanding the expandable polystyrene resin particles 15 days after production is also 80 times or more. Has achieved a high magnification. On the other hand, in Comparative Example 1 in which the sphericity is less than 0.970, the shrinkage of the pre-expanded particles is remarkable, and the bulk magnification after curing is less than 80 times, which is clearly inferior in foamability. .
Although the expandable polystyrene resin particles obtained in Examples 1 to 5 are smaller than the aspect ratio of the expandable polystyrene resin particles of Reference Example 1, the shrinkage of the pre-expanded particles is suppressed, and the same expandability is obtained. It is clear that In other words, even if the aspect ratio of the expandable polystyrene resin particles is 0.95 or less, by controlling the sphericity of the expandable polystyrene resin particles to satisfy the requirements of the present invention, a high expansion ratio, It can be seen that polystyrene expandable styrene resin particles capable of providing a polystyrene resin foam molded article having both low thermal conductivity, that is, high heat insulation performance, can be provided.

Claims (13)

炭素系輻射伝熱抑制剤を含むポリスチレン系樹脂組成物および発泡剤からなる発泡性ポリスチレン系樹脂粒子であって、
前記発泡性ポリスチレン系樹脂粒子のアスペクト比が0.95以下であり、且つ真球度が0.970以上である、発泡性ポリスチレン系樹脂粒子。
Expandable polystyrene resin particles comprising a polystyrene resin composition containing a carbon-based radiation heat transfer inhibitor and a foaming agent,
Expandable polystyrene resin particles, wherein the expandable polystyrene resin particles have an aspect ratio of 0.95 or less and a sphericity of 0.970 or more.
真球度が0.980以上である、請求項1記載の発泡性ポリスチレン系樹脂粒子。   The expandable polystyrene resin particles according to claim 1, having a sphericity of 0.980 or more. 前記炭素系輻射伝熱抑制剤が、ポリスチレン系樹脂組成物100重量%において2〜10重量%である、請求項1または2に記載の発泡性ポリスチレン系樹脂粒子。   The expandable polystyrene resin particles according to claim 1 or 2, wherein the carbon-based radiation heat transfer inhibitor is 2 to 10% by weight based on 100% by weight of the polystyrene-based resin composition. 前記炭素系輻射伝熱抑制剤が、グラファイト、グラフェン、カーボンブラック、カーボンナノチューブ、活性炭、および、膨張黒鉛からなる群から選ばれる少なくとも1種である、請求項1〜3のいずれか一項に記載の発泡性ポリスチレン系樹脂粒子。   The carbon-based radiation heat transfer inhibitor is at least one selected from the group consisting of graphite, graphene, carbon black, carbon nanotubes, activated carbon, and expanded graphite, according to any one of claims 1 to 3. Expandable polystyrene resin particles. 前記発泡剤が、ペンタン及び/またはブタンを含む、請求項1〜4のいずれか一項に記載の発泡性ポリスチレン系樹脂粒子。   The expandable polystyrene resin particles according to any one of claims 1 to 4, wherein the blowing agent includes pentane and / or butane. 前記発泡剤がブタンを含み、前記ブタンがイソブタンを含む、請求項5に記載の発泡性ポリスチレン系樹脂粒子。   The expandable polystyrene resin particles according to claim 5, wherein the blowing agent includes butane, and the butane includes isobutane. 前記発泡剤がペンタンを含み、前記イソブタンを前記ペンタンおよび前記ブタンの総量100重量%に対して20重量%超50重量%以下含む、請求項6に記載の発泡性ポリスチレン系樹脂粒子。   The expandable polystyrene resin particles according to claim 6, wherein the blowing agent includes pentane, and the isobutane includes more than 20% by weight and 50% by weight or less based on 100% by weight of the total amount of the pentane and the butane. 前記発泡剤がペンタンを含み、前記ペンタンがノルマルペンタンおよびイソペンタンの重量比が100/0〜60/40である、請求項5〜7のいずれか一項に記載の発泡性ポリスチレン系樹脂粒子。   The expandable polystyrene resin particles according to any one of claims 5 to 7, wherein the blowing agent includes pentane, and the pentane has a weight ratio of normal pentane and isopentane of 100/0 to 60/40. 前記発泡性ポリスチレン系樹脂粒子の真密度が950〜1060kg/mである、請求項1〜8のいずれか一項に記載の発泡性ポリスチレン系樹脂粒子。 The true density of the expandable polystyrene resin particles are 950~1060kg / m 3, expandable polystyrene resin particles according to any one of claims 1-8. 前記発泡性ポリスチレン系樹脂粒子を予備発泡させたかさ倍率75cm/g以上85cm/g以下の予備発泡粒子を発泡成形した時における発泡成形体の熱伝導率が0.0330W/m・K以下である、請求項1〜9のいずれか一項に記載の発泡性ポリスチレン系樹脂粒子。 When the foamed polystyrene resin particles are pre-foamed, the thermal conductivity of the foamed molded article when the foamed molded article having a bulk magnification of 75 cm 3 / g or more and 85 cm 3 / g or less is foamed is 0.0330 W / m · K or less. The expandable polystyrene resin particles according to any one of claims 1 to 9, wherein 請求項1〜10のいずれか一項に記載の発泡性ポリスチレン系樹脂粒子の予備発泡粒子。   Pre-expanded particles of the expandable polystyrene resin particles according to any one of claims 1 to 10. かさ倍率が75cm/g以上である、請求項11に記載の予備発泡粒子。 The pre-expanded particles according to claim 11, wherein the bulk expansion ratio is 75 cm 3 / g or more. 請求項1〜10のいずれか一項に記載の発泡性ポリスチレン系樹脂粒子、または請求項11または12の予備発泡粒子を成形して得られるポリスチレン系樹脂発泡成形体。
An expanded polystyrene resin molded article obtained by molding the expandable polystyrene resin particles according to any one of claims 1 to 10, or the pre-expanded particles according to claim 11 or 12.
JP2018162244A 2018-08-31 2018-08-31 Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding Active JP7194535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018162244A JP7194535B2 (en) 2018-08-31 2018-08-31 Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018162244A JP7194535B2 (en) 2018-08-31 2018-08-31 Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding

Publications (2)

Publication Number Publication Date
JP2020033481A true JP2020033481A (en) 2020-03-05
JP7194535B2 JP7194535B2 (en) 2022-12-22

Family

ID=69667168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018162244A Active JP7194535B2 (en) 2018-08-31 2018-08-31 Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding

Country Status (1)

Country Link
JP (1) JP7194535B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527390A (en) * 2007-05-18 2010-08-12 ポリメリ ユーロパ ソシエタ ペル アチオニ Process for the production of granules and related products based on expandable thermoplastic polymers
JP2014080514A (en) * 2012-10-16 2014-05-08 Kaneka Corp Expandable styrenic resin particles and its manufacturing method, styrenic resin foam molded body
JP2014118474A (en) * 2012-12-14 2014-06-30 Kaneka Corp Foamable styrene resin particle and production method of the same, and styrene resin foamed molding
WO2015137363A1 (en) * 2014-03-10 2015-09-17 株式会社カネカ Styrene-based resin foam-molded article and method for manufacturing same
JP2018090707A (en) * 2016-12-02 2018-06-14 株式会社カネカ Foamable polystyrene-based resin particle and method for producing the same
JP2018127612A (en) * 2017-02-09 2018-08-16 株式会社カネカ Styrenic resin composition, and method for producing foamable styrenic resin particle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527390A (en) * 2007-05-18 2010-08-12 ポリメリ ユーロパ ソシエタ ペル アチオニ Process for the production of granules and related products based on expandable thermoplastic polymers
JP2014080514A (en) * 2012-10-16 2014-05-08 Kaneka Corp Expandable styrenic resin particles and its manufacturing method, styrenic resin foam molded body
JP2014118474A (en) * 2012-12-14 2014-06-30 Kaneka Corp Foamable styrene resin particle and production method of the same, and styrene resin foamed molding
WO2015137363A1 (en) * 2014-03-10 2015-09-17 株式会社カネカ Styrene-based resin foam-molded article and method for manufacturing same
JP2018090707A (en) * 2016-12-02 2018-06-14 株式会社カネカ Foamable polystyrene-based resin particle and method for producing the same
JP2018127612A (en) * 2017-02-09 2018-08-16 株式会社カネカ Styrenic resin composition, and method for producing foamable styrenic resin particle

Also Published As

Publication number Publication date
JP7194535B2 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
JP6216506B2 (en) Expandable styrene resin particles and method for producing the same, styrene resin foam molded article
JP6555251B2 (en) Styrenic resin foam molding and method for producing the same
US11015033B2 (en) Expandable styrene resin particles, pre-expanded particles of styrene resin, styrene resin foam molded body, and method for producing expandable resin particles
JP6473675B2 (en) Styrenic resin foamable particles and method for producing the same, foamed particles, foamed molded article and use thereof
ES2619358T5 (en) Thermally expanded insulating articles and compositions for the preparation thereof
JP6612634B2 (en) Styrenic resin foamable particles, foamed particles and foamed molded article
JP2023063388A (en) Styrenic resin composition, and method for producing foamable styrenic resin particle
JP6854669B2 (en) Effervescent polystyrene resin particles, pre-expanded particles, molded article
JP6837820B2 (en) Expandable polystyrene resin particles and their manufacturing method
JP7194535B2 (en) Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding
JP7227228B2 (en) Expandable thermoplastic resin particles
JP6407113B2 (en) Styrenic resin foam molding, method for producing the same, and use thereof
JP7144955B2 (en) Method for producing styrenic resin composition and expandable styrenic resin particles
JP6854672B2 (en) A masterbatch, a method for producing the same, and a method for producing foamable thermoplastic resin particles.
JP7100995B2 (en) Expandable polystyrene-based resin particles, polystyrene-based expanded particles and polystyrene-based expanded molded products
JP6854671B2 (en) Foamable thermoplastic resin particles and their manufacturing method
JP6961440B2 (en) Foamable polystyrene resin particles and manufacturing method
JP2023145171A (en) Foamable polystyrenic resin particle and production method
JP6436575B2 (en) Foam and production method thereof
JP2016121324A (en) Styrenic resin expandable particle and manufacturing method therefor, expanded particle, expanded molded body and use thereof
JP2017132972A (en) Styrenic resin foamable particle, styrenic resin foamed particle and styrenic resin foamed molding
JP2018001637A (en) Production method for foamable styrenic resin particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R150 Certificate of patent or registration of utility model

Ref document number: 7194535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150