JP2020032850A - Vehicle control apparatus - Google Patents

Vehicle control apparatus Download PDF

Info

Publication number
JP2020032850A
JP2020032850A JP2018160704A JP2018160704A JP2020032850A JP 2020032850 A JP2020032850 A JP 2020032850A JP 2018160704 A JP2018160704 A JP 2018160704A JP 2018160704 A JP2018160704 A JP 2018160704A JP 2020032850 A JP2020032850 A JP 2020032850A
Authority
JP
Japan
Prior art keywords
road surface
driving force
vehicle
slip ratio
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018160704A
Other languages
Japanese (ja)
Inventor
大地 清水
Daichi Shimizu
大地 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018160704A priority Critical patent/JP2020032850A/en
Publication of JP2020032850A publication Critical patent/JP2020032850A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

To provide a vehicle control apparatus capable of accurately determining a road surface state even during a steady running motion.SOLUTION: A vehicle control apparatus includes: an inclination calculation part which calculates a coefficient of driving force by dividing the driving force, acting on a wheel possessed by a vehicle, by a ground load acting on the wheel, which calculates a slip ratio by using wheel speeds of front and rear wheels, and which calculates an inclination of a linear line providing a relationship between the coefficient of driving force and the slip ratio; and a road surface state determination part which determines a road surface state during a vehicle running motion by comparing the inclination, calculated in a range of a predetermined slip ratio or below, with a reference inclination.SELECTED DRAWING: Figure 1

Description

本発明は、車両の制御装置に関する。   The present invention relates to a control device for a vehicle.

従来、路面状態としての路面摩擦係数のスリップ率に対する変化率であるタイヤ特性曲線の傾きを算出し、この傾きを予め設定した閾値と比較することにより、路面状態を判定する技術が知られている(例えば、特許文献1を参照)。この技術では、前輪車輪速、後輪車輪速、後輪加速度、前輪車輪速差分値、後輪車輪速差分値、および後輪加速度差分値を演算し、さらに駆動輪に作用する接地荷重である前輪接地荷重を演算し、これらの値に基づいてタイヤ特性曲線の傾きを算出する。   2. Description of the Related Art Conventionally, there has been known a technique of calculating a slope of a tire characteristic curve, which is a rate of change of a road surface friction coefficient as a road surface state with respect to a slip ratio, and comparing the slope with a preset threshold to determine a road surface state. (See, for example, Patent Document 1). In this technology, a front wheel speed, a rear wheel speed, a rear wheel acceleration, a front wheel speed difference value, a rear wheel speed difference value, and a rear wheel acceleration difference value are calculated, and further, a ground contact load acting on a drive wheel. The front wheel contact load is calculated, and the slope of the tire characteristic curve is calculated based on these values.

特開2009−1158号公報JP 2009-1158 A

しかしながら、車両が定常走行している場合には、スリップ率の変化量と路面摩擦係数の変化量がそれぞれ小さく、タイヤ特性曲線の傾きが不定となって路面状態を的確に判定することができない場合がある。   However, when the vehicle is traveling steadily, the amount of change in the slip ratio and the amount of change in the road surface friction coefficient are small, and the slope of the tire characteristic curve is uncertain, and the road surface state cannot be accurately determined. There is.

本発明は、上記に鑑みてなされたものであって、定常走行時であっても路面状態を的確に判定することができる車両の制御装置を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a vehicle control device capable of accurately determining a road surface state even during steady running.

上述した課題を解決し、目的を達成するために、本発明に係る車両の制御装置は、車両が有する車輪に作用する駆動力を前記車輪に作用する接地荷重で除算することによって駆動力係数を算出し、前後輪の車輪速を用いてスリップ率を算出し、前記駆動力係数と前記スリップ率との関係を与える直線の傾きを算出する傾き算出部と、所定のスリップ率以下の領域で算出した前記傾きを基準傾きと比較することによって前記車両が走行中の路面状態を判定する路面状態判定部と、を備える。   In order to solve the above-described problems and achieve the object, a control device for a vehicle according to the present invention calculates a driving force coefficient by dividing a driving force acting on a wheel of the vehicle by a ground contact load acting on the wheel. Calculating a slip ratio using the wheel speeds of the front and rear wheels, calculating a slope of a straight line that gives a relationship between the driving force coefficient and the slip ratio, and calculating in a region equal to or less than a predetermined slip ratio. A road surface state determination unit that determines a road surface state during travel of the vehicle by comparing the inclination with a reference inclination.

本発明によれば、車輪に作用する駆動力を該車輪の接地荷重で除算することによって駆動力係数を算出し、前後輪の車輪速を用いてスリップ率を算出し、駆動力係数とスリップ率との関係を与える直線の傾きを算出し、所定のスリップ率以下の領域で算出した傾きを基準傾きと比較することによって車両が走行中の路面状態を判定するため、定常走行時であっても傾きが不定となることがなく、路面状態を的確に判定することができる。   According to the present invention, a driving force coefficient is calculated by dividing a driving force acting on a wheel by a ground contact load of the wheel, a slip ratio is calculated using wheel speeds of front and rear wheels, and a driving force coefficient and a slip ratio are calculated. The slope of the straight line that gives the relationship with the vehicle is determined, and the slope calculated in an area equal to or less than a predetermined slip ratio is compared with the reference slope to determine the road surface state during which the vehicle is traveling. The road surface condition can be accurately determined without inclining the inclination.

図1は、実施の形態に係る車両の制御装置の機能構成を示すブロック図である。FIG. 1 is a block diagram illustrating a functional configuration of a control device for a vehicle according to an embodiment. 図2は、駆動力係数について説明する図である。FIG. 2 is a diagram illustrating a driving force coefficient. 図3は、スリップ率と路面摩擦係数との関係を示す図である。FIG. 3 is a diagram illustrating the relationship between the slip ratio and the road surface friction coefficient. 図4は、実施の形態に係る車両の制御装置が実行する処理の概要を示すフローチャートである。FIG. 4 is a flowchart showing an outline of processing executed by the vehicle control device according to the embodiment. 図5は、実施の形態に係る車両の制御装置が備える路面状態判定部が行う路面状態判定処理の概要を示す図である。FIG. 5 is a diagram illustrating an outline of a road surface state determination process performed by a road surface state determination unit provided in the vehicle control device according to the embodiment.

以下に、本発明の一実施の形態に係るスリップ率算出装置を図面に基づいて詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。   Hereinafter, a slip ratio calculating device according to an embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not limited by the embodiment.

図1は、実施の形態に係る車両の制御装置の要部の機能構成を示すブロック図である。車両の制御装置1は、ECU(Electronic Control Unit)11、加速度センサ12、前輪回転数センサ13、後輪回転数センサ14、エンジン制御部15、およびブレーキ制御部16を備える。加速度センサ12は、車両の加速度を検出し、検出信号をECU11に出力する。前輪回転数センサ13は、前輪回転数を検出し、検出信号をECU11に出力する。ECU11には、各センサからのセンサ信号や、エンジン(原動機)総駆動力21および減速化信号22が入力される。エンジン制御部15およびブレーキ制御部16は、ECU11が取得する各種情報に基づいて車両のエンジンおよびブレーキをそれぞれ制御する信号を出力する。なお、ECU11には、上記以外のセンサ類や制御対象が接続されていてもよい。   FIG. 1 is a block diagram illustrating a functional configuration of a main part of a vehicle control device according to an embodiment. The vehicle control device 1 includes an ECU (Electronic Control Unit) 11, an acceleration sensor 12, a front wheel speed sensor 13, a rear wheel speed sensor 14, an engine control unit 15, and a brake control unit 16. The acceleration sensor 12 detects the acceleration of the vehicle and outputs a detection signal to the ECU 11. The front wheel speed sensor 13 detects the front wheel speed and outputs a detection signal to the ECU 11. The ECU 11 receives a sensor signal from each sensor, an engine (motor) total driving force 21, and a deceleration signal 22. The engine control unit 15 and the brake control unit 16 output signals for controlling the engine and the brake of the vehicle based on various information acquired by the ECU 11. Note that sensors and control targets other than those described above may be connected to the ECU 11.

ECU11は、傾き算出部17と、路面状態判定部18とを有する。傾き算出部17は、駆動力係数を算出する駆動力係数算出部171と、スリップ率を算出するスリップ率算出部172とを有する。   The ECU 11 includes a slope calculation unit 17 and a road surface state determination unit 18. The inclination calculating section 17 includes a driving force coefficient calculating section 171 for calculating a driving force coefficient, and a slip rate calculating section 172 for calculating a slip rate.

駆動力係数算出部171は、加速度センサ12から取得した加速度を用いて車両の前輪に作用する接地荷重Wを算出する。また、駆動力係数算出部171は、エンジン総駆動力を用いて前輪に作用する駆動力Fを求める。駆動力係数算出部171は、駆動力Fを求める際、慣性損失を除去してもよい。駆動力係数算出部171は、求めた駆動力Fを接地荷重Wで除算することによって得られる商F/Wを駆動力係数μdとして算出する。この駆動力係数μdは、図2に示すように、路面摩擦係数μを1としたときの路面の特性を示す指標である。なお、図2では、車両100が路面に対して及ぼす力をベクトルで記載しているため、車両100に作用する力は、図2のベクトルとは逆向きである。   The driving force coefficient calculation unit 171 calculates the ground contact load W acting on the front wheels of the vehicle using the acceleration acquired from the acceleration sensor 12. Further, the driving force coefficient calculation unit 171 obtains a driving force F acting on the front wheels using the total engine driving force. When calculating the driving force F, the driving force coefficient calculation unit 171 may remove the inertia loss. The driving force coefficient calculation unit 171 calculates a quotient F / W obtained by dividing the obtained driving force F by the contact load W as a driving force coefficient μd. As shown in FIG. 2, the driving force coefficient μd is an index indicating a road surface characteristic when the road surface friction coefficient μ is set to 1. In FIG. 2, the force exerted on the road surface by the vehicle 100 is described by a vector, so the force acting on the vehicle 100 is in the opposite direction to the vector of FIG. 2.

スリップ率算出部172は、所定期間に前輪回転数センサ13および後輪回転数センサ14からそれぞれ取得した前輪回転数および後輪回転数の情報に基づいて前輪平均車輪速vfおよび後輪平均車輪速vrを算出し、これらを用いた以下の式(1)にしたがってスリップ率λを算出する。
λ=(vf−vr)/vf ・・・(1)
なお、スリップ率算出部172は、式(1)を計算する際、幾何学的に回転数を調整することによって旋回補正を実行してもよい。
The slip ratio calculation unit 172 calculates the front wheel average wheel speed vf and the rear wheel average wheel speed based on the information on the front wheel speed and the rear wheel speed acquired from the front wheel speed sensor 13 and the rear wheel speed sensor 14 during a predetermined period, respectively. vr is calculated, and the slip ratio λ is calculated in accordance with the following equation (1) using these vr.
λ = (vf−vr) / vf (1)
When calculating the formula (1), the slip ratio calculating unit 172 may execute the turning correction by geometrically adjusting the rotation speed.

ECU11は、CPU(Central Processing Unit)やRAM(Random Access Memory)などを有するマイクロコンピュータを用いて構成される。ECU11は、入力されたデータや、予めRAMに記憶しているデータおよびプログラムを使用して各種演算を行い、演算結果に基づく指令信号を制御対象に出力する。   The ECU 11 is configured using a microcomputer having a CPU (Central Processing Unit) and a RAM (Random Access Memory). The ECU 11 performs various calculations using input data, data and programs stored in the RAM in advance, and outputs a command signal based on the calculation results to a control target.

図3は、スリップ率と路面摩擦係数との関係を説明する図である。スリップ率と路面摩擦係数との関係は、走行する路面の種類によって異なる。具体的には、図3において、曲線C1は乾燥したアスファルトの路面、曲線C2は薄い水膜で濡れたアスファルトの路面、曲線C3は厚い水膜で濡れたアスファルトの路面、曲線C4は新雪が積もった路面、曲線C5は雪が固まった路面、曲線C6は氷が滑らかに張った路面である。曲線C1〜C6は、スリップ率が10%以下である領域D(微小スリップ領域)において、いずれもほぼ直線である。したがって、領域Dは、スリップ率に対して路面摩擦係数がおおむね線形に変化する領域とみなすことができる。各曲線における路面摩擦係数の最大値は、路面毎の最大静止摩擦力を荷重で正規化した値である。以下、領域Dを路面状態の判定対象領域とする。   FIG. 3 is a diagram illustrating the relationship between the slip ratio and the road surface friction coefficient. The relationship between the slip ratio and the road surface friction coefficient differs depending on the type of road surface on which the vehicle travels. Specifically, in FIG. 3, curve C1 is a road surface of dry asphalt, curve C2 is a road surface of asphalt wet with a thin water film, curve C3 is a road surface of asphalt wet with a thick water film, and curve C4 is fresh snow. A curved road surface, a curve C5 is a road surface on which snow is solidified, and a curve C6 is a road surface on which ice is stretched smoothly. The curves C1 to C6 are almost straight lines in a region D (small slip region) where the slip ratio is 10% or less. Therefore, the area D can be regarded as an area where the road surface friction coefficient changes substantially linearly with respect to the slip ratio. The maximum value of the road surface friction coefficient in each curve is a value obtained by normalizing the maximum static friction force for each road surface by a load. Hereinafter, the region D is defined as a road surface state determination target region.

つぎに、車両の制御装置1が実行する処理の概要を、図4のフローチャートを参照して説明する。   Next, an outline of a process executed by the vehicle control device 1 will be described with reference to a flowchart of FIG.

まず、駆動力係数算出部171は、駆動力係数μd=F/Wを算出する(ステップS1)。具体的には、駆動力係数算出部171は、加速度センサ12から取得した加速度を用いて車両の前輪に作用する接地荷重Wを算出し、エンジン総駆動力21を用いて前輪に作用する駆動力Fを算出した後、駆動力Fを接地荷重Wで除算することによって駆動力係数μd=F/Wを算出する。   First, the driving force coefficient calculator 171 calculates a driving force coefficient μd = F / W (step S1). Specifically, the driving force coefficient calculation unit 171 calculates the ground contact load W acting on the front wheels of the vehicle using the acceleration acquired from the acceleration sensor 12, and calculates the driving force acting on the front wheels using the total engine driving force 21. After calculating F, the driving force coefficient μd = F / W is calculated by dividing the driving force F by the contact load W.

ステップS1と並行して、スリップ率算出部172は、上述した式(1)に基づいてスリップ率λを算出する(ステップS2)。   In parallel with step S1, the slip ratio calculation unit 172 calculates the slip ratio λ based on the above-described equation (1) (step S2).

ステップS1およびS2の後、傾き算出部17は、ステップS1で算出した駆動力係数μdとステップS2で算出したスリップ率λを用いることにより、点(λ,μd)と原点(0,0)とを通る直線の傾きSL=μd/λを算出する(ステップS3)。   After steps S1 and S2, the inclination calculating unit 17 calculates the point (λ, μd) and the origin (0, 0) by using the driving force coefficient μd calculated in step S1 and the slip ratio λ calculated in step S2. Is calculated (step S3).

この後、路面状態判定部18は、傾き算出部17が算出した傾きSLを用いることにより、車両が走行する路面状態を判定する(ステップS4)。以下、図5を参照して路面状態判定部18の処理の概要を説明する。図5では、スリップ率λが0.01〜0.03(1〜3%)の領域を示している。   Thereafter, the road surface state determination unit 18 determines the road surface state on which the vehicle travels by using the slope SL calculated by the slope calculation unit 17 (Step S4). Hereinafter, an outline of the processing of the road surface state determination unit 18 will be described with reference to FIG. FIG. 5 shows a region where the slip ratio λ is 0.01 to 0.03 (1 to 3%).

直線L0は、基準傾きを与える直線であり、路面摩擦係数μが1の場合に対応する直線である。直線L0は、点Pと原点を通過する。点Pは、スリップ率λが0.03、駆動力係数μdが1.0なので、直線L0の傾き(基準傾き)SL0は、
SL0=1.0/0.03=30である。
The straight line L0 is a straight line that gives a reference slope, and is a straight line corresponding to a case where the road surface friction coefficient μ is 1. The straight line L0 passes through the point P and the origin. At the point P, since the slip ratio λ is 0.03 and the driving force coefficient μd is 1.0, the slope (reference slope) SL0 of the straight line L0 is
SL0 = 1.0 / 0.03 = 30.

これに対して、点Q、Rは、傾き算出部17が算出した演算値の例を示す点である。点Qは、スリップ率λが0.01、駆動力係数μdが0.8なので、点Qと原点を通る直線L1の傾きSL1は、SL1=0.8/0.01=80である。点Rは、スリップ率λが0.02、駆動力係数μdが0.2なので、点Qと原点を通る直線L2の傾きSL2は、SL2=0.2/0.02=10である。   On the other hand, points Q and R are points indicating examples of the calculated values calculated by the slope calculator 17. At the point Q, since the slip ratio λ is 0.01 and the driving force coefficient μd is 0.8, the slope SL1 of the straight line L1 passing through the point Q and the origin is SL1 = 0.8 / 0.01 = 80. At the point R, since the slip ratio λ is 0.02 and the driving force coefficient μd is 0.2, the slope SL2 of the straight line L2 passing through the point Q and the origin is SL2 = 0.2 / 0.02 = 10.

路面状態判定部18は、演算値の傾きと基準傾きとの比の値を計算する。
演算値の傾きがSL1である場合、比の値はSL1/SL0=80/30≒2.667である。この場合、路面状態判定部18は、路面摩擦係数μが1より大きい路面状態にあると判定する。
これに対し、演算値の傾きがSL2である場合、比の値はSL2/SL0=10/30≒0.333である。演算値の傾きがSL2の場合、路面状態判定部18は、走行中の路面は、路面摩擦係数μが1より小さい路面状態にあると判定する。
The road surface condition determination unit 18 calculates a value of a ratio between the slope of the calculated value and the reference slope.
When the slope of the operation value is SL1, the value of the ratio is SL1 / SL0 = 80/30 ≒ 2.667. In this case, the road surface state determination unit 18 determines that the vehicle is in a road surface state where the road surface friction coefficient μ is larger than 1.
On the other hand, when the slope of the calculated value is SL2, the value of the ratio is SL2 / SL0 = 10/30 ≒ 0.333. When the slope of the calculated value is SL2, the road surface state determination unit 18 determines that the road surface during traveling is in a road surface state where the road surface friction coefficient μ is smaller than 1.

なお、路面状態判定部18は、基準傾きと演算値の傾きとを比較し、その比の値から走行中の路面摩擦係数μを推定し、推定結果に基づいて路面状態を判定してもよい。この場合、路面状態判定部18は、比の値と路面摩擦係数μとの対応関係を予め記憶しておき、演算値を用いて算出した比の値から路面摩擦係数μを推定する。   The road surface state determination unit 18 may compare the reference inclination with the inclination of the calculated value, estimate the road surface friction coefficient μ during traveling from the value of the ratio, and determine the road surface state based on the estimation result. . In this case, the road surface state determination unit 18 stores in advance the correspondence between the ratio value and the road surface friction coefficient μ, and estimates the road surface friction coefficient μ from the ratio value calculated using the calculated value.

以上説明した実施の形態によれば、車輪に作用する駆動力を該車輪の接地荷重で除算することによって駆動力係数を算出し、前後輪の車輪速を用いてスリップ率を算出し、駆動力係数とスリップ率との関係を与える直線の傾きを算出し、所定のスリップ率以下の領域で算出した傾きを基準傾きと比較することによって車両が走行中の路面状態を判定するため、定常走行時であっても駆動力が発生している間は傾きが不定となることがなく、路面状態を的確に判定することができる。   According to the embodiment described above, the driving force coefficient is calculated by dividing the driving force acting on the wheel by the contact load of the wheel, the slip ratio is calculated using the wheel speeds of the front and rear wheels, and the driving force is calculated. In order to determine the road surface condition during which the vehicle is traveling by calculating the slope of a straight line that gives the relationship between the coefficient and the slip rate, and comparing the slope calculated in an area equal to or less than a predetermined slip rate with a reference slope, Even when the driving force is generated, the inclination does not become unstable while the driving force is being generated, and the road surface state can be accurately determined.

また、実施の形態によれば、路面摩擦係数によらず、常に生じる車輪の微小なスリップをとらえ、車輪が大きくスリップし始める前に路面状態を判定することができる。   Further, according to the embodiment, a slight slip of the wheel that always occurs regardless of the road surface friction coefficient can be captured, and the road surface state can be determined before the wheel starts to slip significantly.

また、実施の形態によれば、微小スリップ領域では、スリップ率と駆動力係数との関係が略線形に変化することを利用し、この領域における直線の傾きを基準傾きと比較することによって路面状態を判定するため、路面状態を高精度に判定することができる。   In addition, according to the embodiment, in the micro slip region, utilizing the fact that the relationship between the slip ratio and the driving force coefficient changes substantially linearly, the slope of the straight line in this region is compared with the reference slope to obtain the road surface condition. , The road surface condition can be determined with high accuracy.

(その他の実施の形態)
以上の説明では車両が二輪駆動で走行する場合を説明したが、四輪駆動で走行可能な車両にも適用することが可能である。ただし、四輪駆動で走行する場合のスリップ率の演算結果は、二輪駆動で走行する場合よりも目減りする。このため、四輪駆動で走行する場合には、路面との相対速度率(スリップ率)を演算することができない。
(Other embodiments)
In the above description, the case where the vehicle runs with two-wheel drive has been described, but the present invention can also be applied to a vehicle that can run with four-wheel drive. However, the calculation result of the slip ratio when traveling with four-wheel drive is less than that when traveling with two-wheel drive. Therefore, when traveling with four-wheel drive, the relative speed ratio (slip ratio) with the road surface cannot be calculated.

そこで、スリップ率算出部172は、車両が四輪駆動で走行している場合、前輪路面摩擦係数μf、後輪路面摩擦係数μr、および前後輪車輪速差ΔNをそれぞれ算出し、算出結果に基づいて前後輪のスリップ率λを算出する。その際、スリップ率算出部172は、前輪路面摩擦係数μfと後輪路面摩擦係数μrの大小に応じて、以下に示す異なる演算によってスリップ率λを算出する。
・μf>μrの場合
λ=μr×ΔN/(μf−μr)+ΔN
・μf<μrの場合
λ=μf×ΔN/(μr−μf)+ΔN
Therefore, when the vehicle is running in four-wheel drive, the slip ratio calculation unit 172 calculates the front wheel road surface friction coefficient μf, the rear wheel road surface friction coefficient μr, and the front and rear wheel speed difference ΔN, respectively, based on the calculation result. To calculate the slip ratio λ of the front and rear wheels. At this time, the slip ratio calculation unit 172 calculates the slip ratio λ by a different calculation shown below according to the magnitude of the front wheel road surface friction coefficient μf and the rear wheel road surface friction coefficient μr.
When μf> μr λ = μr × ΔN / (μf−μr) + ΔN
When μf <μr λ = μf × ΔN / (μr−μf) + ΔN

これにより、四輪駆動車において、前輪が滑ったときに後輪へ駆動力を配分するスリップフィードバック方式を適用する場合、滑りやすい走行中に前輪が伝達できる駆動力を超えて大きく滑り出す前に、後輪に駆動力を配分することによって走行安定性を高めることができる。また、後輪に対して必要以上の駆動力を配分することもなく、燃費性能を向上させることもできる。   With this, in a four-wheel drive vehicle, when applying a slip feedback system that distributes driving force to the rear wheel when the front wheel slips, before the front wheel slips greatly beyond the driving force that can be transmitted by the front wheel during slippery traveling, By distributing the driving force to the rear wheels, traveling stability can be improved. In addition, fuel efficiency can be improved without distributing excessive driving force to the rear wheels.

本発明は、上記した実施の形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。   The present invention is not limited to the above-described embodiment, and can be freely modified without departing from the gist of the present invention.

1 車両の制御装置
11 ECU
12 加速度センサ
13 前輪回転数センサ
14 後輪回転数センサ
15 エンジン制御部
16 ブレーキ制御部
17 傾き算出部
18 路面状態判定部
21 エンジン(原動機)総駆動力
22 減速化信号
100 車両
171 駆動力係数算出部
172 スリップ率算出部
C1〜C6 曲線
L0、L1、L2 直線
1 vehicle control device 11 ECU
DESCRIPTION OF SYMBOLS 12 Acceleration sensor 13 Front wheel speed sensor 14 Rear wheel speed sensor 15 Engine control unit 16 Brake control unit 17 Inclination calculation unit 18 Road surface determination unit 21 Total driving force of engine (motor) 22 Deceleration signal 100 Vehicle 171 Driving force coefficient calculation Section 172 slip ratio calculation section C1 to C6 curves L0, L1, L2 straight lines

Claims (1)

車両が有する車輪に作用する駆動力を前記車輪に作用する接地荷重で除算することによって駆動力係数を算出し、前後輪の車輪速を用いてスリップ率を算出し、前記駆動力係数と前記スリップ率との関係を与える直線の傾きを算出する傾き算出部と、
所定のスリップ率以下の領域で算出した前記傾きを基準傾きと比較することによって前記車両が走行中の路面状態を判定する路面状態判定部と、
を備える車両の制御装置。
A driving force coefficient is calculated by dividing a driving force acting on a wheel of the vehicle by a ground contact load acting on the wheel, a slip ratio is calculated using wheel speeds of front and rear wheels, and the driving force coefficient and the slip are calculated. A slope calculation unit that calculates a slope of a straight line that gives a relationship with the rate,
A road surface state determination unit that determines a road surface state during travel of the vehicle by comparing the inclination calculated in an area equal to or less than a predetermined slip ratio with a reference inclination;
A control device for a vehicle comprising:
JP2018160704A 2018-08-29 2018-08-29 Vehicle control apparatus Pending JP2020032850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018160704A JP2020032850A (en) 2018-08-29 2018-08-29 Vehicle control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018160704A JP2020032850A (en) 2018-08-29 2018-08-29 Vehicle control apparatus

Publications (1)

Publication Number Publication Date
JP2020032850A true JP2020032850A (en) 2020-03-05

Family

ID=69666788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018160704A Pending JP2020032850A (en) 2018-08-29 2018-08-29 Vehicle control apparatus

Country Status (1)

Country Link
JP (1) JP2020032850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075260A1 (en) * 2022-10-06 2024-04-11 日産自動車株式会社 Vehicle drive force control method and vehicle drive force control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257043A (en) * 1986-04-30 1987-11-09 Mazda Motor Corp Apparatus for discriminating surface state of running road

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257043A (en) * 1986-04-30 1987-11-09 Mazda Motor Corp Apparatus for discriminating surface state of running road

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
岡宏一,外2名: "ABS信号を用いたFF車両の路面摩擦係数計測", 第52回自動制御連合講演会, JPN6021050425, 21 November 2009 (2009-11-21), JP, ISSN: 0004797981 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075260A1 (en) * 2022-10-06 2024-04-11 日産自動車株式会社 Vehicle drive force control method and vehicle drive force control device

Similar Documents

Publication Publication Date Title
JP5035418B2 (en) Road surface friction coefficient estimation device and road surface friction coefficient estimation method
JP5035419B2 (en) Road surface friction coefficient estimation device and road surface friction coefficient estimation method
JP6148592B2 (en) Vehicle speed determination system, stability control system, and saddle riding type vehicle equipped with the same
JP5339121B2 (en) Slip rate estimation device and method, and slip rate control device and method
CN110325416B (en) Determination of maximum adhesion coefficient
KR100828778B1 (en) Estimating method for mass of vehicle
JP2001334921A (en) Estimating device for surface friction coefficient of vehicle
US8676463B2 (en) Travel controlling apparatus of vehicle
JP5206490B2 (en) Vehicle ground contact surface friction state estimation apparatus and method
KR20220022514A (en) Apparatus and method for estimating the friction coefficient of road surface
JP2020032850A (en) Vehicle control apparatus
JP2021088349A (en) Wheel diameter correction device, correction system and program
KR20220026380A (en) Method And Apparatus for Controlling Driving Force for Dual-Motor-Equipped Vehicle
JP2010195325A (en) Device and method for estimating tread friction state of vehicle
JP6202278B2 (en) Electric vehicle slip ratio control device
JP2002104158A (en) Road surface frictional state calculating device, tire type determining device, tire abrasion determining device, road surface gradient estimating device, and offset correcting device of acceleration sensor
CN106573622B (en) Method for setting a slip threshold value and driving dynamics control device
JP2016137893A (en) Vehicle speed determination system, stability control system, and saddle-riding type vehicle having stability control system
JP4244453B2 (en) Body slip angle estimation method and apparatus
KR20130102920A (en) Method for calculating velocity for vehicles
JP2009173112A (en) Vehicle status quantity estimating apparatus
JP2007308027A (en) Method for estimating friction coefficient of road surface, system for estimating friction coefficient of road surface, and computer program for estimating friction coefficient of road surface
KR100751216B1 (en) Electronic stability system for vehicle
JP2711740B2 (en) Target slip rate estimation device
US20240017718A1 (en) Vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220614