JP2009173112A - Vehicle status quantity estimating apparatus - Google Patents

Vehicle status quantity estimating apparatus Download PDF

Info

Publication number
JP2009173112A
JP2009173112A JP2008012518A JP2008012518A JP2009173112A JP 2009173112 A JP2009173112 A JP 2009173112A JP 2008012518 A JP2008012518 A JP 2008012518A JP 2008012518 A JP2008012518 A JP 2008012518A JP 2009173112 A JP2009173112 A JP 2009173112A
Authority
JP
Japan
Prior art keywords
slip angle
side slip
front wheel
wheel side
rear wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008012518A
Other languages
Japanese (ja)
Other versions
JP4946888B2 (en
Inventor
Shiro Takagi
史朗 高木
Akihito Takeya
章仁 竹家
Masahiko Kurishige
正彦 栗重
Tomoyuki Inoue
知之 井上
Koji Fujioka
宏司 藤岡
Toshihide Satake
敏英 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008012518A priority Critical patent/JP4946888B2/en
Publication of JP2009173112A publication Critical patent/JP2009173112A/en
Application granted granted Critical
Publication of JP4946888B2 publication Critical patent/JP4946888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To estimate a transverse skid angle of a vehicle body and a wheel of an automobile with high precision regardless of a road surface state. <P>SOLUTION: A vehicle status quantity estimating apparatus is constituted of a vehicle movement detection means; a rear wheel lateral force arithmetic means, which calculates a rear wheel lateral force acting on a rear wheel from a yaw rate detected by a yaw rate detection means and lateral acceleration detected by a lateral acceleration detection means; a rear wheel lateral skid angle arithmetic means, which calculates a rear wheel lateral skid angle from the rear wheel lateral force and predetermined rear wheel tire characteristics; and a front wheel lateral skid angle conversion means, which converts the rear wheel lateral skid angle to a first front wheel lateral skid angle based on a two-wheel model of a vehicle. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、自動車の車体および車輪の横すべり角を推定する装置に関するものである。   The present invention relates to an apparatus for estimating a side slip angle of a vehicle body and wheels of an automobile.

従来の横すべり角推定装置では、車体全体の横加速度に基づいて演算することで推定を行っていた。この方式ではタイヤの前輪または後輪の一方でも横力が飽和すると精度が低下するため、限界走行の判定処理や、横すべり角速度フィードバックによる補正処理を行う必要があった。(特許文献1参照)   In a conventional side slip angle estimation device, estimation is performed by calculation based on the lateral acceleration of the entire vehicle body. In this method, the accuracy decreases when the lateral force is saturated on either the front wheel or the rear wheel of the tire. Therefore, it is necessary to perform a limit running determination process or a correction process using a side slip angular velocity feedback. (See Patent Document 1)

特開平9−311042号公報(6頁)JP-A-9-311042 (page 6)

このような横すべり角推定装置において種々の補正処理を必要とする所以は、同公報中で限界走行時と称される状況において、車両タイヤモデルの演算から求める横すべり角の推定精度が低下するためである。そのため複雑な補正処理を必要として、演算量が膨大となる。このため、高価なマイコンが必要になるなどの問題があった。   The reason why various correction processes are required in such a side slip angle estimation device is that the estimation accuracy of the side slip angle obtained from the calculation of the vehicle tire model is lowered in a situation called limit driving in the publication. is there. Therefore, a complicated correction process is required, and the amount of calculation becomes enormous. For this reason, there has been a problem that an expensive microcomputer is required.

この発明は、上記のような問題点を解決するためになされたものであり、安価なマイコン、あるいは同種の製品で高精度な前輪または車体の横すべり角推定値を得ることを目的としている。 The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a highly accurate estimate of the side slip angle of a front wheel or a vehicle body with an inexpensive microcomputer or similar product.

上記目的を達成するために、本発明の車両状態量推定装置は
舵角を検出する舵角検出手段と、車速を検出する車速検出手段と、車体のヨーレイトを検出するヨーレイト検出手段と、車体の横加速度を検出する横加速度検出手段と、を含む車両運動検出手段と、
前記ヨーレイト検出手段で検出されたヨーレイト、および前記横加速度検出手段で検出された横加速度から、後輪に働く後輪横力を演算する後輪横力演算手段と、
前記後輪横力と予め定められた後輪タイヤ特性とにより後輪横すべり角を演算する後輪横すべり角演算手段と、
前記後輪横すべり角を車両2輪モデルに基づいて第1の前輪横すべり角に換算する前輪横すべり角換算手段と、
を有するものである。
In order to achieve the above object, a vehicle state quantity estimating device of the present invention includes a steering angle detecting means for detecting a steering angle, a vehicle speed detecting means for detecting a vehicle speed, a yaw rate detecting means for detecting the yaw rate of the vehicle body, Vehicle acceleration detecting means including lateral acceleration detecting means for detecting lateral acceleration;
Rear wheel lateral force calculating means for calculating a rear wheel lateral force acting on a rear wheel from the yaw rate detected by the yaw rate detecting means and the lateral acceleration detected by the lateral acceleration detecting means;
A rear wheel side slip angle calculating means for calculating a rear wheel side slip angle based on the rear wheel lateral force and a predetermined rear wheel tire characteristic;
Front wheel side slip angle conversion means for converting the rear wheel side slip angle into a first front wheel side slip angle based on a two-wheel vehicle model;
It is what has.

また、本発明の車両状態量推定装置は、
舵角を検出する舵角検出手段と、車速を検出する車速検出手段と、車体のヨーレイトを検出するヨーレイト検出手段と、車体の横加速度を検出する横加速度検出手段と、を含む車両運動検出手段と、
前記ヨーレイト検出手段で検出されたヨーレイト、および前記横加速度検出手段で検出された横加速度から、前輪に働く前輪横力を演算する前輪横力演算手段と、
前記前輪横力と予め定められた前輪タイヤ特性とにより第2の前輪横すべり角を演算する前輪横すべり角演算手段と、
前記後輪横力演算手段と
前記後輪横すべり角演算手段と、
前記前輪横すべり角換算手段と、
前記前輪横すべり角換算手段により求めた第1の前輪横すべり角と、前記前輪横すべり角演算手段により求めた前記第2の前輪横すべり角とを比較照合することにより、前輪横すべり角を求める前輪横すべり角照合手段と、
を有するものである。
Moreover, the vehicle state quantity estimating device of the present invention is
Vehicle motion detection means including steering angle detection means for detecting the steering angle, vehicle speed detection means for detecting the vehicle speed, yaw rate detection means for detecting the yaw rate of the vehicle body, and lateral acceleration detection means for detecting the lateral acceleration of the vehicle body When,
Front wheel lateral force calculating means for calculating a front wheel lateral force acting on a front wheel from the yaw rate detected by the yaw rate detecting means and the lateral acceleration detected by the lateral acceleration detecting means;
Front wheel side slip angle calculating means for calculating a second front wheel side slip angle based on the front wheel side force and predetermined front wheel tire characteristics;
The rear wheel lateral force calculating means and the rear wheel side slip angle calculating means;
The front wheel side slip angle conversion means;
Front wheel side slip angle collation for obtaining a front wheel side slip angle by comparing and collating the first front wheel side slip angle obtained by the front wheel side slip angle conversion means and the second front wheel side slip angle obtained by the front wheel side slip angle calculating means. Means,
It is what has.

本発明の車両状態量推定装置は、前輪タイヤ特性または後輪タイヤ特性のうち片方のみを選択的に用いるだけで車体および車輪横すべり角を求めることが出来る。このため、必ずしもタイヤの前輪と後輪両方の特性を用いる必要がないゆえに、前輪または後輪のいずれかのタイヤ特性を用いると推定精度が低下する状況下においても、従来例(例えば特開平9−311042号公報参照)より車両状態量の推定精度が向上するという効果を有する。   The vehicle state quantity estimation device of the present invention can determine the vehicle body and wheel side slip angles by selectively using only one of the front wheel tire characteristics and the rear wheel tire characteristics. For this reason, since it is not always necessary to use the characteristics of both the front and rear wheels of the tire, the conventional example (for example, Japanese Patent Application Laid-Open No. Hei 9) is used even in the situation where the estimation accuracy is lowered when the tire characteristics of either the front wheels or the rear wheels are used. No.-311042), the vehicle state quantity estimation accuracy is improved.

実施の形態を説明するに先立ち、以下にタイヤ特性とタイヤの飽和について説明する。以下では横すべり角について、車両の重心位置での横すべり角を車体横すべり角と呼び、タイヤの横すべり角をタイヤ横すべり角と呼んで区別する。また、タイヤ横すべり角のうち、特に前輪のものを前輪横すべり角と呼び、後輪のものを後輪横すべり角と呼んで区別する。
図1に示すように、通常、タイヤ横すべり角が増加するにつれて、横力が増加する関係がある。このようなタイヤ横すべり角と横力との対応関係(タイヤ特性)を用いることによって、横力からタイヤ横すべり角を求めることができる。なおこのタイヤ特性の原点での勾配をコーナリングパワーと言う。
このタイヤ特性は、タイヤ横すべり角の増加に伴い横力増加は鈍ってゆき、増加が止まるあるいは減少する(タイヤの飽和)。この度合いを以下では飽和度合いと呼ぶ。このとき、コーナリングパワーで近似される特性は、実際のタイヤ特性と上記近似特性でもって横力からタイヤ横すべり角を求める精度が低下する。
また、近似した特性ではタイヤ横すべり角を求める精度が低下することは言うまでもないが、正確なタイヤ特性を用いたとしても、飽和度合いが大きい場合は、タイヤ横すべり角が求まる精度が低下する。このことを次に、図2を用いて説明する。
Prior to describing the embodiment, tire characteristics and tire saturation will be described below. In the following, the side slip angle is distinguished by referring to the side slip angle at the center of gravity of the vehicle as the vehicle body side slip angle and the side slip angle of the tire as the tire side slip angle. Further, among the tire side slip angles, the front wheel side slip angle is particularly called a front wheel side slip angle, and the rear wheel side slip angle is called a rear wheel side slip angle.
As shown in FIG. 1, there is usually a relationship in which the lateral force increases as the tire side slip angle increases. By using the correspondence relationship (tire characteristics) between the tire side slip angle and the side force, the tire side slip angle can be obtained from the side force. The gradient at the origin of the tire characteristics is called cornering power.
In this tire characteristic, as the tire side slip angle increases, the increase in the lateral force decreases, and the increase stops or decreases (saturation of the tire). This degree is hereinafter referred to as the saturation degree. At this time, the characteristic approximated by the cornering power decreases the accuracy of obtaining the tire side slip angle from the lateral force due to the actual tire characteristic and the above approximate characteristic.
In addition, it goes without saying that the accuracy for obtaining the tire slip angle decreases with the approximate characteristics, but even if the correct tire characteristics are used, the accuracy with which the tire slip angle is obtained decreases when the degree of saturation is large. This will be described next with reference to FIG.

図2において、横力にある一定の誤差が含まれる状況で、タイヤ横すべり角を求めることを考える。まず、飽和度合いが小さい場合、図に示すとおりタイヤ特性を用いて横力からタイヤ横すべり角をもとめても誤差は比較的小さいままである。一方、飽和度合いが大きい状況では、先ほどと同量の誤差が横力にあると、タイヤ横すべり角では大きな誤差となる。
よって、横力にわずかの誤差が存在すれば、飽和度合いが小さい場合に比して飽和度合いが大きい場合は、タイヤ横すべり角を求める際に誤差が大きくなる。
In FIG. 2, it is considered that the tire side slip angle is obtained in a situation where a certain error is included in the lateral force. First, when the degree of saturation is small, the error remains relatively small even if the tire side slip angle is obtained from the lateral force using the tire characteristics as shown in the figure. On the other hand, in a situation in which the degree of saturation is large, if the same amount of error is present in the lateral force as in the previous case, the tire side slip angle is a large error.
Therefore, if there is a slight error in the lateral force, when the degree of saturation is large compared to the case where the degree of saturation is small, the error becomes large when calculating the tire side slip angle.

以下、この発明の各実施の形態を図に基づいて説明する。
実施の形態1
図3は、本発明の実施の形態1による車両状態量推定装置を示す構成図である。図3において、車両運動検出手段1は、車両の横加速度、ヨーレイト、車速、舵角(一般的には特に前輪の舵角をいう。以下同様)を検出する。このうちの横加速度とヨーレイトとにより、後輪横力演算手段2は後輪横力を演算する。この演算された後輪横力を基にして、所定のタイヤモデルを有する後輪横すべり角演算手段3により後輪横すべり角を演算する。この後輪横すべり角と、前記ヨーレイト、前記車速、前記舵角とにより、前輪横すべり角換算手段4は第1の前輪横すべり角を求める。
Embodiments of the present invention will be described below with reference to the drawings.
Embodiment 1
FIG. 3 is a configuration diagram illustrating the vehicle state quantity estimating device according to the first embodiment of the present invention. In FIG. 3, the vehicle motion detection means 1 detects the lateral acceleration, yaw rate, vehicle speed, and steering angle of the vehicle (generally, particularly the steering angle of the front wheels; the same applies hereinafter). Of these, the rear wheel lateral force calculating means 2 calculates the rear wheel lateral force based on the lateral acceleration and the yaw rate. Based on the calculated rear wheel lateral force, the rear wheel side slip angle calculating means 3 having a predetermined tire model calculates the rear wheel side slip angle. Based on the rear wheel side slip angle, the yaw rate, the vehicle speed, and the rudder angle, the front wheel side slip angle conversion means 4 obtains a first front wheel side slip angle.

また、図3の車両運動検出手段1は、図4に示すとおり、車両の横加速度を検出する横加速度検出手段101と、車両のヨーレイトを検出するヨーレイト検出手段102と、車速を検出する車速検出手段103と、舵角を検出する舵角検出手段104から構成される。 Further, as shown in FIG. 4, the vehicle motion detection means 1 in FIG. 3 includes a lateral acceleration detection means 101 that detects the lateral acceleration of the vehicle, a yaw rate detection means 102 that detects the yaw rate of the vehicle, and a vehicle speed detection that detects the vehicle speed. It comprises means 103 and rudder angle detection means 104 for detecting the rudder angle.

次に本装置の動作について図6により説明する。まず、車両運動検出手段1によって検出された車両運動量に基づき、後輪に働く横力を後輪横力演算手段にて算出する(S101)。次に、前記後輪横力から後輪タイヤ特性を用いて後輪横すべり角を算出し(S102)、前輪横すべり角換算手段にて前記後輪横すべり角を第1の前輪横すべり角へ換算する(S103)。 Next, the operation of this apparatus will be described with reference to FIG. First, the lateral force acting on the rear wheel is calculated by the rear wheel lateral force calculating means based on the vehicle momentum detected by the vehicle motion detecting means 1 (S101). Next, a rear wheel side slip angle is calculated from the rear wheel side force using a rear wheel tire characteristic (S102), and the rear wheel side slip angle is converted into a first front wheel side slip angle by a front wheel side slip angle conversion means ( S103).

以下では、上記の詳細について述べる。
まず図3の後輪横力演算手段2の動作について説明する。
車両の運動を取り扱うに際して、車両二輪モデルとして下記の式(2−1)が公知であるので、ここでは、この式を利用する。
The details will be described below.
First, the operation of the rear wheel lateral force calculating means 2 in FIG. 3 will be described.
Since the following formula (2-1) is known as a vehicle two-wheel model when handling the motion of the vehicle, this formula is used here.

Figure 2009173112
ただし、a:横加速度、γ:ヨーレイト(d/dtは時間微分を示し、d/dt・γはヨー角加速度)、m:車両質量、F:前輪横力(左右輪の和)、F:後輪横力(左右輪の和)、I:車両ヨー慣性モーメント、L:車両重心位置から前輪車軸までの距離、L:車両重心位置から後輪車軸までの距離である。
Figure 2009173112
However, ay : Lateral acceleration, γ: Yaw rate (d / dt indicates time differentiation, d / dt · γ is yaw angular acceleration), m: Vehicle mass, Ff : Front wheel lateral force (sum of left and right wheels), F r : rear wheel lateral force (sum of left and right wheels), I: vehicle yaw moment of inertia, L m : distance from vehicle center of gravity position to front wheel axle, L r : distance from vehicle center of gravity position to rear wheel axle.

ここで、車両質量mおよび車両ヨー慣性モーメントIは予め設定された既知の値であり、横加速度aおよびヨー角加速度d/dt・γはそれぞれ前記検出手段の値、あるいはその微分によって得られるものを用いると、式(2−1)から下記の式(2−2)により、前輪横力Fおよび後輪横力Fが求まる。 Here, the vehicle mass m and the vehicle yaw inertia moment I are preset known values, and the lateral acceleration ay and the yaw angular acceleration d / dt · γ are obtained by the values of the detection means or their derivatives, respectively. with things, by the equation (2-1) from the following equation (2-2), the front wheel lateral force F f and Kowayokoryoku F r is obtained.

Figure 2009173112
このような関係を利用して、後輪横力演算手段2は後輪横力を演算する。なお、ここで横加速度については、センサオフセット補正などを目的としてハイパスフィルタに通してもよく、また、車両ヨー角加速度を得るに際して、ノイズ低減等を目的として微分演算をハイパスフィルタによって代用してもよい。
Figure 2009173112
Using such a relationship, the rear wheel lateral force calculating means 2 calculates the rear wheel lateral force. Here, the lateral acceleration may be passed through a high-pass filter for the purpose of sensor offset correction or the like, and when obtaining vehicle yaw angular acceleration, a differential operation may be substituted by a high-pass filter for the purpose of noise reduction or the like. Good.

次に、後輪横すべり角演算手段3について説明する。この後輪横すべり角演算手段3では、図1に示すタイヤ横すべり角と横力の関係を用いて、図に矢印で示すように後輪横力の値から対応する後輪横すべり角を求める。
特に本実施の形態1においては、図1に曲線で示すタイヤ特性について、破線で示す原点での傾き(コーナリングパワー)でもって近似する。このように近似し、後輪横力をコーナリングパワーで除することによって、後輪横すべり角を求める。
Next, the rear wheel side slip angle calculating means 3 will be described. The rear wheel side slip angle calculating means 3 uses the relationship between the tire side slip angle and the side force shown in FIG. 1 to obtain the corresponding rear wheel side slip angle from the value of the rear wheel side force as indicated by an arrow in the figure.
In particular, in the first embodiment, the tire characteristics indicated by the curve in FIG. 1 are approximated by the inclination (cornering power) at the origin indicated by the broken line. By approximating in this way and dividing the rear wheel lateral force by the cornering power, the rear wheel side slip angle is obtained.

Figure 2009173112
ここで、αは前輪横すべり角、Cは前輪コーナリングパワー、αは後輪横すべり角、Cは後輪コーナリングパワーである。なお付記すれば、必ずしもコーナリングパワーで近似する必要はなく、精度向上のため、より詳細なタイヤモデル(図1の曲線)によって後輪横すべり角を求めてもよい。
Figure 2009173112
Here, α f is a front wheel side slip angle, C f is a front wheel cornering power, α r is a rear wheel side slip angle, and C r is a rear wheel cornering power. Note that it is not always necessary to approximate with the cornering power, and the rear wheel side slip angle may be obtained by a more detailed tire model (curve in FIG. 1) in order to improve accuracy.

次に、前輪横すべり角換算手段4について説明する。この前輪横すべり角換算手段4は、次の公知の関係を用いて、後輪横すべり角を前輪横すべり角に換算する。   Next, the front wheel side slip angle conversion means 4 will be described. The front wheel side slip angle conversion means 4 converts the rear wheel side slip angle into a front wheel side slip angle using the following known relationship.

Figure 2009173112
ここで、αは前輪横すべり角、Vは車速、δは舵角、Lはホイールベース(前輪車軸から後輪車軸までの距離であり、L=L+Lである)を示す。
Figure 2009173112
Here, α f is the front wheel side slip angle, V is the vehicle speed, δ is the rudder angle, and L is the wheel base (the distance from the front wheel axle to the rear wheel axle, L = L f + L r ).

本実施の形態1において上記のように、後輪横力から後輪横すべり角を求めてこれを前輪横すべり角に換算した。これにより、後輪の飽和度合いに比して前輪の飽和度合いが高い場合において、前輪横力から直接に前輪横すべり角を求めるよりも推定精度が向上する。
すなわち、上記図1および図2の説明(段落0009および0010参照)で述べたとおり、横力からタイヤ横すべり角を求める際に、飽和度合いが大きいほど精度が低下するので、飽和度合いが大きい前輪から直接に前輪横すべり角を求めるよりも、飽和度合いが小さい後輪から後輪横すべり角を求めて前輪横すべり角に換算したほうが、前輪横すべり角の推定精度が向上する。
例えば、後輪の飽和度合いに比して前輪の飽和度合いが高い場合の典型例として、アンダーステア状態と呼ばれる状況があり、本実施例に拠ればこのような状況でも前輪横すべり角を良好に推定することが可能となる。
In the first embodiment, as described above, the rear wheel side slip angle is obtained from the rear wheel side force and is converted into the front wheel side slip angle. As a result, when the degree of saturation of the front wheels is higher than the degree of saturation of the rear wheels, the estimation accuracy is improved as compared to obtaining the front wheel side slip angle directly from the front wheel lateral force.
That is, as described in the description of FIGS. 1 and 2 (see paragraphs 0009 and 0010), when the tire slip angle is determined from the lateral force, the accuracy decreases as the degree of saturation increases. Rather than directly obtaining the front wheel side slip angle, the accuracy of estimating the front wheel side slip angle is improved by obtaining the rear wheel side slip angle from the rear wheel having a low degree of saturation and converting it to the front wheel side slip angle.
For example, as a typical example when the degree of saturation of the front wheels is higher than the degree of saturation of the rear wheels, there is a situation called an understeer state, and according to this embodiment, the front wheel side slip angle can be estimated well even in such a situation. It becomes possible.

なお、車体横すべり角が必要な場合(例えば、車両横すべり防止装置に対して本発明を適用する場合)においては、前輪横すべり角換算手段に代えて車体横すべり角換算手段(図示せず)を備えて、下記の式(2−5)により後輪横すべり角を車体横すべり角に換算するとして実施してもよい。 When a vehicle side slip angle is required (for example, when the present invention is applied to a vehicle side slip prevention device), vehicle side slip angle conversion means (not shown) is provided instead of the front wheel side slip angle conversion means. The rear wheel side slip angle may be converted into the vehicle body side slip angle by the following equation (2-5).

Figure 2009173112
ここで、βは車体横すべり角である。
なお補記すれば、上記のように、式(2−5)で実施する場合においては、舵角は用いる必要がないゆえに、車両運動量検出手段1において舵角検出手段104は必須の構成要件ではない。このような場合においては、後輪の飽和度合いに比して前輪の飽和度合いが高い場合でも車体横すべり角を良好に推定することが可能となる。
以上、本実施の形態1に拠れば、アンダーステア状況でも前輪横すべり角および車体横すべり角、又は、前輪横すべり角あるいは車体横すべり角を良好に推定することができる。
Figure 2009173112
Here, β is a vehicle body side slip angle.
In addition, since it is not necessary to use the steering angle in the case of carrying out with the formula (2-5) as described above, the steering angle detection unit 104 is not an essential component in the vehicle momentum detection unit 1 as described above. . In such a case, the vehicle body side slip angle can be estimated well even when the degree of saturation of the front wheels is higher than the degree of saturation of the rear wheels.
As described above, according to the first embodiment, the front wheel side slip angle and the vehicle body side slip angle, or the front wheel side slip angle or the vehicle body side slip angle can be well estimated even in an understeer situation.

実施の形態2.
図5は、本発明の実施の形態2による車両状態量推定装置を示す構成図である。
図5において、車両運動検出手段1、後輪横力演算手段2、後輪横すべり角演算手段3、および、前輪横すべり角換算手段4については前述の実施の形態1と同様である。ただし本実施例においては、前輪横すべり角換算手段4で得られる前輪横すべり角について、これを第1の前輪横すべり角と呼ぶ。後述する第2の前輪横すべり角と区別するためである。
また、前輪横力演算手段5は、車両運動検出手段1によって得られる横加速度とヨーレイトにより前輪横力を演算する。この前輪横力と上述のタイヤモデル、及び前輪横すべり角演算手段6とにより、第2の前輪横すべり角を求める。前輪横すべり角照合手段7は、前記前輪横すべり角換算手段によって得られる第1の前輪横すべり角と、前記前輪横すべり角演算手段によって得られる前輪横すべり角とを照合し、第1の前輪横すべり角および第2の前輪横すべり角の中から適切な前輪横すべり角を選択、出力する。
Embodiment 2. FIG.
FIG. 5 is a configuration diagram illustrating a vehicle state quantity estimation device according to Embodiment 2 of the present invention.
In FIG. 5, the vehicle motion detection means 1, the rear wheel lateral force calculation means 2, the rear wheel side slip angle calculation means 3, and the front wheel side slip angle conversion means 4 are the same as those in the first embodiment. However, in the present embodiment, the front wheel side slip angle obtained by the front wheel side slip angle conversion means 4 is referred to as a first front wheel side slip angle. This is for distinguishing from a second front wheel side slip angle which will be described later.
Further, the front wheel lateral force calculation means 5 calculates the front wheel lateral force based on the lateral acceleration and yaw rate obtained by the vehicle motion detection means 1. A second front wheel side slip angle is obtained by the front wheel side force, the tire model, and the front wheel side slip angle calculating means 6. The front wheel side slip angle collating means 7 collates the first front wheel side slip angle obtained by the front wheel side slip angle converting means and the front wheel side slip angle obtained by the front wheel side slip angle calculating means, and compares the first front wheel side slip angle and the Select and output an appropriate front wheel side slip angle from the two front wheel side slip angles.

次に、本装置の動作について図7を用いて説明する。まず、車両運動検出手段1によって検出された横加速度等の車両運動量に基づき、前輪に働く横力および後輪に働く横力をそれぞれ前輪横力演算手段5および後輪横力演算手段2にて算出する(ステップS201)。次に、前輪横すべり角演算手段6にて前記前輪横力から前輪タイヤ特性を用いて第2の前輪横すべり角を算出し、また後輪横すべり角演算手段3にて前記後輪横力から後輪タイヤ特性を用いて後輪横すべり角を算出する(ステップS202)。さらに前輪横すべり角換算手段にて前記後輪横すべり角から第1の前輪横すべり角を算出する(ステップS203)。次いで、第1の前輪横すべり角と第2の前輪横すべり角を比較照合し(ステップS204)、第1の前輪横すべり角と第2の前輪横すべり角とから、両者のうち実際の前輪横すべり角により近い前輪横すべり角を選択する(ステップS205あるいはステップS206)。 Next, the operation of this apparatus will be described with reference to FIG. First, based on the amount of vehicle motion such as lateral acceleration detected by the vehicle motion detection means 1, the lateral force acting on the front wheels and the lateral force acting on the rear wheels are respectively calculated by the front wheel lateral force calculation means 5 and the rear wheel lateral force calculation means 2. Calculate (step S201). Next, the front wheel side slip angle calculating means 6 calculates the second front wheel side slip angle from the front wheel side force using the front wheel tire characteristics, and the rear wheel side slip angle calculating means 3 calculates the rear wheel from the rear wheel side force. A rear wheel side slip angle is calculated using the tire characteristics (step S202). Further, a first front wheel side slip angle is calculated from the rear wheel side slip angle by the front wheel side slip angle conversion means (step S203). Next, the first front wheel side slip angle and the second front wheel side slip angle are compared and collated (step S204), and the first front wheel side slip angle and the second front wheel side slip angle are closer to the actual front wheel side slip angle. A front wheel side slip angle is selected (step S205 or step S206).

以下では、図5について、さらに説明を加える。
図5の車両運動検出手段1、後輪横力演算手段2、後輪横すべり角演算手段3、前輪横すべり角換算手段4については、実施の形態1におけるものと同様であるから、説明を省略する。図5の前輪横力演算手段5については、前記式(2−2)によって前輪横力を求める。前輪横すべり角演算手段6については、前記式(2−3)によって前輪横すべり角を求める。
In the following, further explanation will be given with respect to FIG.
The vehicle motion detection means 1, the rear wheel lateral force calculation means 2, the rear wheel side slip angle calculation means 3, and the front wheel side slip angle conversion means 4 in FIG. 5 are the same as those in the first embodiment and will not be described. . With respect to the front wheel lateral force calculating means 5 in FIG. 5, the front wheel lateral force is obtained by the equation (2-2). For the front wheel side slip angle calculating means 6, the front wheel side slip angle is obtained by the equation (2-3).

次に図5の前輪横すべり角照合手段7について説明する。
この前輪横すべり角照合手段7は、前輪の飽和度合いと後輪の飽和度合いのいずれが高いかの判定を行い、前輪の飽和度合いのほうが高い場合は第1の前輪横すべり角を選択し、そうでなければ、第2の前輪横すべり角を選択する。この飽和度合い判定法として、例えば、第1の前輪横すべり角と第2の前輪横すべり角の大小を比較する手法を用いる。その原理を以下に述べる。
図8、図9、図10は、それぞれ飽和度合いが小、中、大の場合の横力とタイヤ横すべり角の関係を示している。これらの図において、タイヤ横すべり角の真値をa、そのとき発生している横力をF、この横力から式(2−3)により求まるタイヤ横すべり角をbで示す。飽和度合いが小さい場合(図8)には、aとbがほぼ一致するのに対し、飽和度合いが高まるにつれて(図9・図10)これらaとbの乖離は広がり、かつ、aよりbのほうが小さくなる。
よって、後輪飽和度合いが大きければ大きい分だけ、後輪横すべり角演算手段3において、式(2−3)により演算される後輪横すべり角は、真の後輪横すべり角よりも小さな値となる。ゆえに、前輪横すべり角換算手段4において式(2−4)により換算される第1の後輪横すべり角もまた真値よりも小さな値となる。
同様に、前輪飽和度合いが大きければ大きい分だけ、前輪横すべり角演算手段6において式(2−4)により演算される第2の前輪横すべり角は、真値よりも小さな値となる。
よって、第1の前輪横すべり角と第2の前輪横すべり角の大きさを比較し、第1の前輪横すべり角のほうが小さければ、後輪の飽和度合いが前輪の飽和度合いに比して大きいと判定できる。
例えば、前輪の状況が図10のようになっているとする。このとき前輪横すべり角の真値がaであり、第2の前輪横すべり角がbである。もし、後輪の飽和度合いが前輪の飽和度合いよりも高ければ、第1の前輪横すべり角はdのところ(bより小さいところ)に位置し、逆に後輪飽和度合いが低ければ、cのところ(bより大きいところ)に位置する。
本実施例に拠れば、後輪の飽和度合いに比して前輪の飽和度合いが高い場合でも前輪横すべり角を良好に推定することができることに加え、逆に、前輪の飽和度合いに比して後輪の飽和度合いが高い場合でも前輪横すべり角を良好に推定することができる。
Next, the front wheel side slip angle matching means 7 in FIG. 5 will be described.
The front wheel side slip angle matching means 7 determines which of the front wheel saturation degree and the rear wheel saturation degree is higher, and if the front wheel saturation degree is higher, selects the first front wheel side slip angle. If not, the second front wheel side slip angle is selected. As this saturation degree determination method, for example, a method of comparing the magnitudes of the first front wheel side slip angle and the second front wheel side slip angle is used. The principle is described below.
8, 9 and 10 show the relationship between the lateral force and the tire slip angle when the degree of saturation is small, medium and large, respectively. In these figures, the true value of the tire side slip angle is represented by a, the lateral force generated at that time is represented by F, and the tire side slip angle obtained from this lateral force by the equation (2-3) is represented by b. When the degree of saturation is small (Fig. 8), a and b almost coincide with each other, but as the degree of saturation increases (Fig. 9 and Fig. 10), the difference between these a and b increases and Is smaller.
Therefore, if the degree of saturation of the rear wheel is large, the rear wheel side slip angle calculating unit 3 calculates the rear wheel side slip angle calculated by the equation (2-3) to be smaller than the true rear wheel side slip angle. . Therefore, the first rear wheel side slip angle converted by the front wheel side slip angle converting means 4 according to the equation (2-4) is also smaller than the true value.
Similarly, the second front wheel side slip angle calculated by the formula (2-4) in the front wheel side slip angle calculating means 6 is a value smaller than the true value as much as the degree of front wheel saturation is large.
Therefore, the magnitudes of the first front wheel side slip angle and the second front wheel side slip angle are compared, and if the first front wheel side slip angle is smaller, it is determined that the degree of saturation of the rear wheel is larger than the degree of saturation of the front wheel. it can.
For example, it is assumed that the situation of the front wheels is as shown in FIG. At this time, the true value of the front wheel side slip angle is a, and the second front wheel side slip angle is b. If the rear wheel saturation degree is higher than the front wheel saturation degree, the first front wheel side slip angle is located at d (smaller than b), and conversely if the rear wheel saturation degree is low, at c. (Larger than b).
According to this embodiment, in addition to being able to satisfactorily estimate the front-slip side slip angle even when the degree of saturation of the front wheels is high compared to the degree of saturation of the rear wheels, conversely, compared to the degree of saturation of the front wheels, Even when the degree of wheel saturation is high, the front wheel side slip angle can be estimated well.

なお実施の形態1でも述べたように、車体横すべり角が必要な場合(例えば、車両横すべり防止装置に対して本発明を適用する場合)においては、車体横すべり角換算手段(図示せず)を備えて実施してもよい。
この際、前輪横すべり角照合手段で出力される前輪横すべり角を式(2−5)によって車体横すべり角に換算するとして実施してもよいし、前輪または後輪のうち飽和度合いの小さいタイヤ側のタイヤ横すべり角から車体横すべり角換算に換算するとして実施してもよい。
このような場合には、後輪の飽和度合いに比して前輪の飽和度合いが高い場合でも前輪横すべり角を良好に推定することができることに加え、逆に、前輪の飽和度合いに比して後輪の飽和度合いが高い場合でも車体横すべり角を良好に推定することができる。
As described in the first embodiment, when a vehicle side slip angle is required (for example, when the present invention is applied to a vehicle side slip prevention device), vehicle side slip angle conversion means (not shown) is provided. May be implemented.
At this time, the front wheel side slip angle output by the front wheel side slip angle collating means may be converted into a vehicle body side slip angle by the equation (2-5), or the front side or the rear wheel of the tire side with a low degree of saturation may be used. You may implement as converting into a vehicle body side slip angle conversion from a tire side slip angle.
In such a case, the front side slip angle can be estimated well even when the saturation degree of the front wheels is higher than the saturation degree of the rear wheels. Even when the degree of wheel saturation is high, the vehicle body slip angle can be estimated well.

本実施の形態2においては、上述のように必ずしもタイヤの前輪と後輪の両方の特性を同時に用いる必要がないゆえに、前輪と後輪のうち、片側のみが飽和している場合について、従来例(例えば特開平9−311042号公報)にくらべ、推定精度が向上する。従って、例えば、氷盤路のようなμ(摩擦係数)の低い路面においてドライバが舵角を必要以上に切って、前輪が飽和しアンダーステア状態となった際、本実施の形態2においては飽和していない後輪のタイヤ特性から前輪横すべり角あるいは車体横すべり角を求めるために、簡易に良好な推定精度を得ることが可能となる。   In the second embodiment, since it is not always necessary to use the characteristics of both the front and rear wheels of the tire at the same time as described above, a case where only one side of the front and rear wheels is saturated is a conventional example. The estimation accuracy is improved as compared with (for example, JP-A-9-311042). Therefore, for example, when the driver turns the steering angle more than necessary on a road surface with a low μ (friction coefficient) such as an ice board road, the front wheels are saturated and become understeered. Since the front-wheel side slip angle or the vehicle body side-slip angle is obtained from the tire characteristics of the rear wheels that are not, it is possible to easily obtain good estimation accuracy.

以上のように、本発明の車両状態量推定装置は、例えばアンダーステア状態において、飽和していない後輪のタイヤ特性を用いることにより、前輪横すべり角あるいは車体横すべり角を精度良く求めることが出来るという効果がある。 As described above, the vehicle state quantity estimating device according to the present invention has an effect that the front wheel side slip angle or the vehicle body side slip angle can be obtained with high accuracy by using the tire characteristics of the rear wheel which is not saturated in, for example, an understeer state. There is.

一般的なタイヤ特性を示す図である。It is a figure which shows a general tire characteristic. 一般的なタイヤ特性に基づくと、横力が飽和に近いとき、横力からタイヤ横すべり角を求める精度が低下することを説明する図である。It is a figure explaining that the precision which calculates | requires a tire side slip angle from side force will fall when side force is near saturation based on a general tire characteristic. 本発明実施の形態1による車両状態量推定装置の構成図である。It is a block diagram of the vehicle state quantity estimation apparatus by Embodiment 1 of this invention. 本発明実施の形態1による車両運動検出手段の一例を示す構成図である。It is a block diagram which shows an example of the vehicle motion detection means by Embodiment 1 of this invention. 本発明実施の形態2による車両状態量推定装置の構成図である。It is a block diagram of the vehicle state quantity estimation apparatus by Embodiment 2 of this invention. 本発明実施の形態1による車両状態量推定装置の動作を示す流れ図である。It is a flowchart which shows operation | movement of the vehicle state quantity estimation apparatus by Embodiment 1 of this invention. 本発明実施の形態2による車両状態量推定装置の動作を示す流れ図である。It is a flowchart which shows operation | movement of the vehicle state quantity estimation apparatus by Embodiment 2 of this invention. 飽和度合いが小の場合のタイヤ特性の一例を示す図である。It is a figure which shows an example of the tire characteristic in case a saturation degree is small. 飽和度合いが中の場合のタイヤ特性の一例を示す図である。It is a figure which shows an example of the tire characteristic in case a saturation degree is medium. 飽和度合いが大の場合のタイヤ特性の一例を示す図である。It is a figure which shows an example of the tire characteristic in case a saturation degree is large.

符号の説明Explanation of symbols

1 車両運動検出手段、2 後輪横力演算手段、3 後輪横すべり角演算手段、4 前輪横すべり角換算手段、5 前輪横力演算手段、6 前輪横すべり角演算手段、7 前輪横すべり角照合手段、101 横加速度検出手段、102 ヨーレイト検出手段、103 車速検出手段、104 舵角検出手段。 1 vehicle motion detecting means, 2 rear wheel lateral force calculating means, 3 rear wheel side slip angle calculating means, 4 front wheel side slip angle converting means, 5 front wheel lateral force calculating means, 6 front wheel side slip angle calculating means, 7 front wheel side slip angle checking means, 101 lateral acceleration detection means, 102 yaw rate detection means, 103 vehicle speed detection means, 104 steering angle detection means.

Claims (3)

舵角を検出する舵角検出手段と、車速を検出する車速検出手段と、車体のヨーレイトを検出するヨーレイト検出手段と、車体の横加速度を検出する横加速度検出手段と、を含む車両運動検出手段と、
前記ヨーレイト検出手段で検出されたヨーレイト、および前記横加速度検出手段で検出された横加速度から、後輪に働く後輪横力を演算する後輪横力演算手段と、
前記後輪横力と予め定められた後輪タイヤ特性とにより後輪横すべり角を演算する後輪横すべり角演算手段と、
前記後輪横すべり角を車両2輪モデルに基づいて第1の前輪横すべり角に換算する前輪横すべり角換算手段と、
を有することを特徴とする車両状態量推定装置。
Vehicle motion detection means including steering angle detection means for detecting the steering angle, vehicle speed detection means for detecting the vehicle speed, yaw rate detection means for detecting the yaw rate of the vehicle body, and lateral acceleration detection means for detecting the lateral acceleration of the vehicle body When,
Rear wheel lateral force calculating means for calculating a rear wheel lateral force acting on a rear wheel from the yaw rate detected by the yaw rate detecting means and the lateral acceleration detected by the lateral acceleration detecting means;
A rear wheel side slip angle calculating means for calculating a rear wheel side slip angle based on the rear wheel lateral force and a predetermined rear wheel tire characteristic;
Front wheel side slip angle conversion means for converting the rear wheel side slip angle into a first front wheel side slip angle based on a two-wheel vehicle model;
A vehicle state quantity estimation device comprising:
舵角を検出する舵角検出手段と、車速を検出する車速検出手段と、車体のヨーレイトを検出するヨーレイト検出手段と、車体の横加速度を検出する横加速度検出手段と、を含む車両運動検出手段と、
前記ヨーレイト検出手段で検出されたヨーレイト、および前記横加速度検出手段で検出された横加速度から、前輪に働く前輪横力を演算する前輪横力演算手段と、
前記前輪横力と予め定められた前輪タイヤ特性とにより第2の前輪横すべり角を演算する前輪横すべり角演算手段と、
前記後輪横力演算手段と
前記後輪横すべり角演算手段と、
前記前輪横すべり角換算手段と、
前記前輪横すべり角換算手段により求めた第1の前輪横すべり角と、前記前輪横すべり角演算手段により求めた前記第2の前輪横すべり角とを比較照合することにより、前輪横すべり角を求める前輪横すべり角照合手段と、
を有することを特徴とする車両状態量推定装置。
Vehicle motion detection means including steering angle detection means for detecting the steering angle, vehicle speed detection means for detecting the vehicle speed, yaw rate detection means for detecting the yaw rate of the vehicle body, and lateral acceleration detection means for detecting the lateral acceleration of the vehicle body When,
Front wheel lateral force calculating means for calculating a front wheel lateral force acting on a front wheel from the yaw rate detected by the yaw rate detecting means and the lateral acceleration detected by the lateral acceleration detecting means;
Front wheel side slip angle calculating means for calculating a second front wheel side slip angle based on the front wheel side force and predetermined front wheel tire characteristics;
The rear wheel lateral force calculating means and the rear wheel side slip angle calculating means;
The front wheel side slip angle conversion means;
Front wheel side slip angle collation for obtaining a front wheel side slip angle by comparing and collating the first front wheel side slip angle obtained by the front wheel side slip angle conversion means and the second front wheel side slip angle obtained by the front wheel side slip angle calculating means. Means,
A vehicle state quantity estimation device comprising:
前輪の飽和度合いが後輪の飽和度合いよりも大きい場合には前記第1の前輪横すべり角を車体あるいは車輪の横すべり角とし、前輪の飽和度合いが後輪の飽和度合いよりも小さい場合には前記第2の前輪横すべり角を車体あるいは車輪の横すべり角とすることを特徴とする請求項2に記載の車両状態量推定装置。 When the front wheel saturation degree is larger than the rear wheel saturation degree, the first front wheel side slip angle is set as the vehicle body or wheel side slip angle. When the front wheel saturation degree is smaller than the rear wheel saturation degree, 3. The vehicle state quantity estimating device according to claim 2, wherein the front wheel side slip angle is a side slip angle of a vehicle body or a wheel.
JP2008012518A 2008-01-23 2008-01-23 Vehicle state quantity estimation device Active JP4946888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008012518A JP4946888B2 (en) 2008-01-23 2008-01-23 Vehicle state quantity estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008012518A JP4946888B2 (en) 2008-01-23 2008-01-23 Vehicle state quantity estimation device

Publications (2)

Publication Number Publication Date
JP2009173112A true JP2009173112A (en) 2009-08-06
JP4946888B2 JP4946888B2 (en) 2012-06-06

Family

ID=41028726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008012518A Active JP4946888B2 (en) 2008-01-23 2008-01-23 Vehicle state quantity estimation device

Country Status (1)

Country Link
JP (1) JP4946888B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7885750B2 (en) * 2006-08-30 2011-02-08 Ford Global Technologies Integrated control system for stability control of yaw, roll and lateral motion of a driving vehicle using an integrated sensing system to determine a sideslip angle
JP2012171418A (en) * 2011-02-18 2012-09-10 Jtekt Corp Vehicle skid angle estimation device and vehicle stability control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09240458A (en) * 1995-12-27 1997-09-16 Toyota Motor Corp Detecting device for quantity of lateral slipping state of vehicle
JPH1178933A (en) * 1997-09-08 1999-03-23 Nissan Motor Co Ltd Method and device for estimating side slip angle of vehicle body
JP2000085557A (en) * 1998-09-09 2000-03-28 Honda Motor Co Ltd Turning behavior condition detecting device for vehicle
JP2003063374A (en) * 2001-08-23 2003-03-05 Hitachi Unisia Automotive Ltd Sideslip angle computing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09240458A (en) * 1995-12-27 1997-09-16 Toyota Motor Corp Detecting device for quantity of lateral slipping state of vehicle
JPH1178933A (en) * 1997-09-08 1999-03-23 Nissan Motor Co Ltd Method and device for estimating side slip angle of vehicle body
JP2000085557A (en) * 1998-09-09 2000-03-28 Honda Motor Co Ltd Turning behavior condition detecting device for vehicle
JP2003063374A (en) * 2001-08-23 2003-03-05 Hitachi Unisia Automotive Ltd Sideslip angle computing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7885750B2 (en) * 2006-08-30 2011-02-08 Ford Global Technologies Integrated control system for stability control of yaw, roll and lateral motion of a driving vehicle using an integrated sensing system to determine a sideslip angle
JP2012171418A (en) * 2011-02-18 2012-09-10 Jtekt Corp Vehicle skid angle estimation device and vehicle stability control device

Also Published As

Publication number Publication date
JP4946888B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP5035419B2 (en) Road surface friction coefficient estimation device and road surface friction coefficient estimation method
JP5035418B2 (en) Road surface friction coefficient estimation device and road surface friction coefficient estimation method
JP4140720B2 (en) Vehicle behavior reproduction system
JP5096781B2 (en) Vehicle road friction coefficient estimation device
WO2015041042A1 (en) Vehicle control apparatus
JP2004224172A (en) Drift amount presuming device for lateral acceleration sensor, output correcting device for lateral acceleration sensor, and road surface frictional condition presuming device
JP4071529B2 (en) Self-aligning torque estimation device and lateral grip degree estimation device
JP5206490B2 (en) Vehicle ground contact surface friction state estimation apparatus and method
JP4946888B2 (en) Vehicle state quantity estimation device
JP5331074B2 (en) Steering device
US7164974B2 (en) Vehicle roll sensing using load shift estimation
JP2002104158A (en) Road surface frictional state calculating device, tire type determining device, tire abrasion determining device, road surface gradient estimating device, and offset correcting device of acceleration sensor
JP4970102B2 (en) Vehicle deceleration control device
JP2011068256A (en) Presumed acceleration computing device
KR101315023B1 (en) Estimation method of reference speed of automobile
JP5089558B2 (en) Road friction coefficient estimation device
JP2008087548A (en) Turning state estimation device, automobile, and turning state estimation method
JP6608471B2 (en) Skid judgment device
KR20130102920A (en) Method for calculating velocity for vehicles
JP5304171B2 (en) Road surface μ estimation apparatus and method
JP2009159793A (en) Vehicle control unit
JP4144759B2 (en) Vehicle steering control device
KR100751216B1 (en) Electronic stability system for vehicle
JP3426512B2 (en) Vehicle turning behavior state detection device
KR101365008B1 (en) Control method for electronic stability control ina vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4946888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250