JP2020028874A - Micro bubble generator - Google Patents

Micro bubble generator Download PDF

Info

Publication number
JP2020028874A
JP2020028874A JP2018167342A JP2018167342A JP2020028874A JP 2020028874 A JP2020028874 A JP 2020028874A JP 2018167342 A JP2018167342 A JP 2018167342A JP 2018167342 A JP2018167342 A JP 2018167342A JP 2020028874 A JP2020028874 A JP 2020028874A
Authority
JP
Japan
Prior art keywords
power supply
microbubble
liquid
microbubble generator
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018167342A
Other languages
Japanese (ja)
Inventor
秀雄 中庄谷
Hideo Nakashoya
秀雄 中庄谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kensui Life Science Co Ltd
Original Assignee
Kensui Life Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kensui Life Science Co Ltd filed Critical Kensui Life Science Co Ltd
Priority to JP2018167342A priority Critical patent/JP2020028874A/en
Publication of JP2020028874A publication Critical patent/JP2020028874A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

To solve problems in the conventional technique of high-speed swirling of a liquid mixed with gas to generate micro-bubbles, in which in order to separately add gas to the liquid, it is necessary to go through a process of high-speed swirling to contain micro-bubbles in the liquid, therefore its structure became complicated, and the miniaturization of bubbles is limited.SOLUTION: The present invention provides a micro bubble generator configured to connect a power supply unit for microbubble generation, in which a non-ground side of the power supply, a lamp, and a resistor are connected in series, and a microbubble generator unit acting on the liquid, so that micro-bubbles can be generated directly from a liquid, with a safe and extremely simple structure. As illustrated in FIG.1, an electric charge from a non-ground side 7 of a power supply 1 is transmitted from a lamp 3 to a microbubble generator unit 5 through a resistor 4, and passes through a ground 6 from a liquid 12 in contact with the microbubble generator unit 5. In this event, the micro-bubbles are generated from a contact surface between the microbubble generator unit 5 and the liquid 12 as long as the electric charge is continuously supplied to the liquid 12.SELECTED DRAWING: Figure 1

Description

本発明は、液体中から微小気泡を発生させる微小気泡発生装置に関する。The present invention relates to a microbubble generator that generates microbubbles from a liquid.

近年、マイクロナノバブルと呼ばれる微小気泡を用いた技術の有用性が注目されている。例えば、微小気泡を含む液体を用いた洗浄技術や、水の除菌及び消臭、オゾン水の発生、健康・医療機器分野、美容、湖沼や養殖場の水質浄化、工場・畜産等の各種排水処理、及び、水素水などの機能水製法などへの利用がある。In recent years, the usefulness of a technique using microbubbles called micro-nano bubbles has attracted attention. For example, cleaning technology using liquid containing microbubbles, disinfection and deodorization of water, generation of ozone water, health / medical equipment field, beauty, water purification of lakes and farms, various wastewaters in factories and livestock It is used for processing and for producing functional water such as hydrogen water.

このようなマイクロナノバブル、ナノバブルを発生させる装置がある。  There are devices for generating such micro-nano bubbles and nano bubbles.

特許第4563496号Patent No. 4563496

従来技術では、微小気泡を発生するために、気体を混合した液体を高速旋回して、微小気泡にすることが知られている。In the related art, it is known that a liquid mixed with a gas is swirled at high speed to generate microbubbles in order to generate microbubbles.

しかしながら、従来技術では液体に、別途、気体を付加するため、微小気泡を液体中に含有させるための高速旋回の過程を通さなければならず、構造も複雑となり、気泡の微小化にも限界がある。However, in the prior art, since a gas is separately added to the liquid, the liquid must pass through a high-speed swirling process for containing microbubbles in the liquid, which complicates the structure and limits the miniaturization of the bubbles. is there.

本発明は、電源の非接地側とランプと抵抗器を直列に接続した微小気泡発生用の電源部と、液体に作用する微小気泡発生部を接続し、液体から直接、微小気泡を安全で、極めて簡単な構成で発生できるようにした。The present invention connects a power supply unit for generating micro-bubbles in which a non-ground side of a power supply, a lamp and a resistor are connected in series, and a micro-bubble generating unit acting on a liquid, and directly outputs micro-bubbles from a liquid safely. It can be generated with a very simple configuration.

電源の非接地側とランプと抵抗器を直列に接続した微小気泡発生電源部と、微小気泡発生部とを接続し、液体に直接電荷を供給して、微小気泡を発生させることで、大掛かりな高速旋回や高速流動を発生させる構造が必要なく、簡単に液体中に微小気泡を発生させる構成を提供することを目的とする。The microbubble generator is connected to the non-grounded side of the power supply, the lamp and the resistor in series, and the microbubble generator is connected to supply electric charge directly to the liquid to generate microbubbles. It is an object of the present invention to provide a configuration for easily generating microbubbles in a liquid without requiring a structure for generating high-speed turning or high-speed flow.

本発明に係る微小気泡発生装置は、図1に示すように、電源1の非接地側7とランプ3と抵抗器4を直列に接続した微小気泡発生電源部2と、電極を有する微小気泡発生部5とを接続し、液体に直接電荷を供給して、微小気泡を発生させる構成である。As shown in FIG. 1, a microbubble generating device according to the present invention includes a microbubble generating power supply unit 2 in which a non-ground side 7 of a power supply 1, a lamp 3 and a resistor 4 are connected in series, and a microbubble generating unit having electrodes. In this configuration, the liquid is directly supplied to the liquid by connecting the unit 5 to generate microbubbles.

微小気泡発生部とは、液体と電極を接触させて、微小気泡を発生させる部分である。The microbubble generating section is a portion that generates microbubbles by bringing a liquid into contact with an electrode.

本発明においては、液体に気体を混合させ気泡を微小化するための高速旋回部や高速流動部などの機械的な構成を必要とぜず、前記液体に電荷を供給することで、前記液体中に、微小気泡を発生することができる。In the present invention, by supplying a charge to the liquid, it is not necessary to provide a mechanical structure such as a high-speed swirling section or a high-speed flowing section for mixing a gas with the liquid and miniaturizing bubbles, and the liquid is charged in the liquid. In addition, micro bubbles can be generated.

微小気泡発生装置の基本回路図である。  It is a basic circuit diagram of a microbubble generator. 携帯型の微小気泡発生装置である。  It is a portable microbubble generator. 給水末端に取り付ける微小気泡発生装置である。  This is a microbubble generator attached to the water supply end. 給水元に取り付ける微小気泡発生装置である。  This is a microbubble generator attached to the water supply source. 特定の気体の微小気泡を発生させる微小気泡発生装置である。  This is a microbubble generator that generates microbubbles of a specific gas. 図5の電気回路を簡素化した微小気泡発生装置である。  It is a microbubble generator which simplified the electric circuit of FIG. 図2のほうき状の微小気泡発生部にカバーを装着、微小気泡発生装置である。  This is a microbubble generating apparatus in which a cover is attached to the broom-like microbubble generating unit in FIG. 図1に電源切り替えスイッチを付加した微小気泡発生装置である。  This is a microbubble generating apparatus in which a power switch is added to FIG. 図1に電源ON、OFFスイッチを付加した微小気泡発生装置である。  This is a microbubble generating apparatus in which a power ON / OFF switch is added to FIG. 図3、図4の微小気泡発生部の縦断面図である。  FIG. 5 is a vertical cross-sectional view of the microbubble generator in FIGS. 3 and 4. 微小気泡を有する水(左)と水道水(右)を凍結して、微小気泡を含有する水を可視化したものである。  Water containing microbubbles (left) and tap water (right) are frozen to visualize water containing microbubbles.

図1に示すように、電源1の非接地側7から電荷は、ランプ3から抵抗器4を通って微小気泡発生部5に伝達し、微小気泡発生部5に接触した液体12から、接地6を通る。その際に、微小気泡発生部5と、液体12との接触面から微小気泡が液体12に電荷が供給され続ける限り発生する。その際、液体12と微小気泡発生部5との接触部は、接触面が多くなるように流動していることが望ましい。As shown in FIG. 1, the electric charge from the non-ground side 7 of the power supply 1 is transmitted from the lamp 3 through the resistor 4 to the microbubble generating section 5, and from the liquid 12 in contact with the microbubble generating section 5, Pass through. At this time, the microbubbles are generated from the contact surface between the microbubble generator 5 and the liquid 12 as long as the charge is continuously supplied to the liquid 12. At this time, it is desirable that the contact portion between the liquid 12 and the microbubble generating portion 5 flows so as to increase the contact surface.

微小気泡は、液体分子間で封じ込められ前記微小気泡は浮上せず液体中にしばらくとどまる。例えば、本発明の微小気泡発生装置で水から微小気泡を発生させた場合、水分子間に前記微小気泡がとどまり、前記微小気泡が発生した地点から2日から3日程度、水中で前記微小気泡が存在し続けた。The microbubbles are confined between the liquid molecules and remain in the liquid for a while without floating. For example, when microbubbles are generated from water by the microbubble generator of the present invention, the microbubbles remain between water molecules, and the microbubbles are generated in water for about two to three days from the point where the microbubbles are generated. Continued to exist.

図1は、電源側が、非接地側7に接続されているかを、目視で確認できるように、ランプ3を設けている。又、微小気泡発生部5から液体に電荷が供給されているかランプ3で視認できる。例えば、電源1が交流電源で、液体が水の場合は、水素と酸素の混合した微小気泡が発生する。In FIG. 1, the lamp 3 is provided so that the power supply side can be visually checked whether it is connected to the non-ground side 7. Further, whether or not electric charge is supplied to the liquid from the microbubble generating unit 5 can be visually recognized by the lamp 3. For example, when the power supply 1 is an AC power supply and the liquid is water, microbubbles in which hydrogen and oxygen are mixed are generated.

図1は、微小気泡発生部5に電荷の供給量の上限を定めるために、抵抗器4を設けている。例えば、微小気泡発生部5から水に前記電荷を供給するときに、前記上限がなければ、人が前記水に触れた場合に大量の電流が流れ、感電する危険性がある。電源1の非接地側7と微小気泡発生部5の間に適切な抵抗値、例えば、電源がAC100Vであれば1MΩ〜2MΩ程度の抵抗値をもった抵抗器を直列に接続することで、前記人が感電することはなくなる。In FIG. 1, a resistor 4 is provided in order to determine the upper limit of the amount of supply of electric charges to the microbubble generator 5. For example, when the electric charge is supplied to the water from the microbubble generator 5, if there is no upper limit, a large amount of current flows when a person touches the water, and there is a risk of electric shock. By connecting in series a resistor having an appropriate resistance value between the non-ground side 7 of the power supply 1 and the microbubble generator 5, for example, a resistance value of about 1 MΩ to 2 MΩ when the power supply is 100 V AC, People will not be shocked.

又、微小気泡発生部から水に電荷を供給する場合の電流は、極めて微弱なもので良く、例えば、0.1mmA程度でも十分に液体中に微小気泡を発生することができる。In addition, the electric current when the electric charge is supplied to the water from the microbubble generating section may be extremely weak, and for example, microbubbles can be sufficiently generated in the liquid even at about 0.1 mmA.

図2は、携帯できる微小気泡発生装置である。電源1から非接地側7にプラグ8を差し込み、容器11に入った液体12に、ほうき状微小気泡発生部10を触れさせると、ランプ3が点灯する。ほうき状微小気泡発生部10から、電荷の供給の上限を定めるための抵抗器4は、ほうき状微小気泡発生部10と、電源1の非接地側7の間に、持ち手9の内部で直列に接続している。液体12にほうき状微小気泡発生部10を接触させて、ランプ3が点灯しない場合は、プラグ8が接地側と接続されているため、180°反転して、電源1に差し替えることで、ランプ3が点灯し、非接地側7に回路が接続されていることが視認できる。又、図8の微小気泡発生電源部2の回路を用いると、前記形態できる微小気泡発生装置の、切り替えスイッチ27を操作することで、非接地側7に回路を閉じることができ、プラグ8を電源1に抜き差しする手間をかけずに、微小気泡発生部5に電荷を供給できるようになる。  FIG. 2 shows a portable microbubble generator. When the plug 8 is inserted from the power supply 1 to the non-ground side 7 and the liquid 12 in the container 11 is brought into contact with the broom-shaped microbubble generator 10, the lamp 3 is turned on. A resistor 4 for determining the upper limit of the supply of electric charge from the broom-shaped microbubble generator 10 is connected between the broom-shaped microbubble generator 10 and the non-ground side 7 of the power supply 1 inside the handle 9. Connected to When the broom-like microbubble generator 10 is brought into contact with the liquid 12 and the lamp 3 does not light, the plug 8 is connected to the ground side. Lights up, and it can be visually recognized that the circuit is connected to the non-ground side 7. When the circuit of the micro-bubble generating power supply unit 2 of FIG. 8 is used, the circuit can be closed to the non-ground side 7 by operating the changeover switch 27 of the micro-bubble generating device that can be configured as described above, and the plug 8 can be closed. Electric charges can be supplied to the microbubble generating section 5 without the need to insert and remove the power supply 1.

上記携帯できる微小気泡発生装置は、液体12例えば、水の場合、ほうき状微小気泡発生部10を水中内で動かすことで、より多くの水が、ほうき状微小気泡発生部10に接触して、微小気泡を効率よく発生させることができるようになる。又、ほうき状微小気泡発生部10は、細い導体例えば、銅線を沢山束ねた形状が、水との接触面積が多くなり、効率よく微小気泡を発生させることができるようになるので望ましい。但し、毎回使用していると、ほうき状微小気泡発生部10水との接触面に、酸化被膜ができ、絶縁体となって、電荷をほうき状微小気泡発生部10から、水に供給しにくくなる。その場合は、弱酸性の溶液、例えば、容器に水で10倍程度にうすめた酢を作り、15分程度、ほうき状微小気泡発生部10をそれに漬け込み、前記容器から取り出し、水で濯ぐことで酸化被膜の除去ができる。その結果ほうき状微小気泡発生部10と水との接触面から、再び電荷が供給されて、微小気泡が水中で発生するようになる。The portable micro-bubble generator described above, in the case of liquid 12, for example, water, moves the broom-shaped micro-bubble generator 10 in water, so that more water comes into contact with the broom-shaped micro-bubble generator 10, Fine bubbles can be generated efficiently. Further, the broom-shaped microbubble generating section 10 is desirably a shape formed by bundling a large number of thin conductors, for example, copper wires, because the contact area with water increases and microbubbles can be generated efficiently. However, when used every time, the broom-shaped microbubble generating part 10 forms an oxide film on the contact surface with the water, becomes an insulator, and it is difficult to supply electric charge from the broom-shaped microbubble generating part 10 to water. Become. In that case, make a weakly acidic solution, for example, vinegar diluted about 10 times with water in a container, immerse the broom-like microbubble generator 10 in it for about 15 minutes, remove from the container, and rinse with water. Removes the oxide film. As a result, charge is supplied again from the contact surface between the broom-shaped microbubble generating section 10 and water, and microbubbles are generated in the water.

上記携帯できる微小気泡発生装置の電荷の供給は、電源1の非接地側7を通ってランプ3から抵抗器4、ほうき状微小気泡発生部10から液体12を通って、接地6に流れる。図2では、容器11が絶縁体の場合、接地部は、液体12面と接地部6面との間がコンデンサーの状態となるため、電源1が交流電源の場合は、ランプ3は点灯し、液体中に微小気泡を発生できる。又、容器11が例えば導体で、接地部6と通電する場合は、直流電源であってもほうき状微小気泡発生部10から、液体中に微小気泡が発生する。但し、液体12と接地部6の間がコンデンサーの状態で、静電容量が大きくなる場合、例えば、液体12の表面と接地部6の電導体との距離が近く、表面積が広い場合に、長時間、微小気泡発生装置を通電状態で放置すると、液体12に帯電し、人体が触れて感電する危険性があるので、直流等の同極電荷を供給する電源は用いない方が良く、微小気泡も殆ど発生しない。The supply of the electric charge of the portable microbubble generator flows from the lamp 3 through the non-ground side 7 of the power supply 1 to the resistor 4, from the broom-like microbubble generator 10 to the liquid 12, and to the ground 6. In FIG. 2, when the container 11 is an insulator, the grounding portion is in a state of a condenser between the liquid 12 surface and the grounding portion 6 surface. Therefore, when the power supply 1 is an AC power supply, the lamp 3 is turned on. Micro bubbles can be generated in the liquid. Also, when the container 11 is, for example, a conductor and is energized with the grounding section 6, micro-bubbles are generated in the liquid from the broom-shaped micro-bubble generating section 10 even with a DC power supply. However, when the capacitance between the liquid 12 and the grounding part 6 is a capacitor and the capacitance is large, for example, when the distance between the surface of the liquid 12 and the conductor of the grounding part 6 is short and the surface area is large, the length is long. If the microbubble generator is left in an energized state for a long time, the liquid 12 will be charged, and there is a risk of electric shock by touching the human body. Hardly occurs.

図3は、給水器具15の末端に、器具取付用微小気泡発生部14を取り付け、微小気泡発生電源部2を内蔵した電源プラグ13と器具取付用微小気泡発生部14を接続し、給水器具15のバルブを開放して、器具取付用微小気泡発生部14と給水の接触面から微小気泡を発生させ、末端から放水された前記給水が、微小気泡が含有する給水となる。FIG. 3 shows a water supply device 15 in which a microbubble generator 14 for mounting a device is attached to the end of the water supply device 15, and a power plug 13 having a built-in power supply unit 2 for microbubble and a microbubble generator 14 for mounting the device are connected. Is opened, microbubbles are generated from the contact surface of the water supply with the microbubble generator 14 for instrument attachment, and the water supplied from the end becomes the water supply containing the microbubbles.

図4は、給水用の量水器18の二次側の給水を微小気泡を含んだ水に変える微小気泡発生装置であり、微小気泡発生部5の一次側に接地用配管20aと、その二次側に、接地用配管20bと、圧力スイッチ22とを直列に配管接続し、電源1の非接地側7と、微小気泡発生電源部2と圧力スイッチ22と、微小気泡発生部5とを配線接続した配管接続型である。圧力スイッチ22は、給水二次側が開放したときに配管内の圧力が減圧し、電気回路が閉じて、微小気泡発生電源部2から、微小気泡発生部5に電荷が供給され、微小気泡発生部5と給水の接触部から微細気泡が発生し、微小気泡を含んだ水が、各使用箇所例えば、流し台や洗濯機、浴室、洗面所などに供給される。FIG. 4 shows a micro-bubble generator for changing the water supply on the secondary side of the water meter 18 for water supply to water containing micro-bubbles. A grounding pipe 20b and a pressure switch 22 are connected in series on the next side, and the non-grounded side 7 of the power supply 1, the microbubble generating power supply unit 2, the pressure switch 22, and the microbubble generating unit 5 are wired. It is a connected pipe connection type. The pressure switch 22 reduces the pressure in the pipe when the water supply secondary side is opened, the electric circuit is closed, and the electric charge is supplied from the microbubble generating power supply unit 2 to the microbubble generating unit 5. Fine bubbles are generated from the contact portion of the feed water 5 and the water, and the water containing the fine bubbles is supplied to each use location, for example, a sink, a washing machine, a bathroom, a washroom, and the like.

前記電荷は、微細気泡発生部5に接触した給水と微小気泡発生部5の両端に配置した接地用配管20を通って、接地部6に流れるため、前記電荷が抵抗値の高い給水を通って量水器18を超えて、外部給水への移動がなくなる。又、給水が閉水した場合には、配管内の圧力は上昇し、圧力スイッチ22は電気回路を開いて、微小気泡発生電源部2から微小気泡発生部5への前記電荷の供給を止め、微小気泡発生部から、前記給水未使用時に、不用に前記給水内で微小気泡が発生しない制御をする。The electric charge flows through the water supply contacting the microbubble generator 5 and the grounding pipe 20 disposed at both ends of the microbubble generator 5 to the grounding unit 6, so that the electric charge passes through the water supply having a high resistance value. There is no transfer to the external water supply beyond the water dispenser 18. When the water supply is closed, the pressure in the pipe increases, the pressure switch 22 opens the electric circuit, and stops supplying the electric charge from the microbubble generating power supply unit 2 to the microbubble generating unit 5, When the water supply is not used, the microbubble generating unit performs control to prevent unnecessary generation of microbubbles in the water supply.

図5は、電源部1の非接地側7と整流器23と抵抗器4を直列で接続し、微小気泡発生部を接続し、非接地側7から分岐して、抵抗器4とランプ3と接触部24を直列に接続した、交流電源からマイナスの電荷のみを微小気泡発生部に供給する、微小気泡発生電源部である。前記交流電源から、液体内の微小気泡を一種類にする場合、例えば、液体が水の場合、水中内に水素のみの微小気泡を発生させることが可能になる。又、整流器23の接続を反転させてプラスのみの電荷を微小気泡発生部5に供給すると、微小気泡発生部5に接触した水の水中に酸素のみの微小気泡を含んだ水ができる。前記非接地側7から分岐して、抵抗器4とランプ3と接触部24を直列に接続した回路は、非接地側に接続の有無の確認用の回路で、接触部24に触れて、ランプ3が点灯すれば、回路全体が非接地側7と接続されていることがわかる。電源1が直流電源等の同極の電荷を供給する場合は、図5の回路は不用である。FIG. 5 shows that the non-ground side 7 of the power supply unit 1, the rectifier 23, and the resistor 4 are connected in series, the microbubble generator is connected, and the branch from the non-ground side 7 makes contact with the resistor 4 and the lamp 3. A microbubble generating power supply unit in which only the negative power is supplied from an AC power supply to the microbubble generating unit, in which the units 24 are connected in series. When one type of microbubbles is used in the liquid from the AC power supply, for example, when the liquid is water, microbubbles containing only hydrogen can be generated in the water. When the connection of the rectifier 23 is reversed and only positive charges are supplied to the microbubble generator 5, water containing microbubbles containing only oxygen is generated in the water in contact with the microbubble generator 5. A circuit that branches from the non-ground side 7 and connects the resistor 4, the lamp 3, and the contact portion 24 in series is a circuit for confirming whether or not there is a connection on the non-ground side. When 3 lights up, it is understood that the whole circuit is connected to the non-ground side 7. When the power supply 1 supplies charges of the same polarity such as a DC power supply, the circuit of FIG. 5 is unnecessary.

図6は、電源1の非接地側7と発光ダイオード25と抵抗器4を直列で接続した微小気泡発生電源部と、微小気泡発生部5とを接続した微細気泡発生装置である。発光ダイオード25を利用することで、図5のランプ3と整流器23の役割を担うため回路が簡素化されるが、発光ダイオードを発光させるには、抵抗器4の抵抗値を下げて、電荷の供給する量を増やさなければならず、又通電しやすい液体等の条件が整う必要がある。FIG. 6 shows a microbubble generator in which the microbubble generator 5 is connected to a microbubble generator power supply unit in which the non-ground side 7 of the power supply 1, the light emitting diode 25 and the resistor 4 are connected in series. The use of the light emitting diode 25 simplifies the circuit because it plays the role of the lamp 3 and the rectifier 23 in FIG. 5, but in order to make the light emitting diode emit light, the resistance value of the resistor 4 is reduced and the charge of the electric charge is reduced. It is necessary to increase the supply amount, and it is necessary to prepare conditions such as a liquid to be easily energized.

図7は、図2のほうき状微小気泡発生部10に、カバー26を配置したものである。先端部と外部の接触から、双方とも保護できるので、保管や持ち運びがしやすい。FIG. 7 shows a configuration in which a cover 26 is arranged on the broom-shaped microbubble generating section 10 of FIG. Both can be protected from external contact with the tip, making it easy to store and carry.

図8は、電源1の非接地側7と接地部6との、切り替えスイッチ27を、微小気泡発生電源部2に直列に接続したものである。前記電源1の前記非接地側7が、どちら側か確認せずとも微小気泡発生部5に配線接続できるため、配線接続工事の手間が省ける。又、切り替えスイッチ27を、前記非接地側7に切り替かえた場合、前記電源1から供給された電荷はランプ3から抵抗器4を通り、微小気泡発生部5から液体12を通って、接地部6に流れる為、前記ランプ3は点灯し、前記微小気泡発生部5と液体12の接触面から微小気泡が発生する。又、前記切り替えスイッチ27を、接地部6に切り替えた場合、前記微小気泡発生電源部2には、前記電源1から電荷は供給されず、ランプ3は消灯し、微小気泡発生部5に接触する前記液体12から微小気泡は発生しない。従って、切り替えスイッチ27は、電源1から微細気泡発生部に、供給される電荷をONとOFFできる、開閉スイッチ28の機能もある。FIG. 8 shows a configuration in which a changeover switch 27 between the non-ground side 7 of the power supply 1 and the grounding section 6 is connected in series to the microbubble generating power supply section 2. Since the non-grounded side 7 of the power supply 1 can be connected to the microbubble generator 5 without confirming which side, the trouble of wiring connection work can be saved. When the changeover switch 27 is switched to the non-ground side 7, the electric charge supplied from the power source 1 passes through the resistor 4 from the lamp 3, passes through the liquid 12 from the microbubble generating section 5, and passes through the ground section. 6, the lamp 3 is turned on, and microbubbles are generated from the contact surface between the microbubble generator 5 and the liquid 12. When the changeover switch 27 is switched to the grounding unit 6, the electric charge is not supplied from the power supply 1 to the microbubble generating power supply unit 2, the lamp 3 is turned off, and the microbubble generating unit 5 comes into contact. Micro bubbles are not generated from the liquid 12. Therefore, the changeover switch 27 also has a function of an open / close switch 28 that can turn ON and OFF the electric charge supplied from the power supply 1 to the microbubble generating unit.

図9は、電源1のONとOFFを開閉できる開閉スイッチ28を付加した、微小気泡発生電源部2である。不要な場合に電源をOFFすることができる為、電源1が抜き差しできない用途で利用できる。FIG. 9 shows a microbubble generating power supply unit 2 to which an open / close switch 28 that can open and close the power supply 1 is added. Since the power can be turned off when it is unnecessary, it can be used for applications where the power supply 1 cannot be inserted or removed.

図10は、図3と図4の微細気泡発生部5の縦断面図で、電導体ケース30の中空部に綿状電導体40を配置し、両端面に液体を通水する網34を配置して、外部からの固形物の遮断や、綿状電導体40が外部にはみ出ないよう、抑える役割がある。網34は、外部に飛び出さないよう、留め部33で止めている。又、電導体ケース30や、綿状電導体40を含め、支持材や他の電導体等、接地部6と接続状態にあるものが直接接続されると、電荷が電導体液体接触部32から流液体36に、殆ど供給されなくなり、流液体に微小気泡はほぼ発生しなくなることを防止するため、電導体の外側に絶縁体カバー31を配置する。又、微小気泡発生部5と配管の接続時、前記配管が電導体の場合も同様のことが起こる可能性がある為、ソケット部35は絶縁体が望ましい。又、絶縁体カバー31は、筒状の電導体ケース30を絶縁して、電荷を流液体36に効率よく供給することが目的のため、絶縁性の塗装やボンド樹脂でもよい。FIG. 10 is a longitudinal sectional view of the microbubble generator 5 shown in FIGS. 3 and 4, in which a flocculent conductor 40 is disposed in a hollow portion of the conductor case 30, and a net 34 for passing liquid is disposed on both end surfaces. Then, it has a role of blocking solid matter from the outside and suppressing the cotton-like conductor 40 from protruding outside. The net 34 is stopped by a fastening portion 33 so as not to protrude outside. In addition, when an object, such as a support material or another electric conductor, including the electric conductor case 30 and the cotton-like electric conductor 40, which is in a connected state with the grounding portion 6, is directly connected, the electric charge is transferred from the electric conductor liquid contact portion 32. The insulator cover 31 is arranged outside the conductor in order to prevent almost no supply to the flowing liquid 36 and almost no generation of microbubbles in the flowing liquid. When the microbubble generating section 5 is connected to a pipe, the same thing may occur even when the pipe is an electric conductor. Therefore, the socket section 35 is preferably made of an insulator. The insulator cover 31 may be an insulating paint or a bond resin for the purpose of insulating the tubular conductor case 30 and efficiently supplying the electric charge to the flowing liquid 36.

液体中にある微小気泡の直径は、数nm程度で可視光線では波長が長く拡散しないため、直接目視で確認することは難しい。しかしながら、一例で、写真11のように、微小気泡が含有する水道水の氷38(左)と、微小気泡を含有しない水道水の氷39(右)を凍結することで可視化できる。水は、氷に変化することで、体積は膨張することが知られているが、微小気泡が含有する水道水の氷38は、前記体積が膨張する過程で、水中に留まる微小気泡の影響を受けて、白く霧がかった氷となるが、微小気泡を含有しない水道水の氷39は、微小気泡の影響を受けないので、前記体積が膨張しても透明な部分が残る。こういった、特異な現象から、液体中の微小気泡の含有の有無を確認することができる。微小気泡を含有する水道水の氷39は、本発明の微小気泡発生装置を用いて、水道水中に微小気泡を発生させ、凍結した氷である。The diameter of microbubbles in the liquid is on the order of several nanometers, and the wavelength is not long in visible light, so that it is difficult to directly confirm them by visual observation. However, as an example, as shown in Photo 11, visualization can be achieved by freezing the ice 38 of tap water containing microbubbles (left) and the ice 39 of tap water containing no microbubbles (right). Water is known to expand in volume by changing to ice, but ice 38 in tap water containing microbubbles is affected by microbubbles that remain in the water during the process of expanding the volume. As a result, the ice 39 becomes white and misty, but the tap water ice 39 containing no microbubbles is not affected by the microbubbles, so that even if the volume expands, a transparent portion remains. From such a peculiar phenomenon, the presence or absence of microbubbles in the liquid can be confirmed. Tap water ice 39 containing microbubbles is ice that has been generated by generating microbubbles in tap water using the microbubble generator of the present invention and has been frozen.

微小気泡発生部5の液体との接触部の形状は、図2や図10に示すような形状に限定するものではなく、例えば、板状や棒状など、液体に接触する表面積が広く取れる形状であればよい。又、微小気泡発生部5の液体との接触部の素材も電導体例えば、銅やステンレス等でも問題ないが、酸化被膜等の絶縁体ができにくい白金や、炭素等を用いることで、酸化被膜の除去をする手間がなく、安定した電荷を液体に供給できるので望ましい。The shape of the contact portion of the microbubble generating portion 5 with the liquid is not limited to the shape as shown in FIGS. 2 and 10, but may be, for example, a plate-like shape or a rod-like shape having a large surface area in contact with the liquid. I just need. The material of the contact portion of the microbubble generating portion 5 with the liquid may be a conductor such as copper or stainless steel, but there is no problem. It is preferable because stable liquid can be supplied to the liquid without trouble of removing the liquid.

本発明の微小気泡発生装置は、電流を殆ど流さず、電力をほとんど消費しないため、必要な電圧が供給できるものであればよく、商用電源はもちろんの事、インバーター制御で周波数を制御したものや、蓄電池からインバーターで昇圧した電源、蓄電池を直接利用しても良い。但し、図2のように液体12と接地部6の間がコンデンサーの状態となっている場合は、直流等の同極の電荷のみでは電流が流れず、微小気泡は液体中に発生し続けないため、電源1から微小気泡発生電源部2に供給される電力は、交番電界でなければ機能しない。又、接地部6は、電源1の接地側を用いても良い。The microbubble generating device of the present invention hardly passes an electric current and consumes almost no electric power. Therefore, any device that can supply a necessary voltage may be used. Alternatively, a power source boosted by an inverter from a storage battery or a storage battery may be directly used. However, when the space between the liquid 12 and the grounding portion 6 is in the state of a condenser as shown in FIG. 2, current does not flow only by charges of the same polarity such as direct current, and microbubbles do not continue to be generated in the liquid. Therefore, the power supplied from the power supply 1 to the microbubble generating power supply unit 2 does not function unless it is an alternating electric field. The grounding section 6 may use the ground side of the power supply 1.

1・・・電源
2・・・微小気泡発生電源部
3・・・ランプ
4・・・抵抗器
5・・・微小気泡発生部
6・・・接地部
7・・・非接地側
8・・・プラグ
9・・・持ち手
10・・ほうき状微小気泡発生部
11・・容器
12・・液体
13・・電源プラグ
14・・器具取付用微小気泡発生部
15・・給水器具
16・・シンク
17・・一次バルブ
18・・量水器
19・・配管
20・・接地用配管
21・・絶縁配管
22・・圧力スイッチ
23・・整流器
24・・接触部
25・・発光ダイオード
26・・カバー
27・・切り替えスイッチ
28・・開閉スイッチ
29・・電線
30・・電導体ケース
31・・絶縁体カバー
32・・電導体液体接触部
33・・留め部
34・・網
35・・ソケット部
36・・流液体
37・・微小気泡が含有する液体
38・・微小気泡が含有する水道水の氷
39・・微小気泡を含有しない水道水の氷
40・・綿状電導体
DESCRIPTION OF SYMBOLS 1 ... Power supply 2 ... Microbubble generation power supply part 3 ... Lamp 4 ... Resistor 5 ... Microbubble generation part 6 ... Grounding part 7 ... Non-grounding side 8 ... Plug 9 Handle 10 Broom-shaped microbubble generator 11 Container 12 Liquid 13 Power plug 14 Microbubble generator 15 for mounting fixtures Water supply device 16 Sink 17・ Primary valve 18 ・ ・ Water meter 19 ・ ・ Piping 20 ・ ・ Piping 21 ・ ・ Insulated pipe 22 ・ ・ Pressure switch 23 ・ ・ Rectifier 24 ・ ・ Contact part 25 ・ ・ Light emitting diode 26 ・ ・ Cover 27 ・ ・Changeover switch 28, open / close switch 29, electric wire 30, electric conductor case 31, insulator cover 32, electric conductor liquid contact part 33, retaining part 34, net 35, socket part 36, flowing liquid 37. Liquid containing microbubbles 38. Ice 40 · flocculent conductors of tap water containing no ice 39 ... microbubbles tap water having

Claims (8)

電源に接続される電源線と、前記電源線に接続されたランプと、前記ランプに接続された抵抗素子と、前記抵抗素子に接続された電極と、を備える微小気泡発生装置。  A microbubble generator comprising: a power supply line connected to a power supply; a lamp connected to the power supply line; a resistance element connected to the lamp; and an electrode connected to the resistance element. 前記電極は、複数の電線の束を有しており、当該電線の束は、根元が互いに電気的に接続されており、先端側は互いに離れている、請求項1に記載の微小気泡発生装置。  The microbubble generator according to claim 1, wherein the electrode has a bundle of a plurality of electric wires, and the bundle of the electric wires has a root electrically connected to each other and a distal end side separated from each other. . 水道管又は水道蛇口に接続可能な導水管を、さらに備え、前記電極は、前記導水管の長手方向に沿った少なくとも一部領域の少なくとも内側に設けられた導電性の管状体と、当該導電性の管状体の中に充填された電線からなる詰め物とを、有しており、前記微小気泡発生装置は、前記導水管の当該一部領域の上流側と下流側とに設けられた透水性の仕切りを、さらに備え、前記電線からなる詰め物は、前記上流側と下流側の仕切りの間に充填されている、請求項1又は2に記載の微小気泡発生装置。  Further comprising a water pipe that can be connected to a water pipe or a water tap, wherein the electrode is a conductive tubular body provided at least inside at least a partial region along a longitudinal direction of the water pipe, And a filling made of an electric wire filled in the tubular body, and the microbubble generator has a water-permeable pipe provided upstream and downstream of the partial area of the water pipe. The microbubble generator according to claim 1 or 2, further comprising a partition, wherein the padding made of the electric wire is filled between the upstream and downstream partitions. 微小気泡発生電源部に、電源の接地側と非接地側との切り替えスイッチを接続した請求項1の微小気泡発生装置2. The microbubble generator according to claim 1, wherein a switch for switching between a grounded side and a non-grounded side of the power supply is connected to the microbubble generating power supply unit. 微小気泡発生電源部に、電源のスイッチを接続した請求項1の微小気泡発生装置2. The microbubble generator according to claim 1, wherein a power switch is connected to the microbubble generating power supply unit. 微小気泡発生部にカバーを配置した請求項2の微小気泡発生装置3. The microbubble generator according to claim 2, wherein a cover is arranged at the microbubble generator. 微小気泡発生電源部に整流器を接続した請求項1の微小気泡発生装置2. The microbubble generator according to claim 1, wherein a rectifier is connected to the microbubble generating power supply. 配管に接続した微細気泡発生部と絶縁体を挟んで一次側と二次側に接地線を接続し、前記二次側に圧力スイッチを配置して、微小気泡発生電源から、微小気泡発生部に電荷を供給する制御を行う請求項1の微小気泡発生装置Ground wires are connected to the primary side and the secondary side with the microbubble generating part connected to the pipe and the insulator interposed, and a pressure switch is arranged on the secondary side, from the microbubble generating power supply to the microbubble generating part 2. The microbubble generator according to claim 1, which controls supply of electric charge.
JP2018167342A 2018-08-21 2018-08-21 Micro bubble generator Pending JP2020028874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018167342A JP2020028874A (en) 2018-08-21 2018-08-21 Micro bubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018167342A JP2020028874A (en) 2018-08-21 2018-08-21 Micro bubble generator

Publications (1)

Publication Number Publication Date
JP2020028874A true JP2020028874A (en) 2020-02-27

Family

ID=69623423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018167342A Pending JP2020028874A (en) 2018-08-21 2018-08-21 Micro bubble generator

Country Status (1)

Country Link
JP (1) JP2020028874A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848632B2 (en) * 1979-12-25 1983-10-29 有限会社 コバヤシデンチケンキユウジヨ Salt solution electrolyzer
JPH02307588A (en) * 1989-05-22 1990-12-20 Tatsuo Okazaki Apparatus of continuous water feed type for producing electrolyzed ionic water
JPH0427491A (en) * 1990-05-24 1992-01-30 Konica Corp Fixed bed type bipolar electrolytic cell
JPH09150157A (en) * 1995-11-27 1997-06-10 Matsushita Electric Works Ltd Water treating device
JP2000325956A (en) * 1999-05-19 2000-11-28 Meidensha Corp Electrochemical water cleaner
JP2008240039A (en) * 2007-03-26 2008-10-09 Tohoku Univ Bubble producing apparatus and bubble producing method
US20170081219A1 (en) * 2015-09-23 2017-03-23 Adam Taylor Reactor device for use with water remediation and treatment systems and method for remediating and/or treating aqueous process streams

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848632B2 (en) * 1979-12-25 1983-10-29 有限会社 コバヤシデンチケンキユウジヨ Salt solution electrolyzer
JPH02307588A (en) * 1989-05-22 1990-12-20 Tatsuo Okazaki Apparatus of continuous water feed type for producing electrolyzed ionic water
JPH0427491A (en) * 1990-05-24 1992-01-30 Konica Corp Fixed bed type bipolar electrolytic cell
JPH09150157A (en) * 1995-11-27 1997-06-10 Matsushita Electric Works Ltd Water treating device
JP2000325956A (en) * 1999-05-19 2000-11-28 Meidensha Corp Electrochemical water cleaner
JP2008240039A (en) * 2007-03-26 2008-10-09 Tohoku Univ Bubble producing apparatus and bubble producing method
US20170081219A1 (en) * 2015-09-23 2017-03-23 Adam Taylor Reactor device for use with water remediation and treatment systems and method for remediating and/or treating aqueous process streams

Similar Documents

Publication Publication Date Title
KR101605070B1 (en) Low-temperature water discharge plasma generating device
JP2007508918A (en) Ionized water generator using underwater plasma discharge
US8926914B2 (en) Liquid medium plasma discharge generating apparatus
JP2015522344A5 (en)
CN104556318B (en) Liquid treatment apparatus and liquid treatment method
CN201983447U (en) Electromagnetic field sterilization water heater
WO2015072049A1 (en) Liquid treatment device and liquid treatment method
JP6895636B2 (en) Liquid processing equipment
RU2013135489A (en) PLASMA GENERATOR, AND ALSO A RINSING AND CLEANING DEVICE AND A SMALL ELECTRICAL ELECTRIC INSTRUMENT USING A PLASMA GENERATOR
JP2009160494A (en) Apparatus and method for producing reduced water
CN104609509A (en) Plasma cleaning device
JP2020028874A (en) Micro bubble generator
KR101280445B1 (en) Underwater discharge apparatus for purifying water
KR100199509B1 (en) Discharge cell and it use for bubble generator
CN104649372B (en) Liquid treatment unit, toilet seat with washer, washing machine, and liquid treatment apparatus
US20050214182A1 (en) Small ozone generator module
CN104649379B (en) Liquid handling device
CN208916920U (en) A kind of emission electrode and its water treatment facilities
CN201107350Y (en) Liquid electroconductivity test pen
KR20080005144U (en) Anion Filling-Up Wall Socket
JP2009091209A (en) Discharge tube for ozone generation
CN210446832U (en) Novel full-automatic bathing ozone bubble machine
RU52671U1 (en) ANTIPARASITAL COMPLEX "PARACELS" (APK "PARACELS")
KR101348634B1 (en) High voltage pulse electric field generator and apparatus for purifying water using the same
JP5796999B2 (en) Underwater discharge device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210513

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220712