JP2020026560A - Aluminum foil for battery collector and method for manufacturing the same - Google Patents

Aluminum foil for battery collector and method for manufacturing the same Download PDF

Info

Publication number
JP2020026560A
JP2020026560A JP2018152206A JP2018152206A JP2020026560A JP 2020026560 A JP2020026560 A JP 2020026560A JP 2018152206 A JP2018152206 A JP 2018152206A JP 2018152206 A JP2018152206 A JP 2018152206A JP 2020026560 A JP2020026560 A JP 2020026560A
Authority
JP
Japan
Prior art keywords
heat treatment
less
foil
aluminum alloy
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018152206A
Other languages
Japanese (ja)
Other versions
JP6730382B2 (en
Inventor
貴史 鈴木
Takashi Suzuki
貴史 鈴木
俊哉 捫垣
Toshiya Nejigaki
俊哉 捫垣
祺 崔
Qi Cui
祺 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2018152206A priority Critical patent/JP6730382B2/en
Publication of JP2020026560A publication Critical patent/JP2020026560A/en
Application granted granted Critical
Publication of JP6730382B2 publication Critical patent/JP6730382B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

To provide an aluminum foil for battery collector having sufficient strength and ductility even after heat treatment.SOLUTION: An aluminum alloy foil for battery collector contains Fe: 1.2 mass% or more and 1.8 mass% or less, Si:0.08 mass% or more and 0.15 mass% or less, Cu:more than 0.005 mass% and 0.01% or less, and the balance Al with inevitable impurities, and has tensile strength before heat treatment after rolling of 170 MPa or more and elongation of 5.0% or more, and has tensile strength after first heat treatment at 120°C for 1 minute of 160 MPa or more and tensile strength after second heat treatment at 200°C for 1 minute after the first heat treatment of less than 100 MPa and elongation of 8.0% or more.SELECTED DRAWING: Figure 1

Description

この発明は、電池集電体用アルミニウム合金箔およびその製造方法に関する。   The present invention relates to an aluminum alloy foil for a battery current collector and a method for producing the same.

近年、リチウムイオン電池の高容量化を目的として、電極集電体であるアルミニウム箔や銅箔、そしてセパレータの薄肉化が要求されている。正極の集電体として使用されるアルミニウム箔は薄肉化されることで、電池製造ライン中での破断を生じやすくなる。その為アルミニウム箔を薄肉化する際は、破断を抑制するため高強度化や高伸び化が求められるのが一般的である。電池の電極製造中には集電体に熱が加わる工程があり(例えば特許文献1〜3参照)、例えばリチウムイオン電池の製造では、活物質粒子を含む電極スラリーを集電体に塗布した後に温度120〜140℃程度で熱乾燥を行い、続いて活物質層の密度を高めるためにプレスを行った後に、温度180〜200℃の高温で熱処理を行うことが多い。   In recent years, for the purpose of increasing the capacity of a lithium ion battery, it has been required to reduce the thickness of an aluminum foil or a copper foil as an electrode current collector and a separator. The aluminum foil used as the current collector of the positive electrode is thinned, so that the aluminum foil is easily broken in a battery production line. Therefore, when the thickness of the aluminum foil is reduced, high strength and high elongation are generally required to suppress breakage. There is a step in which heat is applied to the current collector during the manufacture of the battery electrode (for example, see Patent Literatures 1 to 3). In many cases, thermal drying is performed at a temperature of about 120 to 140 ° C., followed by pressing to increase the density of the active material layer, and then heat treatment at a high temperature of 180 to 200 ° C.

特開2010−150637号公報JP 2010-150637 A 特開2011−241410号公報JP 2011-241410 A 特開2017−186630号公報JP 2017-186630A

しかし、集電体上に塗布された活物質は充放電時に膨張と収縮を繰り返す事から、集電体としてのアルミニウム箔には電極の剥離や破断を防ぐ為に軟らかく高い延性を有する事が求められる。しかし単に低温でも軟化し易い再結晶温度の低いアルミニウム箔を用いた場合は、電極製造ライン中の低温熱処理時に強度が低下し、シワや時には破断を招く。特に多くのリチウムイオン電池製造ラインには熱乾燥後にプレス工程が設けてられており、このとき、集電体であるアルミニウム箔にも強い力が加わるため、熱乾燥で強度の低下したアルミニウム箔では破断のリスクが特に高くなる。   However, since the active material applied to the current collector repeatedly expands and contracts during charge and discharge, the aluminum foil as the current collector must be soft and have high ductility to prevent peeling and breakage of the electrode. Can be However, when an aluminum foil having a low recrystallization temperature, which easily softens even at a low temperature, is used, the strength is reduced during low-temperature heat treatment in an electrode production line, which causes wrinkles and sometimes breaks. In particular, many lithium-ion battery production lines are provided with a pressing step after heat drying.At this time, a strong force is applied to the aluminum foil as a current collector. The risk of breakage is particularly high.

本発明は、上記事情を背景としてなされたものであり、熱処理後においても十分な強度と延性を有する電池集電体用アルミニウム箔およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an aluminum foil for a battery current collector having sufficient strength and ductility even after heat treatment and a method for producing the same.

すなわち、本発明の電池集電体用アルミニウム合金箔のうち、第1の形態は、Fe:1.2質量%以上1.8質量%以下、Si:0.08質量%以上0.15質量%以下、Cu:0.005質量%超0.01%以下を含有し、残部がAlと不可避不純物からなる組成を有し、圧延後、引張強さが170MPa以上、伸びが5.0%以上であり、120℃×1分の第1の熱処理後において、引張強さが160MPa以上、かつ前記第1の熱処理後の200℃×1分の第2の熱処理後において、引張強さが100MPa未満で伸び8.0%以上であることを特徴とする。   That is, in the aluminum alloy foil for a battery current collector of the present invention, the first mode is Fe: 1.2% by mass to 1.8% by mass, and Si: 0.08% by mass to 0.15% by mass. Hereinafter, Cu: contains more than 0.005% by mass and 0.01% or less, the balance has a composition consisting of Al and inevitable impurities, and after rolling, the tensile strength is 170 MPa or more and the elongation is 5.0% or more. Yes, after the first heat treatment at 120 ° C. × 1 minute, the tensile strength is 160 MPa or more, and after the second heat treatment at 200 ° C. × 1 minute after the first heat treatment, the tensile strength is less than 100 MPa. The elongation is 8.0% or more.

他の形態の電池集電体用アルミニウム合金箔の発明は、前記形態の発明において、さらに、Mn:0.01質量%未満を含有することを特徴とする。   Another aspect of the invention of an aluminum alloy foil for a battery current collector is the invention of the above aspect, further comprising Mn: less than 0.01% by mass.

他の形態の電池集電体用アルミニウム合金箔の発明は、前記形態の発明において、冷間圧延後の箔の厚さ方向の結晶粒サイズが2.0μm以下であり、且つ円相当径1μm以上3μm以下のAl−Fe系の金属間化合物が1mm当たり8.0×10個以上の数で分布していることを特徴とする。 Another aspect of the invention of an aluminum alloy foil for a battery current collector is the invention of the above aspect, wherein the crystal grain size in the thickness direction of the foil after cold rolling is 2.0 μm or less, and the equivalent circle diameter is 1 μm or more. It is characterized in that Al-Fe based intermetallic compounds of 3 μm or less are distributed in a number of 8.0 × 10 3 or more per 1 mm 2 .

本発明の電池集電体用アルミニウム合金箔の製造方法のうち、第1の形態は、前記形態のいずれかに記載の電池集電体用アルミニウム合金箔を製造する方法であって、
前記形態に記載の組成を有するアルミニウム合金の鋳塊に対して、420〜520℃で8時間以上保持する均質化処理を行い、前記均質化処理後に、圧延仕上がり温度が230℃以上300℃未満となるような熱間圧延を行い、その後の冷間圧延の途中で熱間圧延後からの冷間圧延率が60%以上になる厚みで300℃〜400℃の中間焼鈍を行い、中間焼鈍後の最終冷間圧延率を95%以上とすることを特徴とする。
Among the methods for manufacturing an aluminum alloy foil for a battery current collector of the present invention, the first mode is a method for manufacturing the aluminum alloy foil for a battery current collector according to any of the above modes,
The ingot of the aluminum alloy having the composition described in the above form is subjected to homogenization treatment at 420 to 520 ° C for 8 hours or more, and after the homogenization treatment, the rolling finish temperature is 230 ° C or more and less than 300 ° C. Hot rolling is performed, and during the subsequent cold rolling, the intermediate annealing at 300 ° C. to 400 ° C. is performed at a thickness at which the cold rolling ratio after hot rolling becomes 60% or more, and after the intermediate annealing. The final cold rolling reduction is 95% or more.

以下に、本発明で規定する成分等の条件について説明する。なお、以下では成分含有量は質量%で示される。   Hereinafter, the conditions of the components and the like defined in the present invention will be described. In addition, below, component content is shown by mass%.

・Fe:1.2〜1.8%
Feはアルミニウムの結晶粒を微細化し、箔の強度と伸びを向上させることのできる元素である。Fe含有量が1.2%未満では結晶粒の微細化が不十分となり伸び値が低く、Fe含有量が1.8%を超えると、Al−Fe系、Al−Fe−Si系晶出物が粗大化し、ピンホールや、圧延時の破断、伸びの低下が生じる。このため、Fe含有量を上記範囲に定める。なお、同様の理由でFe含有量の下限を1.3%、上限を1.6%とするのが望ましい。
-Fe: 1.2 to 1.8%
Fe is an element that can refine the crystal grains of aluminum and improve the strength and elongation of the foil. If the Fe content is less than 1.2%, the refinement of the crystal grains is insufficient and the elongation value is low. If the Fe content exceeds 1.8%, Al-Fe-based and Al-Fe-Si-based crystallization products are obtained. Are coarsened, resulting in pinholes, breakage during rolling, and reduced elongation. For this reason, the Fe content is determined within the above range. For the same reason, it is desirable to set the lower limit of the Fe content to 1.3% and the upper limit to 1.6%.

・Si:0.08〜0.15%
SiはFeの析出を促進する働きがあり、一定以上添加する事でアルミニウム箔の再結晶温度を下げ、低温熱処理でも箔が軟化し易くなる。Si含有量が0.08%未満では、Fe析出が抑制され180〜200℃の熱処理で箔が軟化しにくくなる。また0.15%を超えると鋳造時に形成されるAl−Fe−Si系の粗大な晶出物によりピンホールや、圧延時の破断、伸びの低下が生じる。このため、Si含有量を上記範囲に定める。なお、同様の理由でSi含有量の下限を0.08%、上限を0.13%とするのが望ましい。
-Si: 0.08 to 0.15%
Si has a function of accelerating the precipitation of Fe. By adding Si in a certain amount or more, the recrystallization temperature of the aluminum foil is lowered, and the foil is easily softened even by a low-temperature heat treatment. When the Si content is less than 0.08%, Fe precipitation is suppressed, and the foil is hardly softened by heat treatment at 180 to 200 ° C. On the other hand, if the content exceeds 0.15%, pinholes, breakage during rolling, and a decrease in elongation occur due to coarse Al-Fe-Si crystals formed during casting. For this reason, the Si content is determined within the above range. For the same reason, it is desirable to set the lower limit of the Si content to 0.08% and the upper limit to 0.13%.

・Cu:0.005質量%超0.015質量%以下
Cuは箔の強度を向上させ、また再結晶温度を上昇させることのできる元素である。0.005%以下の場合、含有しても強度向上にほとんど寄与せず、温度120〜140℃の低温熱処理でも箔の強度が低下するおそれがある。含有量が0.015%を超えると、圧延後の伸びの低下を招き、且つ再結晶温度が上昇し、180〜200℃の熱処理で箔が軟化しにくくなるため、Cu含有量を上記範囲に定める。なお、同様の理由でCu含有量の上限を0.01%とするのが望ましい。
Cu: more than 0.005% by mass and 0.015% by mass or less Cu is an element capable of improving the strength of the foil and increasing the recrystallization temperature. When the content is 0.005% or less, even if it is contained, it hardly contributes to the strength improvement, and the strength of the foil may be reduced even by a low-temperature heat treatment at a temperature of 120 to 140 ° C. When the content exceeds 0.015%, the elongation after rolling is reduced, and the recrystallization temperature is increased, and the foil is hardly softened by heat treatment at 180 to 200 ° C. Determine. For the same reason, it is desirable to set the upper limit of the Cu content to 0.01%.

・Mn:0.01%未満含有(規制)
Mnは、一般に、箔の強度を向上させ、Al−Fe合金に添加した場合は延性も向上させることの出来る元素である。ただし微量の含有であってもアルミニウムの再結晶温度を大きく上昇させるため、含有量は0.01%未満の範囲に規制することが好ましい。含有量が0.01%を超えると再結晶温度が上昇し、180〜200℃の熱処理で箔が軟化しにくくなる。
-Mn: contained less than 0.01% (regulation)
Mn is an element generally capable of improving the strength of a foil and also improving ductility when added to an Al-Fe alloy. However, the content is preferably restricted to a range of less than 0.01% in order to greatly raise the recrystallization temperature of aluminum even if the content is very small. If the content exceeds 0.01%, the recrystallization temperature increases, and the foil is hardly softened by heat treatment at 180 to 200 ° C.

・圧延後の引張強さ170MPa以上、伸びが5.0%以上
熱処理前の引張強さを170MPa以上、伸び5.0%以上とする事で電池製造ライン中での破断を抑制出来る。引張強さ170MPa未満、伸び5.0%未満である場合は、製造ライン中で破断やシワの発生といった不具合を生じる懸念がある。
-Tensile strength after rolling of 170 MPa or more, elongation of 5.0% or more Breaking in a battery production line can be suppressed by setting the tensile strength before heat treatment to 170 MPa or more and elongation to 5.0% or more. If the tensile strength is less than 170 MPa and the elongation is less than 5.0%, there is a concern that problems such as breakage and wrinkles may occur in the production line.

・120℃×1分の第1の熱処理後の引張強さが160MPa以上
電極の製造工程における熱処理は一般に急速加熱であり、最低でも1分以上の保持がなされる。熱乾燥後に相当する120℃の熱処理では、材料の回復をほとんど生じず箔の引張強さが160MPa以上であることで、その後のプレス工程等でのシワや破断を防ぐことが出来る。
第1の熱処理後に、引張強さ160MPa未満、あるいは伸び4.0%未満の場合は、プレス工程等でシワや破断を生じる危険性が高くなる。望ましくは140℃の熱処理後でも、引張強さ160MPa以上を有することが望ましい。
The tensile strength after the first heat treatment at 120 ° C. for 1 minute is 160 MPa or more. The heat treatment in the electrode manufacturing process is generally rapid heating, and is held for at least 1 minute. In the heat treatment at 120 ° C. corresponding to the heat drying, the material hardly recovers, and the tensile strength of the foil is 160 MPa or more, so that wrinkles and breakage in a subsequent pressing step or the like can be prevented.
If the tensile strength is less than 160 MPa or the elongation is less than 4.0% after the first heat treatment, there is a high risk of wrinkling or breaking in a pressing step or the like. Desirably, it has a tensile strength of 160 MPa or more even after the heat treatment at 140 ° C.

・200℃×1分の第2の熱処理後に引張強さが100MPa未満、伸び8.0%以上
プレス後の高温熱処理に当たる200℃の熱処理後では、箔は再結晶を生じ、引張強さ100MPa未満、伸び8.0%以上となることで充放電時の電極の劣化を防ぐことが出来る。この第2の熱処理は長い場合は数時間実施される事もある。また望ましくは、180℃熱処理後も引張強さが100MPa以下となることが望ましい。また200℃を超える熱処理では活物質の劣化を招くので望ましくない。
The tensile strength is less than 100 MPa and the elongation is 8.0% or more after the second heat treatment at 200 ° C. for 1 minute. After the heat treatment at 200 ° C. corresponding to the high-temperature heat treatment after pressing, the foil undergoes recrystallization and the tensile strength is less than 100 MPa. When the elongation is 8.0% or more, it is possible to prevent deterioration of the electrode during charging and discharging. This second heat treatment may be performed for several hours if it is long. Desirably, the tensile strength after heat treatment at 180 ° C. is desirably 100 MPa or less. Further, a heat treatment exceeding 200 ° C. is not desirable because it causes deterioration of the active material.

・冷間圧延後の箔の厚さ方向の結晶粒サイズが2.0μm以下
アルミニウム箔は厚さが薄い為局部変形が生じた途端に破断してしまう。その為結晶粒径が微細化することで箔が均一変形しやすくなり、優れた伸び特性が得られる。ここでいう粒界とは方位差15°以上を有する大傾角粒界を指す。方位差2°〜15°の亜粒界も伸び特性に寄与するが、大傾角粒界と比較しその度合いは極めて小さい。厚さ方向の結晶粒径を平均2.0μm以下とすることで、厚さ15μm以下の薄いアルミニウム合金箔でも高い伸び特性を得ることが可能となる。
・ The aluminum foil having a crystal grain size of 2.0 μm or less in the thickness direction of the foil after cold rolling is so thin that it is broken as soon as local deformation occurs. Therefore, when the crystal grain size is reduced, the foil is easily deformed uniformly, and excellent elongation characteristics can be obtained. Here, the grain boundary refers to a large-angle grain boundary having a misorientation of 15 ° or more. Although sub-grain boundaries having a misorientation of 2 ° to 15 ° also contribute to the elongation characteristics, the degree is extremely small as compared with the large-angle grain boundaries. By setting the average crystal grain size in the thickness direction to 2.0 μm or less, high elongation characteristics can be obtained even with a thin aluminum alloy foil having a thickness of 15 μm or less.

・円相当径1μm以上3μm以下のAl−Fe系の金属間化合物が1mm当たり8.0×10個以上の数で分布
円相当径1μm以上の金属間化合物の周辺では、冷間圧延における結晶粒の微細化(grain subdivision)が顕著に生じ、結晶粒が微細化する。また金属間化合物は中間焼鈍や最終冷間圧延後の200℃の熱処理時の再結晶の核生成サイトとなる為、再結晶粒が微細化され高伸びが得られる。1mm当たり8.0×10個以上の分布が好ましいが、この数字を境に極端に再結晶粒サイズが変わるわけではない。円相当径1μm未満では再結晶時の核になりにくく、逆に3μmを超える金属間化合物はピンホールや、圧延時の破断につながるだけでなく、伸びの低下も生じる。
-Al-Fe-based intermetallic compounds having a circle equivalent diameter of 1 μm or more and 3 μm or less are distributed in a number of 8.0 × 10 3 or more per 1 mm 2 . Grain subdivision is remarkable, and the crystal grains are refined. Further, the intermetallic compound becomes a nucleation site for recrystallization during heat treatment at 200 ° C. after the intermediate annealing or the final cold rolling, so that the recrystallized grains are refined and high elongation is obtained. A distribution of 8.0 × 10 3 or more per 1 mm 2 is preferable, but the recrystallized grain size does not change extremely after this number. If the equivalent circle diameter is less than 1 μm, it hardly becomes a nucleus during recrystallization. Conversely, an intermetallic compound exceeding 3 μm not only leads to pinholes and breaks during rolling, but also causes a decrease in elongation.

本発明によれば、電極製造時の電極スラリーの塗布、温度120〜140℃の熱乾燥後でも十分な強度と延性を有するため、ライン中や乾燥後のプレス工程においても破断しにくく、その後の温度180〜200℃の高温熱処理では箔が十分に軟化するため、充放電時の活物質の膨張収縮による電極の劣化を防ぐことが出来る効果がある。   According to the present invention, since the electrode slurry is applied during the production of the electrode, and has sufficient strength and ductility even after heat drying at a temperature of 120 to 140 ° C., it is difficult to break even in a line or in a pressing step after drying, and Since the foil is sufficiently softened by the high-temperature heat treatment at a temperature of 180 to 200 ° C., there is an effect that deterioration of the electrode due to expansion and contraction of the active material during charge and discharge can be prevented.

本発明の一実施形態の電池集電体用アルミニウム合金箔を得るための製造工程の例を示すフロー図である。It is a flow figure showing an example of a manufacturing process for obtaining aluminum alloy foil for battery current collectors of one embodiment of the present invention.

前記組成を有するアルミニウム合金を半連続鋳造法や連続鋳造法にて鋳造し、得られた鋳塊を、420〜520℃で8時間以上の均質化処理を行う。温度420℃未満や8時間未満の保持では、鋳造時に生じた偏析が解消されず、またFeが十分に析出しない為、200℃での箔の再結晶完了が困難となる。また520℃を超える高温だとFeの析出が不十分となり、同じく200℃での箔の再結晶完了が困難となる。保持時間の上限は特に規定しないが、生産性を考慮すると24時間以下とする事が望ましい。より好ましい保持時間は10時間以上16時間未満である。   An aluminum alloy having the above composition is cast by a semi-continuous casting method or a continuous casting method, and the obtained ingot is subjected to a homogenization treatment at 420 to 520 ° C for 8 hours or more. If the temperature is kept lower than 420 ° C. or less than 8 hours, the segregation generated at the time of casting is not eliminated and Fe is not sufficiently deposited, so that it is difficult to complete the recrystallization of the foil at 200 ° C. On the other hand, if the temperature is higher than 520 ° C., the precipitation of Fe becomes insufficient, and it is also difficult to complete recrystallization of the foil at 200 ° C. The upper limit of the holding time is not particularly defined, but is preferably 24 hours or less in consideration of productivity. More preferred retention time is 10 hours or more and less than 16 hours.

上記合金の溶製後、図1に示すように熱間圧延が施される。熱間圧延は、材料の再結晶を防ぐため仕上がり温度を300℃以下とするのが望ましい。300℃を超えると部分的に再結晶を生じ、ファイバー組織と再結晶粒組織が混在する事になり、中間焼鈍時の再結晶粒径が不均一化し、それはそのまま最終的な結晶粒径の不均一化に繋がる為、箔の伸びが低下する。温度が低すぎる場合は熱間圧延時のサイドクラックの発生により生産性が低下する為、230℃以上が好ましい。   After the melting of the alloy, hot rolling is performed as shown in FIG. In the hot rolling, the finishing temperature is desirably 300 ° C. or less in order to prevent recrystallization of the material. When the temperature exceeds 300 ° C., recrystallization occurs partially, and the fiber structure and the recrystallized grain structure are mixed, and the recrystallized grain size during the intermediate annealing becomes nonuniform. Since it leads to uniformity, the elongation of the foil is reduced. If the temperature is too low, the productivity is reduced due to the occurrence of side cracks during hot rolling.

上記熱間圧延後、図1に示すように冷間圧延が施される。冷間圧延では、中間焼鈍を行うのが望ましい。中間焼鈍は、300〜400℃の温度で3時間以上行うことができる。中間焼鈍は、冷間圧延を繰り返す事で硬化した材料を軟化させ圧延性を回復させるだけでなく、Feの析出を促進し材料の再結晶温度を制御する役割もある。この中間焼鈍を行う上では熱間圧延後から焼鈍前までの冷間圧延率を60%以上とすることが望ましい。冷間圧延率が60%未満の場合はFeの析出が不十分となるだけでなく、焼鈍後の再結晶粒が粗大化しやすくなり最終的な伸びの低下につながる。   After the hot rolling, cold rolling is performed as shown in FIG. In cold rolling, it is desirable to perform intermediate annealing. The intermediate annealing can be performed at a temperature of 300 to 400 ° C. for 3 hours or more. Intermediate annealing not only softens the hardened material by repeating cold rolling and restores the rollability, but also has the role of promoting the precipitation of Fe and controlling the recrystallization temperature of the material. In performing this intermediate annealing, it is desirable that the cold rolling reduction from after hot rolling to before annealing is 60% or more. When the cold rolling reduction is less than 60%, not only precipitation of Fe becomes insufficient, but also the recrystallized grains after annealing tend to become coarse, leading to a decrease in final elongation.

中間焼鈍後の最終冷間圧延率は95%以上とするのが望ましい。アルミニウム合金は圧延を行うだけで結晶粒が分断し微細化することが知られている(grain subdivision)。圧延率が高いほど結晶粒の微細化が進むため、冷間圧延時の最終冷間圧延率を95%以上とすることで、より高い伸び特性を得ることができる。また箔の再結晶温度は冷間圧延で蓄積されたひずみが大きい程低下するため、最終冷間圧延率が95%未満の場合は200℃の熱処理で再結晶が完了しないおそれがある。尚、ここでの最終冷間圧延とは、圧延工程中の中間焼鈍を行った厚みから最終厚みまでの冷間圧延を指す。   The final cold rolling reduction after the intermediate annealing is desirably 95% or more. It is known that crystal grains of an aluminum alloy are divided and refined only by rolling (grain subdivision). The higher the rolling reduction, the finer the crystal grains become. Therefore, by setting the final cold rolling reduction at the time of cold rolling to 95% or more, higher elongation characteristics can be obtained. Further, since the recrystallization temperature of the foil decreases as the strain accumulated in the cold rolling increases, the recrystallization may not be completed by the heat treatment at 200 ° C. when the final cold rolling reduction is less than 95%. Here, the final cold rolling refers to cold rolling from the thickness at which intermediate annealing was performed during the rolling process to the final thickness.

冷間圧延後において、本実施形態の電池集電体用アルミニウム合金箔は、引張強さが、170MPa以上、伸びが5.0%以上である。さらには、
冷間圧延後において、箔の厚さ方向の結晶粒サイズが2.0μm以下であり、円相当径1μm以上3μm以下のAl−Fe系の金属間化合物が1mm当たり8.0×10個以上の数で分布している。
上記結晶粒サイズ、金属間化合物の分布は、均質化処理や熱間仕上がり温度の設定、中間焼鈍温度の設定、冷間圧延率の設定により制御することができる。
After cold rolling, the aluminum alloy foil for a battery current collector of the present embodiment has a tensile strength of 170 MPa or more and an elongation of 5.0% or more. Moreover,
After cold rolling, 8.0 × 10 3 Al-Fe intermetallic compounds having a crystal grain size in the thickness direction of the foil of 2.0 μm or less and an equivalent circle diameter of 1 μm or more and 3 μm or less per 1 mm 2. It is distributed in the above numbers.
The crystal grain size and the distribution of the intermetallic compound can be controlled by the homogenization treatment, the setting of the hot finishing temperature, the setting of the intermediate annealing temperature, and the setting of the cold rolling reduction.

冷間圧延後の電池集電体用アルミニウム合金箔は、図1に示すように、スラリーの塗布後に、例えば、温度120〜140℃×1〜2分の熱乾燥などによる第1の熱処理が施される。第1の熱処理を120℃×1分とした場合、第1の熱処理後に、本実施形態では、電池集電体用アルミニウム合金箔は、引張強さが160MPa以上の特性を有している。
さらに、本実施形態の電池集電体用アルミニウム合金箔は、プレス成形がなされ、その後に、例えば、温度180〜200℃×1分〜数時間の第2の熱処理で、箔が十分に軟化されて、充放電時の活物質の膨張収縮による電極の劣化が防止される。第2の熱処理を200℃×1分とした場合、本実施形態の電池集電体用アルミニウム合金箔は、引張強さが100MPa未満で伸び8.0%以上である特性を有している。
上記特性により熱処理時や電極の劣化防止が図られる。
As shown in FIG. 1, the aluminum alloy foil for a battery current collector after cold rolling is subjected to a first heat treatment such as thermal drying at a temperature of 120 to 140 ° C. for 1 to 2 minutes after the application of the slurry. Is done. When the first heat treatment is performed at 120 ° C. × 1 minute, after the first heat treatment, in the present embodiment, the aluminum alloy foil for a battery current collector has a characteristic of a tensile strength of 160 MPa or more.
Furthermore, the aluminum alloy foil for a battery current collector of the present embodiment is subjected to press forming, and thereafter, the foil is sufficiently softened by, for example, a second heat treatment at a temperature of 180 to 200 ° C. × 1 minute to several hours. Thus, deterioration of the electrode due to expansion and contraction of the active material during charging and discharging is prevented. When the second heat treatment is performed at 200 ° C. for 1 minute, the aluminum alloy foil for a battery current collector of the present embodiment has a property that the tensile strength is less than 100 MPa and the elongation is 8.0% or more.
Due to the above characteristics, deterioration of the electrode can be prevented during heat treatment and during the heat treatment.

以下に、本発明の実施例を説明する。
表1に示す各組成(残部Alおよびその他の不可避不純物)からなるアルミニウム合金の鋳塊を、表1に示す条件で、均質化処理した後に、熱間圧延にて3mmの板材とした。その後、表1に示す条件で、冷間圧延、中間焼鈍、最終冷間圧延を経て、厚み15μm、幅1200mmのアルミニウム合金箔の試料を作製した。
中間焼鈍は360℃×5時間のバッチ焼鈍を行った。
厚さ15μmのアルミニウム箔の各供試材について、以下の特性試験を行い、その結果を表2に示した。
Hereinafter, examples of the present invention will be described.
An ingot of an aluminum alloy having each composition shown in Table 1 (remainder Al and other unavoidable impurities) was homogenized under the conditions shown in Table 1, and then hot-rolled into a 3 mm plate material. Thereafter, a sample of an aluminum alloy foil having a thickness of 15 μm and a width of 1200 mm was produced through cold rolling, intermediate annealing and final cold rolling under the conditions shown in Table 1.
In the intermediate annealing, batch annealing at 360 ° C. × 5 hours was performed.
The following property tests were performed on each test piece of aluminum foil having a thickness of 15 μm, and the results are shown in Table 2.

・機械的性質(引張強さ、伸び):引張試験
いずれも引張試験にて測定した。引張試験は圧延方向に対して平行方向の伸びを測定できるように、JIS5号試験片を試料から採取し、万能引張試験機(島津製作所社製 AGS−X 10kN)で引張り速度2mm/minにて試験を行った。伸び率の算出について以下の通りである。まず試験前に試験片長手中央に試験片垂直方向に2本の線を標点距離である50mm間隔でマークする。試験後にアルミニウム合金箔の破断面をつき合わせてマーク間距離を測定し、そこから標点距離(50mm)を引いた伸び量(mm)を、標点間距離(50mm)で除して伸び率(%)を求めた。
-Mechanical properties (tensile strength, elongation): Tensile test All were measured by a tensile test. In the tensile test, a JIS No. 5 test piece was sampled from a sample so that the elongation in the direction parallel to the rolling direction could be measured, and a universal tensile tester (AGS-X 10 kN manufactured by Shimadzu Corporation) was used at a pulling speed of 2 mm / min. The test was performed. The calculation of the elongation is as follows. First, before the test, two lines are marked in the longitudinal center of the test piece in the vertical direction of the test piece at intervals of 50 mm, which is the gauge length. After the test, the distance between the marks was measured by associating the fracture surfaces of the aluminum alloy foil, and the elongation (mm) obtained by subtracting the gauge length (50 mm) therefrom was divided by the gauge length (50 mm). (%) Was determined.

・熱処理
冷間圧延後の箔に対し120℃×1分及び200℃×1分の熱処理を行った後、引張試験にて機械的性質を測定した。熱処理方法は昇温速度が急速加熱であれば特に規定しないが、例えばオイルバスに箔を浸漬させる方法や、所定温度に加熱したプレート上に箔を置いて加熱する方法などがある。ここでは箔をオイルバスに1分間浸漬させる方法を用いた。
Heat treatment After the cold-rolled foil was subjected to heat treatment at 120 ° C for 1 minute and 200 ° C for 1 minute, the mechanical properties were measured by a tensile test. The heat treatment method is not particularly limited as long as the rate of temperature rise is rapid heating, and examples thereof include a method of immersing the foil in an oil bath and a method of placing the foil on a plate heated to a predetermined temperature and heating. Here, a method of immersing the foil in an oil bath for one minute was used.

・厚さ方向の結晶粒サイズ
アルミニウム合金箔のRD―ND面をCP(cross section polisher)にて切断し、この切断面をSEM−EBSD法にて解析を行った。倍率×2000倍で箔の厚さ全体を、実際に粒径を測定する際は×3000倍で観察を行った。得られた方位マッピング像において、方位差が15°以上の粒界を表示したgrain mapより、線分法で箔の厚み方向の結晶粒径を算出した。尚、×3000倍の観察は一つの試料で3視野行い、結晶粒径はその平均値とした。
-Grain size in thickness direction The RD-ND surface of the aluminum alloy foil was cut with a cross section policer (CP), and the cut surface was analyzed by the SEM-EBSD method. The entire thickness of the foil was observed at a magnification of × 2000 and at a magnification of × 3000 when actually measuring the particle size. In the obtained orientation mapping image, the crystal grain size in the thickness direction of the foil was calculated by a line segment method from a grain map indicating a grain boundary having an orientation difference of 15 ° or more. In addition, observation of × 3000 was performed in three visual fields for one sample, and the crystal grain size was an average value.

・金属間化合物
金属間化合物は箔の平行断面(RD−ND面)をCP(Cross section polisher)にて切断し、電界放出形走査電子顕微鏡(FE−SEM:Carl Zeiss社製 NVision40)にて観察を行った。「粒径(円相当径)1μm以上〜3μm以下のAl−Fe系金属間化合物」については、倍率×2000倍にて観察した5視野を画像解析し、密度を算出した。
-Intermetallic compound The intermetallic compound is obtained by cutting a parallel cross section (RD-ND plane) of the foil with a cross section policer (CP) and observing it with a field emission scanning electron microscope (FE-SEM: NVVision 40 manufactured by Carl Zeiss). Was done. Regarding the “Al-Fe-based intermetallic compound having a particle diameter (equivalent circle diameter) of 1 μm or more and 3 μm or less”, five visual fields observed at a magnification of × 2000 were image-analyzed and the density was calculated.

Figure 2020026560
Figure 2020026560

Figure 2020026560
Figure 2020026560

以上説明したように、本発明材によれば、第1熱処理後において、高い強度を維持し、第2熱処理後において高い伸びを有している。なお、実施例9では、焼鈍前圧延率が低く、軟化し難く200℃での強度が高めで伸びが低めになっている。
比較例10は、Fe含有量が低く、結晶粒粗大化しており、一方、比較例11では、Fe含有量が多く、伸びが低下し、圧延性が低下している。
比較例12は、Si含有量が低く、軟化温度上昇しており、比較例13では、Si含有量が高く、伸びが低下し、圧延性が低下している。
比較例14では、Cu含有量が高く、伸びが低下し、軟化温度が上昇しており、比較例15では、Cu含有量が低く、120℃の熱処理においても強度が低下してしまう。
比較例16では、均質化温度が高く、200℃で軟化しない。
比較例17では、熱間圧延仕上がり温度が高く伸びが低下する。
比較例18では、焼鈍前圧延率が低く、軟化温度が上昇する。
比較例19では、最終冷間圧延率が低く、伸びが低下する。
As described above, according to the material of the present invention, high strength is maintained after the first heat treatment, and high elongation after the second heat treatment. In Example 9, the rolling reduction before annealing was low, the softening was difficult, the strength at 200 ° C. was high, and the elongation was low.
Comparative Example 10 has a low Fe content and coarsened crystal grains, while Comparative Example 11 has a high Fe content, reduced elongation, and reduced rollability.
In Comparative Example 12, the Si content was low and the softening temperature was increased. In Comparative Example 13, the Si content was high, the elongation was reduced, and the rollability was reduced.
In Comparative Example 14, the Cu content was high, the elongation was reduced, and the softening temperature was increased. In Comparative Example 15, the Cu content was low, and the strength was reduced even in the heat treatment at 120 ° C.
In Comparative Example 16, the homogenization temperature was high and did not soften at 200 ° C.
In Comparative Example 17, the hot rolling finish temperature was high and the elongation was low.
In Comparative Example 18, the rolling reduction before annealing was low, and the softening temperature increased.
In Comparative Example 19, the final cold rolling reduction was low, and the elongation was low.

以上、上記実施形態および実施例に基づいて本発明について説明したが、本発明は、上記実施形態および実施例で説明した内容に限定されるものではなく、本発明の範囲を逸脱しない限りは前記実施形態および実施例に対する適宜の変更が可能である。   As described above, the present invention has been described based on the above embodiments and examples. However, the present invention is not limited to the contents described in the above embodiments and examples, and the present invention is not limited thereto unless it departs from the scope of the present invention. Appropriate changes to the embodiments and examples are possible.

Claims (4)

Fe:1.2質量%以上1.8質量%以下、Si:0.08質量%以上0.15質量%以下、Cu:0.005質量%超0.01%以下を含有し、残部がAlと不可避不純物からなる組成を有し、圧延後、引張強さが170MPa以上、伸びが5.0%以上であり、120℃×1分の第1の熱処理後において、引張強さが160MPa以上、かつ前記第1の熱処理後の200℃×1分の第2の熱処理後において、引張強さが100MPa未満で伸び8.0%以上であることを特徴とする電池集電体用アルミニウム合金箔。   Fe: 1.2% by mass to 1.8% by mass, Si: 0.08% by mass to 0.15% by mass, Cu: more than 0.005% by mass and 0.01% or less, with the balance being Al After rolling, the tensile strength is 170 MPa or more, the elongation is 5.0% or more, and after the first heat treatment at 120 ° C. × 1 minute, the tensile strength is 160 MPa or more, An aluminum alloy foil for a battery current collector, wherein after the second heat treatment at 200 ° C. for 1 minute after the first heat treatment, the tensile strength is less than 100 MPa and the elongation is 8.0% or more. さらに、Mn:0.01質量%未満を含有することを特徴とする請求項1に記載の電池集電体用アルミニウム合金箔。   The aluminum alloy foil for a battery current collector according to claim 1, further comprising Mn: less than 0.01% by mass. 冷間圧延後の箔の厚さ方向の結晶粒サイズが2.0μm以下であり、且つ円相当径1μm以上3μm以下のAl−Fe系の金属間化合物が1mm当たり8.0×10個以上の数で分布していることを特徴とする請求項1または2に記載の電池集電体用アルミニウム合金箔。 The crystal grain size in the thickness direction of the foil after cold rolling is 2.0 μm or less, and 8.0 × 10 3 Al-Fe intermetallic compounds having an equivalent circle diameter of 1 μm or more and 3 μm or less per 1 mm 2. The aluminum alloy foil for a battery current collector according to claim 1 or 2, wherein the aluminum alloy foil is distributed in the above number. 請求項1〜3に記載の電池集電体用アルミニウム合金箔を製造する方法であって、
請求項1または2に記載の組成を有するアルミニウム合金の鋳塊に対して、420〜520℃で8時間以上保持する均質化処理を行い、前記均質化処理後に、圧延仕上がり温度が230℃以上300℃未満となるような熱間圧延を行い、その後の冷間圧延の途中で熱間圧延後からの冷間圧延率が60%以上になる厚みで300℃〜400℃の中間焼鈍を行い、中間焼鈍後の最終冷間圧延率を95%以上とすることを特徴とする電池集電体用アルミニウム合金箔の製造方法。
A method for producing an aluminum alloy foil for a battery current collector according to claim 1,
An ingot of the aluminum alloy having the composition according to claim 1 or 2 is subjected to a homogenization treatment at 420 to 520 ° C for 8 hours or more, and after the homogenization treatment, a rolling finish temperature is 230 ° C or more and 300 ° C or more. Perform hot rolling such that the temperature is lower than 0 ° C., and perform intermediate annealing at 300 ° C. to 400 ° C. at a thickness such that the cold rolling reduction after hot rolling is 60% or more during the subsequent cold rolling. A method for producing an aluminum alloy foil for a battery current collector, wherein the final cold rolling reduction after annealing is 95% or more.
JP2018152206A 2018-08-13 2018-08-13 Aluminum foil for battery current collector and method of manufacturing the same Expired - Fee Related JP6730382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018152206A JP6730382B2 (en) 2018-08-13 2018-08-13 Aluminum foil for battery current collector and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018152206A JP6730382B2 (en) 2018-08-13 2018-08-13 Aluminum foil for battery current collector and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2020026560A true JP2020026560A (en) 2020-02-20
JP6730382B2 JP6730382B2 (en) 2020-07-29

Family

ID=69619701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018152206A Expired - Fee Related JP6730382B2 (en) 2018-08-13 2018-08-13 Aluminum foil for battery current collector and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6730382B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022047475A (en) * 2020-09-11 2022-03-24 中▲ロ▼材料応用研究院有限公司 Aluminum foil, method for producing the same and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241410A (en) * 2010-05-14 2011-12-01 Sumitomo Light Metal Ind Ltd Aluminum alloy foil for lithium ion battery electrode current collector
WO2014087827A1 (en) * 2012-12-03 2014-06-12 株式会社Uacj Aluminum-alloy foil
JP2018066051A (en) * 2016-10-21 2018-04-26 三菱アルミニウム株式会社 Aluminum alloy foil for battery collector and method for producing the same
JP2019112659A (en) * 2017-12-21 2019-07-11 三菱アルミニウム株式会社 Aluminum alloy foil for battery collector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241410A (en) * 2010-05-14 2011-12-01 Sumitomo Light Metal Ind Ltd Aluminum alloy foil for lithium ion battery electrode current collector
WO2014087827A1 (en) * 2012-12-03 2014-06-12 株式会社Uacj Aluminum-alloy foil
JP2018066051A (en) * 2016-10-21 2018-04-26 三菱アルミニウム株式会社 Aluminum alloy foil for battery collector and method for producing the same
JP2019112659A (en) * 2017-12-21 2019-07-11 三菱アルミニウム株式会社 Aluminum alloy foil for battery collector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022047475A (en) * 2020-09-11 2022-03-24 中▲ロ▼材料応用研究院有限公司 Aluminum foil, method for producing the same and use thereof
JP7280304B2 (en) 2020-09-11 2023-05-23 中▲ロ▼材料応用研究院有限公司 Aluminum foil, production method and use thereof

Also Published As

Publication number Publication date
JP6730382B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
JP5639398B2 (en) Aluminum hard foil for battery current collector
JP5532424B2 (en) Aluminum alloy hard foil for battery current collector
WO2019214243A1 (en) 1100 alloy aluminum foil for lithium battery and manufacturing method therefor
JP5927614B2 (en) Aluminum hard foil for battery current collector
JP5690183B2 (en) Pure aluminum hard foil for battery current collector
JP5798128B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
KR20150070201A (en) Aluminium alloy foil
JP6674826B2 (en) Aluminum alloy foil for battery current collector and method for producing the same
JP5667681B2 (en) Method for producing aluminum alloy hard foil for battery current collector
JP5685049B2 (en) Precipitation hardening type copper alloy foil, negative electrode for lithium ion secondary battery using the same, and method for producing precipitation hardening type copper alloy foil
JP6545779B2 (en) Aluminum alloy foil for battery current collector
JP6699993B2 (en) Aluminum foil and manufacturing method thereof
JP5405410B2 (en) Aluminum alloy hard foil for battery current collector
JP6580332B2 (en) Aluminum alloy foil, current collector for battery electrode, and method for producing aluminum alloy foil
JP6694265B2 (en) Aluminum alloy foil for electrode current collector and method for manufacturing aluminum alloy foil for electrode current collector
JP6730382B2 (en) Aluminum foil for battery current collector and method of manufacturing the same
JP6679462B2 (en) Aluminum alloy foil for battery current collector and method for producing the same
JP6775335B2 (en) Manufacturing method of aluminum alloy foil for electrode current collector and aluminum alloy foil for electrode current collector
JPWO2017135108A1 (en) Aluminum alloy foil and method for producing the same
JP6902821B2 (en) Manufacturing method of aluminum alloy foil and aluminum alloy foil
JP6513896B2 (en) Aluminum alloy foil for lithium ion battery positive electrode current collector and method for producing the same
JP6769727B2 (en) Aluminum alloy foil for battery current collector and its manufacturing method
JP2021143350A (en) Aluminum alloy foil and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190830

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190830

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200702

R150 Certificate of patent or registration of utility model

Ref document number: 6730382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees