JP2020024274A - Carrier core material - Google Patents

Carrier core material Download PDF

Info

Publication number
JP2020024274A
JP2020024274A JP2018148126A JP2018148126A JP2020024274A JP 2020024274 A JP2020024274 A JP 2020024274A JP 2018148126 A JP2018148126 A JP 2018148126A JP 2018148126 A JP2018148126 A JP 2018148126A JP 2020024274 A JP2020024274 A JP 2020024274A
Authority
JP
Japan
Prior art keywords
area
particle
core material
carrier core
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018148126A
Other languages
Japanese (ja)
Other versions
JP7099902B2 (en
Inventor
佐々木 信也
Shinya Sasaki
信也 佐々木
勇人 鎌井
Yuto Kamai
勇人 鎌井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, Dowa IP Creation Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2018148126A priority Critical patent/JP7099902B2/en
Publication of JP2020024274A publication Critical patent/JP2020024274A/en
Application granted granted Critical
Publication of JP7099902B2 publication Critical patent/JP7099902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

To provide a carrier core material constituted of ferrite particle which have low density, and in which irregularities are formed on the surfaces thereof.SOLUTION: The carrier core material satisfies the following condition: A convexoconcave air gap rate calculated from the following formula (1) is 4.5% or higher and 8.0% or lower, an internal air gap rate calculated from the following formula (2) is 2.0% or higher and 20.0% or lower, a volume average particle diameter is 30 μm or larger and 40 μm or smaller, a ratio of an individual particle size distribution not larger than a particle diameter 26 μm is 14 No.% or lower, and apparent density is 2.02 g/cmor higher and 2.15 g/cmor lower. In formulae of a convexoconcave air gap rate (%)=(envelope area-particle area A)/envelope area x 100 ..... (1), and internal air gap rate (%)=(particle are A-particle area B)/particle area A×100 ...(2), the envelope area: an area of a face surrounded by a line (envelope line) connecting apexes of protrusions of a particle cross section, the particle area A: a particle cross section area including the internal air gap, and the particle area B: a particle cross section area not including the internal air gap.SELECTED DRAWING: Figure 1

Description

本発明はキャリア芯材並びにこれを用いた電子写真現像用キャリア及び電子写真用現像剤に関するものである。   The present invention relates to a carrier core material, an electrophotographic developing carrier and an electrophotographic developer using the same.

例えば、電子写真方式を用いたファクシミリやプリンター、複写機などの画像形成装置では、感光体の表面に形成された静電潜像にトナーを付着させて可視像化し、この可視像を用紙等に転写した後、加熱・加圧して定着させている。高画質化やカラー化の観点から、現像剤としては、キャリアとトナーとを含むいわゆる二成分現像剤が広く使用されている。   For example, in an image forming apparatus such as a facsimile, a printer, and a copying machine using an electrophotographic method, a toner is attached to an electrostatic latent image formed on a surface of a photoreceptor to form a visible image, and the visible image is formed on paper. Then, the image is fixed by heating and pressing. From the viewpoint of high image quality and colorization, a so-called two-component developer containing a carrier and a toner is widely used as a developer.

二成分現像剤を用いた現像方式では、キャリアとトナーとを現像装置内で撹拌混合し、摩擦によってトナーを所定量まで帯電させる。そして、回転する現像ローラに現像剤を供給し、現像ローラ上で磁気ブラシを形成させて、磁気ブラシを介して感光体へトナーを電気的に移動させて感光体上の静電潜像を可視像化する。トナー移動後のキャリアは現像ローラ上から剥離され、現像装置内で再びトナーと混合される。このため、キャリアの特性として、磁気ブラシを形成する磁気特性及び所望の電荷をトナーに付与する帯電特性が要求される。このようなキャリアとしては、マグネタイトや各種フェライト等からなるキャリア芯材の表面を樹脂で被覆した、いわゆるコーティングキャリアがこれまで多く用いられていた。   In a developing method using a two-component developer, a carrier and a toner are stirred and mixed in a developing device, and the toner is charged to a predetermined amount by friction. Then, the developer is supplied to the rotating developing roller, a magnetic brush is formed on the developing roller, and the toner is electrically transferred to the photoconductor through the magnetic brush, thereby forming an electrostatic latent image on the photoconductor. Visualize. The carrier after the movement of the toner is separated from the developing roller, and is mixed again with the toner in the developing device. Therefore, as the characteristics of the carrier, a magnetic characteristic for forming a magnetic brush and a charging characteristic for imparting a desired charge to the toner are required. As such a carrier, a so-called coated carrier in which the surface of a carrier core material made of magnetite, various ferrites, or the like is coated with a resin has been widely used.

近年、画像形成装置における画像形成速度の高速化という市場要求に対応するため、現像ローラの回転速度を速めて、現像領域への現像剤の単位時間当たりの供給量を増加させる傾向にある。   2. Description of the Related Art In recent years, in order to respond to market demands for higher image forming speeds in image forming apparatuses, there has been a tendency to increase the rotational speed of a developing roller and increase the amount of developer supplied to a developing area per unit time.

ところが、画像形成速度の高速化に伴って現像装置内における現像剤の撹拌・搬送速度が速くなると、現像剤にかかるストレスが大きくなって、キャリアの表面にトナーを構成する成分が融着する「トナースペント」が発生しやすくなる。トナースペントが生じるとキャリアの帯電付与能力が低下して画像濃度の低下を招く。   However, when the stirring / conveying speed of the developer in the developing device increases as the image forming speed increases, the stress applied to the developer increases, and the components constituting the toner fuse to the surface of the carrier. “Toner spent” tends to occur. When toner spent occurs, the charge-imparting ability of the carrier is reduced, and the image density is reduced.

そこで、キャリアを低密度にして現像剤にかかるストレスを軽減しトナースペントを抑制することが提案されている。例えば、特許文献1では、キャリア芯材の製造工程において焼成温度を下げてグレインの成長を抑え内部に空隙を残してキャリア芯材を多孔質化することが提案されている。また特許文献2では、キャリア芯材の内部に形成された空隙に樹脂を充填する樹脂充填型キャリアが提案されている。そしてまた、特許文献3では、キャリア芯材の製造工程において発生するガス抜けの穴を利用した中空型キャリアが提案されている。   Therefore, it has been proposed that the density of the carrier is reduced to reduce the stress applied to the developer and suppress the toner spent. For example, Patent Literature 1 proposes lowering the sintering temperature in a carrier core material manufacturing process to suppress the growth of grains and to make the carrier core material porous while leaving voids inside. Patent Document 2 proposes a resin-filled carrier that fills a void formed inside a carrier core with resin. Further, Patent Document 3 proposes a hollow-type carrier using holes for venting gas generated in a manufacturing process of a carrier core material.

一方で、高画質化という市場要求に対応するため画像濃度の安定化及びエッジ欠陥の低減も求められている。ここで、エッジ欠陥とは、例えば高速画像形成装置においてベタ画像に隣接してハーフトーン画像を形成した場合に、ハーフトーン画像のベタ画像との境界部分が白抜けする現象をいう。このエッジ欠陥は、現像後の現像ローラ上に残っているキャリアの有するカウンターチャージによって、感光体上に移動したトナーがキャリアに引き戻されることで起こると本発明者らは考えている。そこで、エッジ欠陥を低減するには、キャリア芯材を凹凸形状として樹脂被覆層からキャリア芯材の一部を露出させてカウンターチャージを円滑に逃がすことが考えられる。   On the other hand, in order to meet the market demand for higher image quality, it is also required to stabilize image density and reduce edge defects. Here, the edge defect refers to a phenomenon in which, for example, when a halftone image is formed adjacent to a solid image in a high-speed image forming apparatus, a boundary portion of the halftone image with the solid image becomes white. The present inventors believe that this edge defect occurs due to the counter charge of the carrier remaining on the developing roller after development, and the toner that has moved onto the photoconductor is pulled back to the carrier. Therefore, in order to reduce edge defects, it is conceivable to make the carrier core material uneven so that a part of the carrier core material is exposed from the resin coating layer to smoothly release the counter charge.

特開2013−145300号公報JP 2013-145300 A 特開2006−337579号公報JP 2006-337579 A 特開2007−34249号公報JP 2007-34249 A

ところが、キャリア芯材の内部に空隙を設けて低密度化すると、キャリア芯材の粒子強度が低下し現像装置内での撹拌などによって粒子が破砕されやすくなる。特に粒径の小さい粒子が破砕されやすい。そして、破砕された粒子片が感光体ドラムに移動して感光体ドラムを傷つけて画質を低下させる虞があった。   However, when the density is reduced by providing a void inside the carrier core material, the particle strength of the carrier core material is reduced, and the particles are easily crushed by stirring or the like in the developing device. In particular, particles having a small particle size are easily crushed. Then, there is a possibility that the crushed particle pieces move to the photosensitive drum and damage the photosensitive drum, thereby deteriorating the image quality.

またキャリア芯材の内部に空隙を設けて低密度化するためには、焼成工程において温度を低くし時間を短くする必要があるのに対して、キャリア芯材の表面を凹凸化するためには焼成温度を高くし焼成時間を長くする必要があり、キャリア芯材の低密度化と凹凸化とを同時に達成することは従来は困難とされていた。   Also, in order to reduce the density by providing voids inside the carrier core material, it is necessary to reduce the temperature and time in the firing step, whereas to make the surface of the carrier core material uneven, Conventionally, it is necessary to increase the firing temperature and lengthen the firing time, and it has conventionally been difficult to simultaneously achieve the low density and the unevenness of the carrier core material.

本発明の目的は、トナースペント、破砕片に由来の不具合(感光体ドラム傷など)、そしてエッジ欠陥が生じにくいキャリア芯材を提供することにある。   An object of the present invention is to provide a carrier core material in which defects caused by toner spent and crushed pieces (such as scratches on a photosensitive drum) and edge defects are less likely to occur.

また本発明の他の目的は、高速の画像形成装置に使用しても安定して良好な画質の画像が得られる電子写真現像剤用キャリア及び電子写真現像剤を提供することにある。   Another object of the present invention is to provide a carrier for an electrophotographic developer and an electrophotographic developer capable of stably obtaining an image of good quality even when used in a high-speed image forming apparatus.

本発明によれば、フェライト粒子から構成されるキャリア芯材であって、下記式(1)から算出される凹凸空隙率が4.5%以上8.0%以下であり、下記式(2)から算出される内部空隙率が2.0%以上20.0%以下であり、体積平均粒子径が30μm以上40μm以下で、個数粒度分布における粒径26μm以下の割合が14個数%以下であり、見掛け密度が2.02g/cm以上2.15g/cm以下であることを特徴とするキャリア芯材が提供される。
凹凸空隙率(%)=(包絡面積−粒子面積A)/包絡面積×100 ・・・・・(1)
内部空隙率(%)=(粒子面積A−粒子面積B)/粒子面積A×100 ・・・(2)
式中、包絡面積 :粒子断面の凸部の頂点を結んだ線(包絡線)で囲まれた面の面積
粒子面積A:内部空隙を含む粒子断面積
粒子面積B:内部空隙を含まない粒子断面積
According to the present invention, there is provided a carrier core material composed of ferrite particles, wherein the concavo-convex porosity calculated from the following formula (1) is 4.5% or more and 8.0% or less, and the following formula (2) Is 2.0% or more and 20.0% or less, the volume average particle diameter is 30 μm or more and 40 μm or less, and the ratio of particle diameter 26 μm or less in the number particle size distribution is 14 number% or less, carrier core material apparent density equal to or less than 2.02 g / cm 3 or more 2.15 g / cm 3 is provided.
Concavo-convex void ratio (%) = (envelope area−particle area A) / envelope area × 100 (1)
Internal porosity (%) = (particle area A−particle area B) / particle area A × 100 (2)
In the formula, the envelope area: the area of the surface surrounded by the line (envelope) connecting the vertices of the convex portions of the particle cross section. Particle area A: particle cross-sectional area including internal voids Particle area B: particle break including internal voids area

前記構成のキャリア芯材において、フェライト粒子の最大山谷深さRzが1.8μm以上3.0μm以下であるのが好ましい。   In the carrier core material having the above structure, the maximum peak-to-valley depth Rz of the ferrite particles is preferably 1.8 μm or more and 3.0 μm or less.

前記構成のキャリア芯材において、細孔容積が0.01cm/g以上0.040cm/g以下であるのが好ましい。 In the carrier core material of the structure, preferably a pore volume of at most 0.01 cm 3 / g or more 0.040 cm 3 / g.

前記構成のキャリア芯材において、真密度が4.900g/cm以上5.000g/cm以下であるのが好ましい。 In the carrier core material of the structure, preferably a true density of less 4.900g / cm 3 or more 5.000 g / cm 3.

前記構成のキャリア芯材において、磁場79.58×10A/m(1000エルステッド)を印加した際の磁化σ1kが50Am/kg以上70Am/kg以下であるのが好ましい。 In the carrier core material of the structure, preferably magnetization sigma 1k when a magnetic field is applied 79.58 × 10 3 A / m ( 1000 oersted) is less than 50 Am 2 / kg or more 70 Am 2 / kg.

前記構成のキャリア芯材において、BET比表面積が0.100m/g以上0.300m/g以下であるのが好ましい。 In the carrier core material of the structure, BET specific surface area is preferably less 0.100M 2 / g or more 0.300m 2 / g.

前記構成のキャリア芯材において、フェライト粒子の組成が、MnO:35mol%〜55mol%、Fe:45mol%〜65mol%、MgO:2mol%以下で、その一部をSrO:0.1mol%〜5.0mol%で置換したものであるのが好ましい。 In the carrier core material of the structure, the composition of the ferrite particles, MnO: 35mol% ~55mol%, Fe 2 O 3: 45mol% ~65mol%, MgO: below 2 mol%, a part of SrO: 0.1 mol% It is preferably substituted with で 5.0 mol%.

また本発明によれば、前記のいずれかに記載のキャリア芯材の表面が樹脂で被覆されていることを特徴とする電子写真現像用キャリアが提供される。   Further, according to the present invention, there is provided an electrophotographic developing carrier, wherein the surface of the carrier core material described in any of the above is coated with a resin.

また本発明によれば、前記の電子写真現像用キャリアとトナーとを含む電子写真用現像剤が提供される。   Further, according to the present invention, there is provided an electrophotographic developer including the carrier for electrophotographic development and a toner.

なお、包絡面積、粒子面積A、粒子面積B、最大山谷深さRz、細孔容積、真密度の測定方法は後述の実施例において説明する。   The method for measuring the envelope area, the particle area A, the particle area B, the maximum peak and valley depth Rz, the pore volume, and the true density will be described in Examples below.

本発明のキャリア芯材は従来のものに比べて低密度であるので、現像剤の撹拌・搬送速度が速くなっても現像剤にかかるストレスが抑えられてトナースペントの発生が抑制される。またキャリア芯材の表面に凹凸が形成されているので、キャリア芯材の凸部が樹脂被覆層の表面に露出して、現像後のカウンターチャージのリークが円滑に行われるようになる。さらに、撹拌等によって破砕されやすい粒径26μm以下の割合が少ないので、破砕片に由来する感光体ドラム傷などの不具合が効果的に抑制される。   Since the carrier core material of the present invention has a lower density than the conventional one, even if the stirring / conveying speed of the developer is increased, the stress applied to the developer is suppressed and the generation of toner spent is suppressed. Further, since the irregularities are formed on the surface of the carrier core material, the convex portions of the carrier core material are exposed on the surface of the resin coating layer, and the leakage of the counter charge after the development is smoothly performed. Furthermore, since the ratio of particles having a particle diameter of 26 μm or less, which is easily crushed by stirring or the like, is small, problems such as scratches on the photosensitive drum due to crushed pieces are effectively suppressed.

本発明の電子写真現像用キャリア及び電子写真用現像剤によれば、高速の画像形成装置に使用しても安定して良好な画質の画像が得られる。   ADVANTAGE OF THE INVENTION According to the carrier for electrophotographic development and the developer for electrophotography of this invention, the image of high quality can be obtained stably even when used for a high-speed image forming apparatus.

キャリア芯材の粒子断面図である。It is a particle sectional view of a carrier core material. 凹凸空隙率を説明する図である。FIG. 3 is a diagram for explaining a concave / convex porosity. 内部空隙率を説明する図である。It is a figure explaining internal porosity. 実施例1のキャリア芯材のSEM写真である。4 is an SEM photograph of the carrier core material of Example 1. 実施例1のキャリア芯材の断面SEM写真である。3 is a cross-sectional SEM photograph of the carrier core material of Example 1. 本発明に係るキャリアを用いた現像装置の一例を示す概説図である。FIG. 1 is a schematic diagram illustrating an example of a developing device using a carrier according to the present invention.

本発明では、キャリア芯材の表面凹凸度の指標として前記式(1)から算出される凹凸空隙率を用い、キャリア芯材の粒子密度の指標として前記式(2)から算出される内部空隙率を用いることとした。図1、図2及び図3を用いて凹凸空隙率及び内部空隙率を説明する。   In the present invention, the irregular porosity calculated from the above equation (1) is used as an index of the surface irregularity of the carrier core material, and the internal porosity calculated from the above equation (2) as an index of the particle density of the carrier core material. Was used. The uneven porosity and the internal porosity will be described with reference to FIGS. 1, 2 and 3. FIG.

図1、図2及び図3は同一粒子の断面図であって、図1はキャリア芯材の粒子断面図であり、図2は、粒子凸部の頂点を結んだ包絡線を太線で示し、粒子面積A(内部空隙を含む粒子断面積)を斜線領域として示した図であり、図3は粒子面積B(内部空隙を含まない粒子断面積)を斜線領域として示した図である。   1, 2 and 3 are cross-sectional views of the same particle, FIG. 1 is a cross-sectional view of the particle of the carrier core material, and FIG. FIG. 3 is a diagram illustrating a particle area A (particle cross-sectional area including internal voids) as a hatched region, and FIG. 3 is a diagram illustrating a particle area B (particle cross-sectional area not including internal voids) as a hatched region.

凹凸空隙率は、図2において太線で示された包絡線で囲まれた包絡面積から、斜線で示された粒子面積Aを除いた面積、すなわち図2においてグレーで色づけされた部分の面積の包絡面積に対する割合を示すものである。また、内部空隙率は、図2において斜線で示された粒子面積Aから、図3において斜線で示された粒子面積Bを除いた面積、すなわち図3においてグレーで色づけされた粒子内部の空隙部分の面積の粒子面積Aに対する割合を示すものである。
このように各粒子において算出し、100粒子の平均値により凹凸空隙率及び内部空隙率を得る。なお、測定対象粒子は図5に示すような断面SEM写真において粒径が20μm以上のものとした。
The porosity of the concavo-convex is the area obtained by removing the particle area A shown by oblique lines from the envelope area surrounded by the envelope lines shown by thick lines in FIG. 2, that is, the envelope of the area colored in gray in FIG. It shows the ratio to the area. Further, the internal porosity is an area obtained by subtracting the particle area B indicated by oblique lines in FIG. 3 from the particle area A indicated by oblique lines in FIG. 2, that is, the void portion inside the particles colored in gray in FIG. The ratio of the area to the particle area A is shown.
As described above, calculation is performed on each particle, and the average voidage of the 100 particles is used to obtain the uneven porosity and the internal porosity. The particles to be measured had a particle diameter of 20 μm or more in a cross-sectional SEM photograph as shown in FIG.

本発明では、前記説明した凹凸空隙率が4.5%以上8.0%以下であることが大きな特徴の一つである。凹凸空隙率を前記範囲とすることによって、摩擦帯電によって帯電したカウンターチャージを、樹脂被覆層から一部露出したキャリア芯材から逃がすことができる。凹凸空隙率のより好ましい下限値は5.0%以上であり、より好ましい上限値は7.0%である。   One of the great features of the present invention is that the above-described uneven porosity is 4.5% or more and 8.0% or less. By setting the porosity of the unevenness in the above range, the counter charge charged by the frictional charging can be released from the carrier core material partially exposed from the resin coating layer. A more preferred lower limit of the uneven porosity is 5.0% or more, and a more preferred upper limit is 7.0%.

また本発明では、内部空隙率が2.0%以上20.0%以下であることも大きな特徴である。内部空隙率を前記範囲とすることによってキャリア芯材の密度が低くなり、撹拌・搬送速度が高速化しても現像剤にかかるストレスの上昇が抑えられトナースペントが抑制される。内部空隙率のより好ましい下限値は3.0%であり、より好ましい上限値は15%である。   In the present invention, it is also a great feature that the internal porosity is 2.0% or more and 20.0% or less. By setting the internal porosity within the above range, the density of the carrier core material is reduced, and even when the stirring / conveying speed is increased, an increase in stress applied to the developer is suppressed, and toner spent is suppressed. A more preferred lower limit of the internal porosity is 3.0%, and a more preferred upper limit is 15%.

本発明のキャリア芯材では、体積平均粒子径(以下、「平均粒子径」と記すことがある。)を30μm以上40μm以下の範囲とし、個数粒度分布における粒径26μm以下の割合が14個数%以下とした。前述のように、粒子の内部空隙率が高くなると粒径の小さい粒子は特に破砕が起こりやすくなるので、本発明では粒径の小さい粒子の含有量を少なくして、破砕された粒子片に起因する感光体ドラム傷などの不具合を抑制した。なお、個数粒度分布における粒径26μm以下の割合は少ないほど望ましいが、篩い分けの限度などからその下限値は通常4%程度である。   In the carrier core material of the present invention, the volume average particle diameter (hereinafter sometimes referred to as “average particle diameter”) is in the range of 30 μm to 40 μm, and the ratio of particle diameter 26 μm or less in the number particle size distribution is 14% by number. It was as follows. As described above, when the internal porosity of the particles increases, the particles having a small particle diameter are particularly easily crushed.In the present invention, the content of the particles having a small particle diameter is reduced, and the content of the particles having a small particle diameter is reduced. Problems such as scratches on the photosensitive drum. The smaller the ratio of the particle size of 26 μm or less in the number particle size distribution, the better. However, the lower limit is usually about 4% due to the limit of sieving.

本発明のキャリア芯材の見掛け密度(AD)は2.02g/cm以上2.15g/cm以下である。見掛け密度がこの範囲であることによってトナースペント及びエッジ欠陥等が抑制される。 The apparent density of the carrier core material of the present invention (AD) is 2.02 g / cm 3 or more 2.15 g / cm 3 or less. When the apparent density is in this range, toner spent, edge defects, and the like are suppressed.

本発明のキャリア芯材におけるフェライト粒子表面の最大山谷深さRzは1.8μm以上3.0μm以下の範囲が好ましい。フェライト粒子表面の最大山谷深さRzが前記範囲であると、フェライト粒子同士の間に形成される空間が大きくなり、より多くのトナーがこの空間に取り込まれて現像領域へのトナー供給量が増え、画像形成速度の高速化等に対応できる。最大山谷深さRzのより好ましい範囲は2.0μm以上2.5μm以下の範囲である。フェライト粒子表面の最大山谷深さRzの制御は、後述するように、凹凸空隙率と同様に原料におけるSrFe1219の添加量及び製造工程における焼成条件などによって行うことができる。詳細は後述する。 The maximum peak-to-valley depth Rz of the ferrite particle surface in the carrier core material of the present invention is preferably in the range of 1.8 μm or more and 3.0 μm or less. When the maximum peak-to-valley depth Rz of the ferrite particle surface is in the above range, the space formed between the ferrite particles becomes large, so that more toner is taken into this space and the amount of toner supplied to the development area increases. It is possible to cope with an increase in image forming speed. A more preferable range of the maximum peak-valley depth Rz is a range of 2.0 μm or more and 2.5 μm or less. As will be described later, the maximum peak-valley depth Rz of the ferrite particle surface can be controlled by the amount of SrFe 12 O 19 added to the raw material and the firing conditions in the production process, as in the case of the uneven porosity. Details will be described later.

本発明のキャリア芯材における細孔容積は0.01cm/g以上0.040cm/g以下の範囲が好ましい。細孔容積が前記範囲であると内部空隙が適切な範囲となる。細孔容積が0.01cm/g以上の範囲にあることでキャリア一粒子あたりの重量が軽くなり、キャリア摩擦が緩和されトナースペントが軽減される。一方、細孔容積が0.040cm/gを超えると内部空隙が大きくなり過ぎてキャリア一粒子あたりの磁化が小さくなる為に、キャリア飛散を起こしやすくなる。細孔容積のより好ましい範囲は0.02cm/g以上0.03cm/g以下の範囲である。 Pore volume in the carrier core material of the present invention is 0.01 cm 3 / g or more 0.040 cm 3 / g preferably in the following range. When the pore volume is in the above range, the internal void becomes an appropriate range. When the pore volume is in the range of 0.01 cm 3 / g or more, the weight per carrier particle is reduced, carrier friction is reduced, and toner spent is reduced. On the other hand, if the pore volume exceeds 0.040 cm 3 / g, the internal voids become too large and the magnetization per carrier particle becomes small, so that carrier scattering is likely to occur. A more preferred range of pore volume is in the range of less 0.02 cm 3 / g or more 0.03 cm 3 / g.

本発明のキャリア芯材における真密度は4.900g/cm以上5.000g/cm以下の範囲が好ましい。キャリア芯材の真密度が上記範囲であると、磁気特性や電気特性を維持しながら現像装置における撹拌トルクを低減させることができる。また、現像装置内で撹拌されることによって現像剤が受けるストレスを大幅に軽減することができる。 True density of the carrier core material of the present invention is 4.900g / cm 3 or more 5.000 g / cm 3 is preferably in a range of about. When the true density of the carrier core material is within the above range, the stirring torque in the developing device can be reduced while maintaining the magnetic characteristics and the electric characteristics. Further, the stress applied to the developer by being stirred in the developing device can be greatly reduced.

また、本発明のキャリア芯材における磁場79.58×10A/m(1000エルステッド)を印加した際の磁化σ1kは50Am/kg以上70Am/kg以下であるのが好ましい。 Further, the magnetization sigma 1k when a magnetic field is applied 79.58 × 10 3 A / m ( 1000 Oe) in the carrier core material of the present invention is preferably not more than 50 Am 2 / kg or more 70 Am 2 / kg.

本発明のキャリア芯材を構成するフェライト粒子の組成に特に限定はなく、組成式MFe3−X(但し、Mは、Mg,Mn,Ca,Ti,Sr,Cu,Zn,Sr,Niからなる群より選択される少なくとも1種の金属元素、0<X<1)で表されるものが使用される。これらの中でも、フェライト粒子の組成が、MnO:35mol%〜55mol%、Fe:45mol%〜65mol%、MgO:2mol%以下で、その一部をSrO:0.1mol%〜5.0mol%で置換したものであるのが好ましい。 There is no particular limitation on the composition of the ferrite particles constituting the carrier core material of the present invention, the composition formula M X Fe 3-X O 4 ( where, M is, Mg, Mn, Ca, Ti , Sr, Cu, Zn, Sr , Ni, at least one metal element selected from the group consisting of 0 <X <1). Among these, the composition of the ferrite particles, MnO: 35mol% ~55mol%, Fe 2 O 3: 45mol% ~65mol%, MgO: below 2 mol%, a part of SrO: 0.1mol% ~5.0mol %.

次に本発明のキャリア芯材の製造方法について説明する。従来、粒子表面を凹凸化させるためにSr(ストロンチウム)の添加や焼成工程における酸素濃度の調整などを行っていた。また、粒子の結晶成長を促進させるため焼成工程の温度及び時間を高温及び長時間としていた。しかしながら、このようの従来の方法では粒子表面の凹凸化はある程度達成はできるものの、粒子内部の焼結が促進されて内部空隙が形成されにくくなり粒子の低密度化が達成できない。本発明者らは、フェライト粒子から構成されるキャリア芯材において、凹凸形状を維持しながら低密度化が図れないか鋭意検討を重ねた結果、SrFe1219を原料して用いることで粒子の周方向への結晶成長が阻害されて半径方向すなわち粒子外方への成長が促され粒子表面の凹凸化が進むこと、そしてSrFe1219と共に仮焼成原料(非仮焼成原料よりも粒径が大きい)を用いることで粒子の表面凹凸化と低密度化とが図れるとの知見を得た。また、SrFe1219を原料して用いる場合、焼成条件が高温及び還元雰囲気であると、SrFe1219の分解が促進されて周方向への結晶成長が十分には抑制されず表面凹凸化が促進されないとの知見も得た。これらの知見から、所定の表面凹凸と内部空隙とを有する本発明に係るキャリア芯材は以下に説明する方法により製造するのが好ましいことがわかった。なお、本発明に係るキャリア芯材の製造方法はこれに限定されるものではない。 Next, a method for producing the carrier core material of the present invention will be described. Conventionally, the addition of Sr (strontium) and the adjustment of the oxygen concentration in the firing step have been performed to make the particle surface uneven. Further, in order to promote the crystal growth of the particles, the temperature and time of the firing step are set to a high temperature and a long time. However, with such a conventional method, although the surface of the particles can be made uneven to some extent, sintering inside the particles is promoted and internal voids are hardly formed, so that the density of the particles cannot be reduced. The present inventors have intensively studied whether the carrier core material composed of ferrite particles can reduce the density while maintaining the uneven shape, and as a result, using SrFe 12 O 19 as a raw material, peripheral that the crystal growth in the direction is inhibited radial i.e. irregularities of growth inspired particle surface to the particle outward progresses, and the particle size than the preliminary calcination raw material (non-calcined raw material with SrFe 12 O 19 It has been found that the use of (large) makes it possible to reduce the surface unevenness and the density of the particles. When SrFe 12 O 19 is used as a raw material, if the firing conditions are a high temperature and a reducing atmosphere, the decomposition of SrFe 12 O 19 is promoted, and the crystal growth in the circumferential direction is not sufficiently suppressed, and the surface unevenness is increased. It was also found that the activity was not promoted. From these findings, it has been found that the carrier core material according to the present invention having predetermined surface irregularities and internal voids is preferably manufactured by the method described below. In addition, the manufacturing method of the carrier core material according to the present invention is not limited to this.

まず、Fe成分原料、M成分原料を秤量する。なお、MはMg、Mn、Ca、Ti、Cu、Zn、Ni等の2価の価数をとり得る金属元素から選ばれる少なくとも1種の金属元素である。Fe成分原料としては、Fe等が好適に使用される。M成分原料としては、MnであればMnCO、Mn等が使用でき、MgであればMgO、Mg(OH)、MgCOが好適に使用できる。また、Ca成分原料としては、CaO、Ca(OH)、CaCO等から選択される少なくとも1種の化合物が好適に使用される。 First, the Fe component raw material and the M component raw material are weighed. Note that M is at least one metal element selected from divalent metal elements such as Mg, Mn, Ca, Ti, Cu, Zn, and Ni. As the Fe component raw material, Fe 2 O 3 or the like is preferably used. As the M component raw material, MnCO 3 , Mn 3 O 4 and the like can be used for Mn, and MgO, Mg (OH) 2 and MgCO 3 can be suitably used for Mg. Further, as the Ca component raw material, at least one compound selected from CaO, Ca (OH) 2 , CaCO 3 and the like is suitably used.

次いで、作製した原料混合粉を仮焼成する。仮焼成の温度としては750℃以上900℃未満の範囲が好ましい。750℃以上であれば、仮焼による一部フェライト化が進み固体間反応が十分に進むため好ましい。一方、900℃未満であれば、仮焼による焼結が弱く、後のスラリー粉砕工程で原料を十分に粉砕できるので好ましい。また、仮焼成時の雰囲気としては大気雰囲気が好ましい。   Next, the prepared raw material mixed powder is calcined. The temperature of the preliminary firing is preferably in a range of 750 ° C. or more and less than 900 ° C. A temperature of 750 ° C. or higher is preferable because ferrite formation by calcining partially proceeds and the reaction between solids sufficiently proceeds. On the other hand, when the temperature is lower than 900 ° C., sintering by calcination is weak, and the raw material can be sufficiently pulverized in the subsequent slurry pulverization step, which is preferable. The atmosphere during the preliminary firing is preferably an air atmosphere.

そして、仮焼成した原料を解粒する。仮焼成原料の解粒は、例えば、ボールミルや振動ミルを用いて所定時間湿式粉砕する。解粒後の仮焼成原料の平均粒子径は数μm程度とするのが望ましい。従来使用されていた非仮焼成原料の平均粒子径が通常サブミクロンであるのに対して、本発明に係るキャリア芯材の製造ではそれよりも格段に大きい粒径の仮焼成原料を用いる。このような仮焼成原料とSrFe1219との併用により粒子の表面凹凸化と低密度化とが図れる。解粒後の仮焼成原料粒径は、粉砕時間や回転速度、使用するメディアの材質・粒径などによって調整される。 Then, the calcined raw material is disintegrated. The calcined raw material is pulverized by, for example, wet grinding using a ball mill or a vibration mill for a predetermined time. It is desirable that the average particle diameter of the calcined raw material after pulverization is about several μm. Whereas the average particle size of the non-precalcined raw materials conventionally used is usually submicron, the calcined raw material having a significantly larger particle size is used in the production of the carrier core material according to the present invention. The combined use of such a calcined raw material and SrFe 12 O 19 makes it possible to make the surface of the particles uneven and reduce the density. The particle size of the calcined raw material after the pulverization is adjusted by the pulverizing time, the rotation speed, the material and the particle size of the medium used, and the like.

次いで、解粒した仮焼成原料と、SrFe1219とを分散媒中に投入しスラリーを作製する。なお、SrFe1219の添加は、前述のように、粒子表面の凹凸化を促進させるためである。本発明で使用する分散媒としては水が好適である。分散媒には必要によりバインダー、分散剤等を配合してもよい。バインダーとしては、例えば、ポリビニルアルコールが好適に使用できる。バインダーの配合量としてはスラリー中の濃度が0.5質量%〜2質量%程度とするのが好ましい。また、分散剤としては、例えば、ポリカルボン酸アンモニウム等が好適に使用できる。分散剤の配合量としてはスラリー中の濃度が0.5質量%〜2質量%程度とするのが好ましい。その他、潤滑剤や焼結促進剤等を配合してもよい。スラリーの固形分濃度は50質量%〜90質量%の範囲が望ましい。より好ましくは60質量%〜80質量%である。 Next, the granulated calcined raw material and SrFe 12 O 19 are charged into a dispersion medium to prepare a slurry. The addition of SrFe 12 O 19 is for promoting the unevenness of the particle surface as described above. Water is suitable as the dispersion medium used in the present invention. If necessary, a binder, a dispersant, and the like may be added to the dispersion medium. As the binder, for example, polyvinyl alcohol can be suitably used. It is preferable that the amount of the binder is about 0.5% by mass to 2% by mass in the slurry. As the dispersant, for example, ammonium polycarboxylate and the like can be suitably used. It is preferable that the amount of the dispersant is adjusted so that the concentration in the slurry is about 0.5 to 2% by mass. In addition, a lubricant, a sintering accelerator and the like may be blended. The solid concentration of the slurry is desirably in the range of 50% by mass to 90% by mass. More preferably, it is 60% by mass to 80% by mass.

次に、以上のようにして作製されたスラリーを湿式粉砕する。例えば、ボールミルや振動ミルを用いて所定時間湿式粉砕する。振動ミルやボールミルには、所定粒径のメディアを内在させるのがよい。メディアの材質としては、鉄系のクロム鋼や酸化物系のジルコニア、チタニア、アルミナなどが挙げられる。粉砕工程の形態としては連続式及び回分式のいずれであってもよい。粉砕物の粒径は、粉砕時間や回転速度、使用するメディアの材質・粒径などによって調整される。   Next, the slurry prepared as described above is wet-pulverized. For example, wet pulverization is performed for a predetermined time using a ball mill or a vibration mill. It is preferable that a medium having a predetermined particle diameter is included in a vibration mill or a ball mill. Examples of the material of the media include iron-based chromium steel, oxide-based zirconia, titania, and alumina. The form of the pulverizing step may be any of a continuous type and a batch type. The particle size of the pulverized material is adjusted according to the pulverizing time, the rotation speed, the material and the particle size of the medium to be used, and the like.

そして、粉砕されたスラリーを噴霧乾燥させて造粒する。具体的には、スプレードライヤーなどの噴霧乾燥機にスラリーを導入し、雰囲気中へ噴霧することによって球状に造粒する。噴霧乾燥時の雰囲気温度は100℃〜300℃の範囲が好ましい。これにより、粒径10μm〜200μmの球状の造粒物が得られる。なお、得られた造粒物は、振動篩等を用いて、粗大粒子や微粉を除去し粒度分布をシャープなものとするのが望ましい。   Then, the pulverized slurry is granulated by spray drying. Specifically, the slurry is introduced into a spray drier such as a spray drier, and is sprayed into the atmosphere to granulate into a sphere. The ambient temperature during spray drying is preferably in the range of 100C to 300C. Thereby, a spherical granulated product having a particle size of 10 μm to 200 μm is obtained. In addition, it is desirable that the obtained granules have a sharp particle size distribution by removing coarse particles and fine powder using a vibration sieve or the like.

次に、造粒物を所定温度に加熱した炉に投入してフェライト粒子を生成させる。焼成温度としては1100℃以上1200℃未満の範囲が好ましい。焼成温度が1100℃より低い温度であると、フェライト化反応が起こりにくくなるとともに焼結も進みにくくなり、粒子の凹凸化が促進しないおそれがある。また、焼成温度が1200℃以上になると、SrFe1219の分解や過剰焼結による過大結晶が発生するおそれがある。前記焼成温度に至るまでの昇温速度としては200℃/h〜500℃/hの範囲が好ましい。 Next, the granulated material is put into a furnace heated to a predetermined temperature to generate ferrite particles. The firing temperature is preferably in the range of 1100 ° C or more and less than 1200 ° C. If the sintering temperature is lower than 1100 ° C., the ferrite-forming reaction hardly occurs, and sintering hardly proceeds, so that the unevenness of the particles may not be promoted. If the firing temperature is 1200 ° C. or higher, excessive crystals may be generated due to decomposition of SrFe 12 O 19 and excessive sintering. The heating rate up to the firing temperature is preferably in the range of 200 ° C./h to 500 ° C./h.

ここで、焼成工程における酸素濃度を昇温及び焼結時は高くして、冷却時は焼結時と比べて低くすることが推奨される。焼成工程における昇温及び焼結時の焼成炉内を酸化雰囲気とすることによって、SrFe1219の分解が抑えられて周方向への結晶成長が抑制され表面凹凸化が促進される。具体的には、昇温及び焼結時の酸素濃度を15000ppm〜210000ppmの範囲とし、冷却時の酸素濃度はそれよりも低くする。 Here, it is recommended that the oxygen concentration in the firing step be increased during temperature rise and sintering, and lower during cooling than during sintering. By raising the temperature in the firing step and setting the inside of the firing furnace at the time of sintering to an oxidizing atmosphere, decomposition of SrFe 12 O 19 is suppressed, crystal growth in the circumferential direction is suppressed, and surface unevenness is promoted. Specifically, the oxygen concentration at the time of temperature rise and sintering is set in the range of 15000 ppm to 210,000 ppm, and the oxygen concentration at the time of cooling is lower than that.

このようにして得られた焼成物を必要により解粒する。具体的には、例えば、ハンマーミル等によって焼成物を解粒する。解粒工程の形態としては連続式及び回分式のいずれであってもよい。そして、平均粒子径が所定範囲で、個数粒度分布における粒径26μm以下の割合が所定値以下となるように分級を行う。なお、平均粒子径を所定範囲とし且つ粒径26μm以下の割合を所定値以下とするには、粒径26μm以下を分級除去すると共に、平均粒子径よりも大きい所定粒径以上の粒子を分級除去し平均粒子径を調整する必要が起こり得る。分級方法としては、風力分級や篩分級など従来公知の方法を用いることができる。また、風力分級機で1次分級した後、振動篩や超音波篩で粒度分布を所定形状に揃えるようにしてもよい。さらに、分級工程後に、磁場選鉱機によって非磁性粒子を除去するようにしてもよい。   The fired product thus obtained is pulverized if necessary. Specifically, for example, the fired product is pulverized by a hammer mill or the like. The form of the pulverizing step may be any of a continuous type and a batch type. Classification is performed so that the average particle diameter is within a predetermined range and the ratio of the particle diameter of 26 μm or less in the number particle size distribution is equal to or less than a predetermined value. In order to set the average particle diameter to a predetermined range and to set the ratio of the particle diameter of 26 μm or less to a predetermined value or less, classify and remove the particle diameter of 26 μm or less and classify and remove the particles of the predetermined particle diameter and larger than the average particle diameter. It may be necessary to adjust the average particle size. As the classification method, a conventionally known method such as air classification or sieve classification can be used. After the primary classification by an air classifier, the particle size distribution may be adjusted to a predetermined shape by a vibration sieve or an ultrasonic sieve. Further, after the classification step, the nonmagnetic particles may be removed by a magnetic field separator.

その後、必要に応じて、分級後の粉末(焼成物)を酸化性雰囲気中で加熱して、粒子表面に酸化被膜を形成してフェライト粒子の高抵抗化を図ってもよい(高抵抗化処理)。酸化性雰囲気としては大気雰囲気又は酸素と窒素の混合雰囲気のいずれでもよい。また、加熱温度は、200〜800℃の範囲が好ましく、250〜600℃の範囲がさらに好ましい。加熱時間は0.5時間〜5時間の範囲が好ましい。   Thereafter, if necessary, the classified powder (fired product) may be heated in an oxidizing atmosphere to form an oxide film on the particle surface to increase the resistance of the ferrite particles (high resistance treatment). ). The oxidizing atmosphere may be an air atmosphere or a mixed atmosphere of oxygen and nitrogen. Further, the heating temperature is preferably in the range of 200 to 800 ° C, and more preferably in the range of 250 to 600 ° C. The heating time is preferably in the range of 0.5 hours to 5 hours.

以上のようにして作製したフェライト粒子を本発明のキャリア芯材として用いる。そして、所望の帯電性等を得るために、キャリア芯材の外周を樹脂で被覆して電子写真現像用キャリアとする。   The ferrite particles produced as described above are used as the carrier core material of the present invention. Then, in order to obtain a desired charging property or the like, the outer periphery of the carrier core material is coated with a resin to obtain a carrier for electrophotographic development.

キャリア芯材の表面を被覆する樹脂としては、従来公知のものが使用でき、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ−4−メチルペンテン−1、ポリ塩化ビニリデン、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、ポリスチレン、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、並びにポリ塩化ビニル系やポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系等の熱可塑性エストラマー、フッ素シリコーン系樹脂などが挙げられる。   As the resin for coating the surface of the carrier core material, conventionally known resins can be used. For example, polyethylene, polypropylene, polyvinyl chloride, poly-4-methylpentene-1, polyvinylidene chloride, ABS (acrylonitrile-butadiene-styrene) A) resins, polystyrene, (meth) acrylic resins, polyvinyl alcohol resins, thermoplastic elastomers such as polyvinyl chloride, polyurethane, polyester, polyamide, and polybutadiene, and fluorosilicone resins.

キャリア芯材への樹脂の被覆方法としては、例えばスプレードライ法や流動床法あるいは流動床を用いたスプレードライ法、浸漬法等を用いることができる。これらの中でも、少ない樹脂量で効率的に塗布できる点で流動床法が特に好ましい。樹脂被覆量は、例えば流動床法の場合には吹き付ける樹脂溶液量や吹き付け時間によって調整することができる。   As a method for coating the carrier core material with a resin, for example, a spray drying method, a fluidized bed method, a spray drying method using a fluidized bed, an immersion method, and the like can be used. Among them, the fluidized bed method is particularly preferred in that the coating can be performed efficiently with a small amount of resin. The resin coating amount can be adjusted by, for example, the amount of the resin solution to be sprayed or the spraying time in the case of the fluidized bed method.

キャリアの粒子径は、一般に、平均粒子径で30μm以上40μm以下の範囲が好ましい。   Generally, the average particle diameter of the carrier is preferably in the range of 30 μm to 40 μm.

本発明に係る電子写真用現像剤は、以上のようにして作製したキャリアとトナーとを混合してなる。キャリアとトナーとの混合比に特に限定はなく、使用する現像装置の現像条件などから適宜決定すればよい。一般に現像剤中のトナー濃度は1質量%〜15質量%の範囲が好ましい。トナー濃度が1質量%未満の場合、画像濃度が薄くなりすぎ、他方トナー濃度が15質量%を超える場合、現像装置内でトナー飛散が発生し機内汚れや転写紙などの背景部分にトナーが付着する不具合が生じるおそれがあるからである。より好ましいトナー濃度は3質量%〜10質量%の範囲である。   The electrophotographic developer according to the present invention is obtained by mixing the carrier and the toner prepared as described above. The mixing ratio of the carrier and the toner is not particularly limited, and may be appropriately determined based on the developing conditions of the developing device used. Generally, the toner concentration in the developer is preferably in the range of 1% by mass to 15% by mass. If the toner concentration is less than 1% by mass, the image density becomes too low, while if the toner concentration exceeds 15% by mass, the toner scatters in the developing device, and the toner adheres to the inside of the apparatus and the background portion such as transfer paper. This is because there is a possibility that a malfunction may occur. A more preferred toner concentration is in the range of 3% by mass to 10% by mass.

トナーとしては、重合法、粉砕分級法、溶融造粒法、スプレー造粒法など従来公知の方法で製造したものが使用できる。具体的には、熱可塑性樹脂を主成分とする結着樹脂中に、着色剤、離型剤、帯電制御剤等を含有させたものが好適に使用できる。   As the toner, those produced by a conventionally known method such as a polymerization method, a pulverization classification method, a melt granulation method, and a spray granulation method can be used. Specifically, a binder resin containing a thermoplastic resin as a main component and containing a coloring agent, a release agent, a charge control agent, and the like can be suitably used.

トナーの粒径は、一般に、コールターカウンターによる平均粒子径で5μm〜15μmの範囲が好ましく、7μm〜12μmの範囲がより好ましい。   Generally, the particle size of the toner is preferably in the range of 5 μm to 15 μm, more preferably in the range of 7 μm to 12 μm as an average particle size measured by a Coulter counter.

トナー表面には、必要により、改質剤を添加してもよい。改質剤としては、例えば、シリカ、アルミナ、酸化亜鉛、酸化チタン、酸化マグネシウム、ポリメチルメタクリレート等が挙げられる。これらの1種又は2種以上を組み合わせて使用できる。   If necessary, a modifier may be added to the toner surface. Examples of the modifier include silica, alumina, zinc oxide, titanium oxide, magnesium oxide, polymethyl methacrylate, and the like. One or more of these can be used in combination.

キャリアとトナーとの混合は、従来公知の混合装置を用いることができる。例えばヘンシェルミキサー、V型混合機、タンブラーミキサー、ハイブリタイザー等を用いることができる。   For mixing the carrier and the toner, a conventionally known mixing device can be used. For example, a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer and the like can be used.

本発明の現像剤を用いた現像方法に特に限定はないが、磁気ブラシ現像法が好適である。図6に、磁気ブラシ現像を行う現像装置の一例を示す概説図を示す。図6に示す現像装置は、複数の磁極を内蔵した回転自在の現像ローラ3と、現像部へ搬送される現像ローラ3上の現像剤量を規制する規制ブレード6と、水平方向に平行に配置され、互いに逆向きに現像剤を撹拌搬送する2本のスクリュー1,2と、2本のスクリュー1,2の間に形成され、両スクリューの両端部において、一方のスクリューから他方のスクリューに現像剤の移動を可能とし、両端部以外での現像剤の移動を防ぐ仕切板4とを備える。   The development method using the developer of the present invention is not particularly limited, but a magnetic brush development method is preferable. FIG. 6 is a schematic diagram illustrating an example of a developing device that performs magnetic brush development. The developing device shown in FIG. 6 has a rotatable developing roller 3 containing a plurality of magnetic poles, a regulating blade 6 for regulating the amount of developer on the developing roller 3 conveyed to the developing section, and is arranged in parallel in the horizontal direction. Formed between the two screws 1 and 2 and the two screws 1 and 2 for stirring and transporting the developer in opposite directions to each other, and developing from one screw to the other screw at both ends of both screws. And a partition plate 4 which allows the developer to move and prevents the developer from moving except at both ends.

2本のスクリュー1,2は、螺旋状の羽根13,23が同じ傾斜角で軸部11,21に形成されたものであって、不図示の駆動機構によって同方向に回転し、現像剤を互いに逆方向に搬送する。そして、スクリュー1,2の両端部において一方のスクリューから他方のスクリューに現像剤が移動する。これによりトナーとキャリアからなる現像剤は装置内を常に循環し撹拌されることになる。   The two screws 1 and 2 have helical blades 13 and 23 formed on the shaft portions 11 and 21 at the same inclination angle, and are rotated in the same direction by a drive mechanism (not shown) to discharge the developer. They are transported in opposite directions. Then, at both ends of the screws 1 and 2, the developer moves from one screw to the other screw. As a result, the developer composed of the toner and the carrier is constantly circulated and stirred in the apparatus.

一方、現像ローラ3は、表面に数μmの凹凸を付けた金属製の筒状体の内部に、磁極発生手段として、現像磁極N、搬送磁極S、剥離磁極N、汲み上げ磁極N、ブレード磁極Sの5つの磁極を順に配置した固定磁石を有してなる。現像ローラ3が矢印方向に回転すると、汲み上げ磁極Nの磁力によって、スクリュー1から現像ローラ3へ現像剤が汲み上げられる。現像ローラ3の表面に担持された現像剤は、規制ブレード6により層規制された後、現像領域へ搬送される。 On the other hand, the developing roller 3 has a developing magnetic pole N 1 , a conveying magnetic pole S 1 , a peeling magnetic pole N 2 , and a pumping magnetic pole N 3 as a magnetic pole generating means inside a metal cylindrical body having a surface having irregularities of several μm. , comprising a fixed magnet disposed five pole blade pole S 2 in order. When the development roller 3 is rotated in the arrow direction, by the magnetic force of the magnetic pole N 3, the developer is pumped from the screw 1 to the developing roller 3. The developer carried on the surface of the developing roller 3 is transported to the developing area after its layer is regulated by the regulating blade 6.

現像領域では、直流電圧に交流電圧を重畳したバイアス電圧が電源8から現像ローラ3に印加される。バイアス電圧の直流電圧成分は、感光体ドラム5表面の背景部電位と画像部電位との間の電位とされる。また、背景部電位と画像部電位とは、バイアス電圧の最大値と最小値との間の電位とされる。バイアス電圧のピーク間電圧は0.5〜5kVの範囲が好ましく、周波数は1〜10kHzの範囲が好ましい。またバイアス電圧の波形は矩形波、サイン波、三角波などいずれであってもよい。これによって、現像領域においてトナー及びキャリアが振動し、トナーが感光体ドラム5上の静電潜像に付着して現像がなされる。   In the developing area, a bias voltage in which an AC voltage is superimposed on a DC voltage is applied to the developing roller 3 from the power supply 8. The DC voltage component of the bias voltage is a potential between the background portion potential and the image portion potential on the surface of the photosensitive drum 5. The background portion potential and the image portion potential are potentials between the maximum value and the minimum value of the bias voltage. The peak-to-peak voltage of the bias voltage is preferably in the range of 0.5 to 5 kV, and the frequency is preferably in the range of 1 to 10 kHz. Further, the waveform of the bias voltage may be any of a rectangular wave, a sine wave, and a triangular wave. As a result, the toner and the carrier vibrate in the developing area, and the toner adheres to the electrostatic latent image on the photosensitive drum 5 to perform development.

その後現像ローラ3上の現像剤は、搬送磁極Sによって装置内部に搬送され、剥離電極Nによって現像ローラ3から剥離して、スクリュー1,2によって装置内を再び循環搬送され、現像に供していない現像剤と混合撹拌される。そして汲み上げ極Nによって、新たに現像剤がスクリュー1から現像ローラ3へ供給される。 Developer then on the developing roller 3 is conveyed into the apparatus by the conveyor pole S 1, and peeled from the developing roller 3 by the peeling electrode N 2, in the apparatus is recirculated conveyed by the screw 1 and 2, subjected to developing Mixed with undeveloped developer. Then the scooping pole N 3, new developer is supplied from the screw 1 to the developing roller 3.

なお、図6に示した実施形態では現像ローラ3に内蔵された磁極は5つであったが、現像剤の現像領域での移動量を一層大きくしたり、汲み上げ性等を一層向上させたりするために、磁極を8極や10極、12極と増やしてももちろん構わない。   Although the developing roller 3 has five magnetic poles in the embodiment shown in FIG. 6, the moving amount of the developer in the developing area is further increased, and the pumping property and the like are further improved. For this reason, the number of magnetic poles may be increased to eight, ten, or twelve.

(実施例1)
Fe(平均粒径:0.8μm)を50.0mol、Mn(平均粒径:2μm)をMnO換算で50.0molとなるように秤量し、ローラーコンパクターでペレット化した。得られたペレットを大気雰囲気の条件下、850℃にてロータリー式の焼成炉で仮焼成をおこなった。乾式ビーズミルで6時間粉砕し、仮焼原料(平均粒径:2.2μm)を得た。この仮焼原料20.0kgとSrFe1219(平均粒径:1.2μm)3.0kgを純水7.6kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を139g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm〜75μmの乾燥造粒物を得た。この造粒物から粒径30μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し1120℃まで5時間かけて昇温した。その後1120℃で3時間保持することにより焼成を行った。電気炉内の酸素濃度は昇温の段階では100000ppm、冷却の段階では2000ppmとなるよう、炉内の酸素濃度を調整した。
得られた焼成物をハンマーミルで解粒した後に振動篩を用いて分級し、平均粒子径36.3μm、個数粒度分布における26μm以下の割合が11.6個数%の焼成物を得た。
次いで、得られた焼成物を大気雰囲気下390℃で1.5時間保持することにより酸化処理(高抵抗化処理)を行い、キャリア芯材を得た。
得られたキャリア芯材の組成、粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 1)
50.0 mol of Fe 2 O 3 (average particle size: 0.8 μm) and 50.0 mol of Mn 3 O 4 (average particle size: 2 μm) were weighed in terms of MnO, and pelletized by a roller compactor. The obtained pellets were preliminarily fired at 850 ° C. in a rotary firing furnace under an atmospheric condition. The mixture was pulverized with a dry bead mill for 6 hours to obtain a calcined raw material (average particle size: 2.2 μm). The calcined material 20.0kg and SrFe 12 O 19 (average particle size: 1.2 [mu] m) 3.0 kg were dispersed in purified water 7.6 kg, and the ammonium polycarboxylate dispersant as a dispersing agent were added 139g A mixture was obtained. This mixture was pulverized by a wet ball mill (media diameter: 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air of about 140 ° C. with a spray dryer to obtain a dried granulated product having a particle size of 10 μm to 75 μm. Fine particles having a particle size of 30 μm or less were removed from the granulated product using a sieve.
The granulated product was put into an electric furnace and heated to 1120 ° C. over 5 hours. Thereafter, firing was carried out by maintaining the temperature at 1120 ° C. for 3 hours. The oxygen concentration in the furnace was adjusted so that the oxygen concentration in the electric furnace was 100,000 ppm at the temperature rising stage and 2000 ppm at the cooling stage.
The obtained fired product was pulverized with a hammer mill and classified using a vibration sieve to obtain a fired product having an average particle diameter of 36.3 μm and a ratio of 26 μm or less in the number particle size distribution of 11.6 number%.
Next, the obtained fired product was kept at 390 ° C. in an air atmosphere for 1.5 hours to perform an oxidation treatment (resistance increasing treatment) to obtain a carrier core material.
The composition, powder characteristics, shape characteristics, magnetic characteristics, and the like of the obtained carrier core material were measured by the methods described below. Tables 1 and 2 show the measurement results.

次に、このようにして得られたキャリア芯材の表面を樹脂で被覆してキャリアを作製した。具体的には、シリコーン樹脂450重量部と、(2−アミノエチル)アミノプロピルトリメトキシシラン9重量部とを、溶媒としてのトルエン450重量部に溶解してコート溶液を作製した。このコート溶液を、流動床型コーティング装置を用いてキャリア芯材50000重量部に塗布し、温度300℃の電気炉で加熱してキャリアを得た。以下の実施例及び比較例についても同様にしてキャリアを得た。   Next, a carrier was prepared by coating the surface of the carrier core material thus obtained with a resin. Specifically, a coating solution was prepared by dissolving 450 parts by weight of a silicone resin and 9 parts by weight of (2-aminoethyl) aminopropyltrimethoxysilane in 450 parts by weight of toluene as a solvent. The coating solution was applied to 50,000 parts by weight of a carrier core material using a fluidized bed type coating apparatus, and heated in an electric furnace at a temperature of 300 ° C. to obtain a carrier. Carriers were obtained in the same manner for the following Examples and Comparative Examples.

得られたキャリアと平均粒子径5.0μm程度のトナーとを、ポットミルを用いて所定時間混合し、二成分系の電子写真現像剤を得た。この場合、キャリアとトナーとをトナーの重量/(トナーおよびキャリアの重量)=5/100となるように調整した。以下、全ての比較例についても同様にして現像剤を得た。得られた現像剤について後述の実機評価を行った。評価結果を表2に示す。   The obtained carrier and a toner having an average particle diameter of about 5.0 μm were mixed for a predetermined time using a pot mill to obtain a two-component electrophotographic developer. In this case, the carrier and the toner were adjusted so that the weight of the toner / (the weight of the toner and the carrier) = 5/100. Hereinafter, a developer was obtained in the same manner for all the comparative examples. The obtained developer was evaluated in an actual machine described later. Table 2 shows the evaluation results.

(実施例2)
焼成工程における電気炉温度を1140℃に変更した以外は実施例1と同様にして平均粒子径37.4μm、個数粒度分布における粒径26μm以下の割合が11.7個数%の焼成物を得た。
(Example 2)
A fired product having an average particle diameter of 37.4 μm and a particle size distribution of 26 μm or less in particle size distribution of 11.7% by number was obtained in the same manner as in Example 1 except that the electric furnace temperature in the firing step was changed to 1140 ° C. .

(実施例3)
焼成工程における電気炉温度を1160℃に変更した以外は実施例1と同様にして平均粒子径37.3μm、個数粒度分布における粒径26μm以下の割合が13.4個数%の焼成物を得た。
(Example 3)
Except that the temperature of the electric furnace in the firing step was changed to 1160 ° C., a fired product having an average particle diameter of 37.3 μm and a particle diameter of 26 μm or less in a number particle size distribution of 13.4% by number was obtained in the same manner as in Example 1. .

(比較例1)
造粒物から粒径25μm以下の微小な粒子を篩を用いて除去した以外は実施例1と同様にして平均粒子径36.3μm、個数粒度分布における粒径26μm以下の割合が15.0個数%の焼成物を得た。
(Comparative Example 1)
The average particle diameter was 36.3 μm, and the proportion of particles having a particle diameter of 26 μm or less in the particle size distribution was 15.0 in the same manner as in Example 1 except that fine particles having a particle diameter of 25 μm or less were removed from the granulated product using a sieve. % Fired product was obtained.

(比較例2)
焼成工程における電気炉温度を1200℃に変更した以外は実施例1と同様にして平均粒子径37.1μm、個数粒度分布における粒径26μm以下の割合が13.2個数%の焼成物を得た。
(Comparative Example 2)
Except that the temperature of the electric furnace in the firing step was changed to 1200 ° C., a fired product having an average particle diameter of 37.1 μm and a particle diameter of 26 μm or less in a number particle size distribution of 13.2% by number was obtained in the same manner as in Example 1. .

(比較例3)
焼成工程における電気炉温度を1220℃に変更した以外は比較例1と同様にして平均粒子径34.9μm、個数粒度分布における粒径26μm以下の割合が23.6個数%の焼成物を得た。
(Comparative Example 3)
Except having changed the electric furnace temperature to 1220 degreeC in the baking process, it carried out similarly to the comparative example 1, and obtained the average particle diameter 34.9 micrometers, and the ratio of the particle diameter of 26 micrometers or less in a number particle size distribution is 23.6 number%. .

(比較例4)
原料として、Fe(平均粒径:0.6μm)20.0kg、Mn(平均粒径:2μm)9.9kg、SrCO(平均粒径:0.6μm)0.33kgを純水10.0kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を180g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm〜75μmの乾燥造粒物を得た。この造粒物から粒径25μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し1200℃まで5時間かけて昇温した。その後1200℃で3時間保持することにより焼成を行った。電気炉内の酸素濃度は昇温の段階では15000ppm、冷却の段階では5000ppmとなるよう、炉内の酸素濃度を調整した。
得られた焼成物をハンマーミルで解粒した後に振動篩を用いて分級し、平均粒子径34.6μm、個数粒度分布における粒径26μm以下の割合が23.5個数%の焼成物を得た。
次いで、得られた焼成物を大気雰囲気下390℃で1.5時間保持することにより酸化処理(高抵抗化処理)を行い、キャリア芯材を得た。
得られたキャリア芯材の組成、粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Comparative Example 4)
As raw materials, 20.0 kg of Fe 2 O 3 (average particle size: 0.6 μm), 9.9 kg of Mn 3 O 4 (average particle size: 2 μm), and 0.33 kg of SrCO 3 (average particle size: 0.6 μm) were used. The mixture was dispersed in 10.0 kg of pure water, and 180 g of an ammonium polycarboxylate-based dispersant was added as a dispersant to form a mixture. This mixture was pulverized by a wet ball mill (media diameter: 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air of about 140 ° C. with a spray dryer to obtain a dried granulated product having a particle size of 10 μm to 75 μm. Fine particles having a particle size of 25 μm or less were removed from the granulated product using a sieve.
The granulated product was put into an electric furnace and heated to 1200 ° C. over 5 hours. After that, baking was performed by holding at 1200 ° C. for 3 hours. The oxygen concentration in the furnace was adjusted so that the oxygen concentration in the electric furnace was 15000 ppm at the temperature rising stage and 5000 ppm at the cooling stage.
The obtained fired product was pulverized by a hammer mill and classified using a vibrating sieve to obtain a fired product having an average particle diameter of 34.6 μm and a ratio of particle diameter of 26 μm or less in the number particle size distribution of 23.5% by number. .
Next, the obtained fired product was kept at 390 ° C. in an air atmosphere for 1.5 hours to perform an oxidation treatment (resistance increasing treatment) to obtain a carrier core material.
The composition, powder characteristics, shape characteristics, magnetic characteristics, and the like of the obtained carrier core material were measured by the methods described below. Tables 1 and 2 show the measurement results.

(比較例5)
焼成工程における電気炉温度を1160℃に変更した以外は比較例4と同様にして平均粒子径34.5μm、個数粒度分布における粒径26μm以下の割合が22.3個数%の焼成物を得た。
(Comparative Example 5)
Except for changing the electric furnace temperature to 1160 ° C. in the firing step, a fired product having an average particle diameter of 34.5 μm and a ratio of particle diameter of 26 μm or less in the number particle size distribution of 22.3% by number was obtained in the same manner as in Comparative Example 4. .

(比較例6)
Fe(平均粒径:0.8μm)を50.0mol、Mn(平均粒径:2μm)をMnO換算で41.5mol、MgO(平均粒径:0.8μm)を8.0mol及びCaCO(平均粒径:0.6μm)をCaO換算で0.5molとなるように秤量し、ローラーコンパクターでペレット化した。得られたペレットを大気雰囲気の条件下、800℃にてロータリー式の焼成炉で仮焼成をおこなった。乾式ビーズミルで6時間粉砕し、仮焼原料(平均粒径:1.4μm)を得た。この仮焼原料20.0kgを純水6.7kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を120g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm〜75μmの乾燥造粒物を得た。この造粒物から粒径30μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し1115℃まで4時間かけて昇温した。その後1115℃で3時間保持することにより焼成を行った。その後冷却速度2℃/分で500℃まで冷却した。電気炉内の酸素濃度は12000ppmとなるよう、酸素と窒素とを混合したガスを炉内に供給した。
得られた焼成物をハンマーミルで解粒した後に振動篩を用いて分級し、平均粒子径32.8μm、個数粒度分布における粒径26μm以下の割合が24.6個数%の焼成物を得た。
得られたキャリア芯材の組成、粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Comparative Example 6)
5.0.0 mol of Fe 2 O 3 (average particle diameter: 0.8 μm), 41.5 mol of Mn 3 O 4 (average particle diameter: 2 μm) in terms of MnO, and 8.10 mol of MgO (average particle diameter: 0.8 μm). 0mol and CaCO 3 (average particle size: 0.6 .mu.m) were weighed so as to 0.5mol in terms of CaO, and pelletized with a roller compactor. The obtained pellets were preliminarily fired in a rotary firing furnace at 800 ° C. under atmospheric conditions. The mixture was pulverized with a dry bead mill for 6 hours to obtain a calcined raw material (average particle size: 1.4 μm). 20.0 kg of this calcined raw material was dispersed in 6.7 kg of pure water, and 120 g of an ammonium polycarboxylate-based dispersant was added as a dispersant to form a mixture. This mixture was pulverized by a wet ball mill (media diameter: 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air of about 140 ° C. with a spray dryer to obtain a dried granulated product having a particle size of 10 μm to 75 μm. Fine particles having a particle size of 30 μm or less were removed from the granulated product using a sieve.
This granulated product was put into an electric furnace and heated to 1115 ° C. over 4 hours. Thereafter, firing was performed by maintaining the temperature at 1115 ° C. for 3 hours. Then, it was cooled to 500 ° C. at a cooling rate of 2 ° C./min. A gas mixture of oxygen and nitrogen was supplied into the furnace so that the oxygen concentration in the electric furnace was 12000 ppm.
The obtained fired product was pulverized with a hammer mill and classified using a vibrating sieve to obtain a fired product having an average particle diameter of 32.8 μm and a ratio of particle diameter of 26 μm or less in the number particle size distribution of 24.6 number%. .
The composition, powder characteristics, shape characteristics, magnetic characteristics, and the like of the obtained carrier core material were measured by the methods described below. Tables 1 and 2 show the measurement results.

(組成分析)
(Feの分析)
鉄元素を含むキャリア芯材を秤量し、塩酸と硝酸の混酸水に溶解させた。この溶液を蒸発乾固させた後、硫酸水を添加して再溶解し過剰な塩酸と硝酸とを揮発させる。この溶液に固体Alを添加して液中のFe3+を全てFe2+に還元する。続いて、この溶液中のFe2+イオンの量を過マンガン酸カリウム溶液で電位差滴定することにより定量分析し、Fe(Fe2+)の滴定量を求めた。
(Mnの分析)
キャリア芯材のMn含有量は、JIS G1311−1987記載のフェロマンガン分析方法(電位差滴定法)に準拠して定量分析を行った。本願発明に記載したキャリア芯材のMn含有量は、このフェロマンガン分析方法(電位差滴定法)で定量分析し得られたMn量である。
(Mgの分析)
キャリア芯材のMg含有量は、以下の方法で分析を行った。本願発明に係るキャリア芯材を酸溶液中で溶解し、ICPにて定量分析を行った。本願発明に記載したキャリア芯材のMg含有量は、このICPによる定量分析で得られたMg量である。
(Caの分析)
キャリア芯材のCa含有量は、Mgの分析同様にICPによる定量分析で行った。
(Srの分析)
キャリア芯材のSr含有量は、Mgの分析同様にICPによる定量分析で行った。
(Composition analysis)
(Analysis of Fe)
A carrier core material containing an iron element was weighed and dissolved in a mixed acid aqueous solution of hydrochloric acid and nitric acid. After evaporating the solution to dryness, sulfuric acid aqueous solution is added and redissolved to volatilize excess hydrochloric acid and nitric acid. Solid Al is added to this solution to reduce all Fe 3+ in the solution to Fe 2+ . Subsequently, the amount of Fe 2+ ions in this solution was quantitatively analyzed by potentiometric titration with a potassium permanganate solution to determine the titer of Fe (Fe 2+ ).
(Analysis of Mn)
The Mn content of the carrier core material was quantitatively analyzed according to a ferromanganese analysis method (potentiometric titration method) described in JIS G1311-1987. The Mn content of the carrier core material described in the present invention is the Mn content obtained by quantitative analysis by this ferromanganese analysis method (potentiometric titration method).
(Analysis of Mg)
The Mg content of the carrier core material was analyzed by the following method. The carrier core material according to the present invention was dissolved in an acid solution, and quantitative analysis was performed by ICP. The Mg content of the carrier core material described in the present invention is the Mg content obtained by the quantitative analysis by this ICP.
(Analysis of Ca)
The Ca content of the carrier core material was determined by quantitative analysis by ICP as in the analysis of Mg.
(Sr analysis)
The Sr content of the carrier core material was determined by ICP quantitative analysis in the same manner as Mg analysis.

(見掛け密度AD)
キャリア芯材の見掛け密度はJIS Z 2504に準拠して測定した。
(Apparent density AD)
The apparent density of the carrier core was measured according to JIS Z2504.

(流動度FR)
キャリア芯材の流動度はJIS Z 2502に準拠して測定した。
(Flow rate FR)
The flow rate of the carrier core material was measured according to JIS Z2502.

(平均粒子径D50及び粒径26μm以下の個数割合)
キャリア芯材の平均粒子径D50及び粒径26μm以下の個数割合は、レーザー回折式粒度分布測定装置(日機装社製「マイクロトラック Model 9320−X100」)を用いて測定した。
(The number ratio of less than or equal to the average particle diameter D 50 and particle size 26 .mu.m)
The average particle diameter D 50 and the following number ratio particle size 26μm of a carrier core material was measured using a laser diffraction particle size distribution analyzer (manufactured by Nikkiso Co., Ltd. "Microtrac Model 9320-X100").

(細孔容積)
細孔容積の測定については、以下の通り行った。評価装置は、Quantachrome社製のPOREMASTER−60GTを使用した。具体的には、測定条件としては、Cell Stem Volume:0.5ml、Headpressure:20PSIA、水銀の表面張力:485.00erg/cm、水銀の接触角:130.00degrees、高圧測定モード:Fixed Rate、Moter Speed:1、高圧測定レンジ:20.00〜10000.00PSIとし、サンプル1.200gを秤量して0.5ml(cc)のセルに充填して測定を行った。また、10000.00PSI時の容積B(ml/g)から100PSI時の容積A(ml/g)を差し引いた値を、細孔容積とした。
(Pore volume)
The measurement of the pore volume was performed as follows. As the evaluation device, POREMASTER-60GT manufactured by Quantachrome was used. Specifically, the measurement conditions are as follows: Cell Stem Volume: 0.5 ml, Headpressure: 20 PSIA, surface tension of mercury: 485.00 erg / cm 2 , mercury contact angle: 130.00 degrees, high pressure measurement mode: Fixed Rate, Motor Speed: 1, high pressure measurement range: 20.00 to 10000.00 PSI, 1.200 g of a sample was weighed and filled into a 0.5 ml (cc) cell for measurement. The value obtained by subtracting the volume A (ml / g) at 100 PSI from the volume B (ml / g) at 10000.00 PSI was defined as the pore volume.

(BET比表面積)
BET一点法比表面積測定装置(「Macsorb HM model−1208」マウンテック社製)を用いて、サンプル8.500gを容積5mLのセルに充填し、200℃で30分間脱気して測定した。
(BET specific surface area)
Using a BET one-point specific surface area measuring device ("Macsorb HM model-1208", manufactured by Mountech), 8.500 g of a sample was filled in a cell having a volume of 5 mL, and the sample was degassed at 200 ° C for 30 minutes and measured.

(真密度)
キャリア芯材の真密度は、Quantachrome社製、「ULTRA PYCNOMETER 1000」を用いて測定を行った。
(True density)
The true density of the carrier core material was measured using "ULTRA PYCNOMETER 1000" manufactured by Quantachrome.

(凹凸空隙率、内部空隙率)
キャリア芯材を樹脂中に分散させ、真空脱泡処理を施すことでキャリア芯材内に樹脂を充填させた後、補助板に塗布し、温度200℃で20分間熱処理を行って樹脂を硬化させた。その後クロスセッションポリッシャー(SM-09010 日本電子株式会社製)を用いてキャリア芯材をカットした。そしてキャリア芯材の断面を走査型電子顕微鏡(JSM−6510LA型 日本電子株式会社製)で撮影した。撮影した画像から画像解析ソフト(Image−Pro Plus、Media Cybernetics社製)を用いて、包絡面積(図形の凸部を結んだ時の面積,μm)、粒子面積A〈空隙を含む,μm〉、粒子面積B〈空隙を含まない,μm〉を測定した。断面観察像においては、視野中にキャリア芯材の端部をカットしたものも存在することから、測定には20μm以上の粒子を選択した。各面積は1粒子毎に算出し、100粒子の平均値をそのキャリア芯材の包絡面積(μm)、粒子面積A(μm)、粒子面積B(μm)とした。そして、以下の計算式から各空隙率を算出した。
空隙率(%)=(包絡面積-粒子面積B)/包絡面積×100
凹凸空隙率(%)=(包絡面積−粒子面積A)/包絡面積×100
内部空隙率(%)=(粒子面積A−粒子面積B)/粒子面積A×100
(Roughness porosity, internal porosity)
The carrier core material is dispersed in the resin, and the resin is filled into the carrier core material by performing a vacuum defoaming process, then applied to an auxiliary plate, and heat-treated at a temperature of 200 ° C. for 20 minutes to cure the resin. Was. Thereafter, the carrier core material was cut using a cross session polisher (SM-09010, manufactured by JEOL Ltd.). Then, the cross section of the carrier core material was photographed with a scanning electron microscope (JSM-6510LA type, manufactured by JEOL Ltd.). Image analysis software from the captured image (Image-Pro Plus, Media Cybernetics, Inc.) was used to envelope area (area when connecting the convex portion of the figure, [mu] m 2), including grain area A <voids, [mu] m 2 ) And the particle area B <excluding voids, μm 2 >. In the cross-sectional observation image, since there is also an image in which the end of the carrier core material is cut in the visual field, particles of 20 μm or more were selected for the measurement. Each area was calculated for each particle, and the average value of 100 particles was defined as the envelope area (μm 2 ), particle area A (μm 2 ), and particle area B (μm 2 ) of the carrier core material. Then, each porosity was calculated from the following formula.
Porosity (%) = (envelope area−particle area B) / envelope area × 100
Concavo-convex porosity (%) = (envelope area−particle area A) / envelope area × 100
Internal porosity (%) = (particle area A−particle area B) / particle area A × 100

(最大山谷深さRzの測定方法)
超深度カラー3D形状測定顕微鏡(「VK−X100」株式会社キーエンス製)を用い、100倍対物レンズで表面を観察して求めた。具体的には、まず、表面の平坦な粘着テープにキャリア芯材を固定し、100倍対物レンズで測定視野を決定した後、オートフォーカス機能を用いて焦点を粘着テープ面に調整した。キャリア芯材を固定した平坦な粘着テープ面に対し、垂直方向(Z方向)からレーザー光線を照射し、面のX方向Y方向に走査した。また、表面からの反射光の強度が最大となった時のレンズの高さ位置をつなぎ合わせることでZ方向のデータを取得した。これらX、YおよびZ方向の位置データをつなぎ合わせキャリア芯材表面の3次元形状を得た。なお、キャリア芯材表面の3次元形状の取り込みにはオート撮影機能を用いた。
各パラメータの測定には、粒子粗さ検査ソフトウェア(三谷商事製)を用いて行った。まず、前処理として、得られたキャリア芯材表面の3次元形状の粒子認識と形状選別を行った。粒子認識は以下の方法で行った。撮影によって得られた3次元形状のうち、Z方向の最大値を100%、最小値を0%として最大値から最小値までの間を100等分する。この100〜35%にあたる領域を抽出し、独立した領域の輪郭を粒子輪郭として認識した。次に形状選別で粗大、微小、会合などの粒子を除外した。この形状選別を行うことで以降に行う極率補正時の誤差を小さくすることができる。具体的には面積相当径28μm以下、38μm以上、針状比1.15以上に該当する粒子を除外した。ここで針状比とは粒子の最大長/対角幅の比から算出したパラメータであり、対角幅とは最大長に平行な2本の直線で粒子を挟んだときの2直線の最短距離を表す。
つぎに表面の3次元形状から解析に用いる部分の取り出しを行った。まず上記の方法で認識した粒子輪郭から求められる重心を中心として一辺の長さが15.0μmの正方形を描く。描いた正方形の中に21本の平行線を引き、その線分上にあたる粗さ曲線を21本分取り出した。
(Method of measuring maximum valley depth Rz)
Using a super-depth color 3D shape measuring microscope (“VK-X100” manufactured by Keyence Corporation), the surface was observed with a 100 × objective lens to determine the surface. Specifically, first, the carrier core material was fixed on an adhesive tape having a flat surface, and the measurement visual field was determined with a 100 × objective lens. Then, the focus was adjusted to the adhesive tape surface using an autofocus function. The flat adhesive tape surface on which the carrier core material was fixed was irradiated with a laser beam from the vertical direction (Z direction), and the surface was scanned in the X and Y directions. Further, data in the Z direction was acquired by connecting the height positions of the lenses when the intensity of the reflected light from the surface was maximum. The three-dimensional shape of the surface of the carrier core material was obtained by joining these position data in the X, Y and Z directions. Note that an automatic photographing function was used to capture the three-dimensional shape of the carrier core material surface.
The measurement of each parameter was performed using the particle roughness inspection software (Mitani Shoji). First, as a pretreatment, the three-dimensional shape of the obtained carrier core material was subjected to particle recognition and shape selection. Particle recognition was performed by the following method. Of the three-dimensional shapes obtained by imaging, the maximum value in the Z direction is 100% and the minimum value is 0%, and the range from the maximum value to the minimum value is equally divided into 100. The region corresponding to 100 to 35% was extracted, and the outline of the independent region was recognized as a particle outline. Next, particles such as coarse, fine and aggregated particles were excluded by shape selection. By performing this shape selection, it is possible to reduce the error at the time of the porosity correction performed later. Specifically, particles corresponding to an area equivalent diameter of 28 μm or less, 38 μm or more, and a needle ratio of 1.15 or more were excluded. Here, the acicular ratio is a parameter calculated from the ratio of the maximum length of the particle / diagonal width, and the diagonal width is the shortest distance between two straight lines when the particle is sandwiched by two straight lines parallel to the maximum length. Represents
Next, a part used for analysis was extracted from the three-dimensional shape of the surface. First, a square having a side length of 15.0 μm is drawn around the center of gravity obtained from the particle outline recognized by the above method. Twenty-one parallel lines were drawn in the drawn square, and 21 roughness curves corresponding to the line segments were extracted.

キャリア芯材は略球形状であるため、取り出した粗さ曲線は、バックグラウンドとして一定の曲率を持っている。このため、バックグラウンドの補正として、最適な二次曲線をフィッティングし、粗さ曲線から差し引く補正を行った。この場合、ローパスフィルタを1.5μmの強度で適用し、カットオフ値λを80μmとした。   Since the carrier core material has a substantially spherical shape, the extracted roughness curve has a constant curvature as a background. Therefore, as a background correction, an optimal quadratic curve was fitted, and correction was performed to subtract from the roughness curve. In this case, a low-pass filter was applied at an intensity of 1.5 μm, and the cutoff value λ was 80 μm.

最大山谷深さRzは、粗さ曲線の中で最も高い山の高さと最も深い谷の深さの和として求めた。以上説明した最大高さRzの測定は、JIS B0601(2001年度版)に準拠して行われるものである。最大高さRzの算出には、各パラメータの平均値として、50粒子の平均値を用いることとした。   The maximum peak-valley depth Rz was obtained as the sum of the highest peak height and the deepest trough depth in the roughness curve. The measurement of the maximum height Rz described above is performed based on JIS B0601 (2001 version). In calculating the maximum height Rz, the average value of 50 particles was used as the average value of each parameter.

(磁気特性)
室温専用振動試料型磁力計(VSM)(東英工業社製「VSM−P7」)を用いて、外部磁場を0〜79.58×10A/m(10000エルステッド)の範囲で1サイクル連続的に印加して、磁場79.58×10A/m(1,000エルステッド)を印加した際の磁化σ1k、飽和磁化σを測定した。
(Magnetic properties)
An external magnetic field of 0 to 79.58 × 10 4 A / m (10000 Oersted) was continuously applied for one cycle using a vibration sample magnetometer (VSM) (“VSM-P7” manufactured by Toei Kogyo Co., Ltd.) dedicated to room temperature. Σ 1k and saturation magnetization s when a magnetic field of 79.58 × 10 3 A / m (1,000 Oe) was applied.

(トナースペント)
現像剤を36時間撹拌した後、現像剤からキャリアを抜き取り、走査型電子顕微鏡(JSM−6510LA型 日本電子株式会社製)で観察すると共に、表面にトナーが融着したキャリアの個数割合を測定した。
「◎」:トナーの融着したキャリア個数割合が0.5%未満であった。
「○」:トナーの融着したキャリア個数割合が0.5以上1.0%未満であった。
「△」:トナーの融着したキャリア個数割合が1.0以上5.0%未満であった。
「×」:トナーの融着したキャリア個数割合が5.0%以上であった。
(Toner spent)
After stirring the developer for 36 hours, the carrier was extracted from the developer, observed with a scanning electron microscope (JSM-6510LA type, manufactured by JEOL Ltd.), and the number ratio of the carrier with the toner fused to the surface was measured. .
“◎”: The ratio of the number of carriers fused with the toner was less than 0.5%.
“○”: The ratio of the number of carriers fused with the toner was 0.5 or more and less than 1.0%.
“Δ”: The ratio of the number of carriers fused with the toner was 1.0 or more and less than 5.0%.
“×”: The ratio of the number of carriers fused with the toner was 5.0% or more.

(エッジ欠陥の評価)
図6に示した構造の現像装置(現像ローラの周速度Vs:406mm/sec,感光体ドラムの周速度Vp:205mm/sec,感光体ドラム−現像ローラ間距離:0.3mm)に作製した二成分現像剤を投入し、初期及び10k印刷後にそれぞれ評価用画像(黒ベタ−ハーフトーン)を各3枚印刷し、黒ベタ部とハーフトーン部の境界における白抜けの度合を目視により下記基準で評価した。
「◎」:境界部での白抜けが確認できず、画像として良好なもの。
「○」:白抜けが確認されるが、許容範囲内(使用可能)のもの。
「△」:白抜けが確認され、使用できないもの。
「×」:明確に白抜けが確認されるもの。
(Evaluation of edge defects)
A developing device having the structure shown in FIG. 6 (a peripheral speed Vs of the developing roller: 406 mm / sec, a peripheral speed Vp of the photosensitive drum: 205 mm / sec, a distance between the photosensitive drum and the developing roller: 0.3 mm) was used. The component developer was charged, and three images each for evaluation (solid black-halftone) were printed at the initial stage and after 10k printing, and the degree of white spots at the boundary between the solid black portion and the halftone portion was visually observed according to the following criteria. evaluated.
“◎”: No white spots were observed at the boundary, and the image was good.
“○”: White spots are observed, but within the allowable range (usable).
"△": White spots were confirmed and cannot be used.
“×”: Clear white spots were confirmed.

(縦スジ)
レーザー顕微鏡を用いて10k印刷後の感光体ドラムの表面観察を行い、下記基準で評価した。
「◎」:縦スジが無いもの。
「○」:多少の縦スジはあるが問題ないレベルのもの。
「×」:縦スジが多く問題となるレベルであるもの。
(Vertical line)
The surface of the photoreceptor drum after 10k printing was observed using a laser microscope, and evaluated according to the following criteria.
"◎": No vertical stripes.
“○”: A level with some vertical stripes but no problem.
“×”: A vertical stripe is a problematic level.

実施例1〜3のキャリア芯材では、トナースペントが発生したキャリアの個数割合は1.0%未満と良好であり、また10k印刷後のエッジ欠陥及び縦スジも実使用上問題のないレベルのものであった。   In the carrier core materials of Examples 1 to 3, the number ratio of the carrier in which the toner spent was less than 1.0% was good, and the edge defect and the vertical streak after 10k printing were at a level at which there was no problem in practical use. Was something.

これに対して、比較例1のキャリア芯材は、個数粒度分布における粒径26μm以下の割合が15.0個数%と多く、10k印刷後の感光体ドラムに縦スジが多く生じていた。   On the other hand, in the carrier core material of Comparative Example 1, the number of particles having a particle size of 26 μm or less was as large as 15.0% by number in the number particle size distribution, and many vertical streaks were generated on the photosensitive drum after printing 10k.

また、内部空隙率が1.8%と低く、ADが2.19g/cmと高かった比較例2のキャリア芯材、及び、内部空隙率が0.2%と低く、ADが2.20g/cmと高く、個数粒度分布における粒径26μm以下の割合が23.6個数%と多かった比較例3のキャリア芯材では、トナースペントが発生したキャリアの個数割合が1.0以上と多かった。 Further, the carrier core material of Comparative Example 2 in which the internal porosity was as low as 1.8% and the AD was as high as 2.19 g / cm 3 , and the internal porosity was as low as 0.2% and the AD was 2.20 g / cm 3 and higher, the number particle size carrier core material of Comparative example 3 the following proportions particle size 26μm was often 23.6% by number in the distribution, the ratio of the number of carriers toner spent occurs is often 1.0 or more Was.

凹凸空隙率が2.9%、内部空隙率も0.7%と低く、また個数粒度分布における粒径26μm以下の割合が23.5個数%と多かった比較例4のキャリア芯材では、トナースペントが発生したキャリアの個数割合が5.0%以上と多く、また初期及び10k印刷後にエッジ欠陥が見られた。   The carrier core material of Comparative Example 4 in which the irregular porosity was as low as 2.9% and the internal porosity was as low as 0.7%, and the ratio of the particle size of 26 μm or less in the number particle size distribution was as large as 23.5%, was the toner. The proportion of the number of spent carriers was as high as 5.0% or more, and edge defects were observed at the initial stage and after 10k printing.

凹凸空隙率が2.8%と低く、また個数粒度分布における粒径26μm以下の割合が22.3個数%と多かった比較例5のキャリア芯材では、トナースペントが発生したキャリアの個数割合が1.0%以上と多く、また初期及び10k印刷後にエッジ欠陥が見られた。加えて、10k印刷後の感光体ドラムに縦スジが多く生じていた。   In the carrier core material of Comparative Example 5, in which the porosity of the concavo-convex was as low as 2.8% and the ratio of the particle size of 26 μm or less in the number particle size distribution was as large as 22.3% by number, the number ratio of the carrier in which toner spent occurred was reduced. As many as 1.0% or more, edge defects were observed at the initial stage and after 10k printing. In addition, many vertical stripes were formed on the photoconductor drum after printing 10k.

凹凸空隙率が4.0%と低く、また個数粒度分布における粒径26μm以下の割合が24.6個数%と多かった比較例6のキャリア芯材では、初期及び10k印刷後に実使用上問題のあるエッジ欠陥が見られた。また、10k印刷後の感光体ドラムに縦スジが多く生じていた。   The carrier core material of Comparative Example 6, which had a low asperity porosity of 4.0% and a large proportion of particle size of 26 μm or less in the number particle size distribution of 24.6 number%, had practical problems after the initial and 10k printing. Some edge defects were found. In addition, many vertical stripes were formed on the photosensitive drum after printing 10k.

3 現像ローラ
5 感光体ドラム
3 developing roller 5 photosensitive drum

Claims (9)

フェライト粒子から構成されるキャリア芯材であって、
下記式(1)から算出される凹凸空隙率が4.5%以上8.0%以下であり、
下記式(2)から算出される内部空隙率が2.0%以上20.0%以下であり、
体積平均粒子径が30μm以上40μm以下で、個数粒度分布における粒径26μm以下の割合が14個数%以下であり、
見掛け密度が2.02g/cm以上2.15g/cm以下である
ことを特徴とするキャリア芯材。
凹凸空隙率(%)=(包絡面積−粒子面積A)/包絡面積×100 ・・・・・(1)
内部空隙率(%)=(粒子面積A−粒子面積B)/粒子面積A×100 ・・・(2)
式中、包絡面積 :粒子断面の凸部の頂点を結んだ線(包絡線)で囲まれた面の面積
粒子面積A:内部空隙を含む粒子断面積
粒子面積B:内部空隙を含まない粒子断面積
A carrier core material composed of ferrite particles,
The concavo-convex porosity calculated from the following formula (1) is 4.5% or more and 8.0% or less,
The internal porosity calculated from the following equation (2) is 2.0% or more and 20.0% or less;
The volume average particle diameter is 30 μm or more and 40 μm or less, and the ratio of the particle diameter of 26 μm or less in the number particle size distribution is 14 number% or less,
A carrier core material having an apparent density of 2.02 g / cm 3 or more and 2.15 g / cm 3 or less.
Concavo-convex void ratio (%) = (envelope area−particle area A) / envelope area × 100 (1)
Internal porosity (%) = (particle area A−particle area B) / particle area A × 100 (2)
In the formula, the envelope area: the area of the surface surrounded by the line (envelope) connecting the vertices of the convex portions of the particle cross section. Particle area A: particle cross-sectional area including internal voids Particle area B: particle break including internal voids area
フェライト粒子の最大山谷深さRzが1.8μm以上3.0μm以下である請求項1記載のキャリア芯材。   2. The carrier core material according to claim 1, wherein the maximum peak-to-valley depth Rz of the ferrite particles is 1.8 μm or more and 3.0 μm or less. 細孔容積が0.01cm/g以上0.040cm/g以下である請求項1又は2記載のキャリア芯材。 A pore volume of 0.01 cm 3 / g or more 0.040 cm 3 / g or less is claim 1 or 2 the carrier core material according. 真密度が4.900g/cm以上5.000g/cm以下である請求項1〜3のいずれかに記載のキャリア芯材。 The carrier core material according to any one of claims 1 to 3, wherein a true density is 4.900 g / cm 3 or more and 5.000 g / cm 3 or less. 磁場79.58×10A/m(1000エルステッド)を印加した際の磁化σ1kが50Am/kg以上70Am/kg以下である請求項1〜4のいずれかに記載のキャリア芯材。 5. The carrier core material according to claim 1, wherein a magnetization σ 1k when a magnetic field of 79.58 × 10 3 A / m (1000 Oersted) is applied is 50 Am 2 / kg or more and 70 Am 2 / kg or less. BET比表面積が0.100m/g以上0.300m/g以下である請求項1〜5のいずれかに記載のキャリア芯材。 The carrier core material according to any of claims 1 to 5 BET specific surface area is less than 0.100M 2 / g or more 0.300m 2 / g. フェライト粒子の組成が、MnO:35mol%〜55mol%、Fe:45mol%〜65mol%、MgO:2mol%以下で、その一部をSrO:0.1mol%〜5.0mol%で置換したものである請求項1〜6のいずれかに記載のキャリア芯材。 The composition of the ferrite particles, MnO: 35mol% ~55mol%, Fe 2 O 3: 45mol% ~65mol%, MgO: below 2 mol%, a part of SrO: and replaced with 0.1mol% ~5.0mol% The carrier core material according to any one of claims 1 to 6, which is a carrier core material. 請求項1〜7のいずれかに記載のキャリア芯材の表面が樹脂で被覆されていることを特徴とする電子写真現像用キャリア。   A carrier for electrophotographic development, wherein the surface of the carrier core material according to any one of claims 1 to 7 is coated with a resin. 請求項8記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤。   An electrophotographic developer comprising the electrophotographic developing carrier according to claim 8 and a toner.
JP2018148126A 2018-08-07 2018-08-07 Carrier core material Active JP7099902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018148126A JP7099902B2 (en) 2018-08-07 2018-08-07 Carrier core material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018148126A JP7099902B2 (en) 2018-08-07 2018-08-07 Carrier core material

Publications (2)

Publication Number Publication Date
JP2020024274A true JP2020024274A (en) 2020-02-13
JP7099902B2 JP7099902B2 (en) 2022-07-12

Family

ID=69618595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018148126A Active JP7099902B2 (en) 2018-08-07 2018-08-07 Carrier core material

Country Status (1)

Country Link
JP (1) JP7099902B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7433090B2 (en) 2020-03-10 2024-02-19 Dowaエレクトロニクス株式会社 Ferrite carrier core material, carrier for electrophotographic development and developer for electrophotography using the same
JP7481159B2 (en) 2020-04-28 2024-05-10 Dowaエレクトロニクス株式会社 Ferrite carrier core material, and electrophotographic development carrier and electrophotographic developer using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194307A (en) * 2011-03-16 2012-10-11 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer, carrier for electrophotographic developer and electrophotographic developer
JP2014189482A (en) * 2013-03-28 2014-10-06 Dowa Electronics Materials Co Ltd Ferrite particle, carrier for electrophotographic image development and developer for electrophotographic image development using the ferrite particle and method of producing the ferrite particle
JP2017146495A (en) * 2016-02-18 2017-08-24 Dowaエレクトロニクス株式会社 Carrier core material
JP2017181904A (en) * 2016-03-31 2017-10-05 Dowaエレクトロニクス株式会社 Carrier core material and carrier for electrophotographic development and developer for electrophotography using the same
JP2018106015A (en) * 2016-12-27 2018-07-05 Dowaエレクトロニクス株式会社 Carrier core material and carrier for electrophotographic development, and electrophotographic developer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194307A (en) * 2011-03-16 2012-10-11 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer, carrier for electrophotographic developer and electrophotographic developer
JP2014189482A (en) * 2013-03-28 2014-10-06 Dowa Electronics Materials Co Ltd Ferrite particle, carrier for electrophotographic image development and developer for electrophotographic image development using the ferrite particle and method of producing the ferrite particle
JP2017146495A (en) * 2016-02-18 2017-08-24 Dowaエレクトロニクス株式会社 Carrier core material
JP2017181904A (en) * 2016-03-31 2017-10-05 Dowaエレクトロニクス株式会社 Carrier core material and carrier for electrophotographic development and developer for electrophotography using the same
JP2018106015A (en) * 2016-12-27 2018-07-05 Dowaエレクトロニクス株式会社 Carrier core material and carrier for electrophotographic development, and electrophotographic developer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7433090B2 (en) 2020-03-10 2024-02-19 Dowaエレクトロニクス株式会社 Ferrite carrier core material, carrier for electrophotographic development and developer for electrophotography using the same
JP7481159B2 (en) 2020-04-28 2024-05-10 Dowaエレクトロニクス株式会社 Ferrite carrier core material, and electrophotographic development carrier and electrophotographic developer using the same

Also Published As

Publication number Publication date
JP7099902B2 (en) 2022-07-12

Similar Documents

Publication Publication Date Title
JP6929086B2 (en) Carrier core material
JP5751688B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6450621B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP5726360B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6633898B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP6248142B2 (en) Carrier core
JP7099902B2 (en) Carrier core material
WO2013014969A1 (en) Ferrite particle production method
JP6650324B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP2018025702A (en) Carrier core material
JP2019061188A (en) Carrier core material, carrier for developing electrophotography using the same, and developer for electrophotography
JP7361617B2 (en) Ferrite carrier core material, carrier for electrophotographic development and developer for electrophotography using the same
JP7257732B2 (en) Carrier core material, electrophotographic development carrier and electrophotographic developer using the same
JP2018106015A (en) Carrier core material and carrier for electrophotographic development, and electrophotographic developer
JP7116530B2 (en) Carrier core material, electrophotographic development carrier and electrophotographic developer using the same
JP6924885B1 (en) Carrier core material
JP7433090B2 (en) Ferrite carrier core material, carrier for electrophotographic development and developer for electrophotography using the same
JP7393219B2 (en) Ferrite carrier core material, carrier for electrophotographic development and developer for electrophotography using the same
JP7486889B2 (en) Ferrite carrier core material, and electrophotographic development carrier and electrophotographic developer using the same
JP6916727B2 (en) Carrier core material
JP7075913B2 (en) Carrier core material
JP7116529B2 (en) Carrier core material, electrophotographic development carrier and electrophotographic developer using the same
JP6864054B2 (en) Carrier core material, carrier for electrophotographic development using this, and developer for electrophotographic development
JP2023062747A (en) Carrier core material, electrophotographic development carrier using the same, and electrophotographic developer
JP2022143658A (en) Carrier core material, carrier for electrophotographic development using the same, and developer for electrophotography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220630

R150 Certificate of patent or registration of utility model

Ref document number: 7099902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150