JP2020022440A - Method for separating composite type sugar chain - Google Patents

Method for separating composite type sugar chain Download PDF

Info

Publication number
JP2020022440A
JP2020022440A JP2019135853A JP2019135853A JP2020022440A JP 2020022440 A JP2020022440 A JP 2020022440A JP 2019135853 A JP2019135853 A JP 2019135853A JP 2019135853 A JP2019135853 A JP 2019135853A JP 2020022440 A JP2020022440 A JP 2020022440A
Authority
JP
Japan
Prior art keywords
sugar chain
endo
complex
amino acid
acid sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019135853A
Other languages
Japanese (ja)
Other versions
JP2020022440A5 (en
Inventor
晶 高島
Akira Takashima
晶 高島
政樹 黒河内
Masaki Kurokochi
政樹 黒河内
純子 天野
Junko Amano
純子 天野
昭生 松田
Akio Matsuda
昭生 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noguchi Institute
Original Assignee
Noguchi Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noguchi Institute filed Critical Noguchi Institute
Publication of JP2020022440A publication Critical patent/JP2020022440A/en
Publication of JP2020022440A5 publication Critical patent/JP2020022440A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

To provide a method for separating in a non-deformation condition, from a sugar protein, sugar peptide, or sugar chain, a composite type sugar chain comprising a two chain composite type sugar chain, a multi branched composite type sugar chain having three or more chains, or bisecting GlcNAc structure.SOLUTION: There is provided a method for separating a composite type sugar chain from sugar protein, sugar peptide or sugar chain, in which the composite type sugar chain is separated in a non-deformation condition using an endoglycosidase for recognizing difference of sugar on a non-reduction terminal side of the sugar chain. As the endoglycosidase, Endo-Tsp 1263 or Endo-Bno 1263 is used for separating the composite type sugar chain in which N-acetylglucosamine exists on the non-reduction terminal of the sugar chain, and Endo-Tsp 1006 or Endo-Bac 1008 is used for separating the composite type sugar chain in which α2,6 sialic acid or galactose exists on the non-reduction terminal of the sugar chain, thereby selectively separating the composite type sugar chain.SELECTED DRAWING: Figure 9

Description

本発明は、複合型糖鎖を非変性条件で糖タンパク質、糖ペプチド、または糖鎖から遊離する方法、および該糖鎖が切断された糖タンパク質、糖ペプチド、または糖鎖の製造方法に関する。N結合型糖鎖は、還元末端側にあるジアセチルキトビオース(GlcNAc−GlcNAc)ユニットにβ1−4結合したマンノース(Man)があり、それに対してα1−3およびα1−6の結合様式でマンノースが結合している、コア5糖を形成している。以下に説明する複合型糖鎖は、これら両マンノースにβ1−2の結合様式でN−アセチルグルコサミン(GlcNAc)が結合している。3本鎖以上の多分岐型の複合型糖鎖とは、上記両マンノースのいずれかあるいは両方に、β1−2の結合様式で結合したN−アセチルグルコサミンに加えて、β1−4あるいはβ1−6、もしくは両方の結合様式でN−アセチルグルコサミンが結合している糖鎖である。bisecting GlcNAcとは、ジアセチルキトビオースユニットにβ1−4結合したマンノースに対してβ1−4の結合様式で結合したN−アセチルグルコサミンのことであり、これを含む糖鎖がbisecting GlcNAc糖鎖である。非変性条件とは、界面活性剤、尿素、グアニジン塩酸塩などのタンパク質変性剤を添加することなく、タンパク質が本来とるべき立体構造を保持した状態にある条件のことである。   The present invention relates to a method for releasing a complex-type sugar chain from a glycoprotein, a glycopeptide, or a sugar chain under non-denaturing conditions, and a method for producing a glycoprotein, a glycopeptide, or a sugar chain in which the sugar chain has been cleaved. The N-linked sugar chain has a mannose (Man) linked to a diacetylchitobiose (GlcNAc-GlcNAc) unit on the reducing end side by β1-4 binding, and a mannose in a binding mode of α1-3 and α1-6. Are bound to form a core pentasaccharide. In the complex type sugar chain described below, N-acetylglucosamine (GlcNAc) is bound to both of these mannoses in a β1-2 binding manner. The multi-branched complex sugar chain of three or more chains refers to β1-4 or β1-6 in addition to N-acetylglucosamine bound to either or both of the above-mentioned mannoses in a β1-2 binding mode. Or a sugar chain to which N-acetylglucosamine is bound in both binding modes. The bisecting GlcNAc is N-acetylglucosamine bound to mannose bound to diacetylchitobiose unit by β1-4 in the binding mode of β1-4, and the sugar chain containing this is the bisecting GlcNAc sugar chain. . The non-denaturing condition is a condition in which a protein retains its original three-dimensional structure without adding a protein denaturant such as a surfactant, urea, and guanidine hydrochloride.

糖タンパク質の糖鎖には、セリン、スレオニン残基の側鎖部分の水酸基を介して糖鎖が結合したO結合型糖鎖とアスパラギン残基のアミド基を介して糖鎖が結合したN結合型糖鎖が存在する。N結合型糖鎖は、高マンノース型糖鎖(ジアセチルキトビオースにマンノースのオリゴマーが結合している糖鎖);複合型糖鎖(ジアセチルキトビオースにマンノースおよびN−アセチルグルコサミン、ガラクトース(Gal)、シアル酸(NeuAc)の少なくとも1つが結合した糖鎖);並びに混合(hybrid)型糖鎖(ジアセチルキトビオースに高マンノース型糖鎖と複合型糖鎖が混成している糖鎖)に大別される。構成糖、鎖長、結合様式等の違いによって様々な種類の糖鎖が存在し得る。   The sugar chains of glycoproteins include an O-linked sugar chain in which a sugar chain is bonded via a hydroxyl group in a side chain portion of a serine or threonine residue and an N-linked sugar chain in which a sugar chain is bonded via an amide group of an asparagine residue. There is a sugar chain. N-linked sugar chains include high mannose sugar chains (sugar chains in which a mannose oligomer is linked to diacetylchitobiose); complex sugar chains (mannose and N-acetylglucosamine, galactose (Galactose to diacetylchitobiose). ), Sugar chains to which at least one of sialic acid (NeuAc) is bonded); and hybrid sugar chains (sugar chains in which high mannose sugar chains and complex sugar chains are mixed with diacetylchitobiose). It is roughly divided. Various types of sugar chains may be present depending on differences in constituent sugars, chain lengths, bonding modes, and the like.

bisecting GlcNAc糖鎖はヒトやマウスではN−アセチルグルコサミン転移酵素の一種であるGnT−IIIという酵素によって形成される。また3本鎖以上の多分岐型の複合型糖鎖は、ヒトやマウスではN−アセチルグルコサミン転移酵素の一種であるGnT−IV、GnT−V、GnT−IX、ニワトリではGnT−VIといった酵素によって形成される(図1)。本明細書において、「多分岐型糖鎖」とは、3本鎖以上の複合型糖鎖並びにbisecting GlcNAcを有する2本鎖以上の複合型糖鎖を意味する。   The bisecting GlcNAc sugar chain is formed in humans and mice by an enzyme called GnT-III, which is a kind of N-acetylglucosamine transferase. In addition, three or more multi-branched complex-type sugar chains are formed by enzymes such as GnT-IV, GnT-V, GnT-IX, which are a kind of N-acetylglucosamine transferase in humans and mice, and GnT-VI in chickens. Formed (FIG. 1). As used herein, the term “multi-branched sugar chain” means a complex sugar chain having three or more chains and a complex sugar chain having two or more bisecting GlcNAc.

N結合型糖鎖にbisecting GlcNAcが導入されると、αマンノシダーゼIIやN−アセチルグルコサミン転移酵素であるGnT−II、GnT−IV、GnT−Vといった酵素の反応が阻害され、複合型糖鎖の形成阻害や側鎖の伸長低下が起こる(非特許文献1)。がん細胞においては、GnT−Vによって細胞表面に露出したN結合型糖鎖にβ1,6結合で付加したGlcNAcが導入されると転移能が増大するが、GnT−IIIの過剰発現によってbisecting GlcNAcを導入し、GnT−VによるGlcNAc転移を阻害すると、がん細胞の転移が抑制されることが報告されている(非特許文献2)。また、アルツハイマー病の原因物質の一つであるアミロイドβの産生に関わるBACE1プロテアーゼがbisecting GlcNAc糖鎖の修飾をうけており、この糖鎖修飾を欠損させるとBACE1プロテアーゼの細胞内局在が変化して、アミロイドβの産生が抑制されるとの報告もある(非特許文献3)。   When bisecting GlcNAc is introduced into the N-linked sugar chain, the reaction of enzymes such as α-mannosidase II and N-acetylglucosamine transferase such as GnT-II, GnT-IV and GnT-V is inhibited, and Inhibition of formation and reduction of side chain elongation occur (Non-Patent Document 1). In cancer cells, when GlcNAc added to the N-linked sugar chain exposed on the cell surface by GnT-V is introduced by β1,6 bond, the metastatic ability increases. However, the overexpression of GnT-III causes the detecting GlcNAc to be detected. It has been reported that the inhibition of GlcNAc transfer by GnT-V suppresses the transfer of cancer cells (Non-patent Document 2). In addition, BACE1 protease involved in the production of amyloid β, one of the causative substances of Alzheimer's disease, has undergone modification of the bisecting GlcNAc sugar chain, and when this sugar chain modification is deleted, the intracellular localization of BACE1 protease changes. Therefore, there is a report that production of amyloid β is suppressed (Non-Patent Document 3).

N結合型糖鎖の構造解析や、糖タンパク質から糖鎖試料を調製するためには、糖タンパク質から糖鎖を遊離させる必要がある。糖タンパク質から糖鎖を遊離させる化学的な方法としては、糖鎖のアルデヒド基と特異的に結合するヒドラジド基を有する物質を用いる方法があるが、この方法ではタンパク質部分が分解されてしまい、又遊離した糖鎖の構造が部分的に変化する脱アセチル化並びにエピマー化が起こってしまう(特許文献1)。   In order to analyze the structure of an N-linked sugar chain and prepare a sugar chain sample from a glycoprotein, it is necessary to release the sugar chain from the glycoprotein. As a chemical method for releasing a sugar chain from a glycoprotein, there is a method using a substance having a hydrazide group that specifically binds to an aldehyde group of the sugar chain. However, in this method, a protein portion is decomposed, and Deacetylation and epimerization in which the structure of the released sugar chain is partially changed occur (Patent Document 1).

一方、Peptide−N−Glycosidase F(PNGase F)やEndo−β−N−Acetylglucosaminidase(ENGase)といった酵素を用いて糖タンパク質から糖鎖を遊離させる方法もある。PNGase FはN結合型糖鎖(高マンノース型糖鎖、混合型糖鎖、複合型糖鎖)とタンパク質との結合部位(GlcNAc−Asn結合)を、糖鎖の構造にかかわらず特異的に切断する。この際、糖鎖が結合していたAsn残基はAspに変換されるため、タンパク質のアミノ酸配列が変化し、タンパク質機能に影響を及ぼす可能性がある。またPNGase Fによる糖鎖切断では、糖鎖を効率よく除去するためにタンパク質を変性させることがあるため、糖鎖除去後のタンパク質の機能解析には向かない場合がある。   On the other hand, there is also a method of releasing a sugar chain from a glycoprotein using an enzyme such as Peptide-N-Glycosidase F (PNGase F) or Endo-β-N-Acetylglucosaminodase (ENGase). PNGase F specifically cleaves a binding site (GlcNAc-Asn bond) between an N-linked sugar chain (high mannose type sugar chain, mixed type sugar chain, complex type sugar chain) and a protein regardless of the structure of the sugar chain. I do. At this time, the Asn residue to which the sugar chain has been bound is converted into Asp, so that the amino acid sequence of the protein may change, which may affect the function of the protein. In addition, in the case of sugar chain cleavage by PNGase F, the protein may be denatured in order to efficiently remove the sugar chain, and thus may not be suitable for analyzing the function of the protein after sugar chain removal.

ENGaseはN結合型糖鎖の還元末端側にあるジアセチルキトビオースユニット間を特異的に切断するが、この切断反応は各ENGaseの基質特異性に依存する。例えば、Streptomyces plicatus由来のEndoHは、高マンノース型糖鎖と一部の混合型糖鎖を切断できるENGaseであるが、複合型糖鎖は切断できない。切断反応後は、糖鎖が結合していたAsn残基に1残基のGlcNAcが残留している為、PNGase Fによる糖鎖切断反応時にみられるAsn残基のAspへの変換は起こらず、タンパク質のアミノ酸配列は変化しない。またENGaseによる糖鎖切断では、タンパク質を変性させなくても糖鎖を効率よく除去できる場合が多く、糖鎖除去後のタンパク質の機能解析が可能である。   ENGase specifically cleaves between diacetylchitobiose units on the reducing end side of the N-linked sugar chain, and this cleavage reaction depends on the substrate specificity of each ENGase. For example, EndoH derived from Streptomyces plicatus is an ENGase that can cleave high-mannose-type sugar chains and some mixed-type sugar chains, but cannot cleave complex-type sugar chains. After the cleavage reaction, GlcNAc of one residue remains at the Asn residue to which the sugar chain was bound, so that the conversion of the Asn residue to Asp observed during the sugar chain cleavage reaction by PNGase F did not occur. The amino acid sequence of the protein does not change. In addition, in the sugar chain cleavage by ENGase, sugar chains can be efficiently removed in many cases without denaturing the protein, and the functional analysis of the protein after sugar chain removal is possible.

近年、糖タンパク質に結合している不均一な糖鎖を均一構造の糖鎖に置換する糖鎖リモデリング法が開発されている(非特許文献4,5、特許文献2)。この方法では、まずENGaseで糖タンパク質の糖鎖を切断し、その結果生じるGlcNAc残基(コアフコースが結合している場合もある)のみを持つ、糖鎖構造的にバリエーションのない均一な糖タンパク質をアクセプター分子とする。つぎに、ENGaseの糖鎖切断活性を抑制し、かつ糖転移活性を発揮させたENGase変異体(グライコシンターゼ)を用いて、化学合成等により調製した均一な糖鎖をアクセプター分子上のGlcNAc残基に転移させる。すると、均一な糖鎖構造をもつ糖タンパク質が調製できる。   In recent years, sugar chain remodeling methods for replacing heterogeneous sugar chains bound to glycoproteins with sugar chains having a uniform structure have been developed (Non-Patent Documents 4, 5 and Patent Document 2). In this method, first, a sugar chain of a glycoprotein is cleaved with ENGase, and a uniform glycoprotein having only a GlcNAc residue (which may be bound with core fucose) and having no variation in sugar chain structure is obtained. Acceptor molecule. Next, using an ENGase mutant (glycosynthase) that suppresses the sugar chain cleavage activity of ENGase and exhibits glycosyltransferase activity, a uniform sugar chain prepared by chemical synthesis or the like is used to form a GlcNAc residue on the acceptor molecule. Transfer to Then, a glycoprotein having a uniform sugar chain structure can be prepared.

前述したように、bisecting GlcNAc糖鎖には様々な役割があり、該糖鎖を含む各種の糖タンパク質が存在する。また3本鎖以上の多分岐型糖鎖を含む糖タンパク質も各種存在するが、多分岐型糖鎖にはその占有領域が大きいことや多価結合性といった特徴があり、それらが糖タンパク質の機能、構造、安定性、および糖鎖を介した相互作用などに影響を与える可能性がある。糖タンパク質からこれらの糖鎖を遊離させる場合、PNGase Fを用いることができるが、多くの場合、糖タンパク質を変性させる必要がある。また、PNGase Fを用いて糖鎖を除去したタンパク質は、糖鎖付加部位であるAsn残基(糖鎖切断後はAspに変換される)上にGlcNAcが残留しないため、上記糖鎖リモデリング法の糖タンパク質のアクセプター分子として利用できない。   As described above, the bisecting GlcNAc sugar chain has various roles, and various glycoproteins containing the sugar chain exist. In addition, there are various types of glycoproteins containing three or more multi-branched sugar chains, and the multi-branched sugar chains have characteristics such as a large occupied region and multivalent binding, and these are functions of the glycoprotein. , Structure, stability, and interaction via sugar chains. When releasing these sugar chains from the glycoprotein, PNGase F can be used, but in many cases, it is necessary to denature the glycoprotein. Further, in the protein from which the sugar chain has been removed using PNGase F, GlcNAc does not remain on the Asn residue which is a sugar chain addition site (which is converted into Asp after sugar chain cleavage). Not available as an acceptor molecule for Glycoproteins.

一方、既存のENGaseの中には、様々な糖タンパク質からbisecting GlcNAc糖鎖を効率よく遊離できる酵素が見出されていない。また既存のENGaseの中には、糖タンパク質から一部の多分岐型糖鎖を遊離する活性を有する酵素が存在しているが、その基質特異性によって遊離できる糖鎖の構造が限定されていた。そのため従来技術では、bisecting GlcNAc糖鎖や多分岐型糖鎖を含む様々な糖タンパク質から、タンパク質を変性させることなく該糖鎖を効率よく遊離させることや、上記糖鎖リモデリング法に用いるための糖タンパク質のアクセプター分子を調製することは困難であった。   On the other hand, in the existing ENGase, an enzyme capable of efficiently releasing a bisecting GlcNAc sugar chain from various glycoproteins has not been found. In addition, in the existing ENGase, an enzyme having an activity of releasing some hyperbranched sugar chains from a glycoprotein is present, but the structure of the sugar chain that can be released is limited by its substrate specificity. . Therefore, in the prior art, from various glycoproteins including bisecting GlcNAc sugar chains and hyperbranched sugar chains, it is possible to efficiently release the sugar chains without denaturing the protein, and to use the sugar chain remodeling method. It has been difficult to prepare acceptor molecules for glycoproteins.

特開2009−142238号公報JP 2009-142238 A 国際特許公開公報WO2013/120066号International Patent Publication No. WO2013 / 120066

Ellen W. Easton et al., J. Biol. Chem. 266, 21674−21680 (1991)Ellen W. Easton et al. , J. et al. Biol. Chem. 266, 21742-21680 (1991) Masafumi Yoshimura et al., Proc.Natl. Acad. Sci.USA 92, 8754−8758 (1995)Masafumi Yoshimura et al. , Proc. Natl. Acad. Sci. USA 92, 8754-8758 (1995). Yasuhiko Kizuka et al., EMBO Molecular Medicine 7, 175−189 (2015)Yasushiko Kizuka et al. , EMBO Molecular Medicine 7, 175-189 (2015) Wei Huang et al., J.Am. Chem. Soc. 134, 12308−12318 (2012)Wei Huang et al. , J. et al. Am. Chem. Soc. 134, 12308-12318 (2012) Masaki Kurogochi et al., PLoS One 10, e0132848 (2015)Masaki Kurogochi et al. , PLoS One 10, e0132848 (2015) Daotian Fu et al., Carbohydrate Res. 261, 173−186 (1994)Daotian Fu et al. , Carbohydrate Res. 261, 173-186 (1994) Michael J. Treuheit et al., Biochem. J. 283, 105−112 (1992)Michael J. et al. Treuheit et al. , Biochem. J. 283, 105-112 (1992) Shinji Hashimoto et al., Cancer 101, 2825−2836 (2004)Shinji Hashimoto et al. , Cancer 101, 2825-2836 (2004). Krista Y. White et al., J. Proteome Res. 8, 620−630 (2009)Krista Y. White et al. , J. et al. Proteome Res. 8, 620-630 (2009) Katsuko Yamashita et al., J. Biol. Chem. 258, 3099−3106 (1983)Katsuko Yamashita et al. , J. et al. Biol. Chem. 258, 3099-3106 (1983) Midori Umekawa et al., J. Biol. Chem. 285, 511−521 (2010)Midori Umekawa et al. , J. et al. Biol. Chem. 285, 511-521 (2010)

本発明は上記背景技術に鑑みてなされたものであり、その課題は、前記問題点を解決し、2本鎖複合型糖鎖、あるいは3本鎖以上の多分岐複合型糖鎖、もしくはbisecting GlcNAc構造を含む複合型糖鎖を、非変性条件で、該糖鎖を含む糖タンパク質、糖ペプチド、または糖鎖からエンドグリコシダーゼを用いて遊離する方法を提供することである。   The present invention has been made in view of the above background art, and its object is to solve the above-mentioned problems and to provide a complex double-chain sugar chain, or a multi-branched complex sugar chain of three or more chains, or a bisecting GlcNAc. An object of the present invention is to provide a method for releasing a complex type sugar chain containing a structure from a glycoprotein, glycopeptide or sugar chain containing the sugar chain using an endoglycosidase under non-denaturing conditions.

本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、驚くべきことに、Tannerella属細菌由来のエンド−β−N−アセチルグルコサミニダーゼであるEndo−Tsp1006およびMuribaculum属細菌由来のエンド−β−N−アセチルグルコサミニダーゼであるEndo−Bac1008が、糖鎖の非還元末端にα2,6シアル酸あるいはガラクトースが存在する2本鎖複合型糖鎖、あるいは3本鎖以上の多分岐複合型糖鎖、もしくはbisecting GlcNAc構造を含む複合型糖鎖を、非変性条件で、糖タンパク質から遊離する活性を有することを見出した。さらに、Tannerella属細菌由来のエンド−β−N−アセチルグルコサミニダーゼであるEndo−Tsp1263およびBacteroides属細菌由来のエンド−β−N−アセチルグルコサミニダーゼであるEndo−Bno1263が、糖鎖の非還元末端にN−アセチルグルコサミンが存在する2本鎖複合型糖鎖、あるいは3本鎖以上の多分岐複合型糖鎖、もしくはbisecting GlcNAc構造を含む複合型糖鎖を、非変性条件で、糖タンパク質から遊離する活性を有することを見出し、本発明を完成するに至った。   The present inventors have conducted intensive studies to solve the above problems, and as a result, surprisingly, endo-β-N-acetylglucosaminidase Endo-Tsp1006 derived from Tannerella bacterium and endobacterium derived from Muribaculum bacterium were surprisingly obtained. Endo-Bac1008 which is -β-N-acetylglucosaminidase is a double-stranded complex sugar chain having α2,6 sialic acid or galactose at the non-reducing end of the sugar chain, or a multi-branched complex sugar having three or more chains It has been found that a complex type sugar chain containing a chain or a bisecting GlcNAc structure has an activity to be released from a glycoprotein under non-denaturing conditions. Furthermore, Endo-Tsp1263 which is an endo-β-N-acetylglucosaminidase derived from a bacterium belonging to the genus Tannerella and Endo-Bno1263 which is an endo-β-N-acetylglucosaminidase derived from a bacterium belonging to the genus Bacteroides have N- at the non-reducing end of the sugar chain. The activity of releasing a complex double-chain sugar chain in which acetylglucosamine is present, a multi-chain complex sugar chain having three or more chains, or a complex sugar chain containing a bisecting GlcNAc structure from a glycoprotein under non-denaturing conditions. And found that the present invention was completed.

本発明において、Tannerella属細菌由来のエンド−β−N−アセチルグルコサミニダーゼであるEndo−Tsp1006とは、以下の(a)、(b)または(c)の組換えタンパク質である。
(a)配列表配列番号3に記載のアミノ酸配列からなるタンパク質。
(b)配列表配列番号3に記載のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつEndo−Tsp1006酵素活性を有するタンパク質。
(c)配列表配列番号3に記載のアミノ酸配列と相同性が90%以上のアミノ酸配列からなり、かつEndo−Tsp1006酵素活性を有するタンパク質。
In the present invention, Endo-Tsp1006, which is an endo-β-N-acetylglucosaminidase derived from a bacterium of the genus Tannerella, is a recombinant protein of the following (a), (b) or (c).
(A) a protein consisting of the amino acid sequence of SEQ ID NO: 3 in the Sequence Listing;
(B) a protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 3 in the Sequence Listing, and having Endo-Tsp1006 enzyme activity;
(C) A protein comprising an amino acid sequence having 90% or more homology with the amino acid sequence described in SEQ ID NO: 3 in the Sequence Listing, and having an Endo-Tsp1006 enzyme activity.

本発明において、Muribaculum属細菌由来のエンド−β−N−アセチルグルコサミニダーゼであるEndo−Bac1008とは、以下の(a)、(b)または(c)の組換えタンパク質である。
(a)配列表配列番号7に記載のアミノ酸配列からなるタンパク質。
(b)配列表配列番号7に記載のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつEndo−Bac1008酵素活性を有するタンパク質。
(c)配列表配列番号7に記載のアミノ酸配列と相同性が90%以上のアミノ酸配列からなり、かつEndo−Bac1008酵素活性を有するタンパク質。
In the present invention, Endo-Bac1008, which is endo-β-N-acetylglucosaminidase derived from a bacterium of the genus Muribaculum, is a recombinant protein of the following (a), (b) or (c).
(A) a protein consisting of the amino acid sequence set forth in SEQ ID NO: 7 in the sequence listing,
(B) A protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence described in SEQ ID NO: 7 in the Sequence Listing, and having Endo-Bac1008 enzyme activity.
(C) a protein consisting of an amino acid sequence having 90% or more homology with the amino acid sequence described in SEQ ID NO: 7 in the Sequence Listing, and having an Endo-Bac1008 enzyme activity;

本発明において、Tannerella属細菌由来のエンド−β−N−アセチルグルコサミニダーゼであるEndo−Tsp1263とは、以下の(a)、(b)または(c)の組換えタンパク質である。
(a)配列表配列番号1に記載のアミノ酸配列からなるタンパク質。
(b)配列表配列番号1に記載のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつEndo−Tsp1263酵素活性を有するタンパク質。
(c)配列表配列番号1に記載のアミノ酸配列と相同性が90%以上のアミノ酸配列からなり、かつEndo−Tsp1263酵素活性を有するタンパク質。
In the present invention, Endo-Tsp1263, which is an endo-β-N-acetylglucosaminidase derived from a bacterium of the genus Tannerella, is a recombinant protein of the following (a), (b) or (c).
(A) a protein consisting of the amino acid sequence of SEQ ID NO: 1 in the Sequence Listing;
(B) a protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence described in SEQ ID NO: 1 in the Sequence Listing, and having Endo-Tsp1263 enzyme activity;
(C) a protein consisting of an amino acid sequence having 90% or more homology with the amino acid sequence described in SEQ ID NO: 1 in the Sequence Listing, and having an Endo-Tsp1263 enzyme activity;

本発明において、Bacteroides属細菌由来のエンド−β−N−アセチルグルコサミニダーゼであるEndo−Bno1263とは、以下の(a)、(b)または(c)の組換えタンパク質である。
(a)配列表配列番号9に記載のアミノ酸配列からなるタンパク質。
(b)配列表配列番号9に記載のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつEndo−Bno1263酵素活性を有するタンパク質。
(c)配列表配列番号9に記載のアミノ酸配列と相同性が90%以上のアミノ酸配列からなり、かつEndo−Bno1263酵素活性を有するタンパク質。
In the present invention, Endo-Bno1263, which is an endo-β-N-acetylglucosaminidase derived from Bacteroides bacteria, is a recombinant protein of the following (a), (b) or (c).
(A) a protein comprising the amino acid sequence of SEQ ID NO: 9;
(B) a protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence described in SEQ ID NO: 9 in the Sequence Listing, and having Endo-Bno1263 enzyme activity;
(C) a protein consisting of an amino acid sequence having 90% or more homology with the amino acid sequence described in SEQ ID NO: 9 in the Sequence Listing, and having Endo-Bno1263 enzyme activity;

なお、糖鎖の非還元末端にα2,6シアル酸、ガラクトース、あるいはN−アセチルグルコサミンが混在する複合型糖鎖も、各糖鎖成分の数、結合位置、結合様式などによって、Endo−Tsp1006、Endo−Bac1008、Endo−Tsp1263あるいはEndo−Bno1263のいずれか、またはすべての酵素、あるいはこれらの酵素を組み合わせて用いることにより、切断されると考えられる。   The complex type sugar chain in which α2,6 sialic acid, galactose, or N-acetylglucosamine is mixed at the non-reducing end of the sugar chain also has an Endo-Tsp1006, depending on the number of each sugar chain component, the bonding position, the bonding mode and the like. Endo-Bac1008, Endo-Tsp1263, or Endo-Bno1263, or all of these enzymes, or by using these enzymes in combination, is considered to be cleaved.

すなわち本発明は、2本鎖複合型糖鎖、あるいは3本鎖以上の多分岐複合型糖鎖、もしくはbisecting GlcNAc構造を含む複合型糖鎖を、非変性条件で、該糖鎖を含む糖タンパク質、糖ペプチド、または糖鎖から、非還元末端側の糖の相違を認識するエンドグリコシダーゼであるEndo−Tsp1006、Endo−Bac1008、Endo−Tsp1263あるいはEndo−Bno1263のいずれか、あるいはこれらの酵素を組み合わせて用いることにより遊離させる方法を提供するものである。   That is, the present invention relates to a glycoprotein containing a double-stranded complex-type sugar chain, or a complex sugar chain having three or more multi-branched complex-type sugar chains or a bisecting GlcNAc structure under non-denaturing conditions. Endo-Tsp1006, Endo-Bac1008, Endo-Tsp1263 or Endo-Bsp1263, which are endoglycosidases that recognize the difference in the sugar at the non-reducing terminal side from a glycopeptide or a sugar chain, or a combination of these enzymes The present invention provides a method of releasing by use.

また、本発明は、高マンノース型糖鎖を切断する活性を有するTannerella属細菌由来のエンド−β−N−アセチルグルコサミニダーゼであるEndo−Tsp1457あるいはEndo−Tsp1603、およびEndo−Tsp1006、Endo−Bac1008、Endo−Tsp1263などのエンドグリコシダーゼを組み合わせて用いることにより、糖タンパク質、糖ペプチド、または糖鎖から、非変性条件で特定構造の糖鎖を遊離する方法、およびそのようにして特定構造の糖鎖が切断された糖タンパク質、糖ペプチド、または糖鎖の製造方法、あるいは特定構造の糖鎖のみが残存した糖タンパク質、糖ペプチド、または糖鎖の製造方法を提供するものである。   The present invention also relates to Endo-Tsp1457 or Endo-Tsp1603, which is an endo-β-N-acetylglucosaminidase derived from a bacterium belonging to the genus Tannerella having an activity of cleaving a high mannose-type sugar chain, Endo-Tsp1003, Endo-Tsp1006, Endo-Bac1008, and Endo. A method for releasing a sugar chain having a specific structure from a glycoprotein, a glycopeptide, or a sugar chain under non-denaturing conditions by using a combination of an endoglycosidase such as Tsp1263, and the cleavage of a sugar chain having a specific structure in such a manner. It is intended to provide a method for producing a glycoprotein, a glycopeptide or a sugar chain, or a method for producing a glycoprotein, a glycopeptide or a sugar chain in which only a sugar chain having a specific structure remains.

本発明によれば、前記問題点を解決し、試料を変性させることなく酵素処理という簡単なステップにより、効率的かつ低コストで、糖タンパク質、糖ペプチド、または糖鎖から、特定構造の糖鎖を遊離させることができる。また、このようにして遊離された糖鎖は、糖鎖構造解析の試料や、特定構造を有する糖鎖の原料として利用できる。さらに糖鎖が切断された糖タンパク質、糖ペプチドは、ENGaseおよびグライコシンターゼを用いた糖鎖リモデリング法のアクセプター基質として利用することができる。   According to the present invention, the above-mentioned problems are solved, and a simple step of enzymatic treatment without denaturing a sample enables efficient and low-cost production of a sugar chain having a specific structure from a glycoprotein, glycopeptide, or sugar chain. Can be released. The sugar chains thus released can be used as a sample for sugar chain structure analysis or as a raw material for a sugar chain having a specific structure. Furthermore, glycoproteins and glycopeptides whose sugar chains have been cleaved can be used as acceptor substrates for sugar chain remodeling methods using ENGase and glycosynthase.

代表的なbisecting GlcNAc糖鎖(G0B糖鎖)を含む多分岐型糖鎖の各種N−アセチルグルコサミン転移酵素による生合成経路を示す。1 shows biosynthetic pathways of various branched N-acetylglucosamine transferases of a hyperbranched sugar chain including a representative bisecting GlcNAc sugar chain (GOB sugar chain). Endo−Tsp1603、Endo−Tsp1407、Endo−Tsp1263、Endo−Tsp1006、Endo−Bac1008およびEndo−Bno1263の各精製酵素のSDS−PAGEによる泳動パターンを示す。The migration pattern by SDS-PAGE of each purified enzyme of Endo-Tsp1603, Endo-Tsp1407, Endo-Tsp1263, Endo-Tsp1006, Endo-Bac1008 and Endo-Bno1263 is shown. 精製酵素を用いて各種糖タンパク質を基質とした糖鎖切断反応を実施し、その反応産物をSDS−PAGEに供した結果を示す。糖鎖が切断されたタンパク質は「Deglycosylated」を冠して示している。The results of performing a sugar chain cleavage reaction using various glycoproteins as substrates using purified enzymes and subjecting the reaction products to SDS-PAGE are shown. The protein in which the sugar chain has been cleaved is indicated by "Deglycosylated". 精製酵素を用いてovomucoidまたはribonuclease B(RNase B)を基質とした糖鎖切断反応を実施し、その反応産物をSDS−PAGEに供した結果を示す。糖鎖が切断されたタンパク質は「Deglycosylated」を冠して示している。The result of performing a sugar chain cleavage reaction using ovomucoid or ribonuclease B (RNase B) as a substrate using a purified enzyme and subjecting the reaction product to SDS-PAGE is shown. The protein in which the sugar chain has been cleaved is indicated by "Deglycosylated". Endo−Tsp1457で切断したRNase Bの糖鎖を質量分析解析した結果を示した図である。It is the figure which showed the result of the mass spectrometry analysis of the sugar chain of RNase B cleaved by Endo-Tsp1457. Endo−Tsp1263で切断したovomucoidの糖鎖を質量分析解析した結果を示した図である。It is the figure which showed the result of the mass spectrometry analysis of the sugar chain of ovomucoid cleaved by Endo-Tsp1263. Endo−Tsp1006で切断したα1−acid glycoprotein(α1−AGP)の糖鎖を質量分析解析した結果を示した図である。It is the figure which showed the result of the mass spectrometry analysis of the sugar chain of (alpha) 1-acid glycoprotein ((alpha) 1-AGP) cleaved by Endo-Tsp1006. Endo−Bac1008で切断したα1−AGPの糖鎖を質量分析解析した結果を示した図である。It is the figure which showed the result of the mass spectrometry analysis of the sugar chain of (alpha) 1-AGP cleaved by Endo-Bac1008. Endo−Tsp1263、Endo−Tsp1006およびEndo−Bac1008の基質特異性を調べるために用いた各種糖ペプチドの調製法を示す。A method for preparing various glycopeptides used for examining the substrate specificity of Endo-Tsp1263, Endo-Tsp1006 and Endo-Bac1008 will be described. Endo−Tsp1263、Endo−Tsp1006およびEndo−Bac1008の各種糖ペプチドに対する切断活性をまとめた図である。It is a figure which summarized Endo-Tsp1263, Endo-Tsp1006 and Endo-Bac1008 cleavage activity with respect to various glycopeptides. 基質としてRNase B、Prostate specific antigen(PSA)、ovomucoidおよびα1−AGPを用いて、各種ENGaseによる糖鎖切断反応を実施し、その反応産物をSDS−PAGEに供した結果を示す。糖鎖が切断されたタンパク質は「Deglycosylated」を冠して示している。酵素溶液由来のバンドにはアスタリスク(*)を付している。Using RNase B, Prostate specific antigen (PSA), ovomucoid, and α1-AGP as substrates, sugar chain cleavage reactions with various ENGases were performed, and the results of subjecting the reaction products to SDS-PAGE are shown. The protein in which the sugar chain has been cleaved is indicated by "Deglycosylated". An asterisk (*) is attached to the band derived from the enzyme solution. 基質としてovomucoidおよびgalactosylated ovomucoidを用いて、Endo−Tsp1263、Endo−Tsp1006およびEndo−Bac1008の各酵素による糖鎖切断反応を実施し、その反応産物をSDS−PAGEに供した結果を示す。糖鎖が切断されたタンパク質は「Deglycosylated」を冠して示している。Using ovomucoid and galactosylated ovomucoid as substrates, a sugar chain cleavage reaction was carried out by each enzyme of Endo-Tsp1263, Endo-Tsp1006 and Endo-Bac1008, and the result of subjecting the reaction product to SDS-PAGE is shown. The protein in which the sugar chain has been cleaved is indicated by "Deglycosylated". RNase B、α1−AGP、およびovomucoidの混合溶液に対し、Endo−Tsp1407、Endo−Tsp1263、Endo−Tsp1006およびEndo−Bac1008の各酵素を単独あるいは組み合わせて作用させて糖鎖切断反応を実施し、その反応産物をSDS−PAGEに供した結果を示す。糖鎖が切断されたタンパク質は「Deglycosylated」を冠して示している。A mixed solution of RNase B, α1-AGP, and ovomucoid was reacted with each of Endo-Tsp1407, Endo-Tsp1263, Endo-Tsp1006 and Endo-Bac1008 enzymes alone or in combination to carry out a sugar chain cleavage reaction. The result of subjecting the reaction product to SDS-PAGE is shown. The protein in which the sugar chain has been cleaved is indicated by "Deglycosylated". 野生型Endo−Tsp1006およびEndo−Tsp1006 N220Q変異体の糖転移活性を測定した結果をまとめた図である。It is the figure which put together the result of having measured the transglycosylation activity of the wild-type Endo-Tsp1006 and the Endo-Tsp1006 N220Q mutant.

以下、本発明の実施態様および実施方法について詳細に説明するが、本発明は、以下の具体的形態に限定されるものでなく、技術的思想の範囲内で任意に変形することができる。   Hereinafter, embodiments and an implementation method of the present invention will be described in detail. However, the present invention is not limited to the following specific embodiments, and can be arbitrarily modified within the scope of the technical idea.

図1に代表的なbisecting GlcNAc糖鎖(G0B糖鎖)を含む多分岐型糖鎖を示すが、本明細書中における「bisecting GlcNAc糖鎖」とは、G0B型糖鎖にさらにガラクトースやシアル酸による修飾が施された糖鎖を含み、また本明細書中における「多分岐型糖鎖」とは、図1に示す各種糖鎖にさらにN−アセチルグルコサミン、N−アセチルガラクトサミン(GalNAc)、ガラクトース、フコース(Fuc)、およびシアル酸などによる修飾が施された糖鎖を含む。これらの糖鎖については、特にことわりのない限り、全体の糖鎖構造に関して、構成糖、鎖長および結合様式の違いは問わない。   FIG. 1 shows a multi-branched sugar chain containing a representative bisecting GlcNAc sugar chain (G0B sugar chain). In the present specification, the term “bisecting GlcNAc sugar chain” refers to a G0B-type sugar chain further containing galactose or sialic acid. In the present specification, the term “multi-branched sugar chain” refers to various sugar chains shown in FIG. 1 and further includes N-acetylglucosamine, N-acetylgalactosamine (GalNAc), and galactose. , Fucose, and sugar chains modified with sialic acid and the like. Regarding these sugar chains, differences in constituent sugars, chain lengths, and bonding modes are not limited with respect to the entire sugar chain structure unless otherwise specified.

本発明の各種多分岐型糖鎖を含む複合型糖鎖を非変性条件で遊離する方法は、該糖鎖を含む糖タンパク質、糖ペプチド、または糖鎖から、糖鎖の非還元末端側の糖の相違を認識するエンドグリコシダーゼを用いて該糖鎖を遊離させることを特徴とする。本発明では、エンドグリコシダーゼのうち、酵素番号EC3.2.1.96に分類されるEndo−β−N−Acetylglucosaminidase(ENGase)を用いる。好ましくは、本発明で用いるENGaseは微生物由来の酵素である。微生物は、特に限定されないが、Tannerella属、Prevotella属、Bacteroides属、Muribaculum属、Coprobacter属、Alloprevotella属、Porphyromonadaceae属、Barnesiella属、Paludibacter属、Muribaculum属、Butyricimonas属、Gabonia属、Hallella属、Chlamydia属、Bacillus属、Lactobacillus属、Paenibacillus属、Virgibacillus属などの脊椎動物の口腔や腸内に生息する微生物が好ましく、Tannerella属細菌、Bacteroides属細菌とMuribaculum属細菌が特に好ましい。   The method of the present invention for releasing a complex type glycan containing a multi-branched glycan under non-denaturing conditions comprises the steps of: The sugar chain is released using an endoglycosidase that recognizes the difference between In the present invention, among endoglycosidases, Endo-β-N-Acetylglucosaminodase (ENGase) classified into enzyme number EC 3.2.1.96 is used. Preferably, the ENGase used in the present invention is an enzyme derived from a microorganism. The microorganism is not particularly limited, but includes the genus Tannerella, the genus Prevotella, the genus Bacteroides, the genus Muribaculum, the genus Copropacter, the genus Alloprevotella, the genus Porphyromonadiasaum, the genus Barnesiula, the genus Barneciura, the genus Barunibacteria, the genus Municipalum, the genus Baruibacterium Microorganisms that live in the oral cavity and intestine of vertebrates such as Bacillus, Lactobacillus, Paenibacillus, and Virgibacillus are preferred, and Tannerella, Bacteroides, and Muribaculum bacteria are particularly preferred.

Tannerella属細菌に由来するENGaseとしては、配列番号2、4、6または12の塩基配列を有する遺伝子によりそれぞれコードされる配列番号1、3、5または11のアミノ酸配列を有する酵素が挙げられる。またMuribaculum属細菌に由来するENGaseとしては、配列番号8の塩基配列を有する遺伝子によりコードされる配列番号7のアミノ酸配列を有する酵素が挙げられる。Bacteroides属細菌に由来するENGaseとしては、配列番号10の塩基配列を有する遺伝子によりコードされる配列番号9のアミノ酸配列を有する酵素が挙げられる。本発明においては、配列番号1のアミノ酸配列を有する酵素をEndo−Tsp1263と呼ぶ。また、配列番号3のアミノ酸配列を有する酵素をEndo−Tsp1006と呼ぶ。さらに、配列番号5のアミノ酸配列を有する酵素をEndo−Tsp1457と呼ぶ。また、配列番号11のアミノ酸配列を有する酵素をEndo−Tsp1603と呼ぶ。さらに、配列番号7のアミノ酸配列を有する酵素をEndo−Bac1008と呼ぶ。また、配列番号9のアミノ酸配列を有する酵素をEndo−Bno1263と呼ぶ。これらの酵素は、それぞれアミノ酸配列全長が1263残基、1006残基、1457残基、1603残基、1008残基および1263残基からなる。   Examples of ENGase derived from a bacterium of the genus Tannerella include an enzyme having the amino acid sequence of SEQ ID NO: 1, 3, 5, or 11, which is encoded by a gene having the nucleotide sequence of SEQ ID NO: 2, 4, 6, or 12, respectively. Examples of ENGase derived from bacteria of the genus Muribaculum include an enzyme having the amino acid sequence of SEQ ID NO: 7 encoded by a gene having the nucleotide sequence of SEQ ID NO: 8. Examples of ENGase derived from Bacteroides genus bacteria include an enzyme having the amino acid sequence of SEQ ID NO: 9 encoded by a gene having the nucleotide sequence of SEQ ID NO: 10. In the present invention, the enzyme having the amino acid sequence of SEQ ID NO: 1 is called Endo-Tsp1263. The enzyme having the amino acid sequence of SEQ ID NO: 3 is called Endo-Tsp1006. Further, the enzyme having the amino acid sequence of SEQ ID NO: 5 is called Endo-Tsp1457. The enzyme having the amino acid sequence of SEQ ID NO: 11 is called Endo-Tsp1603. Further, an enzyme having the amino acid sequence of SEQ ID NO: 7 is called Endo-Bac1008. The enzyme having the amino acid sequence of SEQ ID NO: 9 is called Endo-Bno1263. These enzymes have a total amino acid sequence of 1263, 1006, 1457, 1603, 1008 and 1263 residues, respectively.

あるいは、本発明で用いるENGaseのうち、糖タンパク質、糖ペプチド、または糖鎖から、糖鎖の非還元末端にα2,6シアル酸またはガラクトースが存在する複合型糖鎖を遊離する際に用いるENGaseは、配列番号3または配列番号7のアミノ酸配列のいずれか一つと少なくとも50%、好ましくは少なくとも60%、より好ましくは少なくとも70%の相同性を有するアミノ酸配列を有しており、全長アミノ酸長が1000アミノ酸残基程度の、CAZy(Carbohydrate−Active enZymes Database; www.cazy.org)データベースの分類でGH85ファミリーに属する、活性部位にNxEモチーフとよばれるモチーフを有する酵素である。ここで、「相同性」とは、米国の国立生物工学情報センター(NCBI)により提供されるBLAST解析を標準設定で用いて算出された相同性を意味する。   Alternatively, among the ENGases used in the present invention, ENGase used for releasing a complex type sugar chain having α2,6 sialic acid or galactose at the non-reducing terminal of the sugar chain from the glycoprotein, glycopeptide or sugar chain is Has an amino acid sequence having at least 50%, preferably at least 60%, more preferably at least 70% homology with any one of the amino acid sequences of SEQ ID NO: 3 or SEQ ID NO: 7, and has a total amino acid length of 1000 It is an enzyme having a motif called an NxE motif in the active site, which belongs to the GH85 family according to the classification of CAZy (Carbohydrate-Active enZymes Database; www.caszy.org) database and has about amino acid residues. Here, "homology" means homology calculated using BLAST analysis provided by the National Center for Biotechnology Information (NCBI) in the United States with standard settings.

また、本発明で用いるENGaseのうち、糖タンパク質、糖ペプチド、または糖鎖から、糖鎖の非還元末端にN−アセチルグルコサミンが存在する複合型糖鎖を遊離する際に用いるENGaseは、配列番号1または配列番号9のアミノ酸配列と少なくとも50%、好ましくは少なくとも60%、より好ましくは少なくとも70%の相同性を有するアミノ酸配列を有しており、全長アミノ酸長が1200〜1300アミノ酸残基程度の、CAZyデータベースの分類でGH85ファミリーに属する、活性部位にNxEモチーフとよばれるモチーフを有する酵素である。   Further, among the ENGases used in the present invention, ENGase used for releasing a complex type sugar chain having N-acetylglucosamine at the non-reducing end of the sugar chain from the glycoprotein, glycopeptide, or sugar chain is SEQ ID NO: Has an amino acid sequence having homology of at least 50%, preferably at least 60%, more preferably at least 70% with the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 9, and has a total amino acid length of about 1200 to 1300 amino acid residues. And an enzyme having a motif called an NxE motif in the active site, which belongs to the GH85 family according to the classification of the CAZy database.

本発明で用いるENGaseは、いずれも糖タンパク質や糖ペプチドの糖鎖を遊離させる活性を有する。糖鎖の非還元末端にN−アセチルグルコサミンが存在する多分岐型糖鎖を含む複合型糖鎖を非変性条件で遊離する際に用いる酵素としては、Endo−Tsp1263およびEndo−Bno1263が特に好ましく、また、糖鎖の非還元末端にα2,6シアル酸あるいはガラクトースが存在する多分岐型糖鎖を含む複合型糖鎖を非変性条件で遊離する際に用いる酵素としては、Endo−Tsp1006およびEndo−Bac1008が特に好ましく、さらに、高マンノース型糖鎖を非変性条件で遊離する際に用いる酵素としては、Endo−Tsp1457およびEndo−Tsp1603が特に好ましいが、同様の活性を示す酵素であれば、他のエンドグリコシダーゼを用いても構わない。   ENGase used in the present invention has an activity of releasing a sugar chain of a glycoprotein or a glycopeptide. Endo-Tsp1263 and Endo-Bno1263 are particularly preferred as enzymes used when releasing complex-type sugar chains including hyperbranched sugar chains having N-acetylglucosamine at the non-reducing terminal of the sugar chains under non-denaturing conditions. Enzymes used for releasing a complex type sugar chain containing a hyperbranched sugar chain having α2,6 sialic acid or galactose at the non-reducing end of the sugar chain under non-denaturing conditions include Endo-Tsp1006 and Endo- Bac1008 is particularly preferred, and Endo-Tsp1457 and Endo-Tsp1603 are particularly preferred as enzymes used for releasing a high-mannose type sugar chain under non-denaturing conditions, but other enzymes having the same activity may be used. Endoglycosidase may be used.

このような他のエンドグリコシダーゼとしては、微生物や動植物由来のENGaseや、該酵素を遺伝子組換え技術により改変した酵素、およびその酵素に各種のタグを付加した酵素などを挙げることができるが、これらはいずれも本発明の範囲に包含されるものである。   Examples of such other endoglycosidases include ENGase derived from microorganisms and animals and plants, enzymes obtained by modifying the enzyme by genetic recombination technology, and enzymes obtained by adding various tags to the enzyme. Are all included in the scope of the present invention.

遺伝子組換え技術により改変した酵素としては、野生型酵素のアミノ酸配列の一部を改変して、野生型酵素の機能や安定性を向上させた酵素や、糖転移活性などの糖鎖切断活性以外の活性を付与した酵素が含まれる。このうち、糖転移活性を付与した酵素を特にグライコシンターゼとよぶ。   Enzymes modified by genetic recombination techniques include enzymes that have modified a part of the amino acid sequence of the wild-type enzyme to improve the function and stability of the wild-type enzyme, and those other than glycosylation activities such as glycosyltransferase activity. An enzyme having the activity of (1) is included. Among them, the enzyme imparted with glycosyltransferase activity is particularly called glycosynthase.

本発明で用いる酵素は、該酵素を生産する微生物の培養上清あるいは菌体から、一般的な酵素精製法に用いられるタンパク質抽出法や分画法および各種クロマトグラフィー操作を組み合わせて精製した酵素を用いてもよいし、該酵素をコードする遺伝子を含む組換えベクターにより形質転換された宿主細胞を培養することにより得られた培養物から、同様に精製した酵素を用いてもよい。   The enzyme used in the present invention is an enzyme purified from a culture supernatant or cells of a microorganism producing the enzyme by a combination of a protein extraction method, a fractionation method, and various chromatographic operations used in a general enzyme purification method. The enzyme may be used, or an enzyme similarly purified from a culture obtained by culturing a host cell transformed with a recombinant vector containing a gene encoding the enzyme may be used.

各種クロマトグラフィー操作とは、ジエチルアミノエチル(DEAE)セファロース等のレジンを用いた陰イオン交換クロマトグラフィー法、スルホプロピル(SP)セファロース等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法のことであり、これらを単独あるいは組み合わせて用い、最終的な酵素精製標品を得ることができる。   Various chromatography operations include anion exchange chromatography using a resin such as diethylaminoethyl (DEAE) sepharose, cation exchange chromatography using a resin such as sulfopropyl (SP) sepharose, butyl sepharose, phenyl sepharose Such as hydrophobic chromatography using resin, gel filtration using molecular sieve, affinity chromatography, chromatofocusing, electrophoresis such as isoelectric focusing, etc. Alternatively, they can be used in combination to obtain a final purified enzyme preparation.

このようにして精製した酵素を単独あるいは組み合わせて用いることにより、糖タンパク質、糖ペプチドから非変性条件で多分岐型糖鎖を含む特定構造の糖鎖を遊離することができる。遊離した糖鎖を回収し、分画精製すれば、多分岐型糖鎖を含む様々な構造をした糖鎖の原料として利用可能である。さらに、糖タンパク質、糖ペプチドから非変性条件で特定構造の糖鎖、あるいはすべての糖鎖を遊離した糖タンパク質、糖ペプチドは、上記に記載の各種クロマトグラフィー操作等を経て、精製標品を得ることができ、糖鎖リモデリング法のアクセプター基質として利用可能である。   By using the enzyme thus purified alone or in combination, a sugar chain having a specific structure including a multi-branched sugar chain can be released from a glycoprotein or glycopeptide under non-denaturing conditions. If the released sugar chains are collected and fractionated and purified, they can be used as raw materials for sugar chains having various structures including hyperbranched sugar chains. Furthermore, glycoproteins and glycopeptides in which sugar chains having a specific structure are released from glycoproteins and glycopeptides under non-denaturing conditions, or glycoproteins and glycopeptides in which all sugar chains are released, are subjected to various chromatographic operations described above to obtain purified samples. It can be used as an acceptor substrate for the sugar chain remodeling method.

以下に記載する実施例により、本発明をさらに詳細に説明するが、本発明はその要旨を超えない限り、これらの実施例に限定されるものではない。   The present invention will be described in more detail with reference to examples described below, but the present invention is not limited to these examples unless it exceeds the gist.

<実施例1>多分岐型糖鎖を含む複合型糖鎖を非変性条件で糖タンパク質から遊離するエンドグリコシダーゼの調製方法とその活性測定
bisecting GlcNAc糖鎖は、ヒトやマウスではGnT−IIIという酵素によって形成される、図1に示すような特徴的な構造をもった糖鎖で、様々な糖タンパク質上に存在する。近年、ENGaseおよびその変異体を活用した、不均一な糖鎖を持つ糖タンパク質から均一な糖鎖を持つ糖タンパク質に置き換える糖鎖リモデリング法が開発されたが(非特許文献4,5、特許文献2)、本法を適用するために、糖タンパク質から各種の糖鎖を非変性条件下で遊離させる必要性が生じてきた。一方、様々な糖タンパク質からbisecting GlcNAc糖鎖を効率よく遊離させることができるENGaseはこれまでに報告がなく、非変性条件下で各種糖タンパク質から該糖鎖を遊離させることは困難であった。本発明ではこの課題の克服のため、様々な糖タンパク質からbisecting GlcNAc糖鎖を効率よく遊離させることができるENGaseの探索に取り組んだ。
<Example 1> Method for preparing endoglycosidase which releases complex-type sugar chains containing hyperbranched sugar chains from glycoproteins under non-denaturing conditions and measurement of its activity bisecting GlcNAc sugar chain is an enzyme called GnT-III in humans and mice. Is a sugar chain having a characteristic structure as shown in FIG. 1 and present on various glycoproteins. In recent years, a sugar chain remodeling method utilizing ENGase or a mutant thereof to replace a glycoprotein having a heterogeneous sugar chain with a glycoprotein having a uniform sugar chain has been developed (Non Patent Literatures 4, 5 and 5). In order to apply this method 2), it has become necessary to release various sugar chains from glycoproteins under non-denaturing conditions. On the other hand, there has been no report on ENGase which can efficiently release a bisecting GlcNAc sugar chain from various glycoproteins, and it has been difficult to release the sugar chain from various glycoproteins under non-denaturing conditions. In order to overcome this problem, the present invention has been working on a search for ENGase that can efficiently release a bisecting GlcNAc sugar chain from various glycoproteins.

まず糖質関連酵素のデータベースであるCAZy、各種タンパク質のデータベースであるUniProt(www.uniprot.org)および米国の国立生物工学情報センター(NCBI)のデータベース(https://www.ncbi.nim.nih.gov)などを検索したところ、CAZyデータベースの分類でGH85ファミリーに属する微生物由来ENGaseによって形成される3つの酵素グループを見出した。   First, CAZy which is a database of carbohydrate-related enzymes, UniProt (www.uniprot.org) which is a database of various proteins, and a database (http: //www.ncbi.nim.nih.) Of the National Center for Biotechnology Information (NCBI) in the United States. .Gov) and the like, three enzyme groups formed by microorganism-derived ENGase belonging to the GH85 family in the classification of the CAZy database were found.

グループ1はアミノ酸数が1000残基前後である酵素が属しており、グループ2はアミノ酸数が1250残基前後である酵素が属しており、グループ3はアミノ酸数が1300残基以上である酵素が属していた。各グループに属する酵素の基質特異性を調べるため、グループ1からはTannerella属細菌由来の1006アミノ酸残基の酵素(配列番号3、Endo−Tsp1006)およびMuribaculum属細菌由来の1008アミノ酸残基の酵素(配列番号7、Endo−Bac1008)、グループ2からはTannerella属細菌由来の1263アミノ酸残基の酵素(配列番号1、Endo−Tsp1263)およびBacteroides属細菌由来の1263アミノ酸残基の酵素(配列番号9、Endo−Bno1263)、グループ3からはTannerella属細菌由来の1457アミノ酸残基の酵素(配列番号5、Endo−Tsp1457)および1603アミノ酸残基の酵素(配列番号11、Endo−Tsp1603)について解析することにした。   Group 1 belongs to an enzyme having about 1000 amino acids, group 2 belongs to an enzyme having about 1250 amino acids, and group 3 belongs to an enzyme having 1300 or more amino acids. Belonged. In order to examine the substrate specificity of the enzymes belonging to each group, from group 1, an enzyme of 1006 amino acid residues derived from bacteria belonging to the genus Tannerella (SEQ ID NO: 3, Endo-Tsp1006) and an enzyme having 1008 amino acid residues derived from the bacteria belonging to the genus Muribaculum ( SEQ ID NO: 7, Endo-Bac1008), an enzyme of 1263 amino acid residues derived from bacteria belonging to the genus Tannerella (SEQ ID NO: 1, Endo-Tsp1263) and an enzyme having 1263 amino acid residues derived from bacteria belonging to the genus Bacteroides (SEQ ID NO: 9, Endo-Bno 1263), an enzyme of 1457 amino acid residues derived from bacteria belonging to the genus Tannerella (SEQ ID NO: 5, Endo-Tsp1457) and an enzyme of 1603 amino acid residues (SEQ ID NO: 11, Endo-T p1603) I was to be analyzed for.

Endo−Tsp1006の遺伝子(配列番号4)、Endo−Bac1008の遺伝子(配列番号8)、Endo−Tsp1263の遺伝子(配列番号2)、Endo−Bno1263の遺伝子(配列番号10)、Endo−Tsp1457の遺伝子(配列番号6)およびEndo−Tsp1603の遺伝子(配列番号12)をそれぞれ人工合成し、これらを各々pGEX6P−1ベクター(GEヘルスケア)に挿入して、各酵素をグルタチオンS−トランスフェラーゼ(GST)との融合タンパク質として大腸菌にて発現させるための発現ベクターを構築した。この際、各酵素のC末端にはヒスチジン6残基で構成されるタグ配列が付加されるようにした。   Endo-Tsp1006 gene (SEQ ID NO: 4), Endo-Bac1008 gene (SEQ ID NO: 8), Endo-Tsp1263 gene (SEQ ID NO: 2), Endo-Bno1263 gene (SEQ ID NO: 10), Endo-Tsp1457 gene (SEQ ID NO: 10) SEQ ID NO: 6) and Endo-Tsp1603 gene (SEQ ID NO: 12) were artificially synthesized, respectively, inserted into pGEX6P-1 vector (GE Healthcare), and each enzyme was ligated with glutathione S-transferase (GST). An expression vector for expression in Escherichia coli as a fusion protein was constructed. At this time, a tag sequence consisting of histidine 6 residues was added to the C-terminal of each enzyme.

各発現ベクターを用いて大腸菌BL21(DE3)株を形質転換し、これら形質転換体を50μg/mLのアンピシリンが添加された100mLのLB培地にて、37℃で3時間培養した。つぎにイソプロピル−β−D−チオガラクトピラノシド(IPTG)を0.1mMになるように添加して、25℃で3時間培養した。その後、遠心分離にて菌体を回収し、ここにリン酸緩衝生理食塩水(PBS)を5mL加えて懸濁し、超音波破砕器にて菌体を破砕した。ここに界面活性剤のTriton X−100を1%になるように加えて、室温で30分振盪後、遠心分離にて上清を回収した。この上清に適量のグルタチオンセファロース(GEヘルスケア)を加えて、4℃で16時間撹拌し、GST融合タンパク質をグルタチオンセファロースに吸着させた。   Escherichia coli BL21 (DE3) strain was transformed using each expression vector, and these transformants were cultured at 37 ° C. for 3 hours in 100 mL LB medium supplemented with 50 μg / mL ampicillin. Next, isopropyl-β-D-thiogalactopyranoside (IPTG) was added to a concentration of 0.1 mM, and the cells were cultured at 25 ° C. for 3 hours. Thereafter, the cells were collected by centrifugation, and 5 mL of phosphate buffered saline (PBS) was added thereto to suspend the cells, and the cells were crushed by an ultrasonic crusher. Triton X-100, a surfactant, was added to the mixture so as to have a concentration of 1%. After shaking at room temperature for 30 minutes, the supernatant was collected by centrifugation. An appropriate amount of glutathione sepharose (GE Healthcare) was added to the supernatant, followed by stirring at 4 ° C. for 16 hours to adsorb the GST fusion protein to glutathione sepharose.

上記グルタチオンセファロースを遠心分離にて回収後、PBSで十分に洗浄し、0.6mLのPreScission Protease(GEヘルスケア)用の反応液(50mM Tris−HCl, 150mM NaCl, 1mM EDTA, 1 mM DTT, pH7.0)に懸濁して、ここにPreScission Proteaseを2ユニット(1μL)加えて、4℃で16時間反応させた。この反応により、GST融合タンパク質からGSTが切断除去される。また、反応液に添加したPreScission Proteaseはグルタチオンセファロースに吸着され、遠心分離にてグルタチオンセファロースごと除去できる。   After collecting the above glutathione sepharose by centrifugation, it is sufficiently washed with PBS, and 0.6 mL of a reaction solution for PreScission Protease (GE Healthcare) (50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1 mM DTT, pH 7). .0), and 2 units (1 μL) of PreScission Protease were added thereto and reacted at 4 ° C. for 16 hours. This reaction cleaves and removes GST from the GST fusion protein. In addition, PreScission Protease added to the reaction solution is adsorbed on glutathione sepharose, and can be removed together with glutathione sepharose by centrifugation.

上記反応により、GST融合タンパク質からGSTを切断除去した後、遠心分離にて反応液を回収した。この反応液を、VIVASPIN500(分画分子量3,000、ザルトリウス)を用いて限外ろ過濃縮し、精製酵素標品を得た。図2に各精製酵素のSDS−ポリアクリルアミド電気泳動(PAGE)による泳動パターンを示す。   After GST was cleaved and removed from the GST fusion protein by the above reaction, the reaction solution was recovered by centrifugation. The reaction solution was ultrafiltrated and concentrated using VIVASPIN500 (fraction molecular weight: 3,000, Sartorius) to obtain a purified enzyme preparation. FIG. 2 shows the migration pattern of each purified enzyme by SDS-polyacrylamide electrophoresis (PAGE).

各酵素の基質特異性を調べるため、酵素0.4μgと変性処理を施していない各種糖タンパク質1〜3μgを、50mMクエン酸緩衝液(pH5.0またはpH6.0[Endo―Bno1263とEndo―Tsp1603])中で混和し(反応液量10μL)、40℃(Endo―Tsp1603)または45℃、20時間反応させた後、SDS−PAGEに供して糖タンパク質糖鎖の切断状況を解析した。その結果(図3A)、Endo−Tsp1457は高マンノース型糖鎖が結合したribonuclease B(RNase B、非特許文献6)の糖鎖は切断できたが、複合型糖鎖が結合したα1−acid glycoprotein(α1−AGP、おもに2〜4本鎖複合型糖鎖が結合;非特許文献7,8)、prostate specific antigen (PSA、おもに2〜3本鎖複合型糖鎖が結合;非特許文献9)およびovomucoid(おもにbisecting GlcNAc含有複合型糖鎖が結合;非特許文献10)の糖鎖は切断できなかったことから、高マンノース型糖鎖を好基質とする酵素と考えられた。   In order to examine the substrate specificity of each enzyme, 0.4 μg of the enzyme and 1 to 3 μg of various unmodified glycoproteins were mixed with 50 mM citrate buffer (pH 5.0 or pH 6.0 [Endo-Bno1263 and Endo-Tsp1603]. ]) (Reaction volume: 10 μL) and reacted at 40 ° C. (Endo-Tsp1603) or 45 ° C. for 20 hours, and then subjected to SDS-PAGE to analyze the state of cleavage of glycoprotein sugar chains. As a result (FIG. 3A), Endo-Tsp1457 was able to cleave the sugar chain of ribonuclease B (RNase B, Non-Patent Document 6) to which a high mannose sugar chain was bound, but was able to cut α1-acid glycoprotein to which a complex sugar chain was bound. (Α1-AGP, mainly bound by 2-4 complex glycans; Non-Patent Documents 7 and 8), and prostate specific antigen (PSA, mainly bound by 2 to 3 complex glycans; Non-Patent Document 9) Since the sugar chains of ovomucoid and ovomucoid (mainly a complexing sugar chain containing bisecting GlcNAc bound; Non-Patent Document 10) could not be cleaved, it was considered to be an enzyme using a high mannose sugar chain as a good substrate.

一方、Endo−Tsp1263はRNase BやPSAの糖鎖は一部しか切断できなかったが、ovomucoidの糖鎖はほぼ切断できたことから、bisecting GlcNAc含有複合型糖鎖を好基質とする酵素と考えられた。また、Endo−Tsp1006とEndo−Bac1008は、α1−AGPとPSAの糖鎖の大部分を切断することができたが、ovomucoidやRNase Bの糖鎖はほとんど切断しなかったことから、多分岐型を含む複合型糖鎖を好基質とする酵素と考えられた。   On the other hand, Endo-Tsp1263 was able to cleave only a part of the sugar chain of RNase B or PSA, but was almost able to cleave the ovomucoid sugar chain. Was done. Endo-Tsp1006 and Endo-Bac1008 were able to cleave most of the α1-AGP and PSA sugar chains, but hardly cleaved ovomucoid or RNase B sugar chains. It was considered that the enzyme used a complex type sugar chain containing as a good substrate.

また、Endo−Tsp1263と同じグループ2に属するEndo−Bno1263も、Endo−Tsp1263と同様にovomucoidの糖鎖をほぼ切断できた(図3B)。さらに、Endo−Tsp1457と同じグループ3に属するEndo−Tsp1603も、Endo−Tsp1457と同様にRNase Bの糖鎖を切断できた。   In addition, Endo-Bno1263 belonging to the same group 2 as Endo-Tsp1263 was able to almost cleave the ovomucoid sugar chain similarly to Endo-Tsp1263 (FIG. 3B). Furthermore, Endo-Tsp1603 belonging to the same group 3 as Endo-Tsp1457 was able to cleave the RNase B sugar chain in the same manner as Endo-Tsp1457.

Endo−Tsp1457で切断したRNase Bの糖鎖、Endo−Tsp1263で切断したovomucoidの糖鎖、Endo−Tsp1006あるいはEndo−Bac1008で切断したα1−AGPの糖鎖を質量分析により解析した結果を図4A〜Dに示す。なお反応は、酵素7μgと変性処理を施していない各種糖タンパク質60μgを、50mMクエン酸緩衝液(pH5.0)中で混和し(反応液量10μL)、45℃、18時間反応させた。   The results of mass spectrometry analysis of RNase B sugar chains cleaved by Endo-Tsp1457, ovomucoid sugar chains cleaved by Endo-Tsp1263, and α1-AGP sugar chains cleaved by Endo-Tsp1006 or Endo-Bac1008 are shown in FIGS. D. In the reaction, 7 μg of the enzyme and 60 μg of various glycoproteins not subjected to denaturation treatment were mixed in a 50 mM citrate buffer (pH 5.0) (reaction volume: 10 μL) and reacted at 45 ° C. for 18 hours.

図4Aには、RNase Bに結合していた糖鎖のうち、Endo−Tsp1457によって遊離されたM5型(マンノースを5個含む)からM9型(マンノースを9個含む)の高マンノース型糖鎖と考えられる糖鎖由来のシグナルが検出されている。また図4Bには、ovomucoidに結合していた糖鎖のうち、Endo−Tsp1263によって遊離されたbisecting GlcNAc構造を含む2本鎖から5本鎖の複合型糖鎖と考えられる糖鎖由来のシグナルが検出されている。このことは、Endo−Tsp1263はbisecting GlcNAc含有の多分岐型糖鎖の切断活性を有することを示唆する。なおこれらの糖鎖には、糖鎖の非還元末端に露出したN−アセチルグルコサミンが存在する。また図4C,Dには、α1−AGPに結合していた糖鎖のうち、Endo−Tsp1006あるいはEndo−Bac1008によって遊離されたシアル酸を含有した多分岐型糖鎖である2本鎖から4本鎖の複合型糖鎖と考えられる糖鎖由来のシグナルが検出されている。   FIG. 4A shows a high-mannose type sugar chain from M5 type (containing five mannoses) to M9 type (containing nine mannoses) released by Endo-Tsp1457 among the sugar chains bound to RNase B. Possible sugar chain-derived signals have been detected. In addition, FIG. 4B shows, among the sugar chains bound to ovomucoid, a signal derived from a sugar chain that is considered to be a complex type of five to five saccharide chains containing a bisecting GlcNAc structure released by Endo-Tsp1263. Has been detected. This suggests that Endo-Tsp1263 has activity of cleaving a bisecting GlcNAc-containing multibranched sugar chain. In these sugar chains, N-acetylglucosamine exposed at the non-reducing end of the sugar chain exists. In addition, FIGS. 4C and 4D show that, of the sugar chains bound to α1-AGP, four out of the two chains, which are hyperbranched sugar chains containing sialic acid released by Endo-Tsp1006 or Endo-Bac1008. Signals derived from sugar chains considered to be complex sugar chains of chains have been detected.

<実施例2>各種糖ペプチドを基質としてEndo−Tsp1263、Endo−Tsp1006およびEndo−Bac1008のエンドグリコシダーゼの基質特異性を調査する方法
Endo−Tsp1263、Endo−Tsp1006およびEndo−Bac1008については、基質特異性をより詳細に調べるため、各種糖ペプチドを基質として、それらの糖鎖の切断活性を測定した。なお、各種糖ペプチドは以下のようにして調製した(図5)。まず鶏卵由来のシアリルグリコペプチド(Sialylglycopeptide,SGP,α2,6A2−peptide;伏見製薬所)を原料として、これに酸処理を施してシアル酸を除去し、G2−peptideとした後に、ガラクトシダーゼを作用させてG0−peptideを調製した。これに対し、HEK293細胞に生産させたヒトのN−アセチルグルコサミン転移酵素GnT−IVまたはGnT−Vの組換え酵素を作用させて、それぞれGN3b−peptide、GN3a−peptideを調製した。これらにHEK293細胞に生産させたヒトのガラクトース転移酵素B4GalT1を作用させて、それぞれG3GN3b−peptide、G3GN3a−peptideを調製した。
<Example 2> Method for investigating the substrate specificity of endoglycosidase of Endo-Tsp1263, Endo-Tsp1006 and Endo-Bac1008 using various glycopeptides as substrates Substrate specificity for Endo-Tsp1263, Endo-Tsp1006 and Endo-Bac1008 In order to examine in more detail, using various glycopeptides as substrates, their sugar chain cleavage activities were measured. In addition, various glycopeptides were prepared as follows (FIG. 5). First, a sialylglycopeptide (Sialylglycopeptide, SGP, α2,6A2-peptide; Fushimi Pharmaceutical Co., Ltd.) derived from chicken eggs is used as a raw material, and is subjected to an acid treatment to remove sialic acid to form G2-peptide, followed by the action of galactosidase. To prepare G0-peptide. On the other hand, human N-acetylglucosamine transferase GnT-IV or GnT-V recombinant enzyme produced in HEK293 cells was allowed to act to prepare GN3b-peptide and GN3a-peptide, respectively. G3GN3b-peptide and G3GN3a-peptide were prepared by reacting these with human galactose transferase B4GalT1 produced in HEK293 cells.

また、GN3a−peptideにGnT−IVを作用させて、GN4−peptideを調製した。さらに、GN4−peptideにB4GalT1を作用させて、G4GN4−peptideを調製した。このG4GN4−peptideに対し、HEK293細胞に生産させたヒトのα2,3シアル酸転移酵素ST3Gal−IVまたはα2,6シアル酸転移酵素ST6Gal−Iの組換え酵素を作用させて、それぞれα2,3A2―4G4−peptide、α2,6A2―4G4−peptideを調製した。 GnT-IV was allowed to act on GN3a-peptide to prepare GN4-peptide. Further, B4GalT1 was allowed to act on GN4-peptide to prepare G4GN4-peptide. For this G4GN4-peptide, by the action of recombinant enzyme α2,3 sialyltransferase ST3Gal-IV or α2,6-sialyltransferase ST6Gal-I human were produced in HEK293 cells, respectively Arufa2,3A 2 -4 G4-peptide, α2,6A 2-4 G4-peptide were prepared.

また、G0−peptideにB4GalT1を作用させて、G2−peptideを調製した。ここにα2,3シアル酸転移酵素ST3Gal−IVを作用させて、α2,3A2−peptideを調製した。さらに、G0−peptideにHEK293細胞に生産させたヒトのN−アセチルグルコサミン転移酵素GnT−IIIを作用させて、G0B−peptideを調製した。これにB4GalT1を作用させて、G2B−peptideを調製した。また、G0−peptideにN−アセチルグルコサミニダーゼS(New England Biolabs)を作用させて、M3−peptideを調製した。   Further, G2-peptide was prepared by allowing B4GalT1 to act on G0-peptide. Here, α2,3A-peptide was prepared by reacting α2,3 sialyltransferase ST3Gal-IV. Furthermore, G0B-peptide was prepared by allowing G0-peptide to react with human N-acetylglucosamine transferase GnT-III produced in HEK293 cells. B4GalT1 was allowed to act on this to prepare G2B-peptide. Also, M3-peptide was prepared by allowing N-acetylglucosaminidase S (New England Biolabs) to act on G0-peptide.

また、G0−peptideにHEK293細胞に生産させたヒトのα1,6フコース転移酵素FUT8を作用させて、G0F−peptideを調製した。ここにB4GalT1を作用させて、G2F−peptideを調製した。また、SGPに酸処理を施して部分的にシアル酸を除去し、A1aG2−peptideおよびA1bG2−peptideとした後に、シアリダーゼとガラクトシダーゼを作用させてG1a−peptideとG1b−peptideを調製した。   Further, G0F-peptide was prepared by allowing human α1,6 fucose transferase FUT8 produced in HEK293 cells to act on G0-peptide. G2F-peptide was prepared by reacting B4GalT1 here. In addition, SGP was subjected to an acid treatment to partially remove sialic acid to obtain A1aG2-peptide and A1bG2-peptide, and then sialidase and galactosidase were allowed to act thereon to prepare G1a-peptide and G1b-peptide.

各酵素の基質特異性を調べるため、酵素0.25μgと0.25mMの各糖ペプチドを、50mMクエン酸緩衝液(pH5.0)中で混和し(反応液量10μL)、45℃、30分間反応させた後、質量分析にて糖ペプチド糖鎖の切断状況を解析し、比活性(mU/mg)をもとめた結果を図6に示す。その結果、Endo−Tsp1006およびEndo−Bac1008は、糖鎖の非還元末端にα2,6シアル酸またはガラクトースが存在する複合型糖鎖を効率よく切断すると考えられた。なお、両酵素とも非還元末端にガラクトースが存在するbisecting GlcNAc糖鎖であるG2B型糖鎖の切断活性も有していた。一方、Endo−Tsp1263は、bisecting GlcNAc糖鎖であるG0B型糖鎖とG2B型糖鎖に対して切断活性があると考えられていたが、糖鎖の非還元末端にN−アセチルグルコサミンが存在する複合型糖鎖を効率よく切断する事が分かった。よって、この酵素は、非還元末端にガラクトースが存在するbisecting GlcNAc糖鎖であるG2B型糖鎖の切断活性はとても低かった。   In order to examine the substrate specificity of each enzyme, 0.25 μg of the enzyme and 0.25 mM of each glycopeptide were mixed in a 50 mM citrate buffer (pH 5.0) (reaction volume: 10 μL), and the mixture was mixed at 45 ° C. for 30 minutes. After the reaction, the cleavage status of the glycopeptide sugar chain was analyzed by mass spectrometry, and the result of determining the specific activity (mU / mg) is shown in FIG. As a result, Endo-Tsp1006 and Endo-Bac1008 were considered to efficiently cleave complex sugar chains having α2,6 sialic acid or galactose at the non-reducing end of the sugar chains. In addition, both enzymes also had the activity of cleaving G2B type sugar chains, which are bisecting GlcNAc sugar chains having galactose at the non-reducing end. On the other hand, Endo-Tsp1263 was considered to have a cleavage activity for G0B-type sugar chains and G2B-type sugar chains, which are bisecting GlcNAc sugar chains, but N-acetylglucosamine is present at the non-reducing terminal of the sugar chains. It was found that the complex type sugar chain was efficiently cleaved. Therefore, this enzyme had a very low activity of cleaving G2B-type sugar chains, which are bisecting GlcNAc sugar chains having galactose at the non-reducing end.

<実施例3>各種糖タンパク質を基質として各種エンドグリコシダーゼの基質特異性を比較する方法
Endo−Tsp1263、Endo−Tsp1006およびEndo−Bac1008の上記の基質特異性をふまえ、図7には基質としてRNase B、PSA、ovomucoidおよびα1−AGPを用いて、各種ENGaseによる糖鎖切断反応を実施した結果を示す。なお反応は、酵素0.2〜0.5μgと変性処理を施していない各種糖タンパク質1〜3μgを、各酵素の反応用推奨緩衝液中で混和し(反応液量10μL)、それぞれの酵素反応に適した温度にて18時間反応させた。すなわち、Endo−Tsp1457、Endo−Tsp1263、Endo−Tsp1006、およびEndo−Bac1008は50mMクエン酸緩衝液(pH5.0)中で、45℃で反応させた。Endo−M、Endo−CC、EndoH、およびEndoF1は50mMクエン酸緩衝液(pH6.0)中で、37℃で反応させた。EndoF2およびEndoF3は50mMクエン酸緩衝液(pH4.5)中で、37℃で反応させた。なお、PNGase F(Glycopeptidase F、タカラバイオ)については、製品の添付説明書に従い、非変性条件と変性条件とで反応を行った。反応終了後、SDS−PAGEに供して糖タンパク質糖鎖の切断状況を解析した。
<Example 3> Method for comparing substrate specificities of various endoglycosidases using various glycoproteins as substrates Based on the above substrate specificities of Endo-Tsp1263, Endo-Tsp1006 and Endo-Bac1008, FIG. 7 shows RNase B as a substrate. The results of sugar chain cleavage reactions with various ENGases using PSA, PSA, ovomucoid and α1-AGP are shown. For the reaction, 0.2 to 0.5 μg of the enzyme and 1 to 3 μg of various unmodified glycoproteins were mixed in a recommended buffer for the reaction of each enzyme (reaction volume: 10 μL). For 18 hours. That is, Endo-Tsp1457, Endo-Tsp1263, Endo-Tsp1006, and Endo-Bac1008 were reacted at 45 ° C. in a 50 mM citrate buffer (pH 5.0). Endo-M, Endo-CC, EndoH, and EndoF1 were reacted at 37 ° C. in 50 mM citrate buffer (pH 6.0). EndoF2 and EndoF3 were reacted at 37 ° C. in 50 mM citrate buffer (pH 4.5). Regarding PNGase F (Glycopeptidase F, TAKARA BIO), the reaction was carried out under non-denaturing conditions and denaturing conditions according to the instructions attached to the product. After completion of the reaction, the resultant was subjected to SDS-PAGE to analyze the state of cleavage of the glycoprotein sugar chain.

RNase Bの糖鎖(高マンノース型糖鎖)は、Endo−M、Endo−CC、EndoH、EndoF1、EndoF2、EndoF3、およびEndo−Tsp1457を用いた反応では完全に切断されていた。PSAの糖鎖(おもに2〜3本鎖の複合型糖鎖)は、Endo−M、Endo−CC、およびEndo−Tsp1263を用いた反応では一部の糖鎖が切断されただけであったが、EndoF2、EndoF3、Endo−Tsp1006、およびEndo−Bac1008を用いた反応ではほぼ完全に切断されていた。また、α1−AGPの糖鎖(おもに2〜4本鎖複合型糖鎖)は、Endo−M、Endo−CC、EndoF2、およびEndoF3を用いた反応では一部の糖鎖が切断されただけであったが、Endo−Tsp1006およびEndo−Bac1008を用いた反応ではほぼ完全に切断されていた。非特許文献8,9によれば、PSAおよびα1−AGPの糖鎖の非還元末端の大部分にはシアル酸またはガラクトースが存在することが示唆されており、Endo−Tsp1006およびEndo−Bac1008が効率よく切断できる糖鎖構造をしていると考えられる。   The sugar chain of RNase B (high mannose type sugar chain) was completely cleaved in the reaction using Endo-M, Endo-CC, EndoH, EndoF1, EndoF2, EndoF3, and Endo-Tsp1457. With regard to the sugar chain of PSA (mainly a complex type sugar chain having 2 to 3 chains), only a part of the sugar chain was cleaved in the reaction using Endo-M, Endo-CC, and Endo-Tsp1263. , EndoF2, EndoF3, Endo-Tsp1006, and Endo-Bac1008 resulted in almost complete cleavage. In addition, in the reaction using Endo-M, Endo-CC, EndoF2, and EndoF3, only a part of the sugar chain of α1-AGP (mainly a complex two- to four-chain sugar chain) is cleaved. However, the reaction using Endo-Tsp1006 and Endo-Bac1008 resulted in almost complete cleavage. According to Non-Patent Documents 8 and 9, it is suggested that sialic acid or galactose is present in most of the non-reducing ends of the sugar chains of PSA and α1-AGP, and Endo-Tsp1006 and Endo-Bac1008 have high efficiency. It is thought that it has a sugar chain structure that can be cleaved well.

既存のENGaseの中には、様々な糖タンパク質からbisecting GlcNAc糖鎖を効率よく遊離できる酵素はこれまで見出されていない。図7においても既存のENGaseあるいはEndo−Tsp1006、Endo−Bac1008を用いた酵素反応では、おもにbisecting GlcNAc含有複合型糖鎖が結合しているovomucoidの糖鎖はほとんど切断されなかった。しかしながら、Endo−Tsp1263を用いた場合では、基質糖タンパク質であるovomucoidに変性処理を施すことなく、その糖鎖の大部分を効率よく遊離させることができた。非特許文献10によれば、ovomucoidの多分岐複合型糖鎖の大部分には、bisecting GlcNAc構造を含めて、非還元末端に露出したN−アセチルグルコサミンが存在しており、Endo−Tsp1263が効率よく切断できる糖鎖構造をしている。   In existing ENGases, no enzyme capable of efficiently releasing bisecting GlcNAc sugar chains from various glycoproteins has not been found so far. In FIG. 7 as well, in the enzymatic reaction using the existing ENGase, Endo-Tsp1006, or Endo-Bac1008, the ovomucoid sugar chain to which the complexing sugar chain containing bisecting GlcNAc was mainly hardly cleaved. However, when Endo-Tsp1263 was used, most of the sugar chain could be efficiently released without denaturing ovomucoid, which is a substrate glycoprotein. According to Non-Patent Document 10, N-acetylglucosamine exposed at the non-reducing end is present in most of the multi-branched complex-type sugar chains of ovomucoid, including the bisecting GlcNAc structure, and Endo-Tsp1263 is efficiently used. It has a sugar chain structure that can be easily cleaved.

<実施例4>galactosylated ovomucoidを基質としてEndo−Tsp1263、Endo−Tsp1006およびEndo−Bac1008のエンドグリコシダーゼの基質特異性を調査する方法
図6によれば、Endo−Tsp1006およびEndo−Bac1008は、糖鎖の非還元末端にガラクトースが結合していないG0B型のbisecting GlcNAc糖鎖に対する切断活性は低いが、この糖鎖の非還元末端にガラクトースが2分子結合しているG2B型のbisecting GlcNAc糖鎖に対する切断活性は高い。これに対し、Endo−Tsp1263はG0B型のbisecting GlcNAc糖鎖に対する切断活性は高いが、G2B型のbisecting GlcNAc糖鎖に対する切断活性は低い。そこで、ovomucoidにヒトガラクトース転移酵素のB4GalT1を作用させて、ovomucoidの糖鎖の非還元末端にガラクトースを付加したgalactosylated ovomucoidを調製し、これに対するEndo−Tsp1263、Endo−Tsp1006、およびEndo−Bac1008の切断活性を調べてみた。
<Example 4> Method of investigating the substrate specificity of endoglycosidase of Endo-Tsp1263, Endo-Tsp1006 and Endo-Bac1008 using galactosylated ovomucoid as a substrate. According to FIG. Cleavage activity for the G0B-type bisecting GlcNAc sugar chain in which galactose is not bound to the non-reducing end is low, but cleavage activity for the G2B-type bisecting GlcNAc sugar chain in which two galactose molecules are bound to the non-reducing end of this sugar chain. Is expensive. On the other hand, Endo-Tsp1263 has a high cleavage activity on the G0B-type bisecting GlcNAc sugar chain, but has a low cleavage activity on the G2B-type bisecting GlcNAc sugar chain. Then, B4GalT1 of human galactose transferase was allowed to act on ovomucoid to prepare galactosylated ovomucoid in which galactose was added to the non-reducing end of the sugar chain of ovomucoid. I checked the activity.

酵素反応は、ovomucoidまたはgalactosylated ovomucoidを2.4μgと酵素0.25μgを、50mMクエン酸緩衝液(pH5.0)中で混和し(反応液量10μL)、45℃、23時間反応させた後、SDS−PAGEに供して糖タンパク質糖鎖の切断状況を解析した。なお、PNGase F(Glycopeptidase F、タカラバイオ)については、製品の添付説明書に従い、変性条件で反応を行った。その結果、ovomucoidの糖鎖は、図7同様、Endo−Tsp1263では大部分切断されたが、Endo−Tsp1006およびEndo−Bac1008ではほとんど切断されなかった(図8)。一方、galactosylated ovomucoidの糖鎖は、Endo−Tsp1263ではほとんど切断されなかったが、Endo−Tsp1006およびEndo−Bac1008では大部分が切断された。すなわち、糖鎖の非還元末端にガラクトースが存在しているbisecting GlcNAc含有多分岐複合型糖鎖に対しては、Endo−Tsp1006およびEndo−Bac1008を用いれば、変性処理を施すことなく、その糖鎖の大部分を効率よく遊離させることができるといえる。   The enzymatic reaction was carried out by mixing 2.4 μg of ovomucoid or galactosylated ovomucoid and 0.25 μg of the enzyme in a 50 mM citrate buffer (pH 5.0) (reaction volume: 10 μL), and after reacting at 45 ° C. for 23 hours, It was subjected to SDS-PAGE to analyze the state of cleavage of the glycoprotein sugar chain. The reaction of PNGase F (Glycopeptidase F, TAKARA BIO) was performed under denaturing conditions in accordance with the instructions attached to the product. As a result, most of the ovomucoid sugar chain was cleaved by Endo-Tsp1263 as in FIG. 7, but hardly cleaved by Endo-Tsp1006 and Endo-Bac1008 (FIG. 8). On the other hand, the sugar chain of galactosylated ovomucoid was hardly cleaved by Endo-Tsp1263, but was mostly cleaved by Endo-Tsp1006 and Endo-Bac1008. That is, with respect to the bisecting GlcNAc-containing multibranched complex-type sugar chain in which galactose is present at the non-reducing end of the sugar chain, if Endo-Tsp1006 and Endo-Bac1008 are used, the sugar chain is not subjected to denaturation treatment, Can be efficiently liberated.

<実施例5>複数のエンドグリコシダーゼを用いて非変性条件でbisecting GlcNAc糖鎖を含む特定構造の糖鎖を遊離する方法
一般に、糖タンパク質には様々な構造の糖鎖が結合し得る。ENGaseを用いて各種の糖タンパク質から糖鎖を遊離させようとする場合、該糖タンパク質に結合している糖鎖の種類や切断反応に用いるENGaseの種類によっては、酵素の基質特異性の影響を受けて切断できない糖鎖が生じ、特定構造の糖鎖が結合したままの糖タンパク質や糖ペプチドが生成することになる。従って、様々な構造の糖鎖が結合した糖タンパク質からENGaseを用いて完全に糖鎖を遊離させたい場合や、特定構造の糖鎖のみを遊離させたい場合は、切断反応に用いるENGaseの基質特異性を考慮して、単独あるいは複数の酵素を組み合わせて用い、切断反応を実施する必要がある。本実施例ではそのような状況を想定し、複数のエンドグリコシダーゼを用いて非変性条件でbisecting GlcNAc糖鎖を含む特定構造の糖鎖を遊離する方法について検討した。
Example 5 Method of Releasing Sugar Chain of Specific Structure Including Bisting GlcNAc Sugar Chain Under Non-denaturing Conditions Using a plurality of Endoglycosidases Generally, sugar chains of various structures can be bound to a glycoprotein. When releasing sugar chains from various glycoproteins using ENGase, depending on the type of sugar chain bound to the glycoprotein and the type of ENGase used in the cleavage reaction, the effect of enzyme substrate specificity may be affected. As a result, a sugar chain that cannot be cleaved is generated, and a glycoprotein or glycopeptide in which a sugar chain having a specific structure remains bound is generated. Therefore, when it is desired to completely release sugar chains from glycoproteins to which sugar chains having various structures are bound using ENGase, or to release only sugar chains having a specific structure, the substrate specificity of ENGase used for the cleavage reaction In consideration of the nature, it is necessary to carry out the cleavage reaction using a single enzyme or a combination of a plurality of enzymes. In this example, assuming such a situation, a method of releasing a sugar chain having a specific structure including a bisecting GlcNAc sugar chain under non-denaturing conditions using a plurality of endoglycosidases was examined.

高マンノース型糖鎖が結合しているRNase B、おもに2〜4本鎖複合型糖鎖が結合しているα1−AGP、および糖鎖の非還元末端にN−アセチルグルコサミンが露出しているbisecting GlcNAc含有複合型糖鎖がおもに結合しているovomucoid(各1μg)の混合溶液(50mMクエン酸緩衝液、pH5.0)に対し、Endo−Tsp1407、Endo−Tsp1263、Endo−Tsp1006およびEndo−Bac1008の各酵素(各0.6μg)を単独あるいは組み合わせて用い、糖鎖切断反応を実施した(45℃、20時間)。反応産物をSDS−PAGEに供した結果を図9に示す。   RNase B to which a high-mannose type sugar chain is bound, α1-AGP to which mainly a two- to four-chain complex type sugar chain is bound, and bisecting wherein N-acetylglucosamine is exposed at the non-reducing end of the sugar chain. For a mixed solution (50 mM citrate buffer, pH 5.0) of ovomucoid (1 μg each) to which GlcNAc-containing complex-type sugar chains are mainly bound, Endo-Tsp1407, Endo-Tsp1263, Endo-Tsp1006, and Endo-Bac1008 Using each enzyme (each 0.6 μg) alone or in combination, a sugar chain cleavage reaction was performed (45 ° C., 20 hours). The result of subjecting the reaction product to SDS-PAGE is shown in FIG.

図9の結果より、例えばこれらの糖タンパク質から糖鎖の非還元末端にN−アセチルグルコサミンが露出しているbisecting GlcNAc含有複合型糖鎖を含むすべての糖鎖を遊離させるためには、Endo−Tsp1407、Endo−Tsp1263、Endo−Tsp1006の組合せ、あるいはEndo−Tsp1407、Endo−Tsp1263、Endo−Bac1008の組合せ、もしくはEndo−Tsp1407、Endo−Tsp1263、Endo−Tsp1006、Endo−Bac1008のすべての酵素を用いて糖鎖切断反応を実施すればよい。また、これらの糖タンパク質から糖鎖の非還元末端にN−アセチルグルコサミンが露出しているbisecting GlcNAc含有複合型糖鎖以外の糖鎖を遊離させるためには、Endo−Tsp1407とEndo−Tsp1006の組合せ、あるいはEndo−Tsp1407とEndo−Bac1008の組合せの酵素を用いて糖鎖切断反応を実施すればよい。   From the results shown in FIG. 9, for example, in order to release all sugar chains from these glycoproteins, including complex GlcNAc-containing complex-type sugar chains in which N-acetylglucosamine is exposed at the non-reducing end of the sugar chains, Endo- A combination of Tsp1407, Endo-Tsp1263, Endo-Tsp1006, a combination of Endo-Tsp1407, Endo-Tsp1263, Endo-Bac1008, or a combination of Endo-Tsp1407, Endo-Tsp1263, Endo-Ed-E100 using Endo-Tsp1263, Endo-Tsp8 A sugar chain cleavage reaction may be performed. In addition, in order to release a sugar chain other than the bisecting GlcNAc-containing complex type sugar chain in which N-acetylglucosamine is exposed at the non-reducing end of the sugar chain from these glycoproteins, a combination of Endo-Tsp1407 and Endo-Tsp1006 Alternatively, the sugar chain cleavage reaction may be carried out using an enzyme having a combination of Endo-Tsp1407 and Endo-Bac1008.

上記のようにして基質特異性の異なるENGaseを単独あるいは複数組み合わせて用いることにより、糖タンパク質からbisecting GlcNAc糖鎖を含む特定構造の糖鎖を遊離させることや、特定構造の糖鎖のみを糖タンパク質上に残存させることが可能である。   By using ENGases having different substrate specificities singly or in combination as described above, it is possible to release a sugar chain having a specific structure including a glycosylated GlcNAc from a glycoprotein, or to convert only a sugar chain having a specific structure into a glycoprotein. It is possible to leave on.

<実施例6>Endo−Tsp1006 N220Q変異体の糖転移活性を調査する方法
CAZyデータベースの分類でGH85ファミリーに属するENGaseについては、その活性部位にあるNxEモチーフなどに対してアミノ酸置換を導入した変異体が糖転移活性を発揮する場合があることが知られている(非特許文献11)。これは、ENGaseの活性部位などへの変異導入で、糖鎖切断活性が抑制されるとともに、ENGaseに元来備わっている糖転移活性が顕在化した結果と考えられる。そこで、Endo−Tsp1006について、このような糖転移活性を発揮する変異体が作製できるのかを検討することにした。
Example 6 Method for Investigating Glycosyltransferring Activity of Endo-Tsp1006 N220Q Mutant For ENGase belonging to the GH85 family according to the classification of the CAZy database, a mutant having an amino acid substitution introduced into the NxE motif or the like in the active site thereof Is known to exhibit glycosyltransferase activity (Non-Patent Document 11). This is considered to be due to the fact that the introduction of a mutation into the active site of ENGase and the like suppressed the sugar chain cleavage activity and also revealed the glycosyl transfer activity inherent in ENGase. Therefore, it was determined whether a mutant exhibiting such a glycosyltransfer activity could be prepared for Endo-Tsp1006.

Endo−Tsp1006のNxEモチーフのアスパラギンはN220である。そこで、このアスパラギンをグルタミンに置換したEndo−Tsp1006 N220Q変異体を作製することにした。変異導入用プライマー5'−AACTACCAGTGGGAAGATAGCGGTTAT−3'と5'−TTCCCACTGGTAGTTAATGCCATCACT−3'を用いて、polymerase chain reactionによりTsp1006遺伝子に変異導入を行った。この遺伝子をpGEX6P−1ベクター(GEヘルスケア)に挿入して、Endo−Tsp1006 N220Q変異体の発現ベクターを構築した。そして、上述した野生型Endo−Tsp1006の調製方法と同様にして、Endo−Tsp1006 N220Q変異体を取得した。   The asparagine in the NxE motif of Endo-Tsp1006 is N220. Therefore, it was decided to produce an Endo-Tsp1006 N220Q mutant in which this asparagine was substituted with glutamine. Using the primers for mutation introduction 5′-AACTACCAGTGGGGAAGATACGCGTTAT-3 ′ and 5′-TTCCCACTGGTAGTTTAATGCCATCACT-3 ′, mutation was introduced into the Tsp1006 gene by polymerase chain reaction. This gene was inserted into a pGEX6P-1 vector (GE Healthcare) to construct an Endo-Tsp1006 N220Q mutant expression vector. Then, an Endo-Tsp1006 N220Q mutant was obtained in the same manner as in the method for preparing the wild-type Endo-Tsp1006 described above.

つぎに、糖転移反応に必要なドナー基質の調製を行った。α1−AGPの糖鎖をEndo−Tsp1006で切断し、シアリダーゼ処理を行って、非還元末端がガラクトースである2〜4本鎖複合型糖鎖の混合物を調製した。この糖鎖混合物にはG2型糖鎖、G3GN3b型糖鎖、G4GN4型糖鎖、G3GN3b型糖鎖のいずれかのN−アセチルグルコサミンにフコースが結合したG3F型糖鎖、およびG4GN4型糖鎖のいずれかのN−アセチルグルコサミンにフコースが結合したG4F型糖鎖が含まれる。この糖鎖混合物をオキサゾリン体化した糖鎖をドナー基質とした。また、糖転移反応のアクセプター基質には、Fmoc基が導入されたアスパラギンにコアフコース付きのN−アセチルグルコサミンが結合したFmoc−Asn(GnF)−OHを用いた。   Next, a donor substrate required for the transglycosylation reaction was prepared. The α1-AGP sugar chain was cleaved with Endo-Tsp1006 and treated with sialidase to prepare a mixture of 2 to 4 complex sugar chains having a non-reducing terminal of galactose. This sugar chain mixture contains any one of G3F-type sugar chains in which fucose is bound to N-acetylglucosamine of any one of G2-type sugar chains, G3GN3b-type sugar chains, G4GN4-type sugar chains, and G3GN3b-type sugar chains. G4F-type sugar chains in which fucose is bound to such N-acetylglucosamine are included. An oxazoline form of this sugar chain mixture was used as a donor substrate. In addition, Fmoc-Asn (GnF) -OH in which N-acetylglucosamine with core fucose was bound to asparagine into which an Fmoc group had been introduced was used as an acceptor substrate for the transglycosylation reaction.

糖転移反応は、0.5mM Fmoc−Asn(GnF)−OH、3.0mMオキサゾリン化糖鎖(4本鎖糖鎖45%、3本鎖糖鎖45%、2本鎖糖鎖10%)、2μgのEndo−Tsp1006またはEndo−Tsp1006 N220Q変異体を50mM Tris−HCl(pH7.4)中で混和し(反応液量8μL)、25℃で60時間まで反応させた。その後、反応産物を高速液体クロマトグラフィーに供して解析し、各糖転移産物の割合を求めた。   The glycosyltransfer reaction was performed using 0.5 mM Fmoc-Asn (GnF) -OH, 3.0 mM oxazoline-linked sugar chains (45% of 4-chain sugar chains, 45% of 3-chain sugar chains, 10% of 2-chain sugar chains), 2 μg of Endo-Tsp1006 or Endo-Tsp1006 N220Q mutant was mixed in 50 mM Tris-HCl (pH 7.4) (reaction volume: 8 μL) and reacted at 25 ° C. for up to 60 hours. Thereafter, the reaction products were subjected to high performance liquid chromatography for analysis, and the ratio of each glycosyl transfer product was determined.

図10にその結果を示す。野生型Endo−Tsp1006の場合、微量の糖転移産物が検出されただけで、大部分は未反応のFmoc−Asn(GnF)−OH(Fmoc−GNFと略記)が残存していた。これは、野生型酵素では糖転移活性がほとんど発揮されていないのか、あるいは、糖転移産物が生じても、糖鎖切断活性によって糖転移産物の糖鎖が切断されている可能性が考えられる。一方、Endo−Tsp1006 N220Q変異体の場合では、G3GN3b型糖鎖の糖転移産物であるFmoc−Asn(GnF)−G3(G3と略記)の割合が22.6%、G4GN4型糖鎖の糖転移産物であるFmoc−Asn(GnF)−G4(G4と略記)の割合が19.3%、G2型糖鎖の糖転移産物であるFmoc−Asn(GnF)−G2(G2と略記)の割合が12.1%、G3F型糖鎖の糖転移産物であるFmoc−Asn(GnF)−G3F(G3Fと略記)の割合が7.2%、およびG4F型糖鎖の糖転移産物であるFmoc−Asn(GnF)−G4F(G4Fと略記)の割合が5.2%となり、本変異体の糖転移活性が確認できた。従って、Endo−Tsp1006は、変異導入することにより糖転移酵素(グライコシンターゼ)としても利用できるといえる。   FIG. 10 shows the result. In the case of wild-type Endo-Tsp1006, only trace amounts of glycosyltransfer products were detected, and most of unreacted Fmoc-Asn (GnF) -OH (abbreviated as Fmoc-GNF) remained. This is probably because the glycosyltransferase activity is hardly exhibited by the wild-type enzyme, or even if a glycosyltransferase product is generated, the sugar chain of the glycosyltransferase product may be cleaved by the sugar chain cleavage activity. On the other hand, in the case of the Endo-Tsp1006 N220Q mutant, the ratio of Fmoc-Asn (GnF) -G3 (abbreviated as G3), which is a glycosyltransfer product of G3GN3b-type sugar chain, is 22.6%, and that of G4GN4 type sugar chain. The ratio of the product Fmoc-Asn (GnF) -G4 (abbreviated as G4) is 19.3%, and the ratio of Fmoc-Asn (GnF) -G2 (abbreviated as G2), which is a glycosyltransfer product of G2-type sugar chain, is reduced. 12.1%, the ratio of Fmoc-Asn (GnF) -G3F (abbreviated as G3F), which is a glycosyltransfer product of G3F type sugar chain, is 7.2%, and Fmoc-Asn, a glycosyltransfer product of G4F type sugar chain, The ratio of (GnF) -G4F (abbreviated as G4F) was 5.2%, and the glycosyl transfer activity of this mutant was confirmed. Therefore, it can be said that Endo-Tsp1006 can be used as a glycosyltransferase (glycosynthase) by mutagenesis.

本発明は、糖タンパク質、糖ペプチド、または糖鎖からエンドグリコシダーゼを用いて非変性条件で各種の多分岐型糖鎖を含む複合型糖鎖を遊離することができる。また糖タンパク質や糖ペプチドから、すべての糖鎖あるいは特定構造の糖鎖のみを遊離させた糖タンパク質や糖ペプチドを調製することができる。したがって本発明は、多分岐型糖鎖やbisecting GlcNAc糖鎖などの糖鎖試料の調製や、糖鎖リモデリングに用いるアクセプター分子としての糖タンパク質の調製、および各種糖鎖の機能解析などに適用でき、医薬品業界等においても利用可能である。   INDUSTRIAL APPLICABILITY The present invention can release complex sugar chains containing various hyperbranched sugar chains from glycoproteins, glycopeptides, or sugar chains under non-denaturing conditions using endoglycosidase. Further, glycoproteins and glycopeptides in which all sugar chains or only sugar chains having a specific structure are released from glycoproteins and glycopeptides can be prepared. Therefore, the present invention can be applied to the preparation of sugar chain samples such as hyperbranched sugar chains and bisecting GlcNAc sugar chains, the preparation of glycoproteins as acceptor molecules used for sugar chain remodeling, and the functional analysis of various sugar chains. It can also be used in the pharmaceutical industry and the like.

Claims (12)

糖タンパク質、糖ペプチド、または糖鎖から複合型糖鎖を遊離する方法であって、糖鎖の非還元末端側の糖の相違を認識する微生物由来のエンドグリコシダーゼを用いて非変性条件で複合型糖鎖を遊離する方法。   A method for releasing a complex-type sugar chain from a glycoprotein, a glycopeptide, or a sugar chain, wherein the complex-type sugar chain is undenatured using a microorganism-derived endoglycosidase that recognizes a difference in sugar at the non-reducing terminal side of the sugar chain. A method of releasing sugar chains. 前記複合型糖鎖が2本鎖複合型糖鎖、あるいは3本鎖以上の多分岐複合型糖鎖、もしくはbisecting GlcNAc構造を含む複合型糖鎖であり、糖鎖の非還元末端にα2,6シアル酸が存在する複合型糖鎖であることを特徴とする請求項1に記載の方法。   The complex-type sugar chain is a double-chain complex-type sugar chain, a multi-branched complex sugar chain having three or more chains, or a complex-type sugar chain containing a bisecting GlcNAc structure, and α2,6 is added to the non-reducing end of the sugar chain. The method according to claim 1, wherein the complex type sugar chain contains sialic acid. 前記複合型糖鎖が2本鎖複合型糖鎖、あるいは3本鎖以上の多分岐複合型糖鎖、もしくはbisecting GlcNAc構造を含む複合型糖鎖であり、糖鎖の非還元末端にガラクトースが存在する複合型糖鎖であることを特徴とする請求項1に記載の方法。   The complex type sugar chain is a double-chain complex type sugar chain, a multi-chain complex sugar chain having three or more chains, or a complex type sugar chain containing a bisecting GlcNAc structure, and galactose is present at the non-reducing end of the sugar chain. 2. The method according to claim 1, wherein the sugar chain is a complex type sugar chain. 前記複合型糖鎖が2本鎖複合型糖鎖、あるいは3本鎖以上の多分岐複合型糖鎖、もしくはbisecting GlcNAc構造を含む複合型糖鎖であり、糖鎖の非還元末端にN−アセチルグルコサミンが存在する複合型糖鎖であることを特徴とする請求項1に記載の方法。   The complex-type sugar chain is a double-chain complex-type sugar chain, a multi-chain complex sugar chain having three or more chains, or a complex-type sugar chain containing a bisecting GlcNAc structure, and N-acetyl is added to the non-reducing end of the sugar chain. The method according to claim 1, wherein glucosamine is a complex type sugar chain in which glucosamine is present. 前記エンドグリコシダーゼがTannerella属細菌由来のエンド−β−N−アセチルグルコサミニダーゼであるEndo−Tsp1006であって、以下の(a)、(b)または(c)のタンパク質であることを特徴とする請求項2または請求項3に記載の方法。
(a)配列表配列番号3のアミノ酸配列からなるタンパク質
(b)配列表配列番号3のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつEndo−Tsp1006酵素活性を有するタンパク質
(c)配列表配列番号3のアミノ酸配列と相同性が90%以上のアミノ酸配列からなり、かつEndo−Tsp1006酵素活性を有するタンパク質
The endoglycosidase is Endo-Tsp1006, which is endo-β-N-acetylglucosaminidase derived from a bacterium of the genus Tannerella, and is a protein of the following (a), (b) or (c): A method according to claim 2 or claim 3.
(A) a protein consisting of the amino acid sequence of SEQ ID NO: 3 in the Sequence Listing; (b) an amino acid sequence of SEQ ID NO: 3 in which one or several amino acids are deleted, substituted or added, and Endo-Tsp1006 Protein having enzymatic activity (c) A protein consisting of an amino acid sequence having 90% or more homology with the amino acid sequence of SEQ ID NO: 3 in the sequence listing, and having Endo-Tsp1006 enzyme activity
前記エンドグリコシダーゼがMuribaculum属細菌由来のエンド−β−N−アセチルグルコサミニダーゼであるEndo−Bac1008であって、以下の(a)、(b)または(c)のタンパク質であることを特徴とする請求項2または請求項3に記載の方法。
(a)配列表配列番号7のアミノ酸配列からなるタンパク質
(b)配列表配列番号7のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつEndo−Tsp1008酵素活性を有するタンパク質
(c)配列表配列番号7のアミノ酸配列と相同性が90%以上のアミノ酸配列からなり、かつEndo−Tsp1008酵素活性を有するタンパク質
The said endoglycosidase is Endo-Bac1008 which is endo- (beta) -N-acetylglucosaminidase derived from bacteria of the genus Muribaculum, and is a protein of the following (a), (b) or (c): A method according to claim 2 or claim 3.
(A) a protein comprising the amino acid sequence of SEQ ID NO: 7 in the Sequence Listing; (b) an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 7, and Endo-Tsp1008 Protein having enzymatic activity (c) A protein comprising 90% or more amino acid sequence homology with the amino acid sequence of SEQ ID NO: 7 and having Endo-Tsp1008 enzyme activity
前記エンドグリコシダーゼがTannerella属細菌由来のエンド−β−N−アセチルグルコサミニダーゼであるEndo−Tsp1263であって、以下の(a)、(b)または(c)のタンパク質であることを特徴とする請求項4に記載の方法。
(a)配列表配列番号1のアミノ酸配列からなるタンパク質
(b)配列表配列番号1のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつEndo−Tsp1263酵素活性を有するタンパク質
(c)配列表配列番号1のアミノ酸配列と相同性が90%以上のアミノ酸配列からなり、かつEndo−Tsp1263酵素活性を有するタンパク質
The endoglycosidase is Endo-Tsp1263, which is endo-β-N-acetylglucosaminidase derived from a bacterium belonging to the genus Tannerella, and is a protein of the following (a), (b) or (c): 4. The method according to 4.
(A) a protein comprising the amino acid sequence of SEQ ID NO: 1 in the Sequence Listing; (b) an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 1, and Endo-Tsp1263 Protein having enzymatic activity (c) A protein comprising an amino acid sequence having 90% or more homology to the amino acid sequence of SEQ ID NO: 1 and having an Endo-Tsp1263 enzyme activity
前記エンドグリコシダーゼがBacteroides属細菌由来のエンド−β−N−アセチルグルコサミニダーゼであるEndo−Bno1263であって、以下の(a)、(b)または(c)のタンパク質であることを特徴とする請求項2または請求項3に記載の方法。
(a)配列表配列番号9のアミノ酸配列からなるタンパク質
(b)配列表配列番号9のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつEndo−Bno1263酵素活性を有するタンパク質
(c)配列表配列番号9のアミノ酸配列と相同性が90%以上のアミノ酸配列からなり、かつEndo−bno1263酵素活性を有するタンパク質
The endoglycosidase is Endo-Bno1263 which is an endo-β-N-acetylglucosaminidase derived from a bacterium belonging to the genus Bacteroides, and is a protein of the following (a), (b) or (c): A method according to claim 2 or claim 3.
(A) a protein consisting of the amino acid sequence of SEQ ID NO: 9 in the Sequence Listing; (b) an amino acid sequence of SEQ ID NO: 9 in which one or several amino acids are deleted, substituted or added, and Endo-Bno1263 Protein having enzymatic activity (c) Protein comprising an amino acid sequence having 90% or more homology with the amino acid sequence of SEQ ID NO: 9 in the sequence listing, and having Endo-bno1263 enzymatic activity
糖タンパク質、糖ペプチドまたは糖鎖から複合型糖鎖を遊離する方法であって、非還元末端側の糖の相違を認識する複数のエンドグリコシダーゼを用いて非変性条件で特定構造の複合型糖鎖を遊離する方法。   A method for releasing a complex-type sugar chain from a glycoprotein, a glycopeptide or a sugar chain, wherein the complex-type sugar chain having a specific structure under non-denaturing conditions using a plurality of endoglycosidases that recognize differences in the sugar at the non-reducing end How to release 前記複数のエンドグリコシダーゼがTannerella属細菌由来のエンド−β−N−アセチルグルコサミニダーゼであるEndo−Tsp1457、Endo−Tsp1603、Endo−Tsp1263、Endo−Tsp1006、Muribaculum属細菌由来のエンド−β−N−アセチルグルコサミニダーゼであるEndo−Bac1008、およびBacteroides属細菌由来のエンド−β−N−アセチルグルコサミニダーゼであるEndo−Bno1263のいずれかの組合せ、あるいはすべてであることを特徴とする請求項9に記載の方法。   The plurality of endoglycosidases are endo-β-N-acetylglucosaminidases derived from bacteria belonging to the genus Tannerella Endo-Tsp1457, Endo-Tsp1603, Endo-Tsp1263, Endo-Tsp1006, endo-β-N-acetylglucosa derived from bacteria belonging to the genus Muribaculum. 10. The method according to claim 9, wherein Endo-Bac1008 is a combination or all of Endo-Bno1263 which is an endo-β-N-acetylglucosaminidase derived from a bacterium belonging to the genus Bacteroides. 請求項1から請求項8のいずれかに記載の方法を用いて複合型糖鎖を切断させた糖タンパク質、糖ペプチドまたは糖鎖を製造する方法。   A method for producing a glycoprotein, glycopeptide or sugar chain in which a complex type sugar chain has been cleaved using the method according to any one of claims 1 to 8. 請求項9または請求項10に記載の方法を用いて特定構造の複合型糖鎖を切断させた糖タンパク質、糖ペプチドまたは糖鎖を製造する方法。
A method for producing a glycoprotein, glycopeptide or sugar chain in which a complex type sugar chain having a specific structure is cleaved using the method according to claim 9 or 10.
JP2019135853A 2018-07-28 2019-07-24 Method for separating composite type sugar chain Pending JP2020022440A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018141928 2018-07-28
JP2018141928 2018-07-28

Publications (2)

Publication Number Publication Date
JP2020022440A true JP2020022440A (en) 2020-02-13
JP2020022440A5 JP2020022440A5 (en) 2022-08-01

Family

ID=69617868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019135853A Pending JP2020022440A (en) 2018-07-28 2019-07-24 Method for separating composite type sugar chain

Country Status (1)

Country Link
JP (1) JP2020022440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050300A1 (en) 2020-09-02 2022-03-10 第一三共株式会社 NOVEL ENDO-β-N-ACETYLGLUCOSAMINIDASE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051608A1 (en) * 2011-10-03 2013-04-11 独立行政法人産業技術総合研究所 Composite sugar chain hydrolase
JP2015080453A (en) * 2013-10-23 2015-04-27 国立大学法人九州大学 Endoglycosidase derived from coprinus cinereus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051608A1 (en) * 2011-10-03 2013-04-11 独立行政法人産業技術総合研究所 Composite sugar chain hydrolase
JP2015080453A (en) * 2013-10-23 2015-04-27 国立大学法人九州大学 Endoglycosidase derived from coprinus cinereus

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"ACCESSION: A0A1B1S6C5 (ENTRY VERSION 11), ORFNAMES=A4V02_00305 [PARABACTEROIDES SP. YL27(MURIBACULU, JPN6023021755, ISSN: 0005070071 *
"ACCESSION: A0A1Q6GL14 (ENTRY VERSION 6), ORFNAMES=BHV75_07725 [BACTEROIDES OLEICIPLENUS]", JPN6023021756, 31 January 2018 (2018-01-31), ISSN: 0005070072 *
"ACCESSION: R5IK23 (ENTRY VERSION 18), ORFNAMES=BN472_01808 [TANNERELLA SP. CAG:118]", JPN6023021754, 22 November 2017 (2017-11-22), ISSN: 0005070070 *
"ACCESSION: R7DEW3 (ENTRY VERSION 20), ORFNAMES=BN686_01484 [TANNERELLA SP. CAG:51]", JPN6023021753, 28 February 2018 (2018-02-28), ISSN: 0005070069 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050300A1 (en) 2020-09-02 2022-03-10 第一三共株式会社 NOVEL ENDO-β-N-ACETYLGLUCOSAMINIDASE
KR20230061360A (en) 2020-09-02 2023-05-08 다이이찌 산쿄 가부시키가이샤 Novel endo-β-N-acetylglucosaminidase

Similar Documents

Publication Publication Date Title
TWI717319B (en) Fucosidase from bacteroides and methods using the same
Fan et al. Remarkable transglycosylation activity of glycosynthase mutants of endo-D, an endo-β-N-acetylglucosaminidase from Streptococcus pneumoniae
Berger et al. Protein glycosylation and its impact on biotechnology
Chao et al. Recent progress in chemo-enzymatic methods for the synthesis of N-glycans
Kato et al. Identification of an endo-β-N-acetylglucosaminidase gene in Caenorhabditis elegans and its expression in Escherichia coli
Kobata Exo-and endoglycosidases revisited
EP0272253A1 (en) Method for enhancing glycoprotein stability
Jitsuhara et al. Chaperone-like functions of high-mannose type and complex-type N-glycans and their molecular basis
Wilbrink et al. Galactosyl-lactose sialylation using Trypanosoma cruzi trans-sialidase as the biocatalyst and bovine κ-casein-derived glycomacropeptide as the donor substrate
JP6814043B2 (en) Carbohydrate binding protein
WO2007111496A1 (en) Improved carbohydrate recognition domains
Dojima et al. Comparison of the N-linked glycosylation of human β1, 3-N-acetylglucosaminyltransferase 2 expressed in insect cells and silkworm larvae
Hidari et al. Purification and characterization of a soluble recombinant human ST6Gal I functionally expressed in Escherichia coli
JP2020022440A (en) Method for separating composite type sugar chain
Faid et al. Site-specific glycosylation analysis of the bovine lysosomal α-mannosidase
Nakamura et al. α-L-Fucosidase from Bombyx mori has broad substrate specificity and hydrolyzes core fucosylated N-glycans
Kołaczkowski et al. Analysis of fungal high-mannose structures using CAZymes
US8969034B2 (en) Endoglycosidases that cleave O-linked glycans
JP2021145548A (en) Methods for preparing igg antibodies having four-branched sugar chains by using engase or variants thereof
PINGEL et al. Purification and characterization of an α-galactosyltransferase from Trypanosoma brucei
JPWO2020040257A1 (en) Enzyme synthesis method of β-glycoside of lacto-N-biose I or galacto-N-biose using modified phosphorylase
JP2020022440A5 (en)
CN112840027A (en) Enzymatic compositions for carbohydrate antigen cleavage, methods, uses, devices and systems related thereto
Freeze Use of glycosidases to study protein trafficking
JP2019085372A (en) Methods for preparing igg antibodies having multi-branched sugar chains using n-acetylglucosamine transferase

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220722

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240308