JP2015080453A - Endoglycosidase derived from coprinus cinereus - Google Patents

Endoglycosidase derived from coprinus cinereus Download PDF

Info

Publication number
JP2015080453A
JP2015080453A JP2013220506A JP2013220506A JP2015080453A JP 2015080453 A JP2015080453 A JP 2015080453A JP 2013220506 A JP2013220506 A JP 2013220506A JP 2013220506 A JP2013220506 A JP 2013220506A JP 2015080453 A JP2015080453 A JP 2015080453A
Authority
JP
Japan
Prior art keywords
sugar chain
activity
glycoprotein
transferring
cleaving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013220506A
Other languages
Japanese (ja)
Other versions
JP6252894B2 (en
Inventor
薫 竹川
Kaoru Takegawa
薫 竹川
崇司 木下
Takashi Kinoshita
崇司 木下
渉 住吉
Wataru Sumiyoshi
渉 住吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Fushimi Pharmaceutical Co Ltd
Original Assignee
Kyushu University NUC
Fushimi Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Fushimi Pharmaceutical Co Ltd filed Critical Kyushu University NUC
Priority to JP2013220506A priority Critical patent/JP6252894B2/en
Publication of JP2015080453A publication Critical patent/JP2015080453A/en
Application granted granted Critical
Publication of JP6252894B2 publication Critical patent/JP6252894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an endoglycosidase which has an activity having a wide substrate specificity, cleaving and releasing the N-glycan from glycoprotein, and transferring the sugar chain, and to provide an enzyme which does not have an activity cleaving and releasing the N-glycan from glycoprotein, and only has an activity transferring the sugar chain.SOLUTION: The invention provides: an endoglycosidase derived from Coprinus cinereus consisting of a specific amino acid sequence which has an activity cleaving the N-glycan from glycoprotein to release the sugar chain, and transferring the sugar chain; and an enzyme derived from Coprinus cinereus consisting of a specific amino acid sequence which does not have an activity cleaving the N-glycan from glycoprotein to release the sugar chain, and only has an activity transferring the sugar chain.

Description

本発明は、糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼ、及び該エンドグリコシダーゼの改変体であって糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素に関する。   The present invention relates to an endoglycosidase having an activity of cleaving and releasing an N-linked sugar chain possessed by a glycoprotein and transferring the sugar chain, and an N-linked type possessed by a glycoprotein which is a modified form of the endoglycosidase. The present invention relates to an enzyme having only an activity of transferring sugar chains without having an activity of cleaving and releasing sugar chains.

エンド-β-N-アセチルグルコサミニダーゼ(エンドグリコシダーゼ)は、糖タンパク質の糖鎖の切断や転移に利用されている。   Endo-β-N-acetylglucosaminidase (endoglycosidase) is used for glycosylation and transfer of glycoproteins.

エンドグリコシダーゼとして、Endo A(非特許文献1)、Endo F(非特許文献2)、Endo H (非特許文献3)、Endo M(非特許文献4)等が挙げられる。これらの酵素は、特定の構造を有する糖鎖にのみ作用するか、あるいは特定の構造を有する糖鎖に対する作用が強かった。また、複合型糖鎖に対する反応性はそれほど大きくなかった。   Examples of the endoglycosidase include Endo A (Non-patent document 1), Endo F (Non-patent document 2), Endo H (Non-patent document 3), Endo M (Non-patent document 4), and the like. These enzymes act only on sugar chains having a specific structure or have a strong effect on sugar chains having a specific structure. Moreover, the reactivity with complex type sugar chains was not so great.

また、これらの酵素をリコンビナント技術を用いて生産する場合、大腸菌(E.coli)を用いた場合に、生産できないという問題があった。   In addition, when these enzymes are produced using recombinant technology, there is a problem that they cannot be produced when E. coli is used.

Takegawa K. et al. Appl. Environ. Microbiol. 55, 3107-3112 (1989)Takegawa K. et al. Appl. Environ. Microbiol. 55, 3107-3112 (1989) Takegawa K. et al., Eur. J. Biochem, 202, 175-180 (1991)Takegawa K. et al., Eur. J. Biochem, 202, 175-180 (1991) Terentino A.L. et al. J. Biol. Chem. 274, 811 (1974)Terentino A.L. et al. J. Biol. Chem. 274, 811 (1974) Kadowaki K. et al., Agric, Biol. Chem. 1988, 54, 97Kadowaki K. et al., Agric, Biol. Chem. 1988, 54, 97

本発明は、基質特異性の広い、糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼ、及び糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素の提供を目的とする。   The present invention relates to an endoglycosidase having an activity of cleaving and releasing an N-linked sugar chain possessed by a glycoprotein having a wide substrate specificity and transferring the sugar chain, and an N-linked sugar chain possessed by the glycoprotein. It is an object of the present invention to provide an enzyme having only an activity of transferring sugar chains without having an activity of cleaving and releasing.

本発明者らは、従来のエンドグリコシダーゼ活性の糖鎖に対する基質特異性が必ずしも広くないことに鑑み、より基質特異性の広いエンドグリコシダーゼを得ようと鋭意検討を行った。その結果、コプリナス・シネレウス(Coprinus cinereus)由来のエンドグリコシダーゼが、高マンノース型糖鎖のみならず、複合型糖鎖等に対して広く切断活性を有するという広い基質特異性を有することを見出した。この酵素をEndo-CCと名付けた。   In light of the fact that the substrate specificity of the conventional endoglycosidase activity for sugar chains is not necessarily wide, the present inventors have intensively studied to obtain an endoglycosidase with a broader substrate specificity. As a result, it has been found that endoglycosidase derived from Coprinus cinereus has a broad substrate specificity that has a wide cleavage activity on not only high-mannose sugar chains but also complex sugar chains. This enzyme was named Endo-CC.

本発明者はさらに、糖鎖の切断活性を有さず、転移活性のみを有する酵素(グライコシンターゼ)を得ようと、アミノ酸に変異を加え、活性を検討した。その結果、特定の1アミノ酸を置換することにより、糖鎖切断活性を有さず、転移活性のみを有する酵素を得られることを見出し、この酵素を改変型Endo-CCと名付けた。   The present inventor further studied the activity by adding mutations to amino acids in order to obtain an enzyme (glycosynthase) that has no transglycosylation activity but only transfer activity. As a result, it was found that by substituting one specific amino acid, an enzyme having no transglycosylation activity and having only translocation activity was obtained, and this enzyme was named modified Endo-CC.

すなわち、本発明は以下のとおりである。
[1] 以下の(a)又は(b)のコプリナス・シネレウス由来であり、糖タンパク質が有するN-結合型糖鎖(アスパラギン結合型糖鎖)を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼ:
(a) 配列番号2で表されるアミノ酸配列からなるエンドグリコシダーゼ;
(b) 配列番号2で表されるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を含み、かつ糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼ。
[2] 以下の(a)又は(b)のコプリナス・シネレウス由来であり、糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼをコードするDNA:
(a) 配列番号2で表されるアミノ酸配列からなるエンドグリコシダーゼ;
(b) 配列番号2で表されるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を含み、かつ糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼ。
[3] 以下の(c)又は(d)のコプリナス・シネレウス由来であり、糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼをコードするDNA:
(c) 配列番号1で表される塩基配列を含むDNA;
(d) 配列番号1で表される塩基配列を含むDNAと相補的な配列を含むDNAとストリンジェントな条件下でハイブリダイズし、糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するタンパク質をコードするDNA。
[4] 以下の(e)又は(f)のコプリナス・シネレウス由来であり、糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素:
(e) 配列番号4で表されるアミノ酸配列からなる酵素;
(f) 配列番号4で表されるアミノ酸配列において180番目のグルタミン以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を含み、かつ糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素。
[5] 以下の(e)又は(f)のコプリナス・シネレウス由来であり、糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素をコードするDNA:
(e) 配列番号4で表されるアミノ酸配列からなる酵素;
(f) 配列番号4で表されるアミノ酸配列において180番目のグルタミン以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を含み、かつ糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素。
[6] 以下の(g)又は(h)のコプリナス・シネレウス由来であり、糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素をコードするDNA:
(g) 配列番号3で表される塩基配列を含むDNA;
(h) 配列番号3で表される塩基配列を含むDNAと相補的な配列を含むDNAとストリンジェントな条件下でハイブリダイズし、第538番目から540番目の塩基配列がCAAであり、糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素をコードするDNA。
[7] [2]又は[3]のDNAを含む発現ベクターを大腸菌に導入し、大腸菌を培養することを含む、[1]のコプリナス・シネレウス由来であり、糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼを作製する方法。
[8] [5]又は[6]のDNAを含む発現ベクターを大腸菌に導入し、大腸菌を培養することを含む、[4]のコプリナス・シネレウス由来であり、糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素を作製する方法。
[9] [1]のエンドグリコシダーゼを糖タンパク質と接触させ、糖鎖を切断し、遊離糖鎖を得ることを含む、遊離糖鎖を作製する方法。
[10] [4]の酵素をタンパク質及びオキサゾリン化糖鎖と接触させ、糖鎖をタンパク質に転移させることを含む、糖タンパク質の作製方法。
That is, the present invention is as follows.
[1] Activity derived from the following (a) or (b) Coprinus cinereus, which cleaves and releases an N-linked sugar chain (asparagine-linked sugar chain) possessed by a glycoprotein and transfers the sugar chain Endoglycosidase having:
(a) an endoglycosidase consisting of the amino acid sequence represented by SEQ ID NO: 2;
(b) including an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 2, and cleaving and releasing the N-linked sugar chain of the glycoprotein; And an endoglycosidase having an activity of transferring a sugar chain.
[2] The following (a) or (b) derived from Coprinus cinereus, which encodes an endoglycosidase having an activity of cleaving and releasing an N-linked sugar chain of a glycoprotein and transferring the sugar chain DNA:
(a) an endoglycosidase consisting of the amino acid sequence represented by SEQ ID NO: 2;
(b) including an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 2, and cleaving and releasing the N-linked sugar chain of the glycoprotein; And an endoglycosidase having an activity of transferring a sugar chain.
[3] The following (c) or (d) derived from Coprinus cinereus, which encodes an endoglycosidase having an activity of cleaving and releasing an N-linked sugar chain of a glycoprotein and transferring the sugar chain DNA:
(c) DNA comprising the base sequence represented by SEQ ID NO: 1;
(d) hybridizing under stringent conditions with a DNA comprising a sequence complementary to the DNA comprising the base sequence represented by SEQ ID NO: 1 to cleave and release the N-linked sugar chain of the glycoprotein; And a DNA encoding a protein having an activity of transferring a sugar chain.
[4] The following (e) or (f) derived from Coprinus cinereus, has no activity to cleave and release N-linked sugar chains possessed by glycoproteins, and only has an activity to transfer sugar chains enzyme:
(e) an enzyme consisting of the amino acid sequence represented by SEQ ID NO: 4;
(f) an N-linked sugar chain comprising an amino acid sequence in which one or several amino acids other than the 180th glutamine in the amino acid sequence represented by SEQ ID NO: 4 are deleted, substituted or added, and possessed by a glycoprotein An enzyme having only the activity of transferring sugar chains without having the activity of cleaving and releasing.
[5] It is derived from the following (e) or (f) Coprinus cinereus, has no activity to cleave and release N-linked sugar chains of glycoproteins, and only has an activity to transfer sugar chains DNA encoding the enzyme:
(e) an enzyme consisting of the amino acid sequence represented by SEQ ID NO: 4;
(f) an N-linked sugar chain comprising an amino acid sequence in which one or several amino acids other than the 180th glutamine in the amino acid sequence represented by SEQ ID NO: 4 are deleted, substituted or added, and possessed by a glycoprotein An enzyme having only the activity of transferring sugar chains without having the activity of cleaving and releasing.
[6] The following (g) or (h) derived from Coprinus cinereus, has no activity to cleave and release N-linked sugar chains possessed by glycoproteins, and only has an activity to transfer sugar chains DNA encoding the enzyme:
(g) DNA containing the base sequence represented by SEQ ID NO: 3;
(h) hybridizes under stringent conditions with a DNA comprising a sequence complementary to the DNA comprising the nucleotide sequence represented by SEQ ID NO: 3, wherein the 538th to 540th nucleotide sequence is CAA, and is a glycoprotein DNA encoding an enzyme that has no activity to cleave and release N-linked sugar chains, but only has an activity to transfer sugar chains.
[7] An N-linked saccharide derived from Coprinus cinereus of [1], which comprises introducing an expression vector containing the DNA of [2] or [3] into E. coli and culturing E. coli. A method for producing an endoglycosidase having an activity of cleaving and releasing a chain and transferring a sugar chain.
[8] An N-linked saccharide derived from Coprinus cinereus according to [4], which comprises introducing an expression vector containing the DNA according to [5] or [6] into Escherichia coli and culturing Escherichia coli. A method for producing an enzyme having only an activity of transferring a sugar chain without having an activity of cleaving and releasing a chain.
[9] A method for producing a free sugar chain, comprising contacting the endoglycosidase of [1] with a glycoprotein, cleaving the sugar chain to obtain a free sugar chain.
[10] A method for producing a glycoprotein, comprising bringing the enzyme according to [4] into contact with a protein and an oxazoline sugar chain, and transferring the sugar chain to the protein.

本発明のエンド-β-N-アセチルグルコサミニダーゼ(エンドグリコシダーゼ)Endo-CCは、糖タンパク質が有するN-結合型糖鎖の根元部分に存在するジアセチルキトビオース部分(GlcNAc-GlcNAc)を加水分解により切断し遊離させ、かつ糖鎖を転移させる活性を有する。本酵素は、高マンノース型糖鎖のみならず複合型糖鎖等に対しても広く切断活性と糖転移活性を有する。このため、種々の糖鎖を切断し、切断した糖鎖をGlcNAcやD-Glucoseなど単糖が付加したリコンビナントタンパク質(以下、「GlcNAc-タンパク質」という)等に転移させることができる。また、本発明の糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素である改変型Endo-CCは、遊離の糖鎖をGlcNAc-タンパク質に転移させ、糖タンパク質を作製することができる。Endo-CCで切断した糖鎖を、改変型Endo-CCでGlcNAc-タンパク質に転移することができ、抗体医薬品等の治療用タンパク質医薬品に均一な糖鎖を付加させることができる。   Endo-β-N-acetylglucosaminidase (endoglycosidase) Endo-CC of the present invention is obtained by hydrolyzing a diacetylchitobiose part (GlcNAc-GlcNAc) present in the root part of an N-linked sugar chain of a glycoprotein. It has the activity of cleaving and releasing, and transferring sugar chains. This enzyme has wide cleavage activity and transglycosylation activity not only for high mannose type sugar chains but also for complex type sugar chains. Therefore, various sugar chains can be cleaved, and the cleaved sugar chain can be transferred to a recombinant protein to which a monosaccharide such as GlcNAc or D-Glucose is added (hereinafter referred to as “GlcNAc-protein”). Further, the modified Endo-CC, which is an enzyme that has only the activity of transferring a sugar chain without cleaving and releasing the N-linked sugar chain of the glycoprotein of the present invention, has a free sugar chain. GlcNAc-protein can be transferred to produce glycoproteins. Sugar chains cleaved by Endo-CC can be transferred to GlcNAc-proteins by modified Endo-CC, and uniform sugar chains can be added to therapeutic protein drugs such as antibody drugs.

各種糖鎖の構造を示す図である。It is a figure which shows the structure of various sugar chains. 本発明のEndo-CCの基質特異性を示す図である(その1)。It is a figure which shows the substrate specificity of Endo-CC of this invention (the 1). 本発明のEndo-CCの基質特異性を示す図である(その2)。It is a figure which shows the substrate specificity of Endo-CC of this invention (the 2). SGP(シアリルグリコペプチド)、及びSGPが加水分解されて生じるSG(シアリル化糖鎖)の構造を示す図である。It is a figure which shows the structure of SGP (sialylglycopeptide) and SG (sialylated sugar chain) produced by hydrolyzing SGP. 本発明のEndo-CCの糖転移活性を示す図である。It is a figure which shows the transglycosylation activity of Endo-CC of this invention. 糖転移反応を示す図である。It is a figure which shows a transglycosylation reaction. 改変型Endo-CCの転移活性の検出結果を示す図である。It is a figure which shows the detection result of the transfer activity of modified Endo-CC.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

1.糖タンパク質が有するN-結合型糖鎖の根元部分に存在するジアセチルキトビオース部分(GlcNAc-GlcNAc)を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼ
本発明は糖タンパク質が有するN-結合型糖鎖(アスパラギン結合型糖鎖)の根元部分に存在するジアセチルキトビオース部分(GlcNAc-GlcNAc)を加水分解により切断し遊離させ、かつ糖鎖を転移させる活性を有するエンド-β-N-アセチルグルコサミニダーゼ(エンドグリコシダーゼ)である。N-結合型糖鎖は、タンパク質のアミノ酸配列のAsn-任意のアミノ酸-Ser/Thrで表される糖鎖結合配列のアスパラギン残基に結合する。
1. Endoglycosidase having activity to cleave and release diacetylchitobiose part (GlcNAc-GlcNAc) present in the root part of N-linked sugar chain of glycoprotein and transfer sugar chain. Endo-β, which has the activity of cleaving and releasing the diacetylchitobiose moiety (GlcNAc-GlcNAc) present in the root of the N-linked sugar chain (asparagine-linked sugar chain) by hydrolysis. -N-acetylglucosaminidase (endoglycosidase). The N-linked sugar chain binds to an asparagine residue of the sugar chain binding sequence represented by Asn-any amino acid-Ser / Thr in the amino acid sequence of the protein.

本発明のエンドグリコシダーゼは、真正担子菌網ハラタケ目ヒトヨタケ科に属するコプリナス・シネレウス(Coprinus cinereus;ネナガヒトヨタケ)由来であり、コプリナス・シネレウスから単離することができる。   The endoglycosidase of the present invention is derived from Coprinus cinereus (Nenagahi Toyotake), which belongs to the genus Basidiomycetes Agaricidae, and can be isolated from Coprinus cinereus.

本発明のエンドグリコシダーゼをコードするDNAの塩基配列を配列番号1に示す。また、本発明の酵素のアミノ酸配列を配列番号2に示す。   SEQ ID NO: 1 shows the base sequence of DNA encoding the endoglycosidase of the present invention. The amino acid sequence of the enzyme of the present invention is shown in SEQ ID NO: 2.

本発明の糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼをEndo-CCと呼ぶ。   An endoglycosidase having an activity of cleaving and releasing an N-linked sugar chain of the glycoprotein of the present invention and transferring the sugar chain is referred to as Endo-CC.

本発明の酵素は、そのアミノ酸配列からなるタンパク質がN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有する限り、当該アミノ酸配列において少なくとも1個、好ましくは1若しくは数個のアミノ酸に欠失、置換、付加等の変異が生じてもよい。   The enzyme of the present invention has at least one, preferably one or several amino acids in the amino acid sequence as long as the protein comprising the amino acid sequence has the activity to cleave and release N-linked sugar chains and transfer sugar chains. Mutations such as deletion, substitution and addition may occur in the amino acids.

例えば、配列番号2で表わされるアミノ酸配列の少なくとも1個、好ましくは1又は数個(例えば1〜10個、さらに好ましくは1〜5個、特に好ましくは1若しくは2個)のアミノ酸が欠失してもよく、配列番号2で表わされるアミノ酸配列に少なくとも1個、好ましくは1又は数個(例えば1〜9個、さらに好ましくは1〜5個、特に好ましくは1若しくは2個)のアミノ酸が付加してもよく、あるいは、配列番号2で表わされるアミノ酸配列の少なくとも1個、好ましくは1又は数個(例えば1〜9個、さらに好ましくは1〜5個、特に好ましくは1若しくは2個)のアミノ酸が他のアミノ酸に置換してもよい。   For example, at least one, preferably one or several (for example, 1 to 10, more preferably 1 to 5, particularly preferably 1 or 2) amino acids of the amino acid sequence represented by SEQ ID NO: 2 have been deleted. At least 1, preferably 1 or several (eg, 1 to 9, more preferably 1 to 5, particularly preferably 1 or 2) amino acids are added to the amino acid sequence represented by SEQ ID NO: 2. Alternatively, at least 1, preferably 1 or several (for example, 1 to 9, more preferably 1 to 5, particularly preferably 1 or 2) of the amino acid sequence represented by SEQ ID NO: 2. An amino acid may be substituted with another amino acid.

このような配列番号2のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列として、配列番号2のアミノ酸配列と、BLAST(Basic Local Alignment Search Tool at the National Center for Biological Information(米国国立生物学情報センターの基本ローカルアラインメント検索ツール))等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上の配列同一性を有しているものが挙げられる。   As an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 2, the amino acid sequence of SEQ ID NO: 2 and the BLAST (Basic Local Alignment Search Tool at the National Center for Biological) Information (the US National Biological Information Center Basic Local Alignment Search Tool)) etc. (eg default or default parameters), at least 85% or more, preferably 90% or more, more preferably 95 %, Particularly preferably 97% or more of sequence identity.

このような配列番号2のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有するタンパク質は配列番号2のアミノ酸配列を有するタンパク質と実質的に同一である。   A protein having an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 2 is substantially the same as a protein having the amino acid sequence of SEQ ID NO: 2.

また、配列番号1に表される塩基配列からなるDNAと相補的な配列からなるDNAと下記のストリンジェントな条件下でハイブリダイズすることができるDNAであってN-結合型糖鎖を切断し、糖鎖を遊離させ、かつ糖鎖を転移させる活性を有するタンパク質をコードするDNAも本発明のエンドグリコシダーゼをコードするDNAに含まれる。すなわち、DNAを固定したフィルターを用いて、0.7〜1.0MのNaCl存在下、68℃でハイブリダイゼーションを行った後、0.1〜2倍濃度のSSC溶液(1倍濃度のSSCとは150mM NaCl、15mM クエン酸ナトリウムからなる)を用い、68℃で洗浄することにより同定することができる条件をいう。あるいは、サザンブロッティング法によりニトロセルロース膜上にDNAを転写、固定後、ハイブリダイゼーション緩衝液〔50% フォルムアミド、4×SSC、50mM HEPES(pH7.0)、10×デンハルツ(Denhardt, s)溶液、100μg/mlサケ精子DNA〕中で42℃で一晩反応させることによりハイブリッドを形成することができるDNAである。 Further, it is a DNA that can hybridize with a DNA comprising a nucleotide sequence represented by SEQ ID NO: 1 and a complementary sequence under the following stringent conditions, and cleaves an N-linked sugar chain. DNA encoding a protein having an activity of releasing a sugar chain and transferring the sugar chain is also included in the DNA encoding the endoglycosidase of the present invention. Specifically, hybridization was performed at 68 ° C. in the presence of 0.7 to 1.0 M NaCl using a filter on which DNA was immobilized, and then a 0.1 to 2 fold concentration of SSC solution (1 fold concentration of SSC is 150 mM NaCl, 15 mM) This is a condition that can be identified by washing at 68 ° C. using sodium citrate. Alternatively, after transferring and immobilizing DNA on a nitrocellulose membrane by the Southern blotting method, hybridization buffer [50% formamide, 4 × SSC, 50 mM HEPES (pH 7.0), 10 × Denhardt , s) solution, 100 μg / ml salmon sperm DNA], which can form a hybrid by reacting overnight at 42 ° C.

また、配列番号1に表される塩基配列からなるDNAとBLAST(Basic Local Alignment Search Tool at the National Center for Biological Information(米国国立生物学情報センターの基本ローカルアラインメント検索ツール))等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上の配列同一性を有しているDNAであって、N-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するタンパク質をコードするDNAも本発明のエンドグリコシダーゼをコードするDNAに包含される。   In addition, DNA consisting of the base sequence represented by SEQ ID NO: 1 and BLAST (Basic Local Alignment Search Tool at the National Center for Biological Information) etc. DNA having a sequence identity of at least 85% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more when calculated using the default parameters) DNA encoding a protein having an activity of cleaving and releasing an N-linked sugar chain and transferring the sugar chain is also included in the DNA encoding the endoglycosidase of the present invention.

さらに、上記DNAに対するRNA、又は該RNAとストリンジェントな条件下でハイブリダイズすることができるRNAであってN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するタンパク質をコードするRNAも本発明に含まれる。   Furthermore, an RNA for the above DNA, or an RNA that can hybridize with the RNA under stringent conditions, is a protein having an activity of cleaving and releasing an N-linked sugar chain and transferring the sugar chain. Encoding RNAs are also included in the present invention.

本発明の糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼが、切断し転移させ得る糖鎖として、ジアセチルキトビオース(GlcNAc-GlcNAc)にマンノース(Man)のオリゴマーが結合した構造を有する高マンノース型糖鎖、ジアセチルキトビオースにMan並びにGlcNAc、ガラクトース(Gal)、シアル酸(Neu5Ac)の少なくとも1つが結合した複合型糖鎖、ジアセチルキトビオースに高マンノース型と複合型が混成した糖鎖構造を有する混成型糖鎖がある。これらの糖鎖の構造を図1に示す。高マンノース型糖鎖として、例えば、それぞれ、3個、5個、6個、8個及び9個のマンノースが結合したMan3型、Man5型、Man6型、Man8型及びMan9型と呼ばれる糖鎖がある。また、複合型糖鎖として、例えば、図1に構造を示す、3本鎖型、4本鎖型、Asialo2本鎖型、Agalacto2本鎖型、Bisecting2本鎖型、Sialo2本鎖型と呼ばれる糖鎖がある。   An endoglycosidase having an activity of cleaving and releasing an N-linked sugar chain of the glycoprotein of the present invention and transferring the sugar chain is a diacetylchitobiose (GlcNAc-GlcNAc) as a sugar chain that can be cleaved and transferred. A high mannose sugar chain having a structure in which an oligomer of mannose (Man) is bound to disaccharide, diacetylchitobiose, a complex sugar chain in which at least one of Man and GlcNAc, galactose (Gal), sialic acid (Neu5Ac) is bound, diacetyl There is a hybrid sugar chain having a sugar chain structure in which high mannose type and complex type are mixed with chitobiose. The structures of these sugar chains are shown in FIG. Examples of the high mannose type sugar chain include sugar chains called Man3 type, Man5 type, Man6 type, Man8 type and Man9 type in which 3, 5, 6, 8, and 9 mannoses are bound, respectively. . In addition, as a complex type sugar chain, for example, a sugar chain having a structure shown in FIG. There is.

本発明の糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼは、糖鎖の根元に存在するジアセチルキトビオース間で糖鎖を切断する。本発明の酵素は、高マンノース型糖鎖、混成型糖鎖、複合型糖鎖のいずれにも反応する。例えば、図1に示す糖鎖のうち、4本鎖型、Bisecting2本鎖型の糖鎖は切断しないが、複合型糖鎖を含む他の糖鎖、Man3型、Man5型、Man6型、Man8型、Man9型、Asialo2本鎖型、Sialo2本鎖型、Agalacto2本鎖型を切断する。3本鎖型糖鎖は、僅かに切断する。   The endoglycosidase having the activity of cleaving and releasing the N-linked sugar chain of the glycoprotein of the present invention and transferring the sugar chain cleaves the sugar chain between diacetylchitobiose present at the root of the sugar chain. . The enzyme of the present invention reacts with any of a high mannose sugar chain, a hybrid sugar chain, and a complex sugar chain. For example, among the sugar chains shown in FIG. 1, the 4-chain type and Bisecting double-chain type sugar chains are not cleaved, but other sugar chains including complex type sugar chains, Man3 type, Man5 type, Man6 type, Man8 type. , Man9 type, Asialo double chain type, Sialo double chain type, Agalacto double chain type. Three-chain sugar chains are slightly cleaved.

従来知られているエンド-β-N-アセチルグルコサミニダーゼ活性を有するエンドグリコシダーゼ酵素として、Endo A(Takegawa K. et al. Appl. Environ. Microbiol. 55, 3107-3112 (1989))、Endo F(Takegawa K. et al., Eur. J. Biochem, 202, 175-180 (1991))、Endo H (Terentino A.L. et al. J. Biol. Chem. 274, 811 (1974)、Endo M(Kadowaki K. et al., Agric, Biol. Chem. 1988, 54, 97)等が挙げられる。これらの酵素は、特定の構造を有する糖鎖にのみ作用するか、あるいは特定の構造を有する糖鎖に対する作用が強い。本発明の酵素は、Man3型、Man5型、Man6型、Man8型、Man9型で表される高マンノース型糖鎖に広く、かつ強く作用し、さらに、Asialo2本鎖型、Sialo2本鎖型、Agalacto2本鎖型で表される複合型糖鎖にも反応し加水分解により切断する。図2に本発明のEndo-CCと上記のEnd-Mの基質特異性の差異を示す。図2の結果は、各種糖鎖を結合させたピリジルアミノ化糖鎖を用いて基質特異性を検討した結果である。図2に示すように、本発明のEndo-CCは、Man3型、Man5型、Man6型、Asialo2本鎖型、Sialo2本鎖型及びAgalacto2本鎖型に対する反応性(加水分解活性)がEndo-Mより大きい。特に、複合型糖鎖であるAsialo2本鎖型、Sialo2本鎖型及びAgalacto2本鎖型に対する反応性、特にAgalacto2本鎖型に対する反応性が大きいのが特徴である。このため、本発明のEnodo-CCは、複合型糖鎖を効果的に切断し、転移させることができる。また、Man3型、Man5型、Man6型及びMan8型に対する反応性の糖鎖間の差がEndo-Mでは3倍以上あるのに対し、本発明のEndo-CCでは、2倍以内である。すなわち、本発明のEndo-CCは広範な糖鎖に対して強い切断、転移作用を有する。また、Man8型(Man8-GlcNAc2)に対する反応性を100とした場合に、本発明のEndo-CCのMan3型、Man5型、Man6型に対する反応性は、80〜90以上150〜160以下であるのに対して、End-Mでは、10〜20以上70〜80以下である。また、Man8型に対する反応性を100とした場合に、本発明のEndo-CCのMan3型、Man5型、Man6型、Man9型に対する反応性は、40〜50以上150〜160以下であるのに対して、End-Mでは、10〜20以上70〜80以下である。また、Asialo2本鎖型、Sialo3本鎖型、Agalact2本鎖型に対する反応性もEndo-Mよりも高い。例えば、本発明のEndo-CCのAgalacto2本鎖型に対する反応性は、Man8型(Man8-GlcNAc2)に対する反応性を100とした場合に、10以上、好ましくは15以上、さらに好ましくは20以上であるのに対して、End-Mでは、5以下である。このことは、本発明のEndo-CCがEnd-Mよりも広い基質特異性を有しており、広く多種類の糖鎖に対して糖鎖切断及び糖鎖転移を行うことを示している。   Endo A (Takegawa K. et al. Appl. Environ. Microbiol. 55, 3107-3112 (1989)), Endo F (Takegawa) have been known as endoglycosidase enzymes having endo-β-N-acetylglucosaminidase activity. K. et al., Eur. J. Biochem, 202, 175-180 (1991)), Endo H (Terentino AL et al. J. Biol. Chem. 274, 811 (1974), Endo M (Kadowaki K. et al., Agric, Biol. Chem. 1988, 54, 97) etc. These enzymes act only on sugar chains having a specific structure or have a strong effect on sugar chains having a specific structure. The enzyme of the present invention acts broadly and strongly on high mannose type sugar chains represented by Man3 type, Man5 type, Man6 type, Man8 type, Man9 type, and further, Asialo double chain type, Sialo double chain type, It also reacts with the complex type sugar chain represented by Agalacto double chain type and cleaves by hydrolysis, Fig. 2 shows the difference in substrate specificity between Endo-CC of the present invention and the above-mentioned End-M. The results are the results of examining the substrate specificity using pyridylaminated sugar chains to which various sugar chains are bound, as shown in Fig. 2. Endo-CC of the present invention is a Man3 type, Man5 type, Man6 type. , Asialo double chain type, Sialo double chain type, and Agalacto double chain type have higher reactivity (hydrolysis activity) than Endo-M, especially complex type sugar chains Asialo double chain type, Sialo double chain type and Agalacto double chain Since the reactivity to the chain type, particularly the reactivity to the Agalacto double chain type, is large, the Enodo-CC of the present invention can effectively cleave and transfer complex type sugar chains. The difference between sugar chains reactive to Man3 type, Man5 type, Man6 type and Man8 type is 3 times or more in Endo-M, but within 2 times in Endo-CC of the present invention. The Endo-CC of the present invention has a strong cleavage and transfer action on a wide range of sugar chains, and also has a Man8 type (Man8-GlcNAc2). When the reactivity with respect to 100 is set to 100, the reactivity of the Endo-CC of the present invention to Man3 type, Man5 type, Man6 type is 80 to 90 or more and 150 to 160 or less, whereas in End-M, It is 10-20 or more and 70-80 or less. In addition, when the reactivity to Man8 type is 100, the reactivity of the Endo-CC of the present invention to Man3 type, Man5 type, Man6 type, Man9 type is 40-50 or more and 150-160 or less. In End-M, it is 10-20 or more and 70-80 or less. Moreover, the reactivity with respect to Asialo double-stranded type, Sialo triple-stranded type, and Agalact double-stranded type is higher than Endo-M. For example, the reactivity of the Endo-CC of the present invention to the Agalacto duplex type is 10 or more, preferably 15 or more, more preferably 20 or more, when the reactivity to Man8 type (Man8-GlcNAc2) is 100. On the other hand, in End-M, it is 5 or less. This indicates that the Endo-CC of the present invention has a broader substrate specificity than End-M and performs sugar chain cleavage and sugar chain transfer on a wide variety of sugar chains.

2.糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素
さらに、本発明は配列番号2に表されるアミノ酸配列の180番目のアスパラギン酸(N)をグルタミン(Q)に置換したアミノ酸配列を有し、糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素を含む。
2. An enzyme having only the activity of transferring a sugar chain without cleaving and releasing the N-linked sugar chain of the glycoprotein. The present invention further relates to the 180th asparagine of the amino acid sequence represented by SEQ ID NO: 2. An enzyme having an amino acid sequence in which an acid (N) is substituted with glutamine (Q), has no activity to cleave and release N-linked sugar chains of glycoproteins, and has only an activity to transfer sugar chains Including.

本発明の糖鎖を転移させる活性のみを有する酵素のアミノ酸配列を配列番号4に、該酵素をコードするDNAの塩基配列を配列番号3に示す。配列番号3に示す塩基配列は、配列番号1に示すEndo-CCをコードする塩基配列において、538番目から540番目のAACがCAAに変異している。   The amino acid sequence of the enzyme having only the activity of transferring the sugar chain of the present invention is shown in SEQ ID NO: 4, and the base sequence of the DNA encoding the enzyme is shown in SEQ ID NO: 3. The base sequence shown in SEQ ID NO: 3 is a base sequence encoding Endo-CC shown in SEQ ID NO: 1, and the 538th to 540th AAC is mutated to CAA.

本発明のN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素は、そのアミノ酸配列からなるタンパク質が糖鎖を転移させる活性を有する限り、当該アミノ酸配列の180番目のグルタミン(Q)を除くアミノ酸において少なくとも1個、好ましくは1若しくは数個のアミノ酸に欠失、置換、付加等の変異が生じてもよい。   The enzyme having only the activity of transferring a sugar chain without cleaving and releasing the N-linked sugar chain of the present invention, as long as the protein comprising the amino acid sequence has the activity of transferring the sugar chain, In the amino acid except amino acid sequence 180th glutamine (Q), mutation such as deletion, substitution, addition, etc. may occur in at least 1, preferably 1 or several amino acids.

例えば、配列番号4で表わされるアミノ酸配列の180番目のグルタミン(Q)を除くアミノ酸の少なくとも1個、好ましくは1又は数個(例えば1〜10個、さらに好ましくは1〜5個、特に好ましくは1若しくは2個)のアミノ酸が欠失してもよく、配列番号4で表わされるアミノ酸配列の180番目のグルタミン(Q)を除くアミノ酸の少なくとも1個、好ましくは1又は数個(例えば1〜10個、さらに好ましくは1〜5個、特に好ましくは1若しくは2個)のアミノ酸が付加してもよく、あるいは、配列番号4で表わされるアミノ酸配列の180番目のグルタミン(Q)を除くアミノ酸の少なくとも1個、好ましくは1又は数個(例えば1〜10個、さらに好ましくは1〜5個、特に好ましくは1若しくは2個)のアミノ酸が他のアミノ酸に置換してもよい。   For example, at least one, preferably 1 or several (for example, 1 to 10, more preferably 1 to 5, more preferably 1 to 5) of amino acids other than the 180th glutamine (Q) in the amino acid sequence represented by SEQ ID NO: 4 1 or 2 amino acids may be deleted, and at least one, preferably 1 or several (for example, 1 to 10) of amino acids except the 180th glutamine (Q) in the amino acid sequence represented by SEQ ID NO: 4 , More preferably 1 to 5, particularly preferably 1 or 2, amino acids may be added, or at least amino acids other than the 180th glutamine (Q) of the amino acid sequence represented by SEQ ID NO: 4 One, preferably 1 or several (for example, 1 to 10, more preferably 1 to 5, particularly preferably 1 or 2) amino acids may be substituted with other amino acids.

このような配列番号4のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列として、配列番号4のアミノ酸配列と、BLAST(Basic Local Alignment Search Tool at the National Center for Biological Information(米国国立生物学情報センターの基本ローカルアラインメント検索ツール))等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上の配列同一性を有しているものが挙げられる。   As an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 4, the amino acid sequence of SEQ ID NO: 4 and the BLAST (Basic Local Alignment Search Tool at the National Center for Biological) Information (the US National Biological Information Center Basic Local Alignment Search Tool)) etc. (eg default or default parameters), at least 85% or more, preferably 90% or more, more preferably 95 %, Particularly preferably 97% or more of sequence identity.

このような配列番号4のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有するタンパク質は配列番号2のアミノ酸配列を有するタンパク質と実質的に同一である。   A protein having an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 4 is substantially the same as a protein having the amino acid sequence of SEQ ID NO: 2.

また、配列番号3に表される塩基配列からなるDNAと相補的な配列からなるDNAと下記のストリンジェントな条件下でハイブリダイズすることができるDNAであって、538番目から540番目の塩基配列がCAAであり、N-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有するタンパク質をコードするDNAも本発明の酵素をコードするDNAに含まれる。すなわち、DNAを固定したフィルターを用いて、0.7〜1.0MのNaCl存在下、68℃でハイブリダイゼーションを行った後、0.1〜2倍濃度のSSC溶液(1倍濃度のSSCとは150mM NaCl、15mM クエン酸ナトリウムからなる)を用い、68℃で洗浄することにより同定することができる条件をいう。あるいは、サザンブロッティング法によりニトロセルロース膜上にDNAを転写、固定後、ハイブリダイゼーション緩衝液〔50% フォルムアミド、4×SSC、50mM HEPES(pH7.0)、10×デンハルツ(Denhardt, s)溶液、100μg/mlサケ精子DNA〕中で42℃で一晩反応させることによりハイブリッドを形成することができるDNAである。 A DNA that can hybridize under the following stringent conditions with a DNA consisting of a sequence complementary to the DNA consisting of the base sequence shown in SEQ ID NO: 3, wherein the base sequence is from the 538th to the 540th base sequence. Is a CAA, and does not have the activity of cleaving and releasing an N-linked sugar chain, and the DNA encoding a protein having only the activity of transferring a sugar chain is also included in the DNA encoding the enzyme of the present invention. Specifically, hybridization was performed at 68 ° C. in the presence of 0.7 to 1.0 M NaCl using a filter on which DNA was immobilized, and then a 0.1 to 2 fold concentration of SSC solution (1 fold concentration of SSC is 150 mM NaCl, 15 mM) This is a condition that can be identified by washing at 68 ° C. using sodium citrate. Alternatively, after transferring and immobilizing DNA on a nitrocellulose membrane by the Southern blotting method, hybridization buffer [50% formamide, 4 × SSC, 50 mM HEPES (pH 7.0), 10 × Denhardt , s) solution, 100 μg / ml salmon sperm DNA], which can form a hybrid by reacting overnight at 42 ° C.

また、配列番号3に表される塩基配列からなるDNAとBLAST(Basic Local Alignment Search Tool at the National Center for Biological Information(米国国立生物学情報センターの基本ローカルアラインメント検索ツール))等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上の配列同一性を有しており、538番目から540番目の塩基配列がCAAであるDNAであって、N-結合型糖鎖を切断し、糖鎖を遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素を有するタンパク質をコードするDNAも本発明の酵素をコードするDNAに包含される。   Also, DNA consisting of the base sequence represented by SEQ ID NO: 3 and BLAST (Basic Local Alignment Search Tool at the National Center for Biological Information) etc. At least 85%, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more, from the 538th position. A DNA having the 540th base sequence of CAA, which encodes a protein having an enzyme that has no activity to cleave N-linked sugar chains and release sugar chains, but only to transfer sugar chains Such DNA is also included in the DNA encoding the enzyme of the present invention.

さらに、上記DNAに対するRNA、又は該RNAとストリンジェントな条件下でハイブリダイズすることができるRNAであってN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素を有するタンパク質をコードするRNAも本発明に含まれる。   Furthermore, RNA for the above DNA, or RNA that can hybridize with the RNA under stringent conditions, has no activity to cleave and release N-linked sugar chains, and activity to transfer sugar chains RNA that encodes a protein having an enzyme having only the phenotype is also included in the present invention.

本発明の糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素を改変型Endo-CCと呼ぶ。改変型Endo-CCは、野生型のEndo-CCに対して、少なくとも5倍、好ましくは約7倍の糖転移活性を有している。   An enzyme that does not have the activity of cleaving and releasing the N-linked sugar chain of the glycoprotein of the present invention and has only the activity of transferring the sugar chain is referred to as modified Endo-CC. The modified Endo-CC has a transglycosylation activity of at least 5 times, preferably about 7 times that of wild-type Endo-CC.

改変型Endo-CCは、Endo-CCが切断し、転移させ得る糖鎖の転移を触媒することができる。改変型Endo-CCは、上記のMan3型、Man5型、Man6型、Man8型、Man9型、Asialo2本鎖型、Sialo2本鎖型、Agalacto2本鎖型等の糖鎖の転移活性を有する。   Modified Endo-CC can catalyze the transfer of sugar chains that can be cleaved and transferred by Endo-CC. The modified Endo-CC has sugar chain transfer activity such as the above-mentioned Man3 type, Man5 type, Man6 type, Man8 type, Man9 type, Asialo double chain type, Sialo double chain type, and Agalacto double chain type.

糖転移は、本発明のEndo-CCを用いて切断した糖鎖であって、還元末端にGlcNAcを有する糖鎖をオキサゾリン化剤を用いて、オキサゾリン化糖鎖とし、オキサゾリン化糖鎖を基質として、本発明の改変型End-CCにより糖鎖をGlcNAc-タンパク質に転移させることにより行えばよい。オキサゾリン化剤として、CDMBI(2-Chloro-1,3-dimethyl-1H-benzimidazol-3-ium chloride)、DMC(2-Chloro-1,3-dimethyl-imidazolinium chloride)等が挙げられる。   Glycotransfer is a sugar chain cleaved using Endo-CC of the present invention, and a sugar chain having GlcNAc at the reducing end is converted to an oxazolineized sugar chain using an oxazolinating agent, and the oxazolineated sugar chain is used as a substrate. The sugar chain may be transferred to GlcNAc-protein by the modified End-CC of the present invention. Examples of the oxazoline agent include CDMBI (2-Chloro-1,3-dimethyl-1H-benzimidazol-3-ium chloride), DMC (2-Chloro-1,3-dimethyl-imidazolinium chloride) and the like.

3.本発明の酵素の産生
本発明の糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼであるEndo-CCは、コプリナス・シネレウスを培養し、製造することができ、コプリナス・シネレウスの培養液等の培養物から公知の方法を用いて単離することができる。また、本発明の糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼは、該酵素をコードするDNAを宿主微生物に導入し、該微生物を培養することにより組換え酵素として製造することができる。例えば、適当なベクターに本発明のDNAを連結(挿入)することにより発現ベクターを作製し、該発現ベクターを宿主微生物に導入し宿主微生物を形質転換すればよい。
3. Production of the enzyme of the present invention Endo-CC, an endoglycosidase having an activity of cleaving and releasing the N-linked sugar chain of the glycoprotein of the present invention and transferring the sugar chain, cultivates Coprinus cinereus, It can be produced and can be isolated from a culture such as a culture solution of Coprinus cinereus using a known method. An endoglycosidase having an activity of cleaving and releasing an N-linked sugar chain of the glycoprotein of the present invention and transferring the sugar chain introduces the DNA encoding the enzyme into a host microorganism, It can be produced as a recombinant enzyme by culturing. For example, an expression vector may be prepared by ligating (inserting) the DNA of the present invention into an appropriate vector, the expression vector is introduced into the host microorganism, and the host microorganism is transformed.

同様に、本発明の糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素である改変型Endo-CCは、該酵素をコードするDNAを宿主微生物に導入し、該微生物を培養することにより組換え酵素として製造することができる。例えば、適当なベクターに本発明のDNAを連結(挿入)することにより発現ベクターを作製し、該発現ベクターを宿主微生物に導入し宿主微生物を形質転換すればよい。   Similarly, the modified Endo-CC, which is an enzyme that does not have the activity of cleaving and releasing the N-linked sugar chain of the glycoprotein of the present invention and has only the activity of transferring the sugar chain, encodes the enzyme. DNA can be produced as a recombinant enzyme by introducing the DNA into a host microorganism and culturing the microorganism. For example, an expression vector may be prepared by ligating (inserting) the DNA of the present invention into an appropriate vector, the expression vector is introduced into the host microorganism, and the host microorganism is transformed.

本発明のDNAを挿入するためのベクターは、大腸菌等の細菌、酵母又は動物細胞等の宿主細胞中で複製可能なものであれば特に限定されず、例えば、プラスミドDNA、ファージDNA等が挙げられる。発現ベクターの構築に用いられるベクターDNAは、広く普及した入手の容易なものが用いられる。例えば、pETベクター、pQEベクター、pColdベクター、pUC19ベクター等が挙げられる。   The vector for inserting the DNA of the present invention is not particularly limited as long as it can replicate in a host cell such as a bacterium such as Escherichia coli, a yeast, or an animal cell, and examples thereof include plasmid DNA and phage DNA. . As the vector DNA used for the construction of the expression vector, a widely spread and easily available DNA is used. For example, pET vector, pQE vector, pCold vector, pUC19 vector and the like can be mentioned.

本発明の発現ベクターの構築方法は、特に限定されるものではなく常法により行うことができる。
本発明の発現ベクターで形質転換された宿主細胞は、本発明のDNAを発現し得るものであれば特に制限されないが、例えば、細菌としては大腸菌、枯草菌等が、酵母としてはサッカロマイセス・セレビィシエ等が、動物細胞としては、チャイニーズ・ハムスター・卵巣(CHO)細胞、サルCOS細胞、マウス線維芽細胞等が挙げられる。
The method for constructing the expression vector of the present invention is not particularly limited, and can be performed by a conventional method.
The host cell transformed with the expression vector of the present invention is not particularly limited as long as it can express the DNA of the present invention. For example, Escherichia coli and Bacillus subtilis are used as bacteria, and Saccharomyces cerevisiae and the like are used as yeasts. However, examples of animal cells include Chinese hamster ovary (CHO) cells, monkey COS cells, mouse fibroblasts, and the like.

この際、好ましくは大腸菌を用いて生産する。従来知られていたエンド-β-N-アセチルグルコサミニダーゼは大腸菌を用いて組換えタンパク質を作製しようとする場合、不溶性になってしまい、活性を有する酵素を大腸菌を用いて効率的に産生できないという問題があったが(Fujita et al., Archives of Biochemistry and Biophsics 432(2004)41-49)、本発明の酵素は、大腸菌を用いて生産しても上記のような問題は生じず効率的にリコンビナント酵素(エンドグリコシダーゼ)を産生することができる。   At this time, it is preferably produced using E. coli. The conventionally known endo-β-N-acetylglucosaminidase becomes insoluble when trying to produce recombinant proteins using E. coli, and the active enzyme cannot be efficiently produced using E. coli. (Fujita et al., Archives of Biochemistry and Biophsics 432 (2004) 41-49), but the enzyme of the present invention does not cause the above-mentioned problems even if it is produced using E. coli. An enzyme (endoglycosidase) can be produced.

本発明は、上記DNAを含む宿主細胞をDNAの発現可能な条件下で培養して、糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼを産生させ、該酵素を回収することを含む糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼの製造方法を包含する。   The present invention provides an endoglycosidase having an activity of culturing host cells containing the above DNA under conditions capable of expressing the DNA, cleaving and releasing the N-linked sugar chain of the glycoprotein, and transferring the sugar chain. And a method for producing an endoglycosidase having an activity of cleaving and releasing an N-linked sugar chain possessed by the glycoprotein and transferring the sugar chain.

さらに、本発明は、上記DNAを含む宿主細胞をDNAの発現可能な条件下で培養して、糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素を産生させ、該酵素を回収することを含む酵素の製造方法を包含する。   Furthermore, the present invention provides a method for cultivating a host cell containing the above DNA under conditions capable of expressing the DNA, and has no activity to cleave and release the N-linked sugar chain possessed by the glycoprotein. A method for producing an enzyme, which comprises producing an enzyme having only the activity to be recovered and recovering the enzyme.

宿主細胞により産生された酵素は、例えばゲル濾過クロマトグラフィー、限外濾過、イオン交換クロマトグラフィー、アフィニティクロマトグラフィー、疎水クロマトグラフィー、クロマトフォカシング、等電点電気泳動法、ゲル電気泳動法等の公知の精製法を単独又は組み合わせて精製することができる。   Enzymes produced by host cells are known, for example, gel filtration chromatography, ultrafiltration, ion exchange chromatography, affinity chromatography, hydrophobic chromatography, chromatofocusing, isoelectric focusing, gel electrophoresis, etc. These purification methods can be purified alone or in combination.

4.本発明の酵素の利用
本発明のエンドグリコシダーゼEndo-CCは、糖タンパク質のN-結合型糖鎖を切断し遊離させる活性を有する。例えば、均一な糖ペプチドや糖タンパク質に本発明のEndo-CCを作用させることにより、糖鎖が切断され、均一な遊離の糖鎖を得ることができる。
4). Use of the enzyme of the present invention The endoglycosidase Endo-CC of the present invention has an activity of cleaving and releasing an N-linked sugar chain of a glycoprotein. For example, by allowing the Endo-CC of the present invention to act on a uniform glycopeptide or glycoprotein, the sugar chain is cleaved and a uniform free sugar chain can be obtained.

得られた糖鎖をオキサゾリン化剤によりオキサゾリン化糖鎖とし、本発明の糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素である改変型Endo-CCにより、GlcNAc-タンパク質に転移させ、糖タンパク質を作製することができる。   The obtained sugar chain is converted into an oxazolineized sugar chain by an oxazolinating agent, and has no activity of cleaving and releasing the N-linked sugar chain of the glycoprotein of the present invention, and only having an activity of transferring the sugar chain The modified Endo-CC can be transferred to GlcNAc-protein to produce a glycoprotein.

本発明のEndo-CC及び改変型Endo-CCを用いることにより、GlcNAc-タンパク質に糖鎖を結合させ、均一な糖鎖を有する糖タンパク質を作製することができる。抗体医薬品等の糖タンパク質医薬品の活性や、体内動態において、糖鎖の存在が非常に重要な役割を果たしており、本発明のEndo-CC及び改変型Endo-CCを用いることにより、均一な抗体医薬品等の糖タンパク質医薬品を作製することができる。   By using Endo-CC and modified Endo-CC of the present invention, a glycoprotein having a uniform sugar chain can be produced by binding a sugar chain to GlcNAc-protein. The presence of sugar chains plays a very important role in the activity and pharmacokinetics of glycoprotein drugs such as antibody drugs. By using the Endo-CC and modified Endo-CC of the present invention, a uniform antibody drug Etc. can be produced.

本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   The present invention will be specifically described by the following examples, but the present invention is not limited to these examples.

実施例1 酵素発現ベクターの作成
遺伝子を単離したCoprinus cinerea (Coprinopsis cinerea)はATCC (American Type Culture Collection)から購入した(ATCC No. MYA-4618)。
Example 1 Preparation of Enzyme Expression Vector Coprinus cinerea (Coprinopsis cinerea) from which the gene was isolated was purchased from ATCC (American Type Culture Collection) (ATCC No. MYA-4618).

Coprinopsis cinerea をマツタケ培地(Ebios tablets 5g,Glucose 20g,total 1.0L)250ml液体培地で振盪培養した(25℃,100rpm,7day)。培養液をろ過して集菌して、菌体をメタルコーンと一緒にキャップ付き2mlマイクロチューブに入れ、-80℃で1時間凍結した。凍結したサンプルにRNAisoを1ml加え、安井機械製のMULTI-BEADS SHOCKERで破砕した(1500rpm,10sec)。破砕が終わったら機械から取り出し、室温で5分間インキュベートした。この間にメタルコーンを取り出しておいた。サンプルにクロロホルムを200μl加えて、30〜40回転倒混和し、その後遠心分離した(13200g,5min)。上清を別のチューブに移し、等量のイソプロパノールを加えて転倒混和し、その後遠心分離した(13200g,5min)。   Coprinopsis cinerea was shake-cultured in 250 ml liquid medium (25 ° C., 100 rpm, 7 days) in Matsutake medium (Ebios tablets 5 g, Glucose 20 g, total 1.0 L). The culture broth was collected by filtration, and the cells were placed in a 2 ml microtube with a cap together with a metal cone and frozen at -80 ° C. for 1 hour. 1 ml of RNAiso was added to the frozen sample and crushed with a MULTI-BEADS SHOCKER manufactured by Yasui Kikai (1500 rpm, 10 sec). When disruption was complete, it was removed from the machine and incubated at room temperature for 5 minutes. During this time, the metal cone was taken out. 200 μl of chloroform was added to the sample, mixed by inverting 30 to 40 times, and then centrifuged (13200 g, 5 min). The supernatant was transferred to another tube, an equal volume of isopropanol was added and mixed by inversion, and then centrifuged (13200 g, 5 min).

上清を取り除き、100%エタノールを100μl加えて再び遠心分離した(13200g,5min)。上清を取り除き、室温で沈殿を乾燥させた。乾燥したサンプルにDEPC処理した滅菌水を55μl加えてRNA溶液を得た。   The supernatant was removed, 100 μl of 100% ethanol was added, and the mixture was centrifuged again (13200 g, 5 min). The supernatant was removed and the precipitate was dried at room temperature. 55 μl of DEPC-treated sterilized water was added to the dried sample to obtain an RNA solution.

得られたRNA溶液をTOYOBO社製のReverTra Ace qPCR RT Master Mixを使って逆転写して、cDNAを作成した。   The resulting RNA solution was reverse-transcribed using ReverTra Ace qPCR RT Master Mix manufactured by TOYOBO to prepare cDNA.

反応条件:5×RT Master Mix 2μl,RNA template 1μg,Nuclease-free Water, Total 10μl
逆転写反応する前にRNA溶液のABS260の吸光度を測定し、RNAの濃度をあらかじめ求めておき、またRNA溶液を65℃で5分間インキュベートし、その後氷上で急冷するという操作を行った。逆転写反応は、37℃,15min;50℃,5min;98℃,5min;4℃,holdという順で温度インキュベートして行った。
Reaction conditions: 5 × RT Master Mix 2μl, RNA template 1μg, Nuclease-free Water, Total 10μl
Before the reverse transcription reaction, the absorbance of the RNA solution ABS260 was measured to determine the RNA concentration in advance, and the RNA solution was incubated at 65 ° C. for 5 minutes and then rapidly cooled on ice. The reverse transcription reaction was performed by incubation at 37 ° C., 15 min; 50 ° C., 5 min; 98 ° C., 5 min; 4 ° C., hold in this order.

得られたcDNAの中から今度はEndo-CC遺伝子を増幅させた。その際プライマーの設計としてN末端側にNdeサイトを、C末端側にXhoサイトがつくようにした。DNA polymeraseとしてタカラバイオ社製のPrimeSTAR HSを用いた。   The Endo-CC gene was then amplified from the obtained cDNA. At that time, the primer was designed to have an Nde site on the N-terminal side and an Xho site on the C-terminal side. PrimeSTAR HS manufactured by Takara Bio Inc. was used as the DNA polymerase.

反応は、98℃,10sec;61℃,15sec;72℃,3min(これを30サイクル);4℃,holdという順の温度でインキュベートし行った。   The reaction was carried out by incubating at a temperature of 98 ° C., 10 sec; 61 ° C., 15 sec; 72 ° C., 3 min (30 cycles of this);

また、pET-23bのベクターをマルチクローニングサイトのNdeサイトから始まってXhoサイトで終わるインバースPCRを行い、そのPCR産物を得た。このPCRもDNA polymeraseとしてタカラバイオ社製のPrimeSTAR HSを用いた。   In addition, inverse PCR was performed on the pET-23b vector starting from the Nde site of the multicloning site and ending at the Xho site, and the PCR product was obtained. This PCR also used PrimeSTAR HS manufactured by Takara Bio Inc. as a DNA polymerase.

反応は、98℃,10sec;50℃,15sec;72℃,7min(これを30サイクル);4℃,holdという順の温度でインキュベートし行った。   The reaction was carried out by incubating at a temperature of 98 ° C., 10 sec; 50 ° C., 15 sec; 72 ° C., 7 min (30 cycles of this);

最後に制限酵素サイトのついたEndo-CC遺伝子断片とインバースPCRによって得られたpET-23bベクターをClontech社製のIn-Fusion HD Enzyme Premixを使ってつなぎ合わせた。   Finally, the Endo-CC gene fragment with the restriction enzyme site and the pET-23b vector obtained by inverse PCR were joined together using Clontech's In-Fusion HD Enzyme Premix.

反応条件:Endo-CCの遺伝子のPCR産物 2μl,pET-23bのインバースPCR産物 1μl,In-Fusion Premix 0.5μl,ddw 1.5μl
50℃で15minインキュベート、反応終了後すぐに大腸菌XL1-Blueに形質転換して、大腸菌発現ベクターを得た。
Reaction conditions: Endo-CC gene PCR product 2 μl, pET-23b inverse PCR product 1 μl, In-Fusion Premix 0.5 μl, ddw 1.5 μl
After incubation at 50 ° C. for 15 minutes, E. coli XL1-Blue was transformed immediately after completion of the reaction to obtain an E. coli expression vector.

得られた大腸菌発現ベクターを大腸菌に導入し、大腸菌を培養し、酵素(Endo-CC)を製造した。   The obtained Escherichia coli expression vector was introduced into Escherichia coli, and Escherichia coli was cultured to produce an enzyme (Endo-CC).

実施例2 リコンビナント酵素の精製
5mlのMMI培地+Amp(アンピシリン)+Cm(クロラムフェニコル)培地に接種し、37℃で12時間培養した。この培養液を前培養液とした。次いで、250mlのLB培地+Amp+Cm液体培地にOD600=0.05となるように前培養液を接種し、15℃で48時間培養した。
Example 2 Purification of recombinant enzyme
5 ml of MMI medium + Amp (ampicillin) + Cm (chloramphenicol) medium was inoculated and cultured at 37 ° C. for 12 hours. This culture solution was used as a preculture solution. Next, 250 ml of LB medium + Amp + Cm liquid medium was inoculated with the preculture solution so that OD600 = 0.05, and cultured at 15 ° C. for 48 hours.

得られた培養液を6000rpmで7分間遠心して集菌し、上清を捨てて、破砕バッファー5ml加えて懸濁した。超音波破砕(output=5,Duty=70,10回×4セット)により破砕した溶液を15000rpmで10分間遠心し、上清を回収した。タンパク質溶液をHis-Trapカラムを用いて精製した。   The resulting culture was collected by centrifugation at 6000 rpm for 7 minutes, the supernatant was discarded, and 5 ml of disruption buffer was added to suspend. The solution crushed by ultrasonic crushing (output = 5, Duty = 70, 10 times × 4 sets) was centrifuged at 15000 rpm for 10 minutes, and the supernatant was collected. The protein solution was purified using a His-Trap column.

実施例3 基質特異性の検討
実施例2で作製したEndo-CCを用いて基質特異性を測定した。この際、比較のためにEndo-M(東京化成工業製品)を用いた。
Example 3 Examination of substrate specificity The substrate specificity was measured using the Endo-CC prepared in Example 2. At this time, Endo-M (Tokyo Chemical Industry Co., Ltd.) was used for comparison.

酵素反応は、1pM PA化(ピリジルアミノ化)糖鎖(増田化学社製)2μl、1Mリン酸バッファーpH=6.0μl、超純水5μlを混合した溶液に、30μg/mlの酵素2μlを加えて37℃で15分反応を行った。PA化糖鎖の糖鎖は、Man3型、Man5型、Man6型、Man8型、Man9型、Asialo2本鎖型、Sialo2本鎖型、3本鎖型、Agalacto2本鎖型、4本鎖型及びBisecring2本鎖型であった。これらの糖鎖の構造を図1に示す。反応後、100℃で3分間加熱して酵素を失活させ反応を停止した。得られた反応液についてHPLCにより酵素生成物(PA-GlcNAc)の定量を行い、各ピリジルアミノ化糖鎖の分解量を測定した。HPLCの条件はGLサイエンス社のHPLC装置により、カラムはTOSOH社製のTSK-GEL Amide-80を用い、流速は0.5 ml/minで100%アセトニトリルと 50mMのギ酸バッファー(pH4.5)を用いてグラジエントにより溶出した。蛍光はexcitation 320 nm, emission 400 nmの蛍光検出器により解析を行った。   The enzyme reaction was performed by adding 2 μl of 30 μg / ml enzyme to a solution in which 2 μl of 1 pM PA (pyridylaminated) sugar chain (Masuda Chemical Co., Ltd.), 1 M phosphate buffer pH = 6.0 μl, and 5 μl of ultrapure water were added. The reaction was carried out at 15 ° C. for 15 minutes. The sugar chains of PA sugar chains are Man3 type, Man5 type, Man6 type, Man8 type, Man9 type, Asialo double chain type, Sialo double chain type, triple chain type, Agalacto double chain type, quadruple chain type and Bisecting 2 It was a single chain type. The structures of these sugar chains are shown in FIG. After the reaction, the reaction was stopped by heating at 100 ° C. for 3 minutes to deactivate the enzyme. The obtained reaction solution was quantified for the enzyme product (PA-GlcNAc) by HPLC, and the degradation amount of each pyridylaminated sugar chain was measured. The HPLC conditions were the HPLC system of GL Science, the column was TOS-GEL Amide-80 manufactured by TOSOH, the flow rate was 0.5 ml / min, and 100% acetonitrile and 50 mM formate buffer (pH 4.5) were used. Elution by gradient. The fluorescence was analyzed using a fluorescence detector with excitation 320 nm and emission 400 nm.

図2−1及び2−2に、Man8型が結合したピリジルアミノ化糖鎖であるMan8-GlcNAc2-PAが分解された量を100としたときの、各糖鎖が結合したピリジルアミノ化糖鎖の分解量を示した。図2−1においては棒グラフで示し、図2−2においては数値(相対値)で示す。   Figures 2-1 and 2-2 show the degradation of pyridylaminated sugar chains to which each sugar chain is bound, assuming that the amount of Man8-GlcNAc2-PA that is a pyridylaminated sugar chain to which Man8 type is bound is 100 Amount indicated. In FIG. 2A, it is represented by a bar graph, and in FIG. 2B, it is represented by a numerical value (relative value).

図2−1及び2−2に示すように、Endo-Mは特定の少数の糖鎖に対して強い加水分解活性を示す一方で他の糖鎖に対する加水分解活性は低かった。Endo-CCも糖鎖により加水分解活性は異なっていたが、Endo-Mよりもより多くの糖鎖に高い加水分解活性を有しており、基質特異性がEnd-Mよりも広かった。   As shown in FIGS. 2-1 and 2-2, Endo-M showed a strong hydrolysis activity for a specific small number of sugar chains, while the hydrolysis activity for other sugar chains was low. Endo-CC also had different hydrolytic activity depending on the sugar chain, but it had higher hydrolytic activity on more sugar chains than Endo-M, and its substrate specificity was broader than End-M.

実施例4 Endo-CCの糖転移活性
実施例2で作製したEndo-CCとSGP(シアリルグリコペプチド、図3上)(伏見製薬所)及び糖鎖のアクセプターであるGlcNAc、D-Glucose(グルコース)を混合し、SGPが加水分解されて生じたSG(シアリル化糖鎖:図3下)がGlcNAc、D-Glcoseに転移して、SG-GlcNAc、SG-D-Glucoseが生成するかどうかをTLC(Merck Millipore社 シリカゲル60)で確認を行った。SGP及びSGの構造を図3に示す。
Example 4 Glycosyltransferase activity of Endo-CC Endo-CC produced in Example 2 and SGP (sialylglycopeptide, top of FIG. 3) (Fushimi Pharmaceutical) and sugar chain acceptors GlcNAc and D-Glucose (glucose) SLC is hydrolyzed and SG (sialylated sugar chain: bottom of Fig. 3) is transferred to GlcNAc and D-Glcose to determine whether SG-GlcNAc and SG-D-Glucose are produced. (Merck Millipore silica gel 60) was confirmed. The structure of SGP and SG is shown in FIG.

Endo-CC 5μl、SGP 10μg/ml、並びに0.5M GlcNAc又はD-Glucose 4μlを最終容積20μLの50mMの酢酸バッファー(pH6.0)中で反応させた。GlcNAcについては、15分毎に75分まで経時的に反応を追跡し、D-Glucoseについては3時間後の反応をTLCで展開させ、調べた。   Endo-CC 5 μl, SGP 10 μg / ml, and 0.5 M GlcNAc or D-Glucose 4 μl were reacted in a final volume of 20 μL of 50 mM acetate buffer (pH 6.0). For GlcNAc, the reaction was monitored over time up to 75 minutes every 15 minutes, and for D-Glucose, the reaction after 3 hours was developed by TLC and examined.

TLCには、左から、Blank(BLANKはGlcNAcやD-Glucoseを添加しないで3時間反応したもの)、GlcNAcと反応させた0分、15分、30分、45分、60分、75分、Blank(BLANKはGlcNAcやD-Glucoseを添加しないで3時間反応したもの)、D-Glucoseと3時間反応させたスポットがある。
展開溶媒は、プロパノール;酢酸;水=3:2:2で、オルシノール硫酸法で発色をさせた。
From the left, TLC has Blank (BLANK reacted for 3 hours without adding GlcNAc or D-Glucose), 0 minutes, 15 minutes, 30 minutes, 45 minutes, 60 minutes, 75 minutes, reacted with GlcNAc, Blank (BLANK was reacted for 3 hours without adding GlcNAc or D-Glucose), there was a spot reacted with D-Glucose for 3 hours.
The developing solvent was propanol; acetic acid; water = 3: 2: 2 and color was developed by the orcinol-sulfuric acid method.

図4に結果を示す。原点はSGPを示す。GlcNAcに関しては、時間が経過するごとに、加水分解物の増加が認められるのと同時に、糖転移物(SG-GlcNAc)の増加が見られる。また、D-Glucoseについても同様に3時間後には、加水分解物と糖転移物(SG-D-Glucose)の確認ができた。
この結果は、本発明のEndo-CCが糖転移活性を有することを示す。
The results are shown in FIG. The origin indicates SGP. Regarding GlcNAc, as time passes, an increase in hydrolyzate is observed, and at the same time, an increase in glycosylated product (SG-GlcNAc) is observed. Similarly for D-Glucose, hydrolyzate and glycosylated product (SG-D-Glucose) were confirmed after 3 hours.
This result indicates that the Endo-CC of the present invention has transglycosylation activity.

実施例5 改変型Endo-CCの活性
改変型Endo-CC(N180Q株)の糖転移活性を測定した。
Example 5 Activity of Modified Endo-CC The transglycosylation activity of modified Endo-CC (N180Q strain) was measured.

(1)オキサゾリン化SGの調製
オキサゾリン化SGは野口らの方法(Helvetica Chimica Acta, 2012)に従い行った。
SG 12.3 mgを0.5 M CDMBI 61μlに溶解し、4℃に冷却した。その後、1.5 Mリン酸カリウム緩衝液61μlを加え、4℃で2時間撹拌した。4℃、14000 rpmで15分間遠心分離した後、0.2μmのフィルターでろ過し、以下の条件で高速液体クロマトグラフィーを行い、目的物の画分を回収した。
(1) Preparation of oxazolineized SG Oxazolineated SG was performed according to the method of Noguchi et al. (Helvetica Chimica Acta, 2012).
SG 12.3 mg was dissolved in 0.5 M CDMBI 61 μl and cooled to 4 ° C. Thereafter, 61 μl of 1.5 M potassium phosphate buffer was added and stirred at 4 ° C. for 2 hours. After centrifugation at 4 ° C. and 14000 rpm for 15 minutes, the mixture was filtered through a 0.2 μm filter and subjected to high performance liquid chromatography under the following conditions to collect the fraction of interest.

カラム:Inertsil ODS-3V (4.6×250 mm) GLサイエンス
溶媒:蒸留水100%
温度:30℃
流速:1.0 ml/min
検出器:UV(214 nm)
機器:ポンプ HITACHI L-2130
カラムヒーター スガイケミー U-620
UV GLサイエンス UV702
Column: Inertsil ODS-3V (4.6 x 250 mm) GL Science solvent: 100% distilled water
Temperature: 30 ° C
Flow rate: 1.0 ml / min
Detector: UV (214 nm)
Equipment: Pump HITACHI L-2130
Column heater Sugaikemi U-620
UV GL Science UV702

得られた画分の凍結乾燥を行い、オキサゾリン化SG6.8 mgを得た。回収率は55%であった。   The obtained fraction was freeze-dried to obtain 6.8 mg of oxazolineated SG. The recovery rate was 55%.

(2)野生株およびN180Q株改変型Endo-CCの糖転移反応の確認
Endo-CCの糖転移活性の確認は以下のように行った。終濃度100 mMリン酸ナトリウム緩衝液(pH 6.0)、1 0 mMオキサゾリン化SG、4 mMのアクセプター分子(p-ニトロフェニルN-アセチルグルコサミン)、及び野生株若しくはN180Q株Endo-CC酵素液(酵素量24.5μg)を含む反応液(計200μl)を30℃で3時間インキュベートし、99℃で5分間加熱することにより酵素反応を停止した。反応液全量を以下の条件で高速液体クロマトグラフィーに供した。
(2) Confirmation of transglycosylation of wild-type and N180Q strain modified Endo-CC
Confirmation of the transglycosylation activity of Endo-CC was performed as follows. Final concentration 100 mM sodium phosphate buffer (pH 6.0), 10 mM oxazolinated SG, 4 mM acceptor molecule (p-nitrophenyl N-acetylglucosamine), and wild strain or N180Q strain Endo-CC enzyme solution (enzyme) The reaction solution (a total of 200 μl) containing 24.5 μg) was incubated at 30 ° C. for 3 hours, and heated at 99 ° C. for 5 minutes to stop the enzyme reaction. The total amount of the reaction solution was subjected to high performance liquid chromatography under the following conditions.

カラム:Inertsil ODS-3V (4.6×250 mm) GLサイエンス
溶媒:
A液:0.1%TFA
B液:0.1%TFAを含むアセトニトリル
A液:B液=90:10で溶出
温度:30℃
流速:1.0 ml/min
検出器:UV(300 nm)
機器:ポンプ HITACHI L-2130
カラムヒーター スガイケミー U-620
UV GLサイエンス UV702
Column: Inertsil ODS-3V (4.6 x 250 mm) GL Science solvent:
Liquid A: 0.1% TFA
Liquid B: acetonitrile containing 0.1% TFA
Liquid A: Liquid B = 90:10, elution temperature: 30 ° C
Flow rate: 1.0 ml / min
Detector: UV (300 nm)
Equipment: Pump HITACHI L-2130
Column heater Sugaikemi U-620
UV GL Science UV702

糖転移反応物と思われる画分を分取し、MALDI-TOFMS(autoflexII、ブルカーダルトニクス)で質量分析を行うことにより、糖転移反応物の同定を行った。   Fractions that appeared to be glycosyltransferases were collected, and mass spectrometry was performed by MALDI-TOFMS (autoflex II, Bruker Daltonics) to identify glycosyltransferases.

改変型Endo-CCの転移活性の検出結果を図6に示した。なお、図5に糖転移反応の反応図を示す。糖転移反応物と思われるピーク(9.47 min)が検出された。このピークを分取してMS解析を行った結果、予測された糖転移反応物の分子量と一致する分子イオンピークが検出された(m/z=2366.683 [M+Na]+)。また、転移反応物のピーク面積から、N180Q株改変型Endo-CCが、野生株Endo-CCに比べ、約7倍の糖鎖転移活性を有していることが示された。 FIG. 6 shows the result of detecting the transfer activity of the modified Endo-CC. FIG. 5 shows a reaction diagram of the transglycosylation reaction. A peak (9.47 min) that appears to be a transglycosylation product was detected. As a result of fractionating this peak and performing MS analysis, a molecular ion peak corresponding to the predicted molecular weight of the glycosyltransferase was detected (m / z = 2366.683 [M + Na] + ). In addition, the peak area of the transfer reaction product showed that the N180Q strain modified Endo-CC had about 7 times the sugar chain transfer activity compared to the wild strain Endo-CC.

本発明のEndo-CC及び改変型Endo-CCを用いて、均一な糖鎖を有する抗体医薬等の治療用リコンビナント糖タンパク質を作製することができる。また、本発明のEndo-CC及び改変型Endo-CCを糖鎖研究のための試薬として用いることができる。   Using the Endo-CC and modified Endo-CC of the present invention, a recombinant glycoprotein for therapeutic use such as an antibody drug having a uniform sugar chain can be produced. Furthermore, the Endo-CC and modified Endo-CC of the present invention can be used as reagents for studying sugar chains.

Claims (10)

以下の(a)又は(b)のコプリナス・シネレウス由来であり、糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼ:
(a) 配列番号2で表されるアミノ酸配列からなるエンドグリコシダーゼ;
(b) 配列番号2で表されるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を含み、かつ糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼ。
The following (a) or (b) Coprinus cinereus-derived endoglycosidase having an activity of cleaving and releasing an N-linked sugar chain of a glycoprotein and transferring the sugar chain:
(a) an endoglycosidase consisting of the amino acid sequence represented by SEQ ID NO: 2;
(b) including an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 2, and cleaving and releasing the N-linked sugar chain of the glycoprotein; And an endoglycosidase having an activity of transferring a sugar chain.
以下の(a)又は(b)のコプリナス・シネレウス由来であり、糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼをコードするDNA:
(a) 配列番号2で表されるアミノ酸配列からなるエンドグリコシダーゼ;
(b) 配列番号2で表されるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を含み、かつ糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼ。
The following (a) or (b) derived from Coprinus cinereus, a DNA encoding an endoglycosidase having an activity of cleaving and releasing an N-linked sugar chain of a glycoprotein and transferring the sugar chain:
(a) an endoglycosidase consisting of the amino acid sequence represented by SEQ ID NO: 2;
(b) including an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 2, and cleaving and releasing the N-linked sugar chain of the glycoprotein; And an endoglycosidase having an activity of transferring a sugar chain.
以下の(c)又は(d)のコプリナス・シネレウス由来であり、糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼをコードするDNA:
(c) 配列番号1で表される塩基配列を含むDNA
(d) 配列番号1で表される塩基配列を含むDNAと相補的な配列を含むDNAとストリンジェントな条件下でハイブリダイズし、糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するタンパク質をコードするDNA。
The following (c) or (d) derived from Coprinus cinereus, a DNA encoding an endoglycosidase having an activity of cleaving and releasing an N-linked sugar chain of a glycoprotein and transferring the sugar chain:
(c) DNA containing the nucleotide sequence represented by SEQ ID NO: 1
(d) hybridizing under stringent conditions with a DNA comprising a sequence complementary to the DNA comprising the base sequence represented by SEQ ID NO: 1 to cleave and release the N-linked sugar chain of the glycoprotein; And a DNA encoding a protein having an activity of transferring a sugar chain.
以下の(e)又は(f)のコプリナス・シネレウス由来であり、糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素:
(e) 配列番号4で表されるアミノ酸配列からなる酵素;
(f) 配列番号4で表されるアミノ酸配列において180番目のグルタミン以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を含み、かつ糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素。
The following enzyme (e) or (f) derived from Coprinus cinereus, having no activity of cleaving and releasing an N-linked sugar chain of a glycoprotein and having only an activity of transferring a sugar chain:
(e) an enzyme consisting of the amino acid sequence represented by SEQ ID NO: 4;
(f) an N-linked sugar chain comprising an amino acid sequence in which one or several amino acids other than the 180th glutamine in the amino acid sequence represented by SEQ ID NO: 4 are deleted, substituted or added, and possessed by a glycoprotein An enzyme having only the activity of transferring sugar chains without having the activity of cleaving and releasing.
以下の(e)又は(f)のコプリナス・シネレウス由来であり、糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素をコードするDNA:
(e) 配列番号4で表されるアミノ酸配列からなる酵素;
(f) 配列番号4で表されるアミノ酸配列において180番目のグルタミン以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を含み、かつ糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素。
The following (e) or (f) derived from Coprinus cinereus, which encodes an enzyme that does not have the activity of cleaving and releasing the N-linked sugar chain possessed by the glycoprotein but has only the activity of transferring the sugar chain DNA to:
(e) an enzyme consisting of the amino acid sequence represented by SEQ ID NO: 4;
(f) an N-linked sugar chain comprising an amino acid sequence in which one or several amino acids other than the 180th glutamine in the amino acid sequence represented by SEQ ID NO: 4 are deleted, substituted or added, and possessed by a glycoprotein An enzyme having only the activity of transferring sugar chains without having the activity of cleaving and releasing.
以下の(g)又は(h)のコプリナス・シネレウス由来であり、糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素をコードするDNA:
(g) 配列番号3で表される塩基配列を含むDNA
(h) 配列番号3で表される塩基配列を含むDNAと相補的な配列を含むDNAとストリンジェントな条件下でハイブリダイズし、第538番目から540番目の塩基配列がCAAであり、糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素をコードするDNA。
The following (g) or (h) derived from Coprinus cinereus, which encodes an enzyme that does not have the activity of cleaving and releasing the N-linked sugar chain of the glycoprotein but only has the activity of transferring the sugar chain DNA to:
(g) DNA containing the base sequence represented by SEQ ID NO: 3
(h) hybridizes under stringent conditions with a DNA comprising a sequence complementary to the DNA comprising the nucleotide sequence represented by SEQ ID NO: 3, wherein the 538th to 540th nucleotide sequence is CAA, and is a glycoprotein DNA encoding an enzyme that has no activity to cleave and release N-linked sugar chains, but only has an activity to transfer sugar chains.
請求項2又は3に記載のDNAを含む発現ベクターを大腸菌に導入し、大腸菌を培養することを含む、請求項1記載のコプリナス・シネレウス由来であり、糖タンパク質が有するN-結合型糖鎖を切断し遊離させ、かつ糖鎖を転移させる活性を有するエンドグリコシダーゼを作製する方法。   An N-linked sugar chain derived from Coprinus cinereus according to claim 1, which comprises introducing the expression vector containing the DNA according to claim 2 or 3 into E. coli and culturing the E. coli. A method for producing an endoglycosidase having an activity of cleaving and releasing and transferring a sugar chain. 請求項5又は6に記載のDNAを含む発現ベクターを大腸菌に導入し、大腸菌を培養することを含む、請求項4記載のコプリナス・シネレウス由来であり、糖タンパク質が有するN-結合型糖鎖を切断し遊離させる活性を有さず、糖鎖を転移させる活性のみを有する酵素を作製する方法。   An N-linked sugar chain derived from Coprinus cinereus according to claim 4, which comprises introducing the expression vector containing the DNA according to claim 5 or 6 into E. coli and culturing the E. coli. A method for producing an enzyme having only the activity of transferring sugar chains without having the activity of cleaving and releasing. 請求項1記載のエンドグリコシダーゼを糖タンパク質と接触させ、糖鎖を切断し、遊離糖鎖を得ることを含む、遊離糖鎖を作製する方法。   A method for producing a free sugar chain, comprising contacting the endoglycosidase according to claim 1 with a glycoprotein, cleaving the sugar chain to obtain a free sugar chain. 請求項4記載の酵素を、タンパク質及びオキサゾリン化糖鎖と接触させ、糖鎖をタンパク質に転移させることを含む、糖タンパク質の作製方法。   A method for producing a glycoprotein, comprising bringing the enzyme according to claim 4 into contact with a protein and an oxazolinized sugar chain, and transferring the sugar chain to the protein.
JP2013220506A 2013-10-23 2013-10-23 Endoglycosidase derived from Coprinuscinereus Active JP6252894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013220506A JP6252894B2 (en) 2013-10-23 2013-10-23 Endoglycosidase derived from Coprinuscinereus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013220506A JP6252894B2 (en) 2013-10-23 2013-10-23 Endoglycosidase derived from Coprinuscinereus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017124052A Division JP6403839B2 (en) 2017-06-26 2017-06-26 Endoglycosidase derived from Coprinus cinereus

Publications (2)

Publication Number Publication Date
JP2015080453A true JP2015080453A (en) 2015-04-27
JP6252894B2 JP6252894B2 (en) 2017-12-27

Family

ID=53011404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013220506A Active JP6252894B2 (en) 2013-10-23 2013-10-23 Endoglycosidase derived from Coprinuscinereus

Country Status (1)

Country Link
JP (1) JP6252894B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020022440A (en) * 2018-07-28 2020-02-13 公益財団法人野口研究所 Method for separating composite type sugar chain

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111526A1 (en) * 2007-03-09 2008-09-18 Seikagaku Corporation Method for production of sugar oxazoline derivative

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111526A1 (en) * 2007-03-09 2008-09-18 Seikagaku Corporation Method for production of sugar oxazoline derivative

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE UNIPROT [ONLINE], ACCESSION NO.A8P7P2, JPN6017014546, 22 February 2012 (2012-02-22), ISSN: 0003544880 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020022440A (en) * 2018-07-28 2020-02-13 公益財団法人野口研究所 Method for separating composite type sugar chain

Also Published As

Publication number Publication date
JP6252894B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
JP6403839B2 (en) Endoglycosidase derived from Coprinus cinereus
EP2100967B1 (en) Method for producing lacto-n-biose i or galacto-n-biose
US9493753B2 (en) Modified α-glucosidase and applications of same
US9938549B2 (en) Process for producing monosaccharides
CN110885809B (en) alpha-L-fucosidase and related biological material and application thereof
US7445921B2 (en) Transglycosylation method and protein having transglycosylation activity
JP6252894B2 (en) Endoglycosidase derived from Coprinuscinereus
JP5967725B2 (en) Complex sugar chain hydrolase
Li et al. Purification and characterization of a novel β-galactosidase with transglycosylation activity from Bacillus megaterium 2-37-4-1
US10745675B2 (en) Modified enzymes for producing increased isomelezitose
Nishizawa et al. Identification and characterization of a novel thermo-stable endo-β-N-acetylglucosaminidase from Rhizomucor pusillus
JP6993637B2 (en) Endoglycosidase that specifically cleaves fucose-containing sugar chains
Campuzano et al. Cloning, expression, and characterization of a peculiar choline-binding β-galactosidase from Streptococcus mitis
Faridmoayer et al. Truncations and functional carboxylic acid residues of yeast processing α-glucosidase I
JP4638447B2 (en) Method for improving the enzyme activity of glycosyltransferase
JP5425481B2 (en) Novel carbohydrate hydrolase that hydrolyzes α-N-acetylglucosaminyl linkage
JPH0759587A (en) Production of saccharide and complex saccharide
KR102090672B1 (en) Thermostable Cyclodextran Glucanotransferase, Recombinant Vector Containing Gene of the Enzyme, and Transformant Transformed by the Vector
CN116064477A (en) Beta-glycosidase of glycosidase family 43, and coding gene and application thereof
Kim et al. Sialidases of corynebacteria and their biotechnological applications
JP4270907B2 (en) Method for producing Glc nucleotide
JP4255111B2 (en) Method for producing Gal nucleotide
WO2003072776A1 (en) Gene encoding novel enzyme catalyzing glycosyl transfer reaction and process for producing the enzyme
US20060068461A1 (en) Transglycosylation method and protein having transglycosylation activity
WO2001009348A1 (en) Polypeptides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171116

R150 Certificate of patent or registration of utility model

Ref document number: 6252894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250