JP2020022440A5 - - Google Patents

Download PDF

Info

Publication number
JP2020022440A5
JP2020022440A5 JP2019135853A JP2019135853A JP2020022440A5 JP 2020022440 A5 JP2020022440 A5 JP 2020022440A5 JP 2019135853 A JP2019135853 A JP 2019135853A JP 2019135853 A JP2019135853 A JP 2019135853A JP 2020022440 A5 JP2020022440 A5 JP 2020022440A5
Authority
JP
Japan
Prior art keywords
endo
sugar chain
complex
type sugar
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019135853A
Other languages
Japanese (ja)
Other versions
JP2020022440A (en
Filing date
Publication date
Application filed filed Critical
Publication of JP2020022440A publication Critical patent/JP2020022440A/en
Publication of JP2020022440A5 publication Critical patent/JP2020022440A5/ja
Pending legal-status Critical Current

Links

Description

代表的なbisecting GlcNAc糖鎖(G0B糖鎖)を含む多分岐型糖鎖の各種N-アセチルグルコサミン転移酵素による生合成経路を示す。Biosynthetic pathways of polyantennary-type sugar chains including typical bisecting GlcNAc sugar chains (G0B sugar chains) by various N-acetylglucosaminyltransferases are shown. Endo-Tsp1603、Endo-Tsp147、Endo-Tsp1263、Endo-Tsp1006、Endo-Bac1008およびEndo-Bno1263の各精製酵素のSDS-PAGEによる泳動パターンを示す。The electrophoresis pattern of each of the purified enzymes Endo-Tsp1603, Endo- Tsp1457 , Endo-Tsp1263, Endo-Tsp1006, Endo-Bac1008 and Endo-Bno1263 by SDS-PAGE is shown. 精製酵素を用いて各種糖タンパク質を基質とした糖鎖切断反応を実施し、その反応産物をSDS-PAGEに供した結果を示す。糖鎖が切断されたタンパク質は「Deglycosylated」を冠して示している。The purified enzymes were used to carry out sugar chain cleavage reactions using various glycoproteins as substrates, and the results of subjecting the reaction products to SDS-PAGE are shown. Deglycosylated proteins are indicated with "Deglycosylated". 精製酵素を用いてovomucoidまたはribonuclease B(RNase B)を基質とした糖鎖切断反応を実施し、その反応産物をSDS-PAGEに供した結果を示す。糖鎖が切断されたタンパク質は「Deglycosylated」を冠して示している。The purified enzyme was used to carry out a sugar chain cleavage reaction using ovomucoid or ribonuclease B (RNase B) as a substrate, and the results of subjecting the reaction product to SDS-PAGE are shown. Deglycosylated proteins are indicated with "Deglycosylated". Endo-Tsp1457で切断したRNase Bの糖鎖を質量分析解析した結果を示した図である。FIG. 2 shows the results of mass spectrometric analysis of sugar chains of RNase B cleaved with Endo-Tsp1457. Endo-Tsp1263で切断したovomucoidの糖鎖を質量分析解析した結果を示した図である。FIG. 2 shows the results of mass spectrometric analysis of the sugar chain of ovomucoid cleaved with Endo-Tsp1263. Endo-Tsp1006で切断したα1-acid glycoprotein(α1-AGP)の糖鎖を質量分析解析した結果を示した図である。FIG. 2 is a diagram showing the results of mass spectrometric analysis of sugar chains of α1-acid glycoprotein (α1-AGP) cleaved with Endo-Tsp1006. Endo-Bac1008で切断したα1-AGPの糖鎖を質量分析解析した結果を示した図である。FIG. 2 shows the results of mass spectrometric analysis of α1-AGP sugar chains cleaved with Endo-Bac1008. Endo-Tsp1263、Endo-Tsp1006およびEndo-Bac1008の基質特異性を調べるために用いた各種糖ペプチドの調製法を示す。Methods for preparing various glycopeptides used to examine the substrate specificity of Endo-Tsp1263, Endo-Tsp1006 and Endo-Bac1008 are shown. Endo-Tsp1263、Endo-Tsp1006およびEndo-Bac1008の各種糖ペプチドに対する切断活性をまとめた図である。FIG. 2 is a diagram summarizing the cleavage activities of Endo-Tsp1263, Endo-Tsp1006 and Endo-Bac1008 for various glycopeptides. 基質としてRNase B、Prostate specific antigen(PSA)、ovomucoidおよびα1-AGPを用いて、各種ENGaseによる糖鎖切断反応を実施し、その反応産物をSDS-PAGEに供した結果を示す。糖鎖が切断されたタンパク質は「Deglycosylated」を冠して示している。酵素溶液由来のバンドにはアスタリスク(*)を付している。Using RNase B, Prostate specific antigen (PSA), ovomucoid and α1-AGP as substrates, glycosylation reactions with various ENGases were performed, and the results of subjecting the reaction products to SDS-PAGE are shown. Deglycosylated proteins are indicated with "Deglycosylated". Bands from enzyme solutions are marked with an asterisk (*). 基質としてovomucoidおよびgalactosylated ovomucoidを用いて、Endo-Tsp1263、Endo-Tsp1006およびEndo-Bac1008の各酵素による糖鎖切断反応を実施し、その反応産物をSDS-PAGEに供した結果を示す。糖鎖が切断されたタンパク質は「Deglycosylated」を冠して示している。Using ovomucoid and galactosylated ovomucoid as substrates, glycosylation reactions were carried out by enzymes Endo-Tsp1263, Endo-Tsp1006 and Endo-Bac1008, and the results of subjecting the reaction products to SDS-PAGE are shown. Deglycosylated proteins are indicated with "Deglycosylated". RNase B、α1-AGP、およびovomucoidの混合溶液に対し、Endo-Tsp147、Endo-Tsp1263、Endo-Tsp1006およびEndo-Bac1008の各酵素を単独あるいは組み合わせて作用させて糖鎖切断反応を実施し、その反応産物をSDS-PAGEに供した結果を示す。糖鎖が切断されたタンパク質は「Deglycosylated」を冠して示している。Each enzyme Endo-Tsp14 5 7, Endo-Tsp1263, Endo-Tsp1006 and Endo-Bac1008 was acted singly or in combination on a mixed solution of RNase B, α1-AGP and ovomucoid to carry out a glycosylation reaction. , indicates the results of subjecting the reaction products to SDS-PAGE. Deglycosylated proteins are indicated with "Deglycosylated". 野生型Endo-Tsp1006およびEndo-Tsp1006 N220Q変異体の糖転移活性を測定した結果をまとめた図である。FIG. 2 is a diagram summarizing the results of measuring the glycosyltransferase activity of wild-type Endo-Tsp1006 and Endo-Tsp1006 N220Q mutant.

高マンノース型糖鎖が結合しているRNase B、おもに2~4本鎖複合型糖鎖が結合しているα1-AGP、および糖鎖の非還元末端にN-アセチルグルコサミンが露出しているbisecting GlcNAc含有複合型糖鎖がおもに結合しているovomucoid(各1μg)の混合溶液(50mMクエン酸緩衝液、pH5.0)に対し、Endo-Tsp147、Endo-Tsp1263、Endo-Tsp1006およびEndo-Bac1008の各酵素(各0.6μg)を単独あるいは組み合わせて用い、糖鎖切断反応を実施した(45℃、20時間)。反応産物をSDS-PAGEに供した結果を図9に示す。 RNase B bound with high-mannose sugar chains, α1-AGP bound mainly with 2- to 4-chain complex-type sugar chains, and bisecting with N-acetylglucosamine exposed at the non-reducing end of sugar chains. Endo-Tsp14 5 7, Endo-Tsp1263, Endo-Tsp1006 and Endo- Each enzyme of Bac1008 (0.6 μg each) was used singly or in combination to carry out sugar chain cleavage reaction (45° C., 20 hours). FIG. 9 shows the results of subjecting the reaction products to SDS-PAGE.

図9の結果より、例えばこれらの糖タンパク質から糖鎖の非還元末端にN-アセチルグルコサミンが露出しているbisecting GlcNAc含有複合型糖鎖を含むすべての糖鎖を遊離させるためには、Endo-Tsp147、Endo-Tsp1263、Endo-Tsp1006の組合せ、あるいはEndo-Tsp147、Endo-Tsp1263、Endo-Bac1008の組合せ、もしくはEndo-Tsp147、Endo-Tsp1263、Endo-Tsp1006、Endo-Bac1008のすべての酵素を用いて糖鎖切断反応を実施すればよい。また、これらの糖タンパク質から糖鎖の非還元末端にN-アセチルグルコサミンが露出しているbisecting GlcNAc含有複合型糖鎖以外の糖鎖を遊離させるためには、Endo-Tsp147とEndo-Tsp1006の組合せ、あるいはEndo-Tsp147とEndo-Bac1008の組合せの酵素を用いて糖鎖切断反応を実施すればよい。 From the results of FIG. 9, for example, in order to release all sugar chains including bisecting GlcNAc-containing complex-type sugar chains in which N-acetylglucosamine is exposed at the non-reducing end of the sugar chain from these glycoproteins, Endo- The combination of Tsp14 5 7, Endo-Tsp1263, Endo-Tsp1006, or the combination of Endo-Tsp14 5 7, Endo-Tsp1263, Endo-Bac1008, or the combination of Endo-Tsp14 5 7, Endo-Tsp1263, Endo-Tsp100-B, En All enzymes may be used to carry out the sugar chain cleavage reaction. In order to release sugar chains other than bisecting GlcNAc-containing complex-type sugar chains in which N-acetylglucosamine is exposed at the non-reducing end of the sugar chain from these glycoproteins, Endo-Tsp14 5 7 and Endo-Tsp1006 or a combination of Endo-Tsp14 5 7 and Endo-Bac1008 may be used to carry out the glycosylation reaction.

Claims (13)

糖タンパク質、糖ペプチド、または糖鎖から複合型糖鎖を遊離する方法であって、糖鎖の非還元末端側の糖の相違を認識する微生物由来のエンドグリコシダーゼを用いて非変性条件で複合型糖鎖を遊離する方法。 A method for releasing a complex-type sugar chain from a glycoprotein, a glycopeptide, or a sugar chain, wherein the complex-type sugar chain is released under non-denaturing conditions using a microorganism-derived endoglycosidase that recognizes the difference in the sugar on the non-reducing end side of the sugar chain. A method for releasing sugar chains. 前記複合型糖鎖が2本鎖複合型糖鎖、あるいは3本鎖以上の多分岐複合型糖鎖、もしくはbisecting GlcNAc構造を含む複合型糖鎖であり、糖鎖の非還元末端にα2,6シアル酸が存在する複合型糖鎖であることを特徴とする請求項1に記載の方法。 The complex-type sugar chain is a two-stranded complex-type sugar chain, a multi-branched complex-type sugar chain with three or more chains, or a complex-type sugar chain containing a bisecting GlcNAc structure, and α2,6 2. The method according to claim 1, wherein the complex sugar chain contains sialic acid. 前記複合型糖鎖が2本鎖複合型糖鎖、あるいは3本鎖以上の多分岐複合型糖鎖、もしくはbisecting GlcNAc構造を含む複合型糖鎖であり、糖鎖の非還元末端にガラクトースが存在する複合型糖鎖であることを特徴とする請求項1に記載の方法。 The complex-type sugar chain is a two-stranded complex-type sugar chain, a multi-branched complex-type sugar chain with three or more chains, or a complex-type sugar chain containing a bisecting GlcNAc structure, and galactose is present at the non-reducing end of the sugar chain. 2. The method according to claim 1, wherein the complex-type sugar chain is a 前記複合型糖鎖が2本鎖複合型糖鎖、あるいは3本鎖以上の多分岐複合型糖鎖、もしくはbisecting GlcNAc構造を含む複合型糖鎖であり、糖鎖の非還元末端にN-アセチルグルコサミンが存在する複合型糖鎖であることを特徴とする請求項1に記載の方法。 The complex-type sugar chain is a two-stranded complex-type sugar chain, a multi-branched complex-type sugar chain with three or more chains, or a complex-type sugar chain containing a bisecting GlcNAc structure, and the non-reducing end of the sugar chain has N-acetyl 2. The method according to claim 1, wherein the complex-type sugar chain includes glucosamine. 前記エンドグリコシダーゼがTannerella属細菌由来のエンド-β-N-アセチルグルコサミニダーゼであるEndo-Tsp1006であって、以下の(a)、(b)または(c)のタンパク質であることを特徴とする請求項2または請求項3に記載の方法。
(a)配列表配列番号3のアミノ酸配列からなるタンパク質
(b)配列表配列番号3のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつEndo-Tsp1006酵素活性を有するタンパク質
(c)配列表配列番号3のアミノ酸配列と相同性が90%以上のアミノ酸配列からなり、かつEndo-Tsp1006酵素活性を有するタンパク質
The claim, wherein the endoglycosidase is Endo-Tsp1006, which is an endo-β-N-acetylglucosaminidase derived from a bacterium belonging to the genus Tannerella, and is a protein of the following (a), (b) or (c): 4. The method of claim 2 or claim 3.
(a) a protein consisting of the amino acid sequence of SEQ ID NO: 3 of the sequence listing; Protein having enzymatic activity (c) A protein consisting of an amino acid sequence having 90% or more homology with the amino acid sequence of SEQ ID NO: 3 in the Sequence Listing and having Endo-Tsp1006 enzymatic activity
前記エンドグリコシダーゼがMuribaculum属細菌由来のエンド-β-N-アセチルグルコサミニダーゼであるEndo-Bac1008であって、以下の(a)、(b)または(c)のタンパク質であることを特徴とする請求項2または請求項3に記載の方法。
(a)配列表配列番号7のアミノ酸配列からなるタンパク質
(b)配列表配列番号7のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつEndo-Bac1008酵素活性を有するタンパク質
(c)配列表配列番号7のアミノ酸配列と相同性が90%以上のアミノ酸配列からなり、かつEndo-Bac1008酵素活性を有するタンパク質
The claim, wherein the endoglycosidase is Endo-Bac1008, which is an endo-β-N-acetylglucosaminidase derived from a bacterium belonging to the genus Muribaculum, and is a protein of the following (a), (b) or (c): 4. The method of claim 2 or claim 3.
(a) a protein consisting of the amino acid sequence of SEQ ID NO:7 in the sequence listing ; Protein having Endo-Bac 1008 enzyme activity (c) A protein consisting of an amino acid sequence having 90% or more homology with the amino acid sequence of SEQ ID NO: 7 in the sequence listing and having Endo- Bac 1008 enzyme activity
前記エンドグリコシダーゼがTannerella属細菌由来のエンド-β-N-アセチルグルコサミニダーゼであるEndo-Tsp1263であって、以下の(a)、(b)または(c)のタンパク質であることを特徴とする請求項4に記載の方法。
(a)配列表配列番号1のアミノ酸配列からなるタンパク質
(b)配列表配列番号1のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつEndo-Tsp1263酵素活性を有するタンパク質
(c)配列表配列番号1のアミノ酸配列と相同性が90%以上のアミノ酸配列からなり、かつEndo-Tsp1263酵素活性を有するタンパク質
The claim, wherein the endoglycosidase is Endo-Tsp1263, which is an endo-β-N-acetylglucosaminidase derived from a bacterium belonging to the genus Tannerella, and is a protein of the following (a), (b) or (c): 4. The method according to 4.
(a) a protein consisting of the amino acid sequence of SEQ ID NO: 1 of the sequence listing; Protein having enzymatic activity (c) A protein consisting of an amino acid sequence having at least 90% homology with the amino acid sequence of SEQ ID NO: 1 in the sequence listing and having Endo-Tsp1263 enzymatic activity
前記エンドグリコシダーゼがBacteroides属細菌由来のエンド-β-N-アセチルグルコサミニダーゼであるEndo-Bno1263であって、以下の(a)、(b)または(c)のタンパク質であることを特徴とする請求項2または請求項3に記載の方法。
(a)配列表配列番号9のアミノ酸配列からなるタンパク質
(b)配列表配列番号9のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつEndo-Bno1263酵素活性を有するタンパク質
(c)配列表配列番号9のアミノ酸配列と相同性が90%以上のアミノ酸配列からなり、かつEndo-Bno1263酵素活性を有するタンパク質
The claim, wherein the endoglycosidase is Endo-Bno1263, which is an endo-β-N-acetylglucosaminidase derived from bacteria belonging to the genus Bacteroides, and is a protein of the following (a), (b) or (c): 4. The method of claim 2 or claim 3.
(a) a protein consisting of the amino acid sequence of SEQ ID NO: 9 of the sequence listing; Protein having enzymatic activity (c) A protein consisting of an amino acid sequence having 90% or more homology with the amino acid sequence of SEQ ID NO: 9 in the Sequence Listing and having Endo- Bno 1263 enzymatic activity
糖タンパク質、糖ペプチドまたは糖鎖から糖鎖を遊離する方法であって、非還元末端側の糖の相違を認識する複数のエンドグリコシダーゼを用いて非変性条件で糖鎖を遊離する方法。 A method for releasing sugar chains from glycoproteins, glycopeptides or sugar chains, wherein the sugar chains are released under non-denaturing conditions using multiple endoglycosidases that recognize differences in sugars on the non-reducing end side. 前記複数のエンドグリコシダーゼがTannerella属細菌由来のエンド-β-N-アセチルグルコサミニダーゼであるEndo-Tsp1457、Endo-Tsp1603、Endo-Tsp1263、Endo-Tsp1006、Muribaculum属細菌由来のエンド-β-N-アセチルグルコサミニダーゼであるEndo-Bac1008、およびBacteroides属細菌由来のエンド-β-N-アセチルグルコサミニダーゼであるEndo-Bno1263のいずれかの組合せ、あるいはすべてであることを特徴とする請求項9に記載の方法。 Endo-Tsp1457, Endo-Tsp1603, Endo-Tsp1263, Endo-Tsp1006, Endo-β-N-acetylglucosaminidase derived from Muribaculum, wherein the plurality of endoglycosidases are endo-β-N-acetylglucosaminidases derived from bacteria belonging to the genus Tannerella and Endo-Bno1263, which is an endo-β-N-acetylglucosaminidase from the genus Bacteroides. 請求項1から請求項8のいずれかに記載の方法を用いて複合型糖鎖を切断させた糖タンパク質、糖ペプチドまたは糖鎖を製造する方法。 9. A method for producing a glycoprotein, glycopeptide or sugar chain by cleaving a complex-type sugar chain using the method according to any one of claims 1 to 8. 請求項9または請求項10に記載の方法を用いて特定構造の複合型糖鎖を切断させた糖タンパク質、糖ペプチドまたは糖鎖を製造する方法。 11. A method for producing a glycoprotein, glycopeptide or sugar chain by cleaving a complex type sugar chain having a specific structure using the method according to claim 9 or 10. 非変性条件で、糖タンパク質、糖ペプチド、または糖鎖から複合型糖鎖を遊離させるための組成物であって、糖鎖の非還元末端側の糖の相違を認識する微生物由来のエンドグリコシダーゼを含む、前記組成物。A composition for releasing complex-type sugar chains from glycoproteins, glycopeptides, or sugar chains under non-denaturing conditions, comprising a microorganism-derived endoglycosidase that recognizes differences in the sugars on the non-reducing terminal side of the sugar chain. The composition comprising:
JP2019135853A 2018-07-28 2019-07-24 Method for separating composite type sugar chain Pending JP2020022440A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018141928 2018-07-28
JP2018141928 2018-07-28

Publications (2)

Publication Number Publication Date
JP2020022440A JP2020022440A (en) 2020-02-13
JP2020022440A5 true JP2020022440A5 (en) 2022-08-01

Family

ID=69617868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019135853A Pending JP2020022440A (en) 2018-07-28 2019-07-24 Method for separating composite type sugar chain

Country Status (1)

Country Link
JP (1) JP2020022440A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202227479A (en) 2020-09-02 2022-07-16 日商第一三共股份有限公司 NOVEL ENDO-[beta]-N-ACETYLGLUCOSAMINIDASE

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051608A1 (en) * 2011-10-03 2013-04-11 独立行政法人産業技術総合研究所 Composite sugar chain hydrolase
JP6252894B2 (en) * 2013-10-23 2017-12-27 国立大学法人九州大学 Endoglycosidase derived from Coprinuscinereus

Similar Documents

Publication Publication Date Title
US9382564B2 (en) Diversification of human milk oligosaccharides (HMOs) or precursors thereof
März et al. Protein glycosylation in insects
Comfort et al. Biochemical analysis of Thermotoga maritima GH36 α-galactosidase (Tm GalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases
Armstrong et al. Synthesis of glycans and glycopolymers through engineered enzymes
US9234225B2 (en) Method for generating human milk oligosaccharides (HMOs) or precursors thereof
US4925796A (en) Method for enhancing glycoprotein stability
Mayer et al. Characterization of a β‐N‐acetylhexosaminidase and a β‐N‐acetylglucosaminidase/β‐glucosidase from Cellulomonas fimi
Master et al. A xyloglucan-specific family 12 glycosyl hydrolase from Aspergillus niger: recombinant expression, purification and characterization
Biely et al. Inversion of configuration during hydrolysis of α-1, 4-galacturonidic linkage by three Aspergillus polygalacturonases
Singh et al. Glycosidase-catalysed oligosaccharide synthesis: preparation of N-acetylchitooligosaccharides using the β-N-acetylhexosaminidase of Aspergillus oryzae
AU5627186A (en) Method for enhancing glycoprotein stability
JP2020022440A5 (en)
Neeleman et al. Alpha-lactalbumin affects the acceptor specificity of Lymnaea stagnalis albumen gland UDP-GalNAc: GlcNAc beta-R beta 1--> 4-N-acetylgalactosaminyltransferase: synthesis of GalNAc beta 1--> 4Glc.
Ochiai et al. Endo-β-N-acetylglucosaminidase-catalyzed polymerization of β-Glcp-(1→ 4)-GlcpNAc oxazoline: a revisit to enzymatic transglycosylation
Kojima et al. Structural studies on the linkage unit of ribitol teichoic acid of Lactobacillus plantarum
Kono et al. Structural analyses of new tri-and tetrasaccharides produced from disaccharides by transglycosylation of purified Trichoderma viride β-glucosidase
Moracci et al. Enzymatic synthesis of oligosaccharides by two glycosyl hydrolases of Sulfolobus solfataricus
Bakunina et al. Stereochemical course of hydrolytic reaction catalyzed by alpha-galactosidase from cold adaptable marine bacterium of genus Pseudoalteromonas
Shoda Enzymatic glycosylation
JP2020022440A (en) Method for separating composite type sugar chain
Snider et al. Synthesis and processing of asparagine-linked oligosaccharides of glycoproteins
Roth Are glycosyltransferases the evolutionary antecedents of the immunoglobulins?
JP2014138616A (en) Complex-type sugar chain hydrolyzing enzyme
Wilson et al. The biosynthesis, degradation, and function of cell wall β‐xylosylated xyloglucan mirrors that of arabinoxyloglucan
Sutherland et al. The Isolation of O‐Acetylated Fragments from the K Antigen of Escherichia coli 08: K27 (A): H by the Action of Phage‐Induced Enzymes from Klebsiella aerogenes