JP2020020655A - 作業機械の制御システム、作業機械、及び作業機械の制御方法 - Google Patents

作業機械の制御システム、作業機械、及び作業機械の制御方法 Download PDF

Info

Publication number
JP2020020655A
JP2020020655A JP2018144522A JP2018144522A JP2020020655A JP 2020020655 A JP2020020655 A JP 2020020655A JP 2018144522 A JP2018144522 A JP 2018144522A JP 2018144522 A JP2018144522 A JP 2018144522A JP 2020020655 A JP2020020655 A JP 2020020655A
Authority
JP
Japan
Prior art keywords
work machine
sensor
detection data
contact sensor
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018144522A
Other languages
English (en)
Other versions
JP7141883B2 (ja
Inventor
田中 大輔
Daisuke Tanaka
大輔 田中
達也 志賀
Tatsuya Shiga
達也 志賀
光広 龍満
Mitsuhiro Tatsumitsu
光広 龍満
敦 坂井
Atsushi Sakai
敦 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2018144522A priority Critical patent/JP7141883B2/ja
Priority to US16/982,077 priority patent/US20210096569A1/en
Priority to AU2019313721A priority patent/AU2019313721B2/en
Priority to PCT/JP2019/007692 priority patent/WO2020026491A1/ja
Publication of JP2020020655A publication Critical patent/JP2020020655A/ja
Application granted granted Critical
Publication of JP7141883B2 publication Critical patent/JP7141883B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/01Determining conditions which influence positioning, e.g. radio environment, state of motion or energy consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/865Combination of radar systems with lidar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/485Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an optical system or imaging system

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】非接触センサの検出データとマップデータとが適切に照合されない状況が発生しても、作業機械の位置の推定精度の低下を抑制すること。【解決手段】作業機械の制御システムは、走行路を走行する作業機械の位置を検出する位置センサと、作業機械に設けられ、作業機械の周囲の物体の位置を検出する第1非接触センサと、作業機械に設けられ、作業機械の周囲の物体の位置を検出する第2非接触センサと、位置センサの検出データ及び第1非接触センサの検出データに基づいてマップデータを作成するマップデータ作成部と、マップデータと第1非接触センサの検出データとを照合して作業機械の第1位置を算出する第1位置算出部と、第2非接触センサの検出データに基づいて作業機械の第2位置を算出する第2位置算出部と、第1位置と第2位置とを統合して作業機械の統合位置を決定する統合位置決定部と、を備える。【選択図】図1

Description

本発明は、作業機械の制御システム、作業機械、及び作業機械の制御方法に関する。
鉱山のような広域の作業現場において、無人で走行する作業機械が使用される場合がある。作業機械の位置は、全地球航法衛星システム(GNSS:Global Navigation Satellite System)を利用して検出される。全地球航法衛星システムの検出精度が低下すると、作業機械の稼働が停止し、作業現場の生産性が低下する可能性がある。そのため、全地球航法衛星システムの検出精度が高いときに作業現場のマップデータを作成し、全地球航法衛星システムの検出精度が低下したときに非接触センサの検出データとマップデータとを照合して作業機械の位置を推定する技術が提案されている。
国際公開第2017/072980号
特許文献1には、非接触センサの検出データとマップデータとの照合結果に基づいて作業機械を走行させる照合航法に係る技術が開示されている。照合航法において、作業現場が鉱山である場合、作業機械に設けられている非接触センサは、作業機械の走行路の傍らに設けられた土手を検出する。全地球航法衛星システムの検出精度が高いとき、作業機械の位置が全地球航法衛星システムの位置センサによって検出され、位置センサの検出データ及び非接触センサの検出データに基づいて、土手のマップデータが作成される。全地球航法衛星システムの検出精度が低下したとき、土手を検出した非接触センサの検出データとマップデータとを照合することによって作業機械の位置が推定される。
非接触センサによる土手の検出点の数(データ数)は多いため、作業機械の位置を高精度に推定することができる。一方、土手は自然構造物であり、土手の形状によっては、非接触センサの検出データとマップデータとが適切に照合されず、作業機械の位置を高精度に推定することが困難となる可能性がある。例えば、一定形状の土手が作業機械の走行方向に長距離に亘って延在する場合、走行方向に関する作業機械の位置を高精度に推定することが困難となる可能性がある。また、土手の形状が一定で特徴点が少ない場合においても、作業機械の位置を高精度に推定することが困難となる可能性がある。
また、土手は自然構造物であり、荒天等の影響により土手の形状が変化する可能性がある。整地作業が実施された場合においても、土手の形状が変化する可能性がある。土手の形状(地形)が変化した場合においても、作業機械の位置を高精度に推定することが困難となる可能性がある。
本発明の態様は、非接触センサの検出データとマップデータとが適切に照合されない状況が発生しても、作業機械の位置の推定精度の低下を抑制することを目的とする。
本発明の態様に従えば、走行路を走行する作業機械の位置を検出する位置センサと、前記作業機械に設けられ、前記作業機械の周囲の物体の位置を検出する第1非接触センサと、前記作業機械に設けられ、前記作業機械の周囲の物体の位置を検出する第2非接触センサと、前記位置センサの検出データ及び前記第1非接触センサの検出データに基づいてマップデータを作成するマップデータ作成部と、前記マップデータと前記第1非接触センサの検出データとを照合して前記作業機械の第1位置を算出する第1位置算出部と、前記第2非接触センサの検出データに基づいて前記作業機械の第2位置を算出する第2位置算出部と、前記第1位置と前記第2位置とを統合して前記作業機械の統合位置を決定する統合位置決定部と、を備える作業機械の制御システムが提供される。
本発明の態様によれば、照合航法において非接触センサの検出データとマップデータとが適切に照合されない状況が発生しても、作業機械の位置の推定精度の低下を抑制することができる。
図1は、実施形態に係る管理システム及び作業機械の一例を模式的に示す図である。 図2は、実施形態に係る作業機械及び走行路を模式的に示す図である。 図3は、実施形態に係る非接触センサの一例を模式的に示す図である。 図4は、実施形態に係る作業機械の制御システムを示す機能ブロック図である。 図5は、実施形態に係る作業機械の制御方法を示すフローチャートである。 図6は、実施形態に係る作業機械の制御方法を示すフローチャートである。 図7は、実施形態に係る作業機械の制御方法を示すフローチャートである。 図8は、コンピュータシステムの一例を示すブロック図である。
以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下で説明する実施形態の構成要素は適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
[管理システム]
図1は、本実施形態に係る管理システム1及び作業機械2の一例を模式的に示す図である。作業機械2は、無人車両である。無人車両とは、運転者による運転操作によらずに、制御指令に基づいて無人で走行する作業車両をいう。作業機械2は、管理システム1からの制御指令に基づいて走行する。制御指令は、走行条件データを含む。
作業機械2は、作業現場において稼働する。本実施形態において、作業現場は、鉱山又は採石場である。作業機械2は、作業現場を走行して積荷を運搬するダンプトラックである。鉱山とは、鉱物を採掘する場所又は事業所をいう。採石場とは、石材を採掘する場所又は事業所をいう。作業機械2に運搬される積荷として、鉱山又は採石場において掘削された鉱石又は土砂が例示される。
管理システム1は、管理装置3と、通信システム4とを備える。管理装置3は、コンピュータシステムを含み、作業現場の管制施設5に設置される。管制施設5に管理者が存在する。通信システム4は、管理装置3と作業機械2との間で通信を実施する。管理装置3に無線通信機6が接続される。通信システム4は、無線通信機6を含む。管理装置3と作業機械2とは、通信システム4を介して無線通信する。作業機械2は、管理装置3から送信された走行条件データに基づいて、作業現場の走行路HLを走行する。
[作業機械]
作業機械2は、車両本体21と、車両本体21に支持されるダンプボディ22と、車両本体21を支持する走行装置23と、速度センサ24と、方位センサ25と、姿勢センサ26と、無線通信機28と、位置センサ31と、第1非接触センサ32と、第2非接触センサ33と、データ処理装置10と、走行制御装置40とを備える。
車両本体21は、車体フレームを含み、ダンプボディ22を支持する。ダンプボディ22は、積荷が積み込まれる部材である。
走行装置23は、車輪27を含み、走行路HLを走行する。車輪27は、前輪27Fと後輪27Rとを含む。車輪27にタイヤが装着される。走行装置23は、駆動装置23Aと、ブレーキ装置23Bと、操舵装置23Cとを有する。
駆動装置23Aは、作業機械2を加速させるための駆動力を発生する。駆動装置23Aは、ディーゼルエンジンのような内燃機関を含む。なお、駆動装置23Aは、電動機を含んでもよい。駆動装置23Aで発生した駆動力が後輪27Rに伝達され、後輪27Rが回転する。後輪27Rが回転することにより、作業機械2は自走する。ブレーキ装置23Bは、作業機械2を減速又は停止させるための制動力を発生する。操舵装置23Cは、作業機械2の走行方向を調整可能である。作業機械2の走行方向は、車両本体21の前部の向きを含む。操舵装置23Cは、前輪27Fを操舵することによって、作業機械2の走行方向を調整する。
速度センサ24は、作業機械2の走行において作業機械2の走行速度を検出する。速度センサ24の検出データは、走行装置23の走行速度を示す走行速度データを含む。
方位センサ25は、作業機械2の走行において作業機械2の方位を検出する。方位センサ25の検出データは、作業機械2の方位を示す方位データを含む。作業機械2の方位は、作業機械2の走行方向である。方位センサ25は、例えばジャイロセンサを含む。
姿勢センサ26は、作業機械2の走行において作業機械2の姿勢角度を検出する。作業機械2の姿勢角度は、ロール角及びピッチ角を含む。ロール角とは、作業機械2の前後方向に延在する回転軸を中心とする作業機械2の傾斜角度をいう。ピッチ角とは、作業機械2の左右方向に延在する回転軸を中心とする作業機械の傾斜角度をいう。姿勢センサ26の検出データは、作業機械2の姿勢角度を示す姿勢角度データを含む。姿勢センサ26は、例えば、慣性計測装置(IMU:Inertial Measurement Unit)を含む。
作業機械2の姿勢角度は、方位センサ25によって検出される作業機械2のヨー角を含む。なお、作業機械2のヨー角が姿勢センサ26によって検出されてもよい。
位置センサ31は、走行路HLを走行する作業機械2の位置を検出する。位置センサ31の検出データは、作業機械2の絶対位置を示す絶対位置データを含む。作業機械2の絶対位置は、全地球航法衛星システム(GNSS:Global Navigation Satellite System)を利用して検出される。位置センサ31は、GNSS受信機を含む。全地球航法衛星システムは、緯度、経度、及び高度の座標データで規定される作業機械2の絶対位置を検出する。全地球航法衛星システムにより、グローバル座標系において規定される作業機械2の絶対位置が検出される。グローバル座標系とは、地球に固定された座標系をいう。
第1非接触センサ32は、作業機械2の走行において作業機械2の周囲の少なくとも一部の物体を非接触で検出する。第1非接触センサ32に検出される物体は、走行路HLの傍らに設けられた土手BK(壁面)を含む。なお、第1非接触センサ32に検出される物体として、土手BKのみならず、作業機械2が走行する走行路HLに存在する障害物、及び走行路HLの轍のような、走行路HLを走行する作業機械2が干渉する可能性がある物体が例示される。第1非接触センサ32は、作業機械2の前方の障害物を非接触で検出する障害物センサとして機能する。
第1非接触センサ32は、作業機械2の周囲の少なくとも一部の物体を走査して、物体との相対位置を検出する。物体との相対位置は、物体までの距離及び方位を含む。第1非接触センサ32は、例えば車両本体21の前部の下部に設けられる。作業機械2のローカル座標系(車体座標系)において、車両本体21に取り付けられる第1非接触センサ32の取付け位置と作業機械2の基準点との相対位置は予め決められている既知データである。作業機械2の基準点は、任意に規定することができる。作業機械2の基準点は、例えば車両本体21の前部に規定されてもよいし中心に規定されてもよい。本実施形態において、作業機械2の基準点は、後輪27Rに動力を伝達するリアアクスルの中心点に規定される。第1非接触センサ32により第1非接触センサ32と物体との相対位置が検出されることにより、作業機械2の基準点と物体との相対位置が検出される。すなわち、第1非接触センサ32は、作業機械2と物体との相対位置を検出可能である。第1非接触センサ32の検出データは、作業機械2と物体との相対位置を示す相対位置データを含む。本実施形態において、第1非接触センサ32は、物体をレーザ光で走査して、作業機械2と物体の複数の検出点のそれぞれとの相対位置を検出可能なレーザセンサを含む。
第2非接触センサ33は、作業機械2の走行において作業機械2の周囲の少なくとも一部の物体を検出する。第2非接触センサ33に検出される物体は、走行路HLの傍らに設置されたランドマークLMを含む。なお、第2非接触センサ33に検出される物体として、ランドマークLMのみならず、走行路HLの傍らに設置された標識板、及び作業機械2とは別の車両などが例示される。第2非接触センサ33は、作業機械2の進行方向前方において走行路HLの傍らに設置されたランドマークLMを非接触で検出するランドマークセンサとして機能する。
第2非接触センサ33は、作業機械2の進行方向前方の物体を走査して、物体の位置を検出する。第2非接触センサ33は、例えば車両本体21の前部の下部に設けられる。作業機械2のローカル座標系(車体座標系)において、車両本体21に取り付けられる第2非接触センサ33の取付け位置と車両本体21の基準点との相対位置は予め決められている既知データである。本実施形態において、第2非接触センサ33は、物体を電波で走査して、作業機械2と物体との相対位置を検出可能なレーダセンサを含む。
以下の説明においては、レーザ光又は電波のような、物体を検出するために物体を走査するエネルギー波を適宜、検出波、と称する。
無線通信機28は、管理装置3に接続された無線通信機6と無線通信する。通信システム4は、無線通信機28を含む。
データ処理装置10は、コンピュータシステムを含み、車両本体21に配置される。データ処理装置10は、少なくとも位置センサ31の検出データ及び第1非接触センサ32の検出データを処理する。
走行制御装置40は、コンピュータシステムを含み、車両本体21に配置される。走行制御装置40は、作業機械2の走行装置23の走行状態を制御する。走行制御装置40は、駆動装置23Aを作動するためのアクセル指令、ブレーキ装置23Bを作動するためのブレーキ指令、及び操舵装置23Cを作動するためのステアリング指令を含む運転指令を出力する。駆動装置23Aは、走行制御装置40から出力されたアクセル指令に基づいて、作業機械2を加速させるための駆動力を発生する。ブレーキ装置23Bは、走行制御装置40から出力されたブレーキ指令に基づいて、作業機械2を減速又は停止させるための制動力を発生する。操舵装置23Cは、走行制御装置40から出力されたステアリング指令に基づいて、作業機械2を直進又は旋回させるために前輪27Fの向きを変えるための旋回力を発生する。
[走行路]
図2は、本実施形態に係る作業機械2及び走行路HLを模式的に示す図である。走行路HLは、鉱山の複数の作業場PAに通じる。作業場PAは、積込場PA1及び排土場PA2の少なくとも一方を含む。走行路HLに交差点ISが設けられてもよい。
積込場PA1とは、作業機械2に積荷を積載する積込作業が実施されるエリアをいう。積込場PA1において、油圧ショベルのような積込機7が稼働する。排土場PA2とは、作業機械2から積荷が排出される排出作業が実施されるエリアをいう。排土場PA2には、例えば破砕機8が設けられる。
管理装置3は、走行路HLにおける作業機械2の走行条件を設定する。作業機械2は、管理装置3から送信された走行条件を示す走行条件データに基づいて、走行路HLを走行する。
走行条件データは、作業機械2の目標走行速度及び目標走行コースCSを含む。図2に示すように、走行条件データは、走行路HLに間隔をあけて設定された複数のポイントPIを含む。ポイントPIは、グローバル座標系において規定される作業機械2の目標位置を示す。なお、ポイントPIは、作業機械2のローカル座標系において規定されてもよい。
目標走行速度は、複数のポイントPIのそれぞれに設定される。目標走行コースCSは、複数のポイントPIを結ぶ線によって規定される。
走行路HLの傍らにランドマークLMが設置される。ランドマークLMは、第2非接触センサ33によって検出される位置基準部材である。ランドマークLMは、例えば80[m]以上100[m]以下の間隔をあけて複数設置される。ランドマークLMの位置は固定される。すなわち、ランドマークLMは静止体である。
[非接触センサ]
図3は、本実施形態に係る第1非接触センサ32及び第2非接触センサ33の一例を模式的に示す図である。第1非接触センサ32及び第2非接触センサ33のそれぞれは、作業機械2の車両本体21の前部に配置される。第1非接触センサ32及び第2非接触センサ33のそれぞれは、単数でもよいし複数でもよい。本実施形態において、第1非接触センサ32は、作業機械2に2つ設けられる。第2非接触センサ33は、作業機械2に3つ設けられる。なお、第2非接触センサ33は、作業機械2に5つ設けられてもよい。
走行路HLの傍らに土手BKが設けられる。土手BKは、走行路HLの傍らにおいて、作業機械2の走行方向に延在する。ランドマークLMは、走行路HLに沿って、土手BKに設置される。土手BKは、自然構造物である。ランドマークLMは、人工構造物である。
第1非接触センサ32は、検出波を発射可能な発射部と、検出波を受信可能な受信部とを有する。第1非接触センサ32の検出範囲ARsは、放射状である。第1非接触センサ32の検出波は、放射状の検出範囲ARsにおいて走査される。第1非接触センサ32は、検出範囲ARs内の土手BKを検出波で走査して、土手BKの3次元形状を示す点群データを取得する。点群データは、土手BKの表面における複数の検出点の集合体である。検出点は、土手BKの表面において検出波が照射された照射点を含む。第1非接触センサ32は、作業機械2の周囲の少なくとも一部の土手BKを検出波で走査して、土手BKの複数の検出点のそれぞれとの相対位置を検出する。
第2非接触センサ33は、検出波を発射可能な発射部と、検出波を受信可能な受信部とを有する。第2非接触センサ33の検出範囲ARlは、放射状である。第2非接触センサ33の検出波は、放射状の検出範囲ARlにおいて走査される。第2非接触センサ33は、検出範囲ARl内のランドマークLMを検出波で走査して、ランドマークLMとの相対位置を検出する。検出範囲ARl内にランドマークLMが配置されることにより、第2非接触センサ33は、ランドマークLMとの相対位置を検出することができる。ランドマークLMとの相対位置は、作業機械2とランドマークLMとの相対距離を含む。
ランドマークLMは、第2非接触センサ33から発射された検出波を反射する反射面を有する。検出波(電波)に対するランドマークLMの反射面の反射強度(反射率)は、ランドマークLMの周囲の物体の反射強度(反射率)よりも高い。ランドマークLMの周囲の物体として、鉱山の岩石又は土手BKが例示される。第2非接触センサ33は、作業機械2の進行方向前方に検出波を発射して、物体で反射した検出波を受信することにより、ランドマークLMとランドマークLMの周囲の物体とを区別して検出することができる。
なお、ランドマークLMは、全地球航法衛星システムを利用して絶対位置を検出できるものであればよく、反射面を有しなくてもよい。
[制御システム]
図4は、本実施形態に係る作業機械2の制御システム9を示す機能ブロック図である。制御システム9は、データ処理装置10と、走行制御装置40とを有する。データ処理装置10及び走行制御装置40のそれぞれは、通信システム4を介して管理装置3と通信可能である。
管理装置3は、走行条件生成部3Aと、通信部3Bとを有する。走行条件生成部3Aは、作業機械2の走行条件を示す走行条件データを生成する。走行条件は、例えば管制施設に存在する管理者により決定される。管理者は、管理装置3に接続されている入力装置を操作する。走行条件生成部3Aは、入力装置が操作されることにより生成された入力データに基づいて、走行条件データを生成する。通信部3Bは、走行条件データを作業機械2に送信する。作業機械2の走行制御装置40は、通信部3Bから送信された走行条件データを、通信システム4を介して取得する。
<データ処理装置>
データ処理装置10は、マップデータ作成部11と、マップデータ記憶部12と、第1位置算出部13と、第2位置算出部14と、ランドマーク登録位置記憶部15と、統合位置決定部16とを有する。
マップデータ作成部11は、全地球航法衛星システムの検出精度が充足しているときにおいて、位置センサ31の検出データ及び第1非接触センサ32の検出データに基づいて、作業現場(土手BK)のマップデータを作成する。
位置センサ31は、作業機械2の絶対位置を検出して、マップデータ作成部11に出力する。作業機械2の絶対位置は、作業機械2に規定されている基準点の絶対位置を示す。上述のように、作業機械2の基準点として、後輪27Rに動力を伝達するリアアクスルの中心点が例示される。第1非接触センサ32は、土手BKとの相対位置を検出して、マップデータ作成部11に出力する。マップデータ作成部11は、位置センサ31の検出データ及び第1非接触センサ32の検出データに基づいて、土手BKのマップデータを作成する。
また、位置センサ31は、作業機械2を測位できたことを示す測位信号と、作業機械2を測位できなかったことを示す非測位信号とを出力する。
マップデータ記憶部12は、マップデータ作成部11において作成されたマップデータを記憶する。
第1位置算出部13は、全地球航法衛星システムの検出精度が不足しているときにおいて、マップデータ記憶部12に記憶されているマップデータと第1非接触センサ32の検出データとを照合して、作業機械2の位置(第1位置)を算出(推定)する。
第2位置算出部14は、全地球航法衛星システムの検出精度が不足しているときにおいて、ランドマーク登録位置記憶部15に記憶されているランドマークLMの登録位置データ及び第2非接触センサ33の検出データに基づいて、作業機械2の位置(第2位置)を算出(推定)する。
第2非接触センサ33は、第2非接触センサ33とランドマークLMとの相対位置を検出する。第2非接触センサ33とランドマークLMとの相対位置は、第2非接触センサ33からランドマークLMの反射面までの距離及び方位を含む。
ランドマーク登録位置記憶部15は、ランドマークLMの登録位置を記憶する。ランドマークLMの登録位置は、予め検出されたランドマークLMの絶対位置を示す。ランドマークLMは、例えば作業者によって走行路HLの傍らに設置される。ランドマークLMを走行路LMの傍らに設置した後、作業者は、GNSS受信機を含む位置検出装置を用いて、ランドマークLMの絶対位置を検出する。作業者は、検出されたランドマークLMの絶対位置をランドマーク登録位置記憶部15に登録する。ランドマーク登録位置記憶部15は、ランドマークLMの絶対位置を示す登録位置を記憶する。
第2位置算出部14は、第2非接触センサ33により検出されたランドマークLMの位置に基づいて、第2非接触センサ33とランドマークLMとの第1相対位置を算出する。また、第2位置算出部14は、位置センサ31により検出された作業機械2の基準点の絶対位置と、予め決められている第2非接触センサ33の取付け位置と作業機械2の基準点との相対位置と、ランドマーク登録位置記憶部15に記憶されているランドマークLMの登録位置とに基づいて、第2非接触センサ33とランドマークLMとの第2相対位置を算出する。作業機械2における第2非接触センサ33の取付け位置、及び第2非接触センサ33の取付け位置と作業機械2の基準点との相対位置は、作業機械2の設計データ又は諸元データから導出可能な既知データである。第2位置算出部14は、位置センサ31により検出された作業機械2の絶対位置と、既知である第2非接触センサ33の取付け位置とに基づいて、第2非接触センサ33の絶対位置を算出することができる。
統合位置決定部16は、第1位置算出部13において算出された作業機械2の第1位置と、第2位置算出部14において算出された作業機械2の第2位置とを統合して、作業機械2の統合位置を決定する。
統合位置とは、第1位置と第2位置とを合わせることにより決定される1つの位置をいう。統合位置は、第1位置と第2位置との間に決定される。統合位置は、第1位置と第2位置との中心に決定されてもよいし、第1位置と第2位置との中心よりも第1位置に近い位置に決定されてもよいし、第1位置と第2位置との中心よりも第2位置に近い位置に決定されてもよい。なお、作業現場の場所によっては、第1位置及び第2位置の一方の位置を算出することができ、他方の位置を算出することができない場合がある。その場合、統合位置は、第1位置及び第2位置のうち算出することができた位置に決定される。
<走行制御装置>
走行制御装置40は、管理装置3により生成された走行条件データに従って作業機械2が走行するように、走行装置23を制御する。本実施形態において、走行制御装置40は、GNSS走行モード及び外界センサ走行モードの少なくとも一方の走行モードに基づいて、作業機械2を走行させる。
GNSS走行モードは、位置センサ31から測位信号が取得され、位置センサ31により検出された作業機械2の絶対位置の検出精度が高精度であるときに実施される走行モードである。外界センサ走行モードは、位置センサ31から非測位信号が取得され、位置センサ31により検出された作業機械2の絶対位置の検出精度が低下しているときに実施される走行モードである。
なお、位置センサ31の検出精度が低下する原因として、例えば太陽フレアによる電離層異常、及び全地球航法衛星システムとの通信異常等が例示される。例えば、露天掘り又は地下鉱山のような作業現場においては、全地球航法衛星システムとの通信異常が発生する可能性が高くなる。また、作業現場又は作業現場の周囲に障害物が存在する場合も、全地球航法衛星システムとの通信異常が発生する可能性が高くなる。
走行制御装置40は、位置センサ31から測位信号を取得し、位置センサ31により検出された作業機械2の絶対位置の検出精度が高精度であると判定したとき、GNSS走行モードで作業機械2を走行させる。GNSS走行モードにおいて、走行制御装置40は、位置センサ31により検出される作業機械2の検出位置と、走行条件生成部3Aにより生成された走行条件データとに基づいて、作業機械2の位置を補正しながら、作業機械2を走行させる。
走行制御装置40は、位置センサ31から非測位信号を取得し、位置センサ31により検出された作業機械2の絶対位置の検出精度が低下していると判定したとき、外界センサ走行モードで作業機械2を走行させる。外界センサ走行モードにおいて、走行制御装置40は、統合位置決定部16において決定された作業機械2の統合位置と、走行条件生成部3Aにより生成された走行条件データとに基づいて、作業機械2の位置を補正しながら、作業機械2を走行させる。
[作業機械の走行方法]
次に、本実施形態に係る作業機械2の走行方法の一例について説明する。走行制御装置40は、管理装置3から送信された走行条件データに基づいて、走行装置23を制御する。本実施形態において、作業機械2は、推測航法に基づいて走行路HLを走行する。
推測航法とは、経度及び緯度が既知の起点からの作業機械2の移動距離及び方位(方位変化量)に基づいて、作業機械2の現在の位置を推測して走行する航法をいう。作業機械2の移動距離は、速度センサ24により検出される。作業機械2の方位は、方位センサ25により検出される。走行制御装置40は、速度センサ24の検出データ及び方位センサ25の検出データを取得して、既知の起点からの作業機械2の移動距離及び方位変化量を算出して、作業機械2の現在の位置を推測しながら、走行装置23を制御する。以下の説明において、速度センサ24の検出データ及び方位センサ25の検出データに基づいて推測される作業機械2の現在の位置を適宜、推測位置、と称する。
推測航法において、走行制御装置40は、速度センサ24の検出データ及び方位センサ25の検出データに基づいて作業機械2の推測位置を算出して、作業機械2が目標走行コースCSに従って走行するように、走行装置23を制御する。
推測航法において、作業機械2の走行距離が長くなると、速度センサ24及び方位センサ25の一方又は両方の検出誤差の蓄積により、作業機械2の推測位置と実際の位置との間に誤差が生じる可能性がある。その結果、作業機械2は、目標走行コースCSから逸脱する可能性がある。
本実施形態において、走行制御装置40は、推測航法により走行する作業機械2の推測位置を補正する。GNSS走行モードにおいて、走行制御装置40は、位置センサ31の検出データに基づいて、推測航法により走行する作業機械2の推測位置を補正する。外界センサ走行モードにおいて、走行制御装置40は、統合位置決定部16において決定された作業機械2の統合位置の検出データに基づいて、推測航法により走行する作業機械2の推測位置を補正する。
<GNSS走行モード>
GNSS走行モードにおいて作業機械2の推測位置を補正する方法について説明する。全地球航法衛星システム(GNSS)の検出精度が高精度である場合、走行制御装置40は、GNSS走行モードで作業機械2を走行させる。GNSS走行モードにおいて、走行制御装置40は、推測航法により走行する作業機械2の推測位置を、位置センサ31により検出された作業機械2の検出位置(絶対位置)を用いて補正しながら、作業機械2を走行させる。
すなわち、GNSS走行モードにおいて、走行制御装置40は、速度センサ24の検出データと、方位センサ25の検出データと、位置センサ31の検出データとに基づいて、作業機械2の推測位置を補正する。走行制御装置40は、補正後の推測位置に基づいて、作業機械2が目標走行コースCSに従って走行するように、作業機械2の走行を制御する。
<外界センサ走行モード>
次に、外界センサ走行モードにおいて作業機械2の推測位置を補正する方法について説明する。全地球航法衛星システム(GNSS)の検出精度が低下した場合、走行制御装置40は、外界センサ走行モードで作業機械2を走行させる。外界センサ走行モードにおいて、走行制御装置40は、推測航法により走行する作業機械2の推測位置を、第1非接触センサ32の検出データ及び第2非接触センサ33の検出データに基づいて算出された作業機械2と統合位置を用いて補正しながら、作業機械2を走行させる。
すなわち、外界センサ走行モードにおいて、走行制御装置40は、速度センサ24の検出データと、方位センサ25の検出データと、データ処理装置10により算出された作業機械2の統合位置とに基づいて、作業機械2の推測位置を補正する。走行制御装置40は、補正後の推測位置に基づいて、作業機械2が目標走行コースCSに従って走行するように、作業機械2の走行を制御する。
[制御方法]
次に、本実施形態に係る作業機械2の制御方法について説明する。図5、図6、及び図7のそれぞれは、本実施形態に係る作業機械2の制御方法を示すフローチャートである。図5は、本実施形態に係る作業機械2の走行モードの決定方法を示すフローチャートである。図6は、図5に示すステップST6の詳細を示すフローチャートである。図7は、図6に示すステップST63の詳細を示すフローチャートである。
<走行モードの決定方法>
図5に示すように、走行制御装置40は、目標走行コースCSに従って走行するように作業機械2を推測航法で走行させる(ステップST1)。
走行制御装置40は、位置センサ31の検出データに基づいて、全地球航法衛星システム(GNSS)の検出精度が高精度か否かを判定する(ステップST2)。
ステップST2において、全地球航法衛星システム(GNSS)の検出精度が高精度であると判定された場合(ステップST2:Yes),走行制御装置40は、GNSS走行モードで作業機械2を走行させる(ステップST3)。
作業機械2がGNSS走行モードで走行している状態で、マップデータ作成部11は、位置センサ31の検出データ及び第1非接触センサ32の検出データに基づいて、土手BKのマップデータを作成する(ステップST4)。
作業機械2がGNSS走行モードで走行している状態で、位置センサ31は、作業機械2の絶対位置を検出し、第1非接触センサ32は、土手BKとの相対位置を検出する。マップデータ作成部11は、作業機械2の基準点の絶対位置と、第1非接触センサ32と土手BKとの相対位置と、既知である第1非接触センサ32の取付け位置と作業機械2の基準点の位置との相対位置とに基づいて、土手BKの絶対位置を含むマップデータを作成する。マップデータ作成部11により作成されたマップデータは、マップデータ記憶部12に記憶される。
ステップST2において、全地球航法衛星システム(GNSS)の検出精度が低下していると判定された場合(ステップST2:No),走行制御装置40は、外界センサ走行モードで作業機械2を走行させる(ステップST5)。
作業機械2が外界センサ走行モードで走行するとき、データ処理装置10は、作業機械2の統合位置を算出する(ステップST6)。走行制御装置40は、データ処理装置10により算出された統合位置に基づいて、作業機械2を走行させる。
<統合位置の算出方法>
次に、図5に示したステップST6の詳細について、図6を参照しながら説明する。データ処理装置10において、第1位置算出部13は、第1非接触センサ32の検出データと、マップデータ記憶部12に記憶されているマップデータとを照合して、作業機械2の第1位置及び第1方位を算出する。第2位置算出部14は、第2非接触センサ33の検出データと、ランドマーク登録位置記憶部15に記憶されているランドマークLMの登録位置とに基づいて、作業機械2の第2位置及び第2方位を算出する。
具体的には、第1位置算出部13は、第1非接触センサ32により検出された物体の位置をグローバル座標系における位置に座標変換する。同様に、第2位置算出部14は、第2非接触センサ33により検出された物体の位置をグローバル座標系における位置に座標変換する(ステップST61)。
第1位置算出部13は、第1非接触センサ32により検出された物体の複数の検出点から土手BKに係る検出点を抽出して間引きする。同様に、第2位置算出部14は、第2非接触センサ33により検出された物体の複数の検出点からランドマークLMに係る検出点を抽出して間引きする(ステップST62)。
第1位置算出部13は、速度センサ24の検出データ、方位センサ25の検出データ、第1非接触センサ32の検出データ、及びマップデータ記憶部12に記憶されているマップデータを、パーティクルフィルタにより統合して、作業機械2の第1位置及び第1方位を算出する。また、第2位置算出部14は、速度センサ24の検出データ、方位センサ25の検出データ、第2非接触センサ33の検出データ、及びランドマーク登録位置記憶部15に記憶されている登録位置を、パーティクルフィルタにより統合して、作業機械2の第2位置及び第2方位を算出する(ステップST63)。
<パーティクルを用いる位置算出方法>
次に、図6に示したステップST63の詳細について、図7を参照しながら説明する。第1位置算出部13は、第1非接触センサ32の検出データと、マップデータ記憶部12に記憶されているマップデータとを照合して、作業機械2の位置及び方位を算出する。計算コストの都合上、第1非接触センサ32の検出データ量及びマップデータのデータ量は有限であり、第1非接触センサ32の検出データから瞬時に真の作業機械2の位置及び方位を算出することは現実的に難しい。そのため、以下のように、ある規定時点において作業機械2が存在すると予測される範囲に仮想的に設定した複数の候補点(パーティクルPA)を用いることにより、計算コストを抑えた上で真の値に近い作業機械2の位置及び方位を算出するようにしている。
具体的には、第1位置算出部13は、速度センサ24の検出データ及び方位センサ25の検出データに基づいて、ある規定時点において作業機械2が存在すると予測される範囲に複数のパーティクルPAを仮想的に設定し、複数のパーティクルPAにおける位置及び方位を算出する(ステップST631)。なお、複数のパーティクルPAにおける位置及び方位の算出には、推測航法を用いてもよい。
次に、第1位置算出部13は、複数のパーティクルそれぞれについて尤度を算出する(ステップST632)。
具体的には、第1位置算出部13は、ステップST631において算出したある1つのパーティクルPAの位置及び方位から第1非接触センサ32を用いて土手BKの検出点を検出したときに予測される土手BKの検出点の検出データを示す予測検出データを算出する。検出点は、マトリクス状に規定された複数のグリッドによって表される。
また、第1位置算出部13は、規定時点において第1非接触センサ32が実際に土手BKの検出点を検出したときの検出データを示す実際検出データを取得する。第1位置算出部13は、予測検出データと実際検出データとを照合して、その一致度合いから各パーティクルPAについて尤度算出(点数付け)を行う。マップデータにおける土手BKが検出されている検出点(グリッド)と、第1非接触センサ32により実際に検出された検出点(グリッド)とが一致しているほど尤度(点数)が高くなる。このような尤度の算出を各パーティクルについて行い、算出された尤度を正規化する。
第1位置算出部13は、第1非接触センサ32の検出データに基づいて算出された各パーティクルPAの位置及び方位と、それぞれのパーティクルの尤度から重みづけ等の処理を行い、最終的に作業機械2が最も存在する確率が高いであろう位置及び方位の最終推定値(期待値)を示す第1位置を算出する(ステップST633)。
最終推定値を示す第1位置は、必ずしもいずれかのパーティクルPAが存在していた位置から選ばれるわけではない。上記手法により、第1位置算出部13は、マップデータにおける土手BKが検出されている検出点は、第1非接触センサ32により実際に検出された検出点に最も似る作業機械2の第1位置及び第1方位(最終推定値)を算出する。
第2非接触センサ33の検出データについても、ステップST632及びステップST634と同様の処理が実施される。すなわち、第2位置算出部14は、速度センサ24の検出データ及び方位センサ25の検出データに基づいて、ある規定時点において作業機械2が存在すると予測される範囲に複数のパーティクルPAを仮想的に設定し、複数のパーティクルPAにおける位置及び方位を算出した後、複数のパーティクルそれぞれについて尤度を算出する(ステップST634)。
具体的には、第2位置算出部14は、1つのパーティクルPAの位置及び方位から第2非接触センサ33を用いてランドマークLMの検出点を検出したときに予測されるランドマークLMの検出点の検出データを示す予測検出データを算出する。また、第2位置算出部14は、規定時点において第2非接触センサ33が実際にランドマークLMの検出点を検出したときの検出データを示す実際検出データを取得する。第2位置算出部14は、予測検出データと実際検出データとを照合して、その一致度合いから各パーティクルPAについて尤度算出(点数付け)を行う。ランドマーク登録位置記憶部15に記憶されている登録位置におけるランドマークLM検出されている検出点(グリッド)と、第2非接触センサ33により実際に検出された検出点(グリッド)とが一致しているほど尤度(点数)が高くなる。このような尤度の算出を各パーティクルについて行い、算出された尤度を正規化する。
第2位置算出部14は、第2非接触センサ33の検出データに基づいて算出された各パーティクルPAの位置及び方位と、それぞれのパーティクルの尤度から重みづけ等の処理を行い、最終的に作業機械2が最も存在する確率が高いであろう位置及び方位の最終推定値(期待値)を示す第2位置を算出する(ステップST635)。
最終推定値を示す第2位置は、必ずしもいずれかのパーティクルPAが存在していた位置から選ばれるわけではない。上記手法により、第2位置算出部14は、登録位置におけるランドマークLMが検出されている検出点は、第2非接触センサ33により実際に検出された検出点に最も似る作業機械2の第2位置及び第2方位(最終推定値)を算出する。
統合位置決定部16は、ステップST633において算出された作業機械2の第1位置と、ステップST635において算出された作業機械2の第2位置とを統合して、作業機械2の統合位置を決定する(ステップST636)。
前記統合位置決定部16は、前記統合位置を例えば第1位置と第2位置との間に決定する。なお、第1位置及び第2位置の少なくとも一方に重みが付けられた後、第1位置と第2位置とが統合されてもよい。
走行制御装置40は、位置センサ31の検出精度が低下した外界センサ走行モードにおいて、統合位置決定部16により決定された作業機械2の統合位置に基づいて、目標走行コースCSに従って走行するように、作業機械2の走行を制御する。
[コンピュータシステム]
図8は、コンピュータシステム1000の一例を示すブロック図である。上述の管理装置3、データ処理装置10、及び走行制御装置40のそれぞれは、コンピュータシステム1000を含む。コンピュータシステム1000は、CPU(Central Processing Unit)のようなプロセッサ1001と、ROM(Read Only Memory)のような不揮発性メモリ及びRAM(Random Access Memory)のような揮発性メモリを含むメインメモリ1002と、ストレージ1003と、入出力回路を含むインターフェース1004とを有する。上述の管理装置3の機能、データ処理装置10の機能、及び走行制御装置40の機能は、プログラムとしてストレージ1003に記憶されている。プロセッサ1001は、プログラムをストレージ1003から読み出してメインメモリ1002に展開し、プログラムに従って上述の処理を実行する。なお、プログラムは、ネットワークを介してコンピュータシステム1000に配信されてもよい。
[効果]
以上説明したように、本実施形態によれば、第1非接触センサ32の検出データとマップデータとを照合することにより算出された作業機械2の第1位置と、ランドマークLMを検出した第2非接触センサ33の検出データから算出された作業機械2の第2位置とが統合されて、作業機械2の統合位置が決定される。位置センサ31の検出データを用いない外界センサ走行モードにおいては、作業機械2の統合位置に基づいて、推測航法により走行する作業機械2の位置が補正される。
作業現場が鉱山である場合、作業機械2に設けられている第1非接触センサ32は、作業機械2の走行路HLの傍らに設けられた土手BKを検出する。全地球航法衛星システムの検出精度が高いとき、作業機械2の位置が全地球航法衛星システムの位置センサ31によって検出され、位置センサ31の検出データ及び第1非接触センサ32の検出データに基づいて、土手BKのマップデータが作成される。全地球航法衛星システムの検出精度が低下したとき、土手BKを検出した第1非接触センサ32の検出データとマップデータとを照合することによって作業機械2の位置が推定される。土手BKは、作業機械2の走行方向に延在する。土手BKの特徴点が少ない場合、第1非接触センサ32の検出データとマップデータとが適切に照合されない可能性がある。その結果、作業機械2の位置の推定精度が低下する可能性がある。
本実施形態によれば、第1非接触センサ32の検出データとマップデータとが適切に照合されない状況が発生しても、第1非接触センサ32の検出データとマップデータとを照合することにより算出される第1位置は、ランドマークLMを検出した第2非接触センサ33の検出データに基づいて算出された第2位置と統合される。ランドマークLMは土手BKに比べて離散的に(例えば100[m]間隔で)配置されているものの、ランドマークLMの登録位置は、作業者によって計測される正確な位置を示す。また、土手BKは自然構造物であって、荒天等の影響により形状が変化したり特徴点が少ない一定形状であったりする可能性があるのに対し、ランドマークLMは人工構造物であるため、形状は変化せず、適切な形状及び反射強度を有する。そのため、第1非接触センサ32の検出データとマップデータとの照合により算出される第1位置の精度が低下した場合でも、その第1位置に第2位置が統合されることにより、作業機械2の統合位置は、作業機械2の真の位置に近付くことができる。したがって、作業機械2の位置(統合位置)を推定するときの推定精度の低下が抑制される。
[他の実施形態]
なお、上述の実施形態において、なお、ランドマークLMは、積込場PA1に設置されてもよいし、排土場PA2に設置されてもよい。また、ランドマークLMは、作業現場の任意の場所に設置されてもよい。
なお、上述の実施形態において、第2非接触センサ33は、ランドマークLMを検出するレーダセンサであることとした。第2非接触センサ33は、作業機械2の周囲の物体の画像データを取得する撮像センサを含んでもよい。撮像センサは、例えばステレオカメラを含んでもよい。第2位置算出部14は、撮像センサの撮像データに基づいて、作業機械2の第2位置を算出してもよい。統合位置決定部16は、第1非接触センサ32の検出データとマップデータとを照合することにより算出された第1位置と、撮像データに基づいて算出された第2位置とを統合して、作業機械2の統合位置を算出してもよい。
なお、上述の実施形態において、データ処理装置10の機能の少なくとも一部が管理装置3に設けられてもよいし、管理装置3の機能の少なくとも一部がデータ処理装置10及び走行制御装置40の少なくとも一方に設けられてもよい。例えば、上述の実施形態において、管理装置3が、第1位置算出部13及び第2位置算出部14の機能を有し、管理装置3で算出された第1位置及び第2位置が、通信システム4を介して、作業機械2のデータ処理装置10に送信されてもよい。
1…管理システム、2…作業機械、3…管理装置、3A…走行条件生成部、3B…通信部、4…通信システム、5…管制施設、6…無線通信機、7…積込機、8…破砕機、9…制御システム、10…データ処理装置、11…マップデータ作成部、12…マップデータ記憶部、13…第1位置算出部、14…第2位置算出部、15…ランドマーク登録位置記憶部、16…統合位置決定部、21…車両本体、22…ダンプボディ、23…走行装置、23A…駆動装置、23B…ブレーキ装置、23C…操舵装置、24…速度センサ、25…方位センサ、26…姿勢センサ、27…車輪、27F…前輪、27R…後輪、28…無線通信機、31…位置センサ、32…第1非接触センサ、33…第2非接触センサ、40…走行制御装置、ARl…検出範囲、ARs…検出範囲、CS…目標走行コース、HL…走行路、IS…交差点、LM…ランドマーク、PA…作業場、PA1…積込場、PA2…排土場、PI…ポイント。

Claims (7)

  1. 走行路を走行する作業機械の位置を検出する位置センサと、
    前記作業機械に設けられ、前記作業機械の周囲の物体の位置を検出する第1非接触センサと、
    前記作業機械に設けられ、前記作業機械の周囲の物体の位置を検出する第2非接触センサと、
    前記位置センサの検出データ及び前記第1非接触センサの検出データに基づいてマップデータを作成するマップデータ作成部と、
    前記マップデータと前記第1非接触センサの検出データとを照合して前記作業機械の第1位置を算出する第1位置算出部と、
    前記第2非接触センサの検出データに基づいて前記作業機械の第2位置を算出する第2位置算出部と、
    前記第1位置と前記第2位置とを統合して前記作業機械の統合位置を決定する統合位置決定部と、
    を備える作業機械の制御システム。
  2. 前記第1非接触センサに検出される前記物体は、前記走行路の傍らに設けられた土手を含み、
    前記第2非接触センサに検出される前記物体は、前記走行路の傍らに設置されたランドマークを含む、
    請求項1に記載の作業機械の制御システム。
  3. 前記第1位置算出部は、前記作業機械が存在すると予測される範囲に設定した複数のパーティクルから前記第1位置を算出し、
    前記第2位置算出部は、前記作業機械が存在すると予測される範囲に設定した複数のパーティクルから前記第2位置を算出し、
    前記統合位置決定部は、前記統合位置を前記第1位置と前記第2位置の間に決定する、
    請求項2に記載の作業機械の制御システム。
  4. 前記作業機械の走行速度を検出する速度センサと、
    前記作業機械の方位と検出する方位センサと、を備え、
    前記第1位置算出部は、前記速度センサの検出データ及び前記方位センサの検出データに基づいて、規定時点において前記作業機械が存在すると予測される範囲に複数のパーティクルを設定し、複数の前記パーティクルのそれぞれにおいて前記第1非接触センサが前記土手を検出したときの予測検出データと前記規定時点において第1非接触センサが前記土手を検出したときの実際検出データとを照合して、複数の前記パーティクルのそれぞれについて尤度を算出し、前記尤度に基づいて前記第1位置を算出し、
    前記第2位置算出部は、前記速度センサの検出データ及び前記方位センサの検出データに基づいて、規定時点において前記作業機械が存在すると予測される範囲に複数のパーティクルを設定し、複数の前記パーティクルのそれぞれにおいて前記第2非接触センサが前記ランドマークを検出したときの予測検出データと前記規定時点において第2非接触センサが前記ランドマークを検出したときの実際検出データとを照合して、複数の前記パーティクルのそれぞれについて尤度を算出し、前記尤度に基づいて前記第2位置を算出し、
    前記統合位置決定部は、前記統合位置を前記第1位置と前記第2位置との間に決定する、
    請求項2又は請求項3に記載の作業機械の制御システム。
  5. 前記位置センサの検出精度が低下したとき、前記統合位置決定部により決定された前記統合位置に基づいて前記作業機械の走行を制御する走行制御装置を備える、
    請求項1から請求項4のいずれか一項に記載の作業機械の制御システム。
  6. 請求項1から請求項5のいずれか一項に記載の作業機械の制御システムを備える作業機械。
  7. 走行路を走行する作業機械の走行において前記作業機械の位置を検出した位置センサの検出データを取得することと、
    前記作業機械に設けられている第1非接触センサで検出された前記作業機械の周囲の物体の位置の検出データを取得することと、
    前記作業機械に設けられている第2非接触センサで検出された前記作業機械の周囲の物体の位置の検出データを取得することと、
    前記位置センサの検出データ及び前記第1非接触センサの検出データに基づいてマップデータを作成することと、
    前記マップデータと前記第1非接触センサの検出データとを照合して前記作業機械の第1位置を算出することと、
    前記第2非接触センサの検出データに基づいて前記作業機械の第2位置を算出することと、
    前記第1位置と前記第2位置とを統合して前記作業機械の統合位置を決定することと、
    前記統合位置に基づいて前記作業機械の走行を制御することと、
    を含む作業機械の制御方法。
JP2018144522A 2018-07-31 2018-07-31 作業機械の制御システム、作業機械、及び作業機械の制御方法 Active JP7141883B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018144522A JP7141883B2 (ja) 2018-07-31 2018-07-31 作業機械の制御システム、作業機械、及び作業機械の制御方法
US16/982,077 US20210096569A1 (en) 2018-07-31 2019-02-27 Work machine control system, work machine, and work machine control method
AU2019313721A AU2019313721B2 (en) 2018-07-31 2019-02-27 Work machine control system, work machine, and work machine control method
PCT/JP2019/007692 WO2020026491A1 (ja) 2018-07-31 2019-02-27 作業機械の制御システム、作業機械、及び作業機械の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018144522A JP7141883B2 (ja) 2018-07-31 2018-07-31 作業機械の制御システム、作業機械、及び作業機械の制御方法

Publications (2)

Publication Number Publication Date
JP2020020655A true JP2020020655A (ja) 2020-02-06
JP7141883B2 JP7141883B2 (ja) 2022-09-26

Family

ID=69230596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018144522A Active JP7141883B2 (ja) 2018-07-31 2018-07-31 作業機械の制御システム、作業機械、及び作業機械の制御方法

Country Status (4)

Country Link
US (1) US20210096569A1 (ja)
JP (1) JP7141883B2 (ja)
AU (1) AU2019313721B2 (ja)
WO (1) WO2020026491A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111600617B (zh) * 2020-05-12 2021-06-08 中国科学院软件研究所 一种基于物联网LoRa信号的非接触感知方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172590A (ja) * 2003-12-10 2005-06-30 Nissan Motor Co Ltd 前方物体検出装置及び前方物体検出方法
JP2007322138A (ja) * 2006-05-30 2007-12-13 Toyota Motor Corp 移動装置及び移動装置の自己位置推定方法
JP2016045585A (ja) * 2014-08-20 2016-04-04 日立建機株式会社 管制制御装置及び運搬車両の走行シミュレーション方法
WO2016060282A1 (ja) * 2015-10-30 2016-04-21 株式会社小松製作所 作業機械の制御システム、作業機械、作業機械の管理システム、作業機械の制御方法及びプログラム
WO2017072980A1 (ja) * 2015-10-30 2017-05-04 株式会社小松製作所 作業機械の制御システム、作業機械、作業機械の管理システム、及び作業機械の管理方法
US20170320433A1 (en) * 2016-05-06 2017-11-09 GM Global Technology Operations LLC Vehicle guidance system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2715470B1 (en) * 2011-05-24 2018-07-11 BAE Systems PLC Vehicle navigation
US9719801B1 (en) * 2013-07-23 2017-08-01 Waymo Llc Methods and systems for calibrating sensors using road map data
JP6055120B2 (ja) * 2015-10-30 2016-12-27 株式会社小松製作所 作業機械の制御システム、作業機械、作業機械の管理システム、作業機械の制御方法及びプログラム
CA3001963A1 (en) * 2016-01-29 2017-08-03 Komatsu Ltd. Work machine management system and work machine
US20190204092A1 (en) * 2017-12-01 2019-07-04 DeepMap Inc. High definition map based localization optimization
KR102628655B1 (ko) * 2018-06-29 2024-01-24 삼성전자주식회사 레이더 구동 장치 및 방법
DE102019111315A1 (de) * 2019-05-02 2020-11-05 Horsch Leeb Application Systems Gmbh Autonome landwirtschaftliche Arbeitsmaschine und Verfahren zu deren Betrieb

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172590A (ja) * 2003-12-10 2005-06-30 Nissan Motor Co Ltd 前方物体検出装置及び前方物体検出方法
JP2007322138A (ja) * 2006-05-30 2007-12-13 Toyota Motor Corp 移動装置及び移動装置の自己位置推定方法
JP2016045585A (ja) * 2014-08-20 2016-04-04 日立建機株式会社 管制制御装置及び運搬車両の走行シミュレーション方法
WO2016060282A1 (ja) * 2015-10-30 2016-04-21 株式会社小松製作所 作業機械の制御システム、作業機械、作業機械の管理システム、作業機械の制御方法及びプログラム
WO2017072980A1 (ja) * 2015-10-30 2017-05-04 株式会社小松製作所 作業機械の制御システム、作業機械、作業機械の管理システム、及び作業機械の管理方法
US20170320433A1 (en) * 2016-05-06 2017-11-09 GM Global Technology Operations LLC Vehicle guidance system

Also Published As

Publication number Publication date
US20210096569A1 (en) 2021-04-01
WO2020026491A1 (ja) 2020-02-06
AU2019313721B2 (en) 2022-07-14
JP7141883B2 (ja) 2022-09-26
AU2019313721A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
JP6475227B2 (ja) 作業機械の制御システム、作業機械、及び作業機械の管理システム
JP6055120B2 (ja) 作業機械の制御システム、作業機械、作業機械の管理システム、作業機械の制御方法及びプログラム
JP6059846B2 (ja) 鉱山用作業機械の制御システム、鉱山用作業機械、鉱山用作業機械の管理システム、鉱山用作業機械の制御方法及びプログラム
JP6267783B2 (ja) 作業機械の制御システム、作業機械、及び作業機械の管理システム
JP6909726B2 (ja) 作業機械の制御システム、作業機械、作業機械の管理システム、及び作業機械の管理方法
JP6271023B2 (ja) 作業機械の制御システム、作業機械及び作業機械の制御方法
JP6617192B2 (ja) 作業機械の管理システム、及び作業機械
WO2020026490A1 (ja) 作業機械の制御システム、作業機械、及び作業機械の制御方法
JP6538793B2 (ja) 作業機械の制御システム、作業機械、及び作業機械の管理システム
WO2020026491A1 (ja) 作業機械の制御システム、作業機械、及び作業機械の制御方法
JP7103834B2 (ja) 作業機械の制御システム、作業機械、及び作業機械の制御方法
US20220056670A1 (en) Transport vehicle management system and transport vehicle management method
US11745767B2 (en) Work machine control system, work machine, and work machine control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R150 Certificate of patent or registration of utility model

Ref document number: 7141883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150