JP2020020616A - X-ray diffraction measuring system and X-ray diffraction measuring device - Google Patents

X-ray diffraction measuring system and X-ray diffraction measuring device Download PDF

Info

Publication number
JP2020020616A
JP2020020616A JP2018143036A JP2018143036A JP2020020616A JP 2020020616 A JP2020020616 A JP 2020020616A JP 2018143036 A JP2018143036 A JP 2018143036A JP 2018143036 A JP2018143036 A JP 2018143036A JP 2020020616 A JP2020020616 A JP 2020020616A
Authority
JP
Japan
Prior art keywords
ray
rays
plane
ray diffraction
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018143036A
Other languages
Japanese (ja)
Other versions
JP6600929B1 (en
Inventor
洋一 丸山
Yoichi Maruyama
洋一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pulstec Industrial Co Ltd
Original Assignee
Pulstec Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pulstec Industrial Co Ltd filed Critical Pulstec Industrial Co Ltd
Priority to JP2018143036A priority Critical patent/JP6600929B1/en
Application granted granted Critical
Publication of JP6600929B1 publication Critical patent/JP6600929B1/en
Publication of JP2020020616A publication Critical patent/JP2020020616A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

To provide an X-ray diffraction measuring device for irradiating a measurement object flowing on a conveyance line with an X-ray at a plurality of incidence angles and finding a residual stress by a sinψ method, which is constructed to a compact size and simple structure.SOLUTION: X-ray diffraction measuring devices 1-1 to 1-4 are arranged in plurality along the movement direction of a conveyance line LN. With the X-ray diffraction measuring devices 1-1 to 1-4, an X-ray tube is arranged so that the center axis is approximately parallel to the plane of a measurement object OB and approximately perpendicular to the movement direction of the conveyance line LN, the angles formed by a reference plane including the center axis of the X-ray tube and the optical axis of an emitted X-ray and the plane of the measurement object OB are respectively different, and a line linking X-ray irradiation points matches the movement direction of the conveyance line LN. With the X-ray diffraction measuring devices 1-1 to 1-4, an X-ray imager is arranged in such a way that the light receiving plane is approximately parallel to the reference plane and the peak in X-ray intensity distribution on a line where the light receiving plane and the reference plane intersect when a diffracted X-ray is generated at a standard angle of diffraction is at a prescribed position.SELECTED DRAWING: Figure 2

Description

本発明は、搬送ライン上を流れる測定対象物に複数の入射角でX線を照射して、X線回折像を撮像し、sinψ法により測定対象物の残留応力を求めるX線回折測定装置システム及びX線回折測定装置に関する。 The present invention relates to an X-ray diffraction measurement method that irradiates a measurement object flowing on a transport line with X-rays at a plurality of incident angles, captures an X-ray diffraction image, and determines the residual stress of the measurement object by a sin 2 ψ method. The present invention relates to an apparatus system and an X-ray diffraction measurement apparatus.

搬送ライン上を流れる測定対象物にX線を照射し、X線回折像を撮像することで、測定対象物の残留応力を求めるX線回折測定装置として、例えば特許文献1に示されるように、測定対象物に複数の入射角で一度にX線を照射して、sinψ法により残留応力を求めるX線回折測定装置が考案されている。搬送ライン上を流れる測定対象物に照射されるX線の照射箇所は変化していくが、X線の照射とX線回折像の撮像(回折角の検出)を瞬時に行えば、測定対象物の定めた点におけるX線回折像(回折角)を得ることができるので、この装置によれば、搬送ライン上を流れる測定対象物であっても残留応力を測定することができる。 As an X-ray diffraction measuring device that irradiates an X-ray to a measurement object flowing on a transport line and captures an X-ray diffraction image to obtain a residual stress of the measurement object, as disclosed in Patent Document 1, for example, An X-ray diffraction measuring device that irradiates an X-ray at a plurality of incident angles to a measurement target at one time and obtains a residual stress by a sin 2 ψ method has been devised. The irradiation position of the X-ray applied to the measurement object flowing on the transport line changes, but if the X-ray irradiation and the imaging of the X-ray diffraction image (detection of the diffraction angle) are performed instantaneously, the measurement object Can obtain an X-ray diffraction image (diffraction angle) at a point determined by the above, so that the residual stress can be measured even with a measurement object flowing on the transport line.

特開平5−107124号公報JP-A-5-107124

しかしながら、特許文献1の図ではX線源が非常に小型で描かれているが、実際にX線回折測定装置に使用されるX線管はもっと大型であり、複数のX線管を備えて測定対象物に複数の入射角で一度にX線を照射する構造にしようとすると、X線回折測定装置が複雑な構造で大型になるという問題がある。このため、搬送ライン上を流れる測定対象物をsinψ法により残留応力を測定するX線回折測定装置は実現していない。 However, although the X-ray source is illustrated as being very small in the drawing of Patent Document 1, the X-ray tube actually used in the X-ray diffraction measurement device is much larger, and is provided with a plurality of X-ray tubes. Attempts to irradiate the measurement object with X-rays at a plurality of angles of incidence at one time have a problem that the X-ray diffraction measurement device has a complicated structure and is large in size. For this reason, an X-ray diffraction measuring device for measuring the residual stress of the measurement object flowing on the transport line by the sin 2 ψ method has not been realized.

本発明はこの問題を解消するためなされたもので、その目的は、搬送ライン上を流れる測定対象物に複数の入射角でX線を照射して、X線回折像を撮像し、sinψ法により測定対象物の残留応力を求めるX線回折測定装置システム及びX線回折測定装置において、X線回折測定装置を小型で単純な構造にすることが可能なX線回折測定装置システム及びX線回折測定装置を提供することにある。 The present invention has been made to solve this problem, and an object of the present invention is to irradiate a measurement object flowing on a transport line with X-rays at a plurality of incident angles, capture an X-ray diffraction image, and obtain sin 2 ψ X-ray diffraction measuring system and X-ray diffraction measuring system for obtaining the residual stress of an object to be measured by an X-ray method An object of the present invention is to provide a diffraction measurement device.

上記目的を達成するために、本発明の特徴は、一定方向に流れる搬送ライン上に載置された測定対象物に対してX線を出射するX線出射手段と、測定対象物にて回折したX線を受光して、回折X線の強度分布を検出するX線撮像器とを備えたX線回折測定装置を複数備え、それぞれのX線回折測定装置におけるX線撮像器により検出される回折X線の強度分布を、sinψ法により残量応力を算出するためのデータとして入力して記憶するコンピュータ装置を備えたX線回折測定システムにおいて、それぞれのX線回折測定装置におけるX線出射手段は、中心軸が測定対象物の平面と略平行且つ搬送ラインの移動方向と略垂直になるよう配置されたX線管と、X線管から出射されたX線を中心軸と所定の角度を成す光軸を有する平行なX線にして測定対象物に対して出射するコリメータとからなり、それぞれのX線回折測定装置は、X線管の中心軸とコリメータから出射されるX線の光軸とを含む基準平面が測定対象物の平面と成す角度が異なるとともに、それぞれのX線回折測定装置のコリメータから出射されるX線が測定対象物に照射される点を結んだラインが、搬送ラインの移動方向と平行になるよう配置され、それぞれのX線回折測定装置におけるX線撮像器は、受光平面が基準平面に略垂直で、コリメータから出射されるX線により測定対象物にて標準の回折角で回折X線が発生したとき、受光平面と基準平面が交差するライン上の回折X線の強度分布におけるピークが、所定位置になるように配置されているX線回折測定システムとしたことにある。 In order to achieve the above object, a feature of the present invention is that an X-ray emitting unit that emits X-rays to a measurement target placed on a transport line flowing in a certain direction, and diffracted by the measurement target. A plurality of X-ray diffraction measuring devices each including an X-ray imaging device that receives X-rays and detects an intensity distribution of the diffracted X-rays; diffraction detected by the X-ray imaging device in each of the X-ray diffraction measuring devices In an X-ray diffraction measurement system including a computer device, which inputs and stores the X-ray intensity distribution as data for calculating residual stress by the sin 2 ψ method, the X-ray emission of each X-ray diffraction measurement device The means comprises: an X-ray tube arranged so that a central axis is substantially parallel to a plane of the object to be measured and substantially perpendicular to a moving direction of the transport line; and an X-ray emitted from the X-ray tube is formed at a predetermined angle with respect to the central axis. Parallel X-rays with optical axis Each of the X-ray diffraction measuring apparatuses has a reference plane including the central axis of the X-ray tube and the optical axis of the X-ray emitted from the collimator. And the line connecting the points where the X-rays emitted from the collimators of the respective X-ray diffraction measuring devices irradiate the object to be measured are arranged in parallel with the moving direction of the transport line. The X-ray imager in each X-ray diffraction measuring device has a light receiving plane substantially perpendicular to the reference plane, and generates a diffracted X-ray at a standard diffraction angle on the measurement object by the X-ray emitted from the collimator. In this case, the X-ray diffraction measurement system is arranged such that the peak in the intensity distribution of the diffracted X-ray on the line where the light receiving plane and the reference plane intersect is located at a predetermined position.

これによれば、それぞれのX線回折測定装置は、X線管、コリメータ及びX線撮像器を、1つの平面内にX線管の中心軸、コリメータの中心軸及びX線撮像器の受光平面内のラインが含まれるように配置しているため、小型で単純な構造にすることができる。そして、それぞれのX線回折測定装置をすべて同一構造にしても、それぞれのX線回折測定装置において基準平面が測定対象物の平面と成す角度が異なるようにし、出射されるX線が測定対象物に照射される点を結んだラインが、搬送ラインの移動方向と平行になるようにすれば、sinψ法により残留応力を求めることができる。すなわち、搬送ライン上に載置された測定対象物は移動しているので、それぞれのX線回折測定装置のX線出射のタイミングを適切にすれば、それぞれのX線回折測定装置から出射されるX線を測定対象物の同一点に照射されるようにすることができる。そして、それぞれのX線回折測定装置において基準平面が測定対象物の平面と成す角度が異なるようにすれば、それぞれのX線回折測定装置ごとの測定対象物の回折面法線の方向は同一平面に平行で異なる方向になるので、それぞれのX線回折測定装置ごとにX線の回折角及び基準平面と測定対象物の平面が成す角度が得られれば、sinψ法により残留応力を求めることができる。X線回折測定装置ごとのX線の回折角は、コンピュータ装置に入力する回折X線の強度分布のデータから、X線撮像器の受光平面と基準平面が交差するライン方向の強度プロファイルのピーク位置を求めれば、既知のパラメータを用いて計算することができる。 According to this, each X-ray diffraction measuring apparatus includes an X-ray tube, a collimator, and an X-ray imager in a single plane, a central axis of the X-ray tube, a central axis of the collimator, and a light receiving plane of the X-ray imager. Since they are arranged so as to include the lines inside, a small and simple structure can be achieved. Even if all the X-ray diffraction measurement apparatuses have the same structure, the angle formed by the reference plane and the plane of the measurement object in each X-ray diffraction measurement apparatus is different, and the emitted X-rays are The residual stress can be obtained by the sin 2 ψ method by making the line connecting the points irradiated to the direction parallel to the moving direction of the transport line. That is, since the measurement object placed on the transport line is moving, if the X-ray emission timing of each X-ray diffraction apparatus is appropriate, the measurement object is emitted from each X-ray diffraction measurement apparatus. X-rays can be applied to the same point on the measurement object. If the angle formed between the reference plane and the plane of the measurement object in each X-ray diffraction measurement device is different, the direction of the normal to the diffraction surface of the measurement object for each X-ray diffraction measurement device is the same plane. If the X-ray diffraction angle and the angle between the reference plane and the plane of the object to be measured can be obtained for each X-ray diffraction measurement device, the residual stress should be obtained by the sin 2 ψ method. Can be. The X-ray diffraction angle for each X-ray diffraction measuring device is obtained by calculating the peak position of the intensity profile in the line direction where the light receiving plane of the X-ray imager and the reference plane intersect based on the data of the intensity distribution of the diffracted X-ray input to the computer device. Can be calculated using known parameters.

また、本発明の他の特徴は、それぞれのX線回折測定装置は、X線出射手段とX線撮像器とを内部に備える筐体を備え、筐体は、コリメータから出射されるX線の照射点であって、照射点にて標準の回折角で回折X線が発生したとき、回折X線の強度分布のピークがX線撮像器の所定位置になる照射点で、2つの可視の平行光が交差するよう可視の平行光を出射する可視光出射手段が取り付けられていることにある。   Further, another feature of the present invention is that each X-ray diffraction measurement device includes a housing having therein an X-ray emission unit and an X-ray imager, and the housing is configured to detect X-rays emitted from a collimator. At the irradiation point, when a diffracted X-ray is generated at a standard diffraction angle at the irradiation point, two visible parallel lines are formed at the irradiation point where the peak of the intensity distribution of the diffracted X-ray becomes a predetermined position on the X-ray imager. A visible light emitting unit that emits visible parallel light so that the lights intersect is provided.

これによれば、2つの可視の平行光の照射点が1つになるようにそれぞれのX線回折測定装置の位置を調整し、それぞれのX線回折測定装置の1つになった照射点が搬送ラインの移動方向に平行な1つのライン上になるようにすれば、それぞれのX線回折測定装置を適切な位置にすることができるので、それぞれのX線回折測定装置の位置調整を簡単に行うことができる。   According to this, the position of each X-ray diffraction measurement device is adjusted so that the two visible parallel light irradiation points become one, and the irradiation point that becomes one of the respective X-ray diffraction measurement devices becomes If the X-ray diffraction measurement devices are arranged on one line parallel to the moving direction of the transport line, each X-ray diffraction measurement device can be set at an appropriate position, so that the position adjustment of each X-ray diffraction measurement device can be easily performed. It can be carried out.

また、本発明の他の特徴は、それぞれのX線回折測定装置の筐体は、X線管の中心軸と略平行又は略垂直な平面部分を有し、その平面部分は重力方向に対する傾き角度を測定する角度計であって、X線管の中心軸方向おける傾き角度とX線管の中心軸に垂直な方向における傾き角度を測定する角度計を取り付けていることにある。   Another feature of the present invention is that the housing of each X-ray diffraction measuring device has a plane portion substantially parallel or substantially perpendicular to the center axis of the X-ray tube, and the plane portion has a tilt angle with respect to the direction of gravity. In which the angle meter for measuring the tilt angle in the direction of the central axis of the X-ray tube and the tilt angle in the direction perpendicular to the central axis of the X-ray tube is attached.

これによれば、測定対象物の平面が重力方向に略垂直になっていれば、角度計が示すX線管の中心軸方向における傾き角度が0になるようX線回折測定装置の姿勢を調整すれば、X線管の中心軸を測定対象物の平面と略平行にすることができる。また、角度計が示すX線管の中心軸方向に垂直な方向における傾き角度が設定値になるようX線回折測定装置の姿勢を調整すれば、基準平面と測定対象物の平面が成す角度を設定値にすることができる。これにより、それぞれのX線回折測定装置の姿勢調整を簡単に行うことができる。   According to this, if the plane of the object to be measured is substantially perpendicular to the direction of gravity, the posture of the X-ray diffraction measuring device is adjusted so that the inclination angle in the direction of the central axis of the X-ray tube indicated by the goniometer becomes zero. Then, the central axis of the X-ray tube can be made substantially parallel to the plane of the measurement object. Further, if the attitude of the X-ray diffraction measuring device is adjusted so that the inclination angle in the direction perpendicular to the center axis direction of the X-ray tube indicated by the goniometer becomes a set value, the angle formed by the reference plane and the plane of the object to be measured can be changed. Can be set value. Thereby, the posture of each X-ray diffraction measuring device can be easily adjusted.

また、本発明の他の特徴は、一定方向に流れる搬送ライン上に載置された測定対象物に対して、X線を複数の方向から同時に出射するX線出射手段と、X線出射手段から出射されるそれぞれのX線ごとに、測定対象物にて回折したX線を受光して回折X線の強度分布を検出する複数のX線撮像器と、それぞれの出射されるX線ごとにX線撮像器により検出される回折X線の強度分布を、sinψ法により残量応力を算出するためのデータとして入力して記憶するコンピュータ装置とを備えたX線回折測定装置において、X線出射手段は、中心軸が測定対象物の平面と略平行且つ搬送ラインの移動方向と略垂直になるよう配置されるとともにX線出射口を複数有するX線管と、それぞれのX線出射口から出射されるそれぞれのX線を中心軸と所定の角度を成す光軸を有する平行なX線にして測定対象物に対して出射する複数のコリメータとからなり、それぞれのX線出射口とそれぞれのコリメータとは、X線管の中心軸とそれぞれのコリメータから出射されるX線の光軸とを含むそれぞれの基準平面が測定対象物の平面と成す角度が異なるとともに、それぞれのコリメータから出射されるX線が測定対象物に照射される点を結んだラインが、搬送ラインの移動方向と平行になるように配置され、複数のX線撮像器のそれぞれは、受光平面がそれぞれの基準平面の内対応するものに略垂直で、それぞれのコリメータの内対応するものから出射されるX線により測定対象物にて標準の回折角で回折X線が発生したとき、受光平面と対応する基準平面が交差するライン上の回折X線の強度分布におけるピークが、所定位置になるように配置されていることを特徴とするX線回折測定装置としたことにある。 Further, another feature of the present invention is that an X-ray emitting unit that simultaneously emits X-rays from a plurality of directions to a measurement target placed on a transport line flowing in a certain direction, and an X-ray emitting unit. For each of the emitted X-rays, a plurality of X-ray imagers for receiving the X-ray diffracted by the measurement object and detecting the intensity distribution of the diffracted X-rays, and for each of the emitted X-rays, A computer for inputting and storing the intensity distribution of the diffracted X-rays detected by the X-ray imager as data for calculating the residual stress by the sin 2 ψ method, The emission means is arranged such that the central axis is substantially parallel to the plane of the object to be measured and substantially perpendicular to the moving direction of the transport line, and has an X-ray tube having a plurality of X-ray emission ports; Each emitted X-ray is defined as the central axis. It comprises a plurality of collimators for emitting parallel X-rays having an optical axis forming a predetermined angle to a measurement object, and each X-ray exit port and each collimator are located at the center axis of the X-ray tube. The angle at which each reference plane including the optical axis of the X-ray emitted from each collimator and the plane of the measurement object is different, and the X-ray emitted from each collimator is irradiated on the measurement object. Are arranged so as to be parallel to the moving direction of the transport line. Each of the plurality of X-ray imagers has a light receiving plane substantially perpendicular to a corresponding one of the respective reference planes, and a respective collimator. When a diffraction X-ray is generated at a standard diffraction angle on a measurement object by an X-ray emitted from a corresponding one of the above, the intensity of the diffraction X-ray on a line at which the light receiving plane and the corresponding reference plane intersect Peak in fabric lies in the fact that the X-ray diffraction measurement apparatus characterized by being arranged to have a predetermined position.

これによれば、X線回折測定装置はコリメータ及びX線撮像器を複数備えるが、X線管は1つであり、複数のコリメータ及びX線撮像器は、限られた箇所にまとめて配置することができるため、装置を小型で単純な構造にすることができる。そして、出射されるそれぞれのX線においてそれぞれの基準平面が測定対象物の平面と成す角度が異なるようにし、出射されるそれぞれのX線が測定対象物に照射される点を結んだラインが、搬送ラインの移動方向と平行になるようにすれば、sinψ法により残留応力を求めることができる。すなわち、搬送ライン上に載置された測定対象物は移動しているので、それぞれのX線が測定対象物に照射される点の間隔を等間隔にし、X線出射のタイミングを適切にすれば、出射されるそれぞれのX線を測定対象物の同一点に照射されるようにすることができる。そして、出射されるそれぞれのX線ごとに測定対象物の回折面法線の方向は異なる方向になるので、出射されるそれぞれのX線ごとにX線の回折角とそれぞれの基準平面と測定対象物の平面が成す角度が得られれば、sinψ法により残留応力を求めることができる。よって、これによれば、X線回折測定装置は1台で済むので装置のコストを大幅に減らすことができる。なお、この場合は、出射されるそれぞれのX線ごとの測定対象物の回折面法線の方向は同一平面に平行にならないため、sinψ法により計算される残留応力は、回折面法線の方向が同一平面に平行になる場合に比べ精度が落ちる。しかし、回折面法線の方向を測定対象物の平面に投影した方向の角度変化は小さいため、残留応力の測定精度は通常の工業用であれば十分なものである。 According to this, the X-ray diffraction measurement apparatus includes a plurality of collimators and an X-ray imager, but has one X-ray tube, and the plurality of collimators and the X-ray imagers are collectively arranged in limited places. Therefore, the device can have a small and simple structure. Then, in each of the emitted X-rays, each reference plane is formed at a different angle from the plane of the measurement object, and a line connecting the points at which each of the emitted X-rays is irradiated on the measurement object is If the direction is parallel to the moving direction of the transfer line, the residual stress can be obtained by the sin 2 ψ method. In other words, since the measurement target placed on the transport line is moving, the intervals between the points where the respective X-rays are irradiated on the measurement target are made equal intervals, and the X-ray emission timing is appropriately set. Each of the emitted X-rays can be applied to the same point on the measurement object. Since the direction of the normal to the diffraction surface of the object to be measured is different for each emitted X-ray, the diffraction angle of the X-ray for each emitted X-ray, the respective reference plane, and the measurement object If the angle formed by the plane of the object is obtained, the residual stress can be obtained by the sin 2 ψ method. Therefore, according to this, since only one X-ray diffraction measuring device is required, the cost of the device can be greatly reduced. In this case, since the direction of the normal to the diffraction surface of the object to be measured for each emitted X-ray is not parallel to the same plane, the residual stress calculated by the sin 2 ψ method is the normal to the diffraction surface. Is lower than when the directions are parallel to the same plane. However, since the angle change in the direction in which the direction of the normal to the diffraction surface is projected onto the plane of the object to be measured is small, the accuracy of measuring the residual stress is sufficient for ordinary industrial use.

本発明の一実施形態に係るX線回折測定システムのそれぞれのX線回折測定装置の全体概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the whole X-ray-diffraction measurement apparatus schematic diagram of the X-ray-diffraction measurement system which concerns on one Embodiment of this invention. 搬送ラインの移動方向に図1のX線回折測定装置を複数並べたX線回折測定システムを示す図である。FIG. 2 is a diagram illustrating an X-ray diffraction measurement system in which a plurality of the X-ray diffraction measurement devices illustrated in FIG. 1 are arranged in a moving direction of a transport line. 本発明の一実施形態に係るX線回折測定システムにより残留応力を測定できることを理論的に示す図であり、(a)は通常のsinψ法を表す図、(b)は本発明の実施形態におけるsinψ法を表す図である。It is a figure which shows theoretically that a residual stress can be measured by the X-ray diffraction measuring system which concerns on one Embodiment of this invention, (a) is a figure showing a normal sin < 2 > method, (b) is implementation of this invention. It is a figure showing the sin 2 ψ method in a form. 本発明の別の実施形態に係るX線回折測定装置の外観図である。It is an external view of the X-ray-diffraction measuring apparatus which concerns on another embodiment of this invention. 本発明の別の実施形態に係るX線回折測定装置において、それぞれのX線照射点における回折面法線方向を測定対象物の平面に投影させた方向を示した図である。FIG. 8 is a diagram showing directions in which the normal direction of the diffraction surface at each X-ray irradiation point is projected on the plane of the measurement object in the X-ray diffraction measurement apparatus according to another embodiment of the present invention.

本発明の一実施形態に係るX線回折測定システムの構成について図1及び図2を用いて説明する。図2に示すように、このX線回折測定システムは、搬送ラインLNの移動方向に沿ってX線回折測定装置1−1〜1−4を配置したものであり、それぞれのX線回折測定装置1−1〜1−4はすべて同じ構造であって、図1に示すように搬送ラインLN上に載置された測定対象物OBにX線を照射して発生する回折X線を検出するものである。図1は、搬送ラインLNの移動方向からX線回折測定装置1を見た図であり、紙面垂直方向が搬送ラインLNの移動方向である。測定対象物OBは長尺状の平板であり、材質はX線回折測定が可能であればどのような材質のものでもよいが、本実施形態では鉄の場合でX線回折測定装置1のX線出射方向及び回折X線の方向が示されている。   A configuration of an X-ray diffraction measurement system according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 2, the X-ray diffraction measurement system has X-ray diffraction measurement devices 1-1 to 1-4 arranged along the moving direction of a transport line LN. 1-1 to 1-4 have the same structure, and detect diffracted X-rays generated by irradiating X-rays to a measurement object OB placed on a transport line LN as shown in FIG. It is. FIG. 1 is a view of the X-ray diffraction measuring apparatus 1 viewed from the moving direction of the transport line LN, and the direction perpendicular to the paper is the moving direction of the transport line LN. The object to be measured OB is a long flat plate, and the material may be any material as long as it can perform X-ray diffraction measurement. The line emission direction and the direction of the diffracted X-ray are shown.

図1に示すように、X線回折測定装置1は、筐体40内にX線を出射するX線管10、X線管10から出射されるX線を通過させるコリメータ13、測定対象物OBのX線照射点で発生する回折X線を受光してX線強度分布を測定するX線撮像器14、及びコリメータ13から出射されるX線の光軸上の所定箇所で2つのレーザ光が交差するようにレーザ光を出射するレーザ照射器20,30を収容している。また、筐体40内には、X線管10、X線撮像器14、レーザ照射器20,30に接続されて作動制御したり、検出信号を入力したりするための各種回路も内蔵されており、図1において筐体40外で2点鎖線で囲まれた各種回路は、筐体40内の2点鎖線内に納められている。なお、図1においては、回路基板、電線、固定具及び空冷ファン等は省略されている。   As shown in FIG. 1, an X-ray diffraction measuring apparatus 1 includes an X-ray tube 10 that emits X-rays, a collimator 13 that allows the X-rays emitted from the X-ray tube 10 to pass through, and a measurement object OB. An X-ray imager 14 that receives a diffracted X-ray generated at the X-ray irradiation point and measures the X-ray intensity distribution, and two laser beams are emitted at predetermined positions on the optical axis of the X-ray emitted from the collimator 13 Laser irradiators 20 and 30 that emit laser light so as to intersect are accommodated. The housing 40 also has various circuits connected to the X-ray tube 10, the X-ray imager 14, and the laser irradiators 20 and 30 for controlling operations and inputting detection signals. In FIG. 1, various circuits surrounded by a two-dot chain line outside the housing 40 are accommodated in a two-dot chain line inside the housing 40. In FIG. 1, a circuit board, electric wires, fixtures, an air cooling fan, and the like are omitted.

筐体40は、略直方体状に形成され、底面、上面及び側面はX線管10の中心軸と略平行になっており、前面及び後面はX線管10の中心軸と略垂直になっている。図1及び図2では省略されているが、筐体40は上方から支持装置により固定されており、該支持装置は図1及び図2の高さ方向に位置調整が可能で、筐体40の各面に垂直な3軸周りに傾き調整が可能になっている。よって、該支持装置を操作することで、X線回折測定装置1は測定対象物OBに対する位置と姿勢を調整することができるようになっている。   The housing 40 is formed in a substantially rectangular parallelepiped shape, the bottom surface, the upper surface, and the side surface are substantially parallel to the central axis of the X-ray tube 10, and the front surface and the rear surface are substantially perpendicular to the central axis of the X-ray tube 10. I have. Although omitted in FIGS. 1 and 2, the housing 40 is fixed from above by a supporting device, and the supporting device can be adjusted in the height direction in FIGS. 1 and 2. The tilt can be adjusted around three axes perpendicular to each surface. Therefore, by operating the support device, the X-ray diffraction measurement device 1 can adjust the position and the attitude with respect to the measurement object OB.

X線管10は、長尺状に形成され、筐体40内の上部にて筐体40に固定されており、高電圧電源65からの高電圧の供給を受け、X線制御回路52により制御されて、X線出射口11からX線を出射する。X線制御回路52は、後述するコンピュータ装置60を構成するコントローラ61から作動開始の指令が入力すると、X線管10から一定の強度のX線が出射されるように、X線管10に高電圧電源65から供給される駆動電流及び駆動電圧を制御する。また、X線管10は、図示しない冷却装置を備えていて、X線制御回路52は、この冷却装置に供給される駆動信号も制御する。これにより、X線管10は温度が一定に保たれる。   The X-ray tube 10 is formed in a long shape, is fixed to the housing 40 at an upper part in the housing 40, receives a high voltage from a high-voltage power supply 65, and is controlled by an X-ray control circuit 52. Then, X-rays are emitted from the X-ray emission port 11. When an operation start command is input from a controller 61 included in a computer device 60 described later, the X-ray control circuit 52 controls the X-ray tube 10 so that the X-ray tube 10 emits X-rays of a constant intensity. The drive current and the drive voltage supplied from the voltage power supply 65 are controlled. Further, the X-ray tube 10 includes a cooling device (not shown), and the X-ray control circuit 52 also controls a drive signal supplied to the cooling device. Thereby, the temperature of the X-ray tube 10 is kept constant.

X線管10から出射されるX線の光軸は、測定対象物OBに所定の入射角でX線を入射させるため、X線管10の中心軸の垂直方向(筐体40の前面及び後面)と所定の角度を成している。X線管10から出射されるX線は拡散するX線であるが、円筒状パイプであるコリメータ13に多くが入射し、コリメータ13の先端から出射することでコリメータ13の中心軸に平行なX線になる。コリメータ13は、先端が筐体40の底面に形成された孔から僅かに突出して筐体40の底面に固定されるとともに、反対側の先端がプレート12に固定されている。コリメータ13は中心軸がX線管10から出射されるX線の光軸と一致するように固定されており、X線管10の中心軸の垂直方向(筐体40の前面及び後面)と所定の角度を成している。   The optical axis of the X-ray emitted from the X-ray tube 10 is perpendicular to the central axis of the X-ray tube 10 (the front and rear surfaces of the housing 40) so that the X-ray is incident on the measurement object OB at a predetermined incident angle. ) And a predetermined angle. The X-rays emitted from the X-ray tube 10 are diffused X-rays. Many X-rays are incident on the collimator 13 which is a cylindrical pipe, and are emitted from the tip of the collimator 13 so that X-rays parallel to the central axis of the collimator 13 are formed. Become a line. The collimator 13 has a tip slightly protruding from a hole formed in the bottom surface of the housing 40 and is fixed to the bottom surface of the housing 40, and an opposite tip is fixed to the plate 12. The collimator 13 is fixed so that the central axis thereof coincides with the optical axis of the X-ray emitted from the X-ray tube 10, and is aligned with a direction perpendicular to the central axis of the X-ray tube 10 (the front and rear surfaces of the housing 40). The angle.

コリメータ13の先端から出射したX線は測定対象物OBに照射され、照射箇所で回折X線が発生する。発生した回折X線は、筐体40の底面に開けられた孔40cから筐体40内に入射してX線撮像器14で受光される。回折X線は出射X線の光軸に対する角度がブラッグの条件に合致する角度である箇所で強度の高いX線となるが、本実施形態ではX線管10のターゲットはクロム、測定対象物OBの材質は鉄であるので、211面で強い回折が起こったとき、その時の回折角は156.4°である。よって、出射X線の照射点と強度の高いX線を検出する点を結ぶラインと出射X線の光軸が成す角度は23.6°であり、X線撮像器14は法線方向がコリメータ13の中心軸と23.6°の角度になるようプレート12に固定されている。また、X線撮像器14は、X線管10の中心軸と出射X線の光軸(コリメータ13の中心軸)とを含む平面(以下、基準平面という)と交差するラインがX線撮像器14の中心ラインになり、出射X線の照射点がコリメータ13の先端から所定の距離にあるとき、中心ラインの方向における回折X線の強度のピーク位置がX線撮像器14の中心位置になるようプレート12に固定されている。   The X-rays emitted from the tip of the collimator 13 are irradiated on the object OB to be measured, and diffracted X-rays are generated at the irradiation points. The generated diffracted X-rays enter the housing 40 through a hole 40c formed in the bottom surface of the housing 40 and are received by the X-ray imaging device 14. The diffracted X-rays become high-intensity X-rays at a position where the angle of the emitted X-rays with respect to the optical axis meets the Bragg condition. In the present embodiment, the target of the X-ray tube 10 is chromium, and the measurement object OB is used. Is made of iron, so that when strong diffraction occurs on the 211 plane, the diffraction angle at that time is 156.4 °. Therefore, the angle formed by the optical axis of the emitted X-ray and the line connecting the irradiation point of the emitted X-ray and the point for detecting the high-intensity X-ray is 23.6 °, and the normal direction of the X-ray imager 14 is the collimator. 13 is fixed to the plate 12 so as to have an angle of 23.6 ° with the central axis of the plate 13. The X-ray imager 14 has a line that intersects a plane (hereinafter, referred to as a reference plane) including the central axis of the X-ray tube 10 and the optical axis of the output X-ray (the central axis of the collimator 13). When the irradiation point of the outgoing X-ray is at a predetermined distance from the tip of the collimator 13, the peak position of the intensity of the diffracted X-ray in the direction of the center line becomes the center position of the X-ray imager 14. Fixed to the plate 12.

X線撮像器14はX線CCD又はX線CMOS等からなる固体撮像素子であり、信号取出回路54から作動信号が入力すると、画素ごとにX線の強度に相当する強度の信号を信号取出回路54に出力する。信号取出回路54は、後述するコントローラ61から作動開始の指令が入力すると、X線撮像器14に作動信号を出力し、入力する画素ごとの信号強度をデジタルデータにし、画素位置がわかるデジタルデータとともにコントローラ61へ出力する。よって、コントローラ61がX線制御回路52と信号取出回路54に作動指令を出力すると、コントローラ61にはX線撮像器14におけるX線強度分布のデータが入力して記憶される。   The X-ray imaging device 14 is a solid-state imaging device made up of an X-ray CCD, an X-ray CMOS, or the like. When an operation signal is input from the signal extraction circuit 54, a signal having an intensity corresponding to the X-ray intensity is output for each pixel to a signal extraction circuit. Output to 54. When an operation start command is input from a controller 61, which will be described later, the signal extraction circuit 54 outputs an operation signal to the X-ray imaging device 14, converts the input signal intensity of each pixel into digital data, and outputs digital data indicating the pixel position. Output to the controller 61. Therefore, when the controller 61 outputs an operation command to the X-ray control circuit 52 and the signal extraction circuit 54, data of the X-ray intensity distribution in the X-ray imaging device 14 is input to the controller 61 and stored.

また、X線管10の中心軸が、測定対象物OBの平面と平行になるようにX線回折測定装置1の姿勢が調整されたとき、測定対象物OBの回折面法線の方向はX線管10の中心軸に対し垂直になるようになっている。すなわち、X線管10の中心軸に垂直な平面と出射X線の光軸が成す角度と、X線管10の中心軸に垂直な平面と出射X線の照射点と強度の高いX線を検出する点を結ぶラインとが成す角度は共に11.8°で等しくなっている。また、基準平面と筐体40の底面および上面とは垂直になるようになっており、コリメータ13は筐体40の底面に対し11.8°傾いて固定されている。   When the attitude of the X-ray diffraction measuring apparatus 1 is adjusted such that the central axis of the X-ray tube 10 is parallel to the plane of the object OB, the direction of the normal to the diffraction surface of the object OB is X. The tube is perpendicular to the central axis of the tube. That is, the angle formed by the plane perpendicular to the central axis of the X-ray tube 10 and the optical axis of the emitted X-ray, the plane perpendicular to the central axis of the X-ray tube 10, the irradiation point of the emitted X-ray, and the X-ray having a high intensity The angles formed by the lines connecting the points to be detected are both equal at 11.8 °. Further, the reference plane is perpendicular to the bottom surface and the top surface of the housing 40, and the collimator 13 is fixed at an angle of 11.8 ° with respect to the bottom surface of the housing 40.

筐体40の底面には、レーザ照射器20,30が取り付けられており、レーザ照射器20,30は、レーザ制御回路58,50から駆動信号が入力すると、設定された強度のレーザ光を出射する。レーザ照射器20,30は、円筒状の枠体21,31にレーザ光源22,32を固定具23,33で固定し、円筒状の枠体21,31の先端近傍にコリメーティングレンズ24,34を固定したものであり、レーザ光源22,32から出射されたレーザ光は、コリメーティングレンズ24,34で平行光になって出射される。レーザ照射器20,30から出射されるレーザ光は、コリメータ13の先端から所定距離にある出射X線の光軸上の点で交差するようになっており、作業者は、測定対象物OBにおける2つのレーザ光の照射点が合致するようX線回折測定装置1の位置を調整することで、出射X線の照射点をコリメータ13の先端から所定距離にあるようにすることができる。上述したように、この所定距離とは、回折X線の強度のピーク位置がX線撮像器14の中心位置になる距離である。また、それぞれのX線回折測定装置1の1つになったレーザ光の照射点が搬送ラインLNの移動方向に平行な1つのライン上になるようにすれば、後述するコントローラ61の制御により、それぞれのX線回折測定装置1から出射されるX線を測定対象物OBの同一点に照射することができる。   Laser irradiators 20 and 30 are attached to the bottom surface of housing 40. Laser irradiators 20 and 30 emit laser light having a set intensity when drive signals are input from laser control circuits 58 and 50. I do. The laser irradiators 20 and 30 fix the laser light sources 22 and 32 to the cylindrical frames 21 and 31 with fixtures 23 and 33, respectively. The laser light emitted from the laser light sources 22 and 32 is collimated by the collimating lenses 24 and 34 and emitted. The laser light emitted from the laser irradiators 20 and 30 intersects at a point on the optical axis of the emitted X-ray at a predetermined distance from the tip of the collimator 13, and the operator can use the laser light at the measurement object OB. By adjusting the position of the X-ray diffraction measuring apparatus 1 so that the irradiation points of the two laser beams coincide with each other, the irradiation point of the emitted X-ray can be set at a predetermined distance from the tip of the collimator 13. As described above, the predetermined distance is a distance at which the peak position of the intensity of the diffracted X-ray becomes the center position of the X-ray imaging device 14. Further, if the irradiation point of the laser beam, which has become one of the respective X-ray diffraction measurement apparatuses 1, is set to be on one line parallel to the moving direction of the transport line LN, the controller 61 described later controls X-rays emitted from the respective X-ray diffraction measurement apparatuses 1 can be irradiated to the same point on the measurement object OB.

また、筐体40の上面には角度計41が取り付けられており、角度計41は傾き角度検出回路56から作動信号が入力すると、検出した重力方向に対する筐体40の上面の傾きに相当する信号を傾き角度検出回路56に出力する。傾き角度検出回路56は作動開始の指令をコントローラ61から入力すると作動を開始し、角度計41から入力する信号を傾き角度のデジタルデータにしてコントローラ61に出力する。コントローラ61は入力した傾き角度のデジタルデータから傾き角度を表示装置63に表示するので、作業者は表示装置63に表示される値から傾き角度を知ることができる。角度計41は検出する傾き角度が、X線管10の中心軸方向の重力方向に対する傾き角度Aと、X線管10の中心軸の垂直方向の重力方向に対する傾き角度Bであるように筐体40の上面にセットされている。よって、測定対象物OBの平面の傾きが0であるようになっていれば、作業者は傾き角度Aが0になり、傾き角度Bが設定された角度になるようX線回折測定装置1の姿勢を調整することで、X線管10の中心軸が、測定対象物OBの平面と平行になり、基準平面の測定対象物OBの平面に対する角度を設定された角度にすることができる。このように、作業者はレーザ照射器20,30から出射されるレーザ光の照射点を合致させることと、表示装置63に表示される角度を0及び設定された角度にすることで、X線回折測定装置1の位置と姿勢を調整することができる。   A goniometer 41 is attached to the upper surface of the housing 40. When an operation signal is input from the tilt angle detection circuit 56, the goniometer 41 outputs a signal corresponding to the detected tilt of the upper surface of the housing 40 with respect to the direction of gravity. Is output to the inclination angle detection circuit 56. The tilt angle detection circuit 56 starts operating when an operation start command is input from the controller 61, and outputs a signal input from the goniometer 41 to the controller 61 as tilt angle digital data. Since the controller 61 displays the tilt angle on the display device 63 from the input digital data of the tilt angle, the operator can know the tilt angle from the value displayed on the display device 63. The angle meter 41 has a housing so that the detected inclination angle is the inclination angle A of the central axis of the X-ray tube 10 with respect to the gravity direction and the inclination angle B of the central axis of the X-ray tube 10 with respect to the vertical direction of gravity. 40 is set on the upper surface. Therefore, if the inclination of the plane of the measurement object OB is set to 0, the operator sets the X-ray diffraction measurement apparatus 1 so that the inclination angle A becomes 0 and the inclination angle B becomes the set angle. By adjusting the posture, the central axis of the X-ray tube 10 becomes parallel to the plane of the measurement object OB, and the angle of the reference plane with respect to the plane of the measurement object OB can be set to the set angle. As described above, the operator matches the irradiation points of the laser beams emitted from the laser irradiators 20 and 30 and sets the angle displayed on the display device 63 to 0 and the set angle, so that the X-ray The position and orientation of the diffraction measurement device 1 can be adjusted.

コンピュータ装置60は、コントローラ61、入力装置62及び表示装置63からなる。コントローラ61は、CPU、ROM、RAM、大容量記憶装置などを備えたマイクロコンピュータを主要部とした電子制御装置であり、大容量記憶装置に記憶されたプログラムを実行してX線回折測定装置1−1〜1−4の作動を制御するとともに、入力したデジタルデータを用いて演算を行う。入力装置62は、コントローラ61に接続されて、作業者により、各種パラメータ、作動指示などの入力のために利用される。表示装置63も、コントローラ61に接続されて、X線回折測定システムの各種の設定状況、作動状況及び測定結果などを表示する。   The computer device 60 includes a controller 61, an input device 62, and a display device 63. The controller 61 is an electronic control device mainly including a microcomputer including a CPU, a ROM, a RAM, a large-capacity storage device, and executes a program stored in the large-capacity storage device to execute the X-ray diffraction measurement device 1. In addition to controlling the operations of -1 to 1-4, an operation is performed using the input digital data. The input device 62 is connected to the controller 61 and is used by an operator for inputting various parameters, operation instructions, and the like. The display device 63 is also connected to the controller 61 and displays various setting conditions, operating conditions, measurement results, and the like of the X-ray diffraction measurement system.

図2に示すように搬送ラインLNの側面の近傍には、測定対象物OBの先端を検出するための端検出センサ67が取り付けられている。端検出センサ67は搬送ラインLNの反対側の側面近傍から出射されるレーザ光の受光の有無により、測定対象物OBの先端がレーザ光ライン部分に来たことを検出するものであり、レーザ光の受光がなくなるとコントローラ61に「先端検出」を意味する信号を出力する。コントローラ61は入力装置62から測定開始の指令を入力した後、「先端検出」を意味する信号が入力すると時間計測を開始し、それぞれのX線回折測定装置1−1〜1−4から出射されるX線の照射点が予め設定されている測定点になったとき、それぞれのX線回折測定装置1−1〜1−4のX線制御回路52及び信号取出回路54へ作動開始と作動停止の指令を出力する。X線回折測定装置1−1〜1−4から出射されるX線は測定対象物OBの同一点に照射されるようにする必要があり、このためコントローラ61には、搬送ラインLNの移動速度、測定点の測定対象物OBの先端からの距離、レーザ光ライン部分からのそれぞれのX線回折測定装置1−1〜1−4のX線照射点までの距離等、制御に必要なパラメータが記憶されている。   As shown in FIG. 2, an end detection sensor 67 for detecting the front end of the measurement object OB is attached near the side surface of the transport line LN. The edge detection sensor 67 detects that the tip of the measurement object OB has arrived at the laser beam line portion by detecting the presence or absence of the laser beam emitted from the vicinity of the side surface on the opposite side of the transport line LN. When there is no light reception, a signal indicating “tip detection” is output to the controller 61. After inputting a measurement start command from the input device 62, the controller 61 starts time measurement when a signal indicating "tip detection" is input, and is emitted from each of the X-ray diffraction measurement devices 1-1 to 1-4. When the X-ray irradiation point reaches a preset measurement point, the X-ray control circuit 52 and the signal extraction circuit 54 of each of the X-ray diffraction measuring devices 1-1 to 1-4 start and stop operating. Is output. It is necessary that the X-rays emitted from the X-ray diffraction measurement devices 1-1 to 1-4 be applied to the same point of the measurement object OB. Parameters necessary for control, such as the distance of the measurement point from the tip of the measurement object OB, the distance from the laser beam line portion to the X-ray irradiation point of each of the X-ray diffraction measuring devices 1-1 to 1-4, It is remembered.

X線回折測定装置1−1〜1−4は、いずれも上述したように位置と姿勢が調整されるが、図2に示すように、X線回折測定装置1−1〜1−4はX線の入射方向を、より詳しくは基準平面の測定対象物OBの平面に対する角度を異ならせて、位置と姿勢が調整されている。そして、この基準平面の測定対象物OBの平面に対する角度はコントローラ61に記憶されている。また、これ以外にコントローラ61には、X線照射点からX線撮像器14までの距離、測定対象物OBの標準の回折角2Θ、ヤング率及びポアソン比等、残留応力の計算に必要なパラメータが記憶されている。コントローラ61は、それぞれのX線回折測定装置1−1〜1−4の信号取出回路54から入力するX線の強度分布を表すデジタルデータが入力すると、これらのデータを処理し、図1の横方向におけるX線の強度プロファイルのピーク位置を検出し、このピーク位置から回折角2Θを計算する。そして、それぞれのX線回折測定装置1−1〜1−4における回折角2Θと、予め記憶されている上記パラメータを用いてsinψ法により残留応力を計算し、計算結果を測定対象物OBの測定点と対応させて表示装置63に表示する。 The position and orientation of each of the X-ray diffraction measurement devices 1-1 to 1-4 are adjusted as described above, but as shown in FIG. The position and orientation are adjusted by changing the incident direction of the line, more specifically, the angle of the reference plane to the plane of the measurement object OB. The angle of the reference plane with respect to the plane of the measurement object OB is stored in the controller 61. In addition, other parameters necessary for calculating the residual stress, such as the distance from the X-ray irradiation point to the X-ray imager 14, the standard diffraction angle 2 ° of the object OB, the Young's modulus and the Poisson's ratio, are also provided to the controller 61. Is stored. When digital data representing the intensity distribution of X-rays input from the signal extraction circuit 54 of each of the X-ray diffraction measurement devices 1-1 to 1-4 is input, the controller 61 processes these data and outputs the data in the horizontal direction in FIG. The peak position of the X-ray intensity profile in the direction is detected, and the diffraction angle 2 角 is calculated from this peak position. Then, the residual stress is calculated by the sin 2 ψ method using the diffraction angle 2Θ in each of the X-ray diffraction measurement devices 1-1 to 1-4 and the parameters stored in advance, and the calculation result is referred to as the measurement object OB. Are displayed on the display device 63 in association with the measurement points of the above.

ここで、それぞれのX線回折測定装置1−1〜1−4における回折角2Θが得られると、sinψ法により残留応力が計算できることを説明する。図3はsinψ法による残留応力の測定を示した図であり、(a)は通常のsinψ法による残留応力の測定であり、(b)は本実施形態におけるsinψ法による残留応力の測定である。通常のsinψ法では図3の(a)に示すように、測定対象物OBの平面である試料面を紙面垂直周りに回転させることで出射X線の試料面に対する入射角を変化させ、回折面法線方向と試料面の法線方向が成す角度ψごとに回折角2Θを求めている。回折角2Θの半分の角度であるブラッグ角Θと回折面間隔dには2dsinΘ=nλのブラッグの式が成り立ち、回折面法線方向と試料面の法線方向が成す角度ψが変化すると回折面間隔dは変化するので回折角2Θも変化する。この変化においてsinψと回折角2Θにはグラフを描くと直線関係があり、この直線の傾きは残留応力に比例するので、sinψと回折角2Θの関係直線の傾きから残留応力を求めるのがsinψ法である。試料面を紙面垂直周りに回転させるとは、別の表現をすると、出射X線の光軸と出射X線の照射点と強度の高いX線を検出する点を結ぶラインを含む平面(本実施形態では基準平面に等しい)を変化させないように、回折面法線方向と試料面の法線方向が成す角度ψを変化させるということである。 Here, it will be described that when the diffraction angle 2Θ in each of the X-ray diffraction measurement devices 1-1 to 1-4 is obtained, the residual stress can be calculated by the sin 2 ψ method. Figure 3 is a diagram showing the measurement of residual stress by sin 2 [psi method, (a) is a measurement of the residual stress by conventional sin 2 [psi method, according to (b) is sin 2 [psi method in the present embodiment It is a measurement of residual stress. In the ordinary sin 2 ψ method, as shown in FIG. 3A, the sample surface, which is the plane of the measurement object OB, is rotated around the plane perpendicular to the paper surface to change the incident angle of the output X-rays to the sample surface. The diffraction angle 2 ° is obtained for each angle ψ between the normal direction of the diffraction surface and the normal direction of the sample surface. The Bragg equation of 2d sin Θ = nλ holds for the Bragg angle 半 分, which is half the diffraction angle 2Θ, and the diffraction plane interval d. When the angle す formed by the normal direction of the diffraction plane and the normal direction of the sample surface changes, the diffraction plane becomes Since the distance d changes, the diffraction angle 2 ° also changes. In this change, sin 2 ψ and the diffraction angle 2が have a linear relationship in a graph, and the slope of this straight line is proportional to the residual stress. Therefore, the residual stress is determined from the slope of the relationship line between sin 2回 折 and the diffraction angle 2 Θ. This is the sin 2 ψ method. In other words, rotating the sample surface around the plane perpendicular to the plane of the paper means, in other words, a plane including a line connecting the optical axis of the emitted X-ray, the irradiation point of the emitted X-ray, and the point for detecting a high-intensity X-ray (this embodiment). In this case, the angle す formed by the normal direction of the diffraction surface and the normal direction of the sample surface is changed so as not to change the same as the reference plane.

しかし、回折面法線方向と試料面の法線方向が成す角度ψを、図3の(a)の紙面に平行で回折面法線方向に垂直な方向周りに試料面を回転させることで変化させたとしても、ブラッグ角Θと回折面間隔dにはブラッグの式が成り立ち、sinψと回折角2Θには同様に傾きが残留応力に比例する直線関係が成り立つ。すなわち、出射X線の光軸と出射X線の照射点と強度の高いX線を検出する点を結ぶラインを含む平面(本実施形態では基準平面に等しい)の試料面に対する角度が変化するよう、回折面法線方向を試料面の法線方向に対して変化させ、そのときのX線照射点における試料面の法線を含み回折面法線方向に平行な平面が一定であれば、sinψ法により残留応力を測定することができる。図3の(b)はこのような回折面法線方向の変化を示した図であり、図3の(a)の右方向を正面方向にして示した図である。それぞれのX線回折測定装置1−1〜1−4は、基準平面の測定対象物OBの平面に対する角度を異ならせており、X線照射点における測定対象物OBの法線を含み回折面法線方向に平行な平面は、すべてのX線回折測定装置1−1〜1−4において同一であるので、図3の(b)のように回折面法線方向を試料面法線方向に対して変化させた場合と同じであり、それぞれのX線回折測定装置1−1〜1−4で得られる回折角2Θからsinψ法により残留応力を計算することができる。 However, the angle ψ formed by the normal direction of the diffraction surface and the normal direction of the sample surface is changed by rotating the sample surface around a direction parallel to the paper surface of FIG. 3A and perpendicular to the normal direction of the diffraction surface. Even if this is done, the Bragg equation holds for the Bragg angle Θ and the diffraction plane distance d, and a linear relationship holds for the sin 2 ψ and the diffraction angle 2Θ, the slope of which is also proportional to the residual stress. That is, the angle of the plane (equal to the reference plane in the present embodiment) including the line connecting the optical axis of the output X-ray, the irradiation point of the output X-ray, and the point for detecting the high-intensity X-ray is changed with respect to the sample surface. The normal direction of the diffraction surface is changed with respect to the normal direction of the sample surface. If the plane parallel to the normal direction of the diffraction surface including the normal line of the sample surface at the X-ray irradiation point at that time is constant, sin The residual stress can be measured by the 2ψ method. FIG. 3B is a diagram showing such a change in the direction of the normal to the diffraction surface, and is a diagram showing the rightward direction of FIG. Each of the X-ray diffraction measurement apparatuses 1-1 to 1-4 has different angles of the reference plane with respect to the plane of the measurement object OB, and includes the normal line of the measurement object OB at the X-ray irradiation point and the diffraction surface method. Since the plane parallel to the line direction is the same in all the X-ray diffraction measurement apparatuses 1-1 to 1-4, as shown in FIG. The residual stress can be calculated by the sin 2 ψ method from the diffraction angle 2得 obtained by each of the X-ray diffraction measuring devices 1-1 to 1-4.

上記説明からも理解できるように、上記実施形態においては、一定方向に流れる搬送ラインLN上に載置された測定対象物OBに対してX線を出射するX線出射手段と、測定対象物OBにて回折したX線を受光して、回折X線の強度分布を検出するX線撮像器14とを備えたX線回折測定装置1を複数備え、それぞれのX線回折測定装置1におけるX線撮像器14により検出される回折X線の強度分布を、sinψ法により残量応力を算出するためのデータとして入力して記憶するコンピュータ装置60を備えたX線回折測定システムにおいて、それぞれのX線回折測定装置1におけるX線出射手段は、中心軸が測定対象物OBの平面と略平行且つ搬送ラインLNの移動方向と略垂直になるよう配置されたX線管10と、X線管10から出射されたX線を中心軸と所定の角度を成す光軸を有する平行なX線にして測定対象物OBに対して出射するコリメータ13とからなり、それぞれのX線回折測定装置1は、X線管10の中心軸とコリメータ13から出射されるX線の光軸とを含む基準平面が測定対象物OBの平面と成す角度が異なるとともに、それぞれのX線回折測定装置1のコリメータ13から出射されるX線が測定対象物OBに照射される点を結んだラインが、搬送ラインLNの移動方向と平行になるよう配置され、それぞれのX線回折測定装置1におけるX線撮像器14は、受光平面が基準平面に略垂直で、コリメータ13から出射されるX線により測定対象物OBにて標準の回折角で回折X線が発生したとき、受光平面と基準平面が交差するライン上の回折X線の強度分布におけるピークが、所定位置になるように配置されている。 As can be understood from the above description, in the above embodiment, an X-ray emission unit that emits X-rays to the measurement object OB mounted on the transport line LN flowing in a certain direction, and the measurement object OB And a plurality of X-ray diffraction measuring devices 1 each having an X-ray imager 14 for receiving the X-ray diffracted by the X-ray diffraction detector and detecting the intensity distribution of the diffracted X-rays. In an X-ray diffraction measurement system including a computer device 60 that inputs and stores the intensity distribution of diffracted X-rays detected by the imager 14 as data for calculating residual stress by the sin 2 ψ method, The X-ray emission means in the X-ray diffraction measurement apparatus 1 includes an X-ray tube 10 arranged such that the central axis is substantially parallel to the plane of the object OB and substantially perpendicular to the moving direction of the transport line LN. Out of 10 The collimator 13 converts the emitted X-rays into parallel X-rays having an optical axis that forms a predetermined angle with the central axis and emits the X-rays to the measurement object OB. The reference plane including the central axis of the X-ray tube 10 and the optical axis of the X-ray emitted from the collimator 13 has an angle different from the plane of the measurement object OB, and the reference plane emitted from the collimator 13 of each X-ray diffraction measurement apparatus 1. The line connecting the points at which the X-rays to be irradiated onto the measurement object OB are arranged so as to be parallel to the moving direction of the transport line LN, and the X-ray imaging devices 14 in the respective X-ray diffraction measurement apparatuses 1 When the light receiving plane is substantially perpendicular to the reference plane, and diffraction X-rays are generated at a standard diffraction angle on the measurement object OB by the X-ray emitted from the collimator 13, diffraction on a line where the light receiving plane and the reference plane intersect is performed. X-ray intensity Peak in the distribution is arranged so that the predetermined position.

これによれば、それぞれのX線回折測定装置1は、X線管10、コリメータ13及びX線撮像器14を、1つの平面内にX線管10の中心軸、コリメータ13の中心軸及びX線撮像器14の受光平面内のラインが含まれるように配置しているため、小型で単純な構造にすることができる。そして、それぞれのX線回折測定装置1をすべて同一構造にしても、それぞれのX線回折測定装置1において基準平面が測定対象物OBの平面と成す角度が異なるようにし、出射されるX線が測定対象物OBに照射される点を結んだラインが、搬送ラインLNの移動方向と一致するようにすれば、sinψ法により残留応力を求めることができる。すなわち、搬送ラインLN上に載置された測定対象物OBは移動しているので、それぞれのX線回折測定装置1のX線出射のタイミングを適切にすれば、それぞれのX線回折測定装置1から出射されるX線を測定対象物OBの同一点に照射するようにすることができる。そして、それぞれのX線回折測定装置1において基準平面が測定対象物OBの平面と成す角度が異なるようにすれば、それぞれのX線回折測定装置1ごとの測定対象物OBの回折面法線の方向は同一平面で異なる方向になるので、それぞれのX線回折測定装置1ごとにX線の回折角及び基準平面と測定対象物OBの平面が成す角度が得られれば、sinψ法により残留応力を求めることができる。 According to this, each X-ray diffraction measuring apparatus 1 includes the X-ray tube 10, the collimator 13, and the X-ray imager 14 in one plane with the central axis of the X-ray tube 10, the central axis of the collimator 13, and the X-ray tube. Since the arrangement is made so as to include the line in the light receiving plane of the line image pickup device 14, the structure can be made small and simple. Then, even when all the X-ray diffraction measurement apparatuses 1 have the same structure, the angle formed by the reference plane and the plane of the measurement object OB in each X-ray diffraction measurement apparatus 1 is different so that the emitted X-rays If the line connecting the points irradiated to the object to be measured OB coincides with the moving direction of the transport line LN, the residual stress can be obtained by the sin 2 ψ method. That is, since the measurement object OB placed on the transport line LN is moving, if the X-ray emission timing of each X-ray diffraction measurement device 1 is appropriate, each X-ray diffraction measurement device 1 X-rays emitted from the target object OB can be irradiated to the same point. If the angle formed by the reference plane and the plane of the measurement object OB in each X-ray diffraction measurement apparatus 1 is different, the normal of the diffraction surface normal of the measurement object OB for each X-ray diffraction measurement apparatus 1 is determined. Since the directions are different on the same plane, if the X-ray diffraction angle and the angle between the reference plane and the plane of the measurement object OB can be obtained for each X-ray diffraction measurement apparatus 1, the residual angle is obtained by the sin 2 ψ method. Stress can be determined.

また、上記実施形態においては、それぞれのX線回折測定装置1は、X線出射手段とX線撮像器14とを内部に備える筐体40を備え、筐体40は、コリメータ13から出射されるX線の照射点であって、照射点にて標準の回折角で回折X線が発生したとき、回折X線の強度分布のピークがX線撮像器14の所定位置になる照射点で、2つの可視の平行光が交差するよう可視の平行光を出射するレーザ照射器20,30が取り付けられている。   Further, in the above embodiment, each X-ray diffraction measurement apparatus 1 includes the housing 40 having therein the X-ray emission unit and the X-ray imaging device 14, and the housing 40 is emitted from the collimator 13. An X-ray irradiation point, where when a diffraction X-ray is generated at a standard diffraction angle at the irradiation point, the peak of the intensity distribution of the diffracted X-ray becomes a predetermined position of the X-ray imaging device 14 and the irradiation point is 2 Laser irradiators 20 and 30 that emit visible parallel light so that two visible parallel lights cross each other are attached.

これによれば、2つのレーザ光の照射点が1つになるようにそれぞれのX線回折測定装置1の位置を調整し、それぞれのX線回折測定装置1の1つになったレーザ光の照射点が、搬送ラインLNの移動方向に平行な1つのライン上になるようにすれば、それぞれのX線回折測定装置1を適切な位置にすることができるので、それぞれのX線回折測定装置1の位置調整を簡単に行うことができる。   According to this, the positions of the respective X-ray diffraction measurement apparatuses 1 are adjusted so that the irradiation points of the two laser lights become one, and the positions of the laser lights that have become one of the respective X-ray diffraction measurement apparatuses 1 are adjusted. If the irradiation point is on one line parallel to the moving direction of the transport line LN, each X-ray diffraction measurement device 1 can be located at an appropriate position. 1 can be easily adjusted.

また、上記実施形態においては、それぞれのX線回折測定装置1の筐体40は、X線管10の中心軸と略平行又は略垂直な平面部分を有し、その平面部分は重力方向に対する傾き角度を測定する角度計41であって、X線管10の中心軸方向おける傾き角度とX線管10の中心軸に垂直な方向における傾き角度を測定する角度計41を取り付けている。   Further, in the above embodiment, the casing 40 of each X-ray diffraction measuring apparatus 1 has a plane portion substantially parallel or substantially perpendicular to the center axis of the X-ray tube 10, and the plane portion is inclined with respect to the direction of gravity. A goniometer 41 for measuring an angle, which measures a tilt angle in the direction of the central axis of the X-ray tube 10 and a tilt angle in a direction perpendicular to the central axis of the X-ray tube 10 is attached.

これによれば、測定対象物OBの平面が重力方向に略垂直になるようになっていれば、角度計41が示すX線管10の中心軸方向における傾き角度が0になるようX線回折測定装置1の姿勢を調整すれば、X線管10の中心軸を測定対象物OBの平面と略平行になるようにすることができる。また、角度計41が示すX線管10の中心軸方向に垂直な方向における傾き角度が設定値になるようX線回折測定装置1の姿勢を調整すれば、基準平面と測定対象物OBの平面が成す角度を設定値にすることができる。これにより、それぞれのX線回折測定装置1の姿勢調整を簡単に行うことができる。   According to this, if the plane of the measurement object OB is substantially perpendicular to the direction of gravity, X-ray diffraction is performed such that the inclination angle of the X-ray tube 10 indicated by the goniometer 41 in the central axis direction becomes zero. By adjusting the attitude of the measuring device 1, the central axis of the X-ray tube 10 can be made substantially parallel to the plane of the measurement object OB. Further, if the attitude of the X-ray diffraction measuring apparatus 1 is adjusted so that the tilt angle in the direction perpendicular to the central axis direction of the X-ray tube 10 indicated by the goniometer 41 becomes a set value, the plane of the reference plane and the plane of the object OB are measured Can be set to a set value. Thereby, the posture of each X-ray diffraction measurement device 1 can be easily adjusted.

(変形例)
上記実施形態においては、同一構造のX線回折測定装置1−1〜1−4を搬送ラインLNの移動方向に配置し、X線回折測定装置1−1〜1−4ごとに基準平面が測定対象物OBの平面と成す角度が異なるようにして、X線回折測定装置1−1〜1−4ごとに得られる回折角2Θから残留応力を計算するようにした。しかし、1台のX線回折測定装置でX線出射手段が複数の方向にX線を出射し、出射されるX線ごとの基準平面が測定対象物OBの平面と成す角度が異なるようにされていて、出射されるX線ごとに回折X線を受光するX線撮像器14があれば、同様に残留応力を計算することができる。図4はこのX線回折測定装置2の外観を筐体を取り外した状態で見た図である。なお、図4においては構造をわかりやすくするため、コリメータ73−1〜73−4及びX線撮像器74−1〜74−4(74−4は図4ではX線管70で隠れている)を取り付けるプレートは除かれている。また、回路基板、電線、固定具及び空冷ファン等も除かれている。
(Modification)
In the above embodiment, the X-ray diffraction measuring devices 1-1 to 1-4 having the same structure are arranged in the moving direction of the transport line LN, and the reference plane is measured for each of the X-ray diffraction measuring devices 1-1 to 1-4. The residual stress was calculated from the diffraction angle 2 ° obtained for each of the X-ray diffraction measuring devices 1-1 to 1-4 so that the angle formed with the plane of the object OB was different. However, the X-ray emitting means emits X-rays in a plurality of directions in one X-ray diffraction measuring apparatus, and the angle formed by the reference plane for each emitted X-ray with the plane of the measurement object OB is different. If there is an X-ray imager 14 that receives diffracted X-rays for each emitted X-ray, the residual stress can be calculated similarly. FIG. 4 is a diagram showing the external appearance of the X-ray diffraction measurement device 2 with the housing removed. In FIG. 4, in order to make the structure easy to understand, the collimators 73-1 to 73-4 and the X-ray imagers 74-1 to 74-4 (74-4 is hidden by the X-ray tube 70 in FIG. 4). The plate on which the is attached has been removed. In addition, circuit boards, electric wires, fixtures, air cooling fans, and the like are also excluded.

X線管70は筐体の上部にて筐体に固定され、高電圧電源からの高電圧の供給を受けるとX線を出射するものであるが、複数のX線出射口71−1〜71−4を有し、X線管70の内部にあるターゲットで発生したX線は広範囲の方向に進むようになっているため、X線出射口71−1〜71−4(71−4は図4では隠れている)から出射するX線は、略同一の強度で出射する。そして、それぞれのX線出射口71−1〜71−4から出射するX線が入射するコリメータ73−1〜73−4が配置され、コリメータ73−1〜73−4の中心軸は、コリメータ73−1〜73−4の先端から出射されるX線の測定対象物OBの所定の箇所に照射されるようになっている。また、X線出射口71−1〜71−4から出射するX線の光軸もコリメータ73−1〜73−4の中心軸と略同一になるようになっている。出射されたX線が測定対象物OBに照射される箇所は上記実施形態と同様、搬送ラインLNの移動方向に平行な1つのライン上であり、X線照射点の間隔は同一であるようになっている。よって、X線の出射タイミングを適切にすることで、測定対象物OB上のX線照射点は、それぞれの出射されるX線ごとに同じ点にすることができる。なお、測定対象物OBの先端又は後端付近にX線が照射されるときは、搬送ラインLNに照射されるX線がある場合があるが、回折X線の強度データを検出しなければよいので、これは問題にはならない。   The X-ray tube 70 is fixed to the housing at the top of the housing, and emits X-rays when supplied with a high voltage from a high-voltage power supply. -4, and the X-rays generated by the target inside the X-ray tube 70 travel in a wide range of directions, so that the X-ray emission ports 71-1 to 71-4 (71-4 X-rays which are hidden in FIG. 4) are emitted with substantially the same intensity. Then, collimators 73-1 to 73-4 on which X-rays emitted from the respective X-ray emission ports 71-1 to 71-4 are incident are arranged, and the central axes of the collimators 73-1 to 73-4 are the collimators 73-1 to 73-4. X-rays emitted from the tips of -1 to 73-4 are applied to predetermined portions of the measurement object OB. The optical axes of the X-rays emitted from the X-ray emission ports 71-1 to 71-4 are also substantially the same as the central axes of the collimators 73-1 to 73-4. The location where the emitted X-ray is irradiated on the measurement object OB is on one line parallel to the moving direction of the transport line LN, as in the above embodiment, and the intervals between the X-ray irradiation points are the same. Has become. Therefore, by setting the X-ray emission timing appropriately, the X-ray irradiation point on the measurement object OB can be set to the same point for each emitted X-ray. In addition, when the X-ray is irradiated near the front end or the rear end of the measurement object OB, there may be an X-ray irradiated on the transport line LN, but the intensity data of the diffracted X-ray may be detected. So this is not a problem.

コリメータ73−1〜73−4から出射されるX線のそれぞれにより発生する回折X線を受光するX線撮像器74−1〜74−4(74−4は図4ではX線管70で隠れている)は、出射されるX線のそれぞれの基準平面と交差するラインが中心線で、このライン方向のX線の強度プロファイルのピークが中心点になるよう取り付けられている。この変形例の場合、出射されるそれぞれのX線の光軸は、X線管70の中心軸付近の点で交差するようになっているため、X線の照射点を含むX線管70の中心軸に垂直な平面に対する出射X線の光軸が成す角度は、X線の照射点がX線回折測定装置2から遠くなるほど小さくなる。このため、回折X線の強度プロファイルのピーク点は、X線の照射点がX線回折測定装置2から遠くなるほど、X線の照射点を含むX線管70の中心軸に垂直な平面より遠い位置に発生する。これを示したものが図5であり、図5において出射するX線は実線、ピークを発生させる回折X線は点線で示されている。よって、X線撮像器74−1〜74−4の取付け位置は、X線の照射点がX線回折測定装置2から遠いものに対応するものほど、X線管70の先端から遠い位置に取り付けられている。   X-ray imaging devices 74-1 to 74-4 (74-4 are hidden by the X-ray tube 70 in FIG. 4) that receive diffracted X-rays generated by the respective X-rays emitted from the collimators 73-1 to 73-4. Are attached such that the line intersecting each reference plane of the emitted X-ray is the center line, and the peak of the X-ray intensity profile in this line direction is the center point. In the case of this modification, the optical axes of the respective emitted X-rays intersect at a point near the central axis of the X-ray tube 70. The angle formed by the optical axis of the emitted X-ray with respect to a plane perpendicular to the central axis becomes smaller as the irradiation point of the X-ray becomes farther from the X-ray diffraction measurement device 2. For this reason, the peak point of the intensity profile of the diffracted X-ray is farther from the plane perpendicular to the central axis of the X-ray tube 70 including the X-ray irradiation point as the X-ray irradiation point is farther from the X-ray diffraction measuring device 2. Occurs in position. This is shown in FIG. 5, in which the emitted X-rays are shown by solid lines and the diffracted X-rays that generate peaks are shown by dotted lines. Therefore, the mounting position of the X-ray imagers 74-1 to 74-4 is set to a position farther from the tip of the X-ray tube 70 as the irradiation point of the X-ray corresponds to a position farther from the X-ray diffraction measuring device 2. Have been.

また、X線の照射点を含むX線管70の中心軸に垂直な平面に対するX線の光軸が成す角度は、X線の照射点により変化するため、それぞれのX線の照射点における回折面法線の方向は、1つの平面内にならない。図5では、それぞれのX線の照射点における回折面法線の方向を紙面に投影させた方向(測定対象物の平面に投影させた方向)を矢印で示しているが、それぞれのX線の照射点における回折面法線の方向は、X線の照射点がX線回折測定装置2から遠いほど、図5の1点鎖線のラインからずれる。図5の1点鎖線のラインはX線の照射点を含むX線管70の中心軸に垂直な平面を上方から見たラインである。上記実施形態では、すべてのX線照射点(すべてのX線回折測定装置1−1〜1−4)における回折面法線の方向は1つの平面内になるようにできたが、この変形例では1つのX線管70から複数のX線を出射することにより、回折面法線の方向を1つの平面内にすることができない。このため、sinψ法による残留応力の測定精度は上記実施形態よりやや劣ることになる。しかし、図5に示すように、それぞれのX線の照射点における回折面法線の方向を紙面に投影させた方向の1点鎖線のラインからのずれは少量である。実際に計算した値で示すと、X線管70の中心軸とそれぞれの出射X線の光軸が交差する点(X線の発生点)からX線の照射点を含むX線管70の中心軸に垂直な平面までの距離をLとすると、X線管70の中心軸を紙面に投影したライン(X線管70の中心軸を含み測定対象物OBの平面に垂直な面が、測定対象物OBの平面と交差するライン)から3Lの距離にあるX線照射点では、回折面法線の方向を紙面(測定対象物OBの平面)に投影させた方向と1点鎖線のラインが成す角度は3.3°、6Lの距離にあるX線照射点では5.6°、9Lの距離にあるX線照射点では7.0°である。よって、X線の照射点のX線回折測定装置2からの距離を設定した範囲内にしておけば残留応力の測定精度の悪化は僅かであり、通常の工業用の測定であれば十分対応することができる。 Further, since the angle formed by the optical axis of the X-ray with respect to the plane perpendicular to the central axis of the X-ray tube 70 including the X-ray irradiation point changes depending on the X-ray irradiation point, diffraction at each X-ray irradiation point is performed. The direction of the surface normal is not in one plane. In FIG. 5, the direction in which the direction of the normal to the diffraction surface at the irradiation point of each X-ray is projected on the paper surface (the direction projected on the plane of the measurement object) is indicated by an arrow. The direction of the normal to the diffraction surface at the irradiation point is shifted from the dashed line in FIG. 5 as the irradiation point of the X-ray is farther from the X-ray diffraction measurement device 2. The dashed line in FIG. 5 is a line viewed from above on a plane perpendicular to the central axis of the X-ray tube 70 including the X-ray irradiation point. In the above embodiment, the direction of the normal to the diffraction surface at all the X-ray irradiation points (all the X-ray diffraction measuring devices 1-1 to 1-4) can be set to be within one plane. In this case, by emitting a plurality of X-rays from one X-ray tube 70, the direction of the normal to the diffraction surface cannot be within one plane. Therefore, the measurement accuracy of the residual stress by the sin 2 ψ method is slightly inferior to that of the above embodiment. However, as shown in FIG. 5, the deviation of the direction of the normal to the diffraction surface at the irradiation point of each X-ray from the one-dot chain line in the direction projected onto the paper is small. In terms of actually calculated values, the point at which the center axis of the X-ray tube 70 intersects with the optical axis of each emitted X-ray (the point at which X-rays are generated) and the center of the X-ray tube 70 including the irradiation point of X-rays Assuming that the distance to a plane perpendicular to the axis is L, a line obtained by projecting the central axis of the X-ray tube 70 on the paper (the plane perpendicular to the plane of the object OB including the central axis of the X-ray tube 70 is At an X-ray irradiation point located at a distance of 3 L from a line intersecting the plane of the object OB), the direction of the normal of the diffraction surface projected onto the paper surface (the plane of the measurement object OB) is formed by a one-dot chain line. The angle is 5.6 ° at an X-ray irradiation point at a distance of 3.3 °, 6L, and 7.0 ° at an X-ray irradiation point at a distance of 9L. Therefore, if the distance of the X-ray irradiation point from the X-ray diffraction measurement device 2 is set within the set range, the deterioration of the residual stress measurement accuracy is slight, and ordinary industrial measurement can be sufficiently performed. be able to.

なお、本変形例においても、上記実施形態におけるレーザ照射器20,30及び角度計41は同様に取り付けられており、使用目的は上記実施形態と同じである。レーザ照射器はコリメータ73−4から出射するX線の光軸上の点であって、回折X線の発生箇所がX線撮像器74−4(図4ではX線管70で隠れている)の中心点でX線の強度プロファイルがピークとなる点で交差するよう取り付けられている。また、角度計の取り付けられ方は上記実施形態と同じであり、角度計が示す値を両方向とも0にすることで、X線管70の中心軸は測定対象物OBの平面と平行になり、それぞれのコリメータ73−1〜73−4から出射するX線の基準平面が測定対象物OBの平面とが成す角度は設定された角度になるとともに、レーザ照射器によるレーザ光照射点が1つになれば、それぞれのX線の照射点は1つのライン上になる。   Note that, also in this modification, the laser irradiators 20, 30 and the goniometer 41 in the above embodiment are attached similarly, and the purpose of use is the same as in the above embodiment. The laser irradiator is a point on the optical axis of the X-ray emitted from the collimator 73-4, and the generation position of the diffracted X-ray is an X-ray imager 74-4 (hidden by the X-ray tube 70 in FIG. 4). Are mounted so as to intersect at a point where the X-ray intensity profile has a peak at the center point of. In addition, the manner in which the goniometer is attached is the same as in the above embodiment. By setting the value indicated by the goniometer to 0 in both directions, the central axis of the X-ray tube 70 becomes parallel to the plane of the measurement object OB, The angle formed by the reference plane of the X-ray emitted from each of the collimators 73-1 to 73-4 and the plane of the measurement object OB becomes a set angle, and the laser beam irradiation point by the laser irradiator becomes one. If so, each X-ray irradiation point will be on one line.

このように上記変形例では、一定方向に流れる搬送ラインLN上に載置された測定対象物OBに対して、X線を複数の方向から同時に出射するX線出射手段と、X線出射手段から出射されるそれぞれのX線ごとに、測定対象物OBにて回折したX線を受光して回折X線の強度分布を検出する複数のX線撮像器74−1〜74−4と、それぞれの出射されるX線ごとにX線撮像器74−1〜74−4により検出される回折X線の強度分布を、sinψ法により残量応力を算出するためのデータとして入力して記憶するコンピュータ装置60とを備えたX線回折測定装置2において、X線出射手段は、中心軸が測定対象物OBの平面と略平行且つ搬送ラインLNの移動方向と略垂直になるよう配置されるとともにX線出射口71−1〜71−4を複数有するX線管70と、それぞれのX線出射口71−1〜71−4から出射されるそれぞれのX線を中心軸と所定の角度を成す光軸を有する平行なX線にして測定対象物OBに対して出射する複数のコリメータ73−1〜73−4とからなり、それぞれのX線出射口71−1〜71−4とそれぞれのコリメータ73−1〜73−4とは、X線管70の中心軸とそれぞれのコリメータ73−1〜73−4から出射されるX線の光軸とを含むそれぞれの基準平面が測定対象物OBの平面と成す角度が異なるとともに、それぞれのコリメータ73−1〜73−4から出射されるX線が測定対象物OBに照射される点を結んだラインが、搬送ラインLNの移動方向と平行になるように配置され、複数のX線撮像器74−1〜74−4のそれぞれは、受光平面がそれぞれの基準平面の内対応するものに略垂直で、それぞれのコリメータ73−1〜73−4の内対応するものから出射されるX線により測定対象物OBにて標準の回折角で回折X線が発生したとき、受光平面と対応する基準平面が交差するライン上の回折X線の強度分布におけるピークが、所定位置になるように配置されている。 As described above, in the modified example, the X-ray emitting unit that simultaneously emits X-rays from a plurality of directions to the measurement object OB placed on the transport line LN that flows in a certain direction, and the X-ray emitting unit. For each of the emitted X-rays, a plurality of X-ray imagers 74-1 to 74-4 for receiving X-rays diffracted by the measurement object OB and detecting the intensity distribution of the diffracted X-rays, The intensity distribution of diffracted X-rays detected by the X-ray imagers 74-1 to 74-4 for each emitted X-ray is input and stored as data for calculating residual stress by the sin 2に よ り method. In the X-ray diffraction measurement apparatus 2 including the computer device 60, the X-ray emission unit is arranged such that the central axis is substantially parallel to the plane of the measurement object OB and substantially perpendicular to the moving direction of the transport line LN. X-ray emission ports 71-1 to 71-4 An X-ray tube 70 having a plurality of X-rays, and each X-ray emitted from each of the X-ray emission ports 71-1 to 71-4 is measured as a parallel X-ray having an optical axis forming a predetermined angle with the central axis. It comprises a plurality of collimators 73-1 to 73-4 that emit light to the object OB. Each of the X-ray emission ports 71-1 to 71-4 and each of the collimators 73-1 to 73-4 are X The angles formed by the respective reference planes including the central axis of the ray tube 70 and the optical axes of the X-rays emitted from the respective collimators 73-1 to 73-4 with the plane of the measurement object OB are different, and the respective collimators A plurality of X-ray imagers are arranged so that a line connecting points where X-rays emitted from 73-1 to 73-4 are irradiated on the measurement object OB is parallel to the moving direction of the transport line LN. Each of 74-1 to 74-4 The light receiving plane is substantially perpendicular to the corresponding one of the respective reference planes, and the X-rays emitted from the corresponding ones of the respective collimators 73-1 to 73-4 at the standard diffraction angle on the measurement object OB. When a diffracted X-ray is generated, the peak is located at a predetermined position in the intensity distribution of the diffracted X-ray on a line where the light receiving plane and the corresponding reference plane intersect.

これによれば、X線回折測定装置2はコリメータ73−1〜73−4及びX線撮像器74−1〜74−4を複数備えるが、X線管70は1つであり、複数のコリメータ73−1〜73−4及びX線撮像器74−1〜74−4は、限られた箇所にまとめて配置することができるため、装置を小型で単純な構造にすることができる。よって、これによれば、X線回折測定装置は1台で済むので装置のコストを大幅に減らすことができる。   According to this, the X-ray diffraction measuring apparatus 2 includes a plurality of collimators 73-1 to 73-4 and a plurality of X-ray imagers 74-1 to 74-4, but has one X-ray tube 70 and a plurality of collimators. The devices 73-1 to 73-4 and the X-ray imaging devices 74-1 to 74-4 can be collectively arranged at limited locations, so that the device can be made compact and simple. Therefore, according to this, since only one X-ray diffraction measuring device is required, the cost of the device can be greatly reduced.

さらに、本発明の実施にあたっては、上記実施形態および変形例に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。   Furthermore, implementation of the present invention is not limited to the above-described embodiment and modified examples, and various changes can be made without departing from the purpose of the present invention.

上記実施形態ではX線回折測定装置を4台にしたが、X線回折測定装置の台数は複数であればコスト及び測定精度の兼ね合いで適宜決めればよい。また、上記変形例では1台のX線回折測定装置から出射されるX線を4つにしたが、出射されるX線の数は、複数であればコスト及び測定精度の兼ね合いで適宜決めればよい。   In the above embodiment, the number of the X-ray diffraction measuring devices is four. However, if the number of the X-ray diffraction measuring devices is plural, the number may be appropriately determined in consideration of cost and measurement accuracy. In the above-described modification, four X-rays are emitted from one X-ray diffraction measuring apparatus. However, if the number of the emitted X-rays is plural, the number of X-rays can be appropriately determined in consideration of cost and measurement accuracy. Good.

また、上記実施形態及び変形例では、測定対象物OBで標準の回折角で回折X線が発生したときX線撮像器の中心位置がX線強度プロファイルのピーク位置になるよう、X線回折測定装置の位置を調整するとし、この位置調整のため2つのレーザ照射器を設けた。しかし、対象とする測定対象物OBすべてにおいてX線強度プロファイルのピークを検出できれば、標準の回折角で回折X線が発生したときのピーク位置は、X線撮像器の中心位置からずれた位置であってもよい。   Further, in the above-described embodiment and the modified example, the X-ray diffraction measurement is performed so that the center position of the X-ray imager becomes the peak position of the X-ray intensity profile when the diffraction X-ray is generated at the standard diffraction angle on the measurement object OB. Assume that the position of the apparatus is adjusted, and two laser irradiators are provided for this position adjustment. However, if the peak of the X-ray intensity profile can be detected in all of the target measurement objects OB, the peak position when the diffracted X-ray is generated at the standard diffraction angle is shifted from the center position of the X-ray imaging device. There may be.

また、上記実施形態及び変形例では、2つのレーザ照射器からレーザ光を出射X線の光軸上の所定の点で交差するよう照射する構成にしたが、照射するのは可視の平行光であればレーザ光でなくてもよく、LED光やSLD光を平行光にして出射するものであってもよい。   Further, in the above-described embodiment and the modified example, the laser light is emitted from the two laser irradiators so as to intersect at a predetermined point on the optical axis of the emitted X-ray. However, the irradiation is performed with visible parallel light. If it is provided, it is not necessary to use laser light, and it may be one that converts LED light or SLD light into parallel light and emits it.

また、上記実施形態及び変形例では、角度計をX線回折測定装置の筐体の上面に取り付けたが、X線管の中心軸と略平行又は略垂直な平面であれば、X線管の中心軸方向おける傾き角度とX線管の中心軸に垂直な方向における傾き角度を検出することは可能であるので、取り付ける面はこれ以外の面であってもよい。   Further, in the above embodiment and the modified example, the goniometer is attached to the upper surface of the housing of the X-ray diffraction measuring device. However, if the plane is substantially parallel or substantially perpendicular to the central axis of the X-ray tube, Since it is possible to detect the tilt angle in the direction of the central axis and the tilt angle in the direction perpendicular to the central axis of the X-ray tube, the surface to be attached may be any other surface.

また、上記実施形態及び変形例では2つのレーザ照射器を取り付け、2つのレーザ光照射点が1つになるようにしてX線回折測定装置の位置を調整するようにしたが、測定対象物OBが限定されたものであり、X線回折測定装置の位置を適切な支持機構で一定にできるならば、2つのレーザ照射器はなくしてもよい。また、上記実施形態及び変形例では角度計を取り付け、検出される傾きが適切な値になるようにしてX線回折測定装置の姿勢を調整するようにしたが、測定対象物OBが限定されたものであり、X線回折測定装置の姿勢を適切な支持機構で一定にできるならば、角度計もなくしてもよい。   In the above-described embodiment and the modified example, two laser irradiators are mounted to adjust the position of the X-ray diffraction measuring apparatus so that two laser light irradiation points become one. Is limited, and the two laser irradiators may be omitted if the position of the X-ray diffraction measurement device can be kept constant by an appropriate support mechanism. Further, in the above-described embodiment and the modification, the goniometer is attached, and the posture of the X-ray diffraction measuring apparatus is adjusted so that the detected inclination becomes an appropriate value. However, the measuring object OB is limited. It is not necessary to use a goniometer as long as the posture of the X-ray diffraction measuring device can be kept constant by an appropriate support mechanism.

また、上記実施形態及び変形例ではコンピュータ装置がX線撮像器から入力するデータを用いて残留応力を測定するとしたが、測定効率を重要視しなければ、コンピュータ装置はデータを入力するまで、または回折角を計算するまでにし、残留垂直応力の計算は別の装置で行うようにしてもよい。この場合、別の装置にデータを入力する方法としては、記録媒体を介する方法、ネット回線等を使用して転送する方法等、様々な方法が考えられる。また、さらに時間がかかってもよければ演算の一部またはすべてを手計算により行ってもよい。   In the above embodiments and modifications, the computer device measures the residual stress using the data input from the X-ray imaging device. However, if the measurement efficiency is not regarded as important, the computer device performs the process until the data is input, or Until the diffraction angle is calculated, the calculation of the residual normal stress may be performed by another device. In this case, as a method of inputting data to another device, various methods such as a method via a recording medium, a method of transferring the data using a network line or the like can be considered. In addition, some or all of the calculations may be performed manually if more time is required.

1,2…X線回折測定装置、10…X線管、11…X線出射口、12…プレート、13…コリメータ、14…X線撮像器、20,30…レーザ照射器、21,31…枠体、22,32…レーザ光源、23,33…固定具、24,34…コリメーティングレンズ、40…筐体、41…角度計、50,58…レーザ制御回路、52…X線制御回路、54…信号取出回路、56…傾き角度検出回路、60…コンピュータ装置、61…コントローラ、62…入力装置、63…表示装置、65…高電圧電源、67…端検出センサ、70…X線管、71−1〜71−4…X線出射口、73−1〜73−4…コリメータ、74−1〜74−4…X線撮像器、OB…測定対象物、LN…搬送ライン 1, 2, X-ray diffraction measuring device, 10 X-ray tube, 11 X-ray exit port, 12 plate, 13 collimator, 14 X-ray imager, 20, 30 laser irradiator, 21, 31 ... Frame, 22, 32: Laser light source, 23, 33: Fixture, 24, 34: Collimating lens, 40: Housing, 41: Angle meter, 50, 58: Laser control circuit, 52: X-ray control circuit 54, a signal extraction circuit, 56, a tilt angle detection circuit, 60, a computer device, 61, a controller, 62, an input device, 63, a display device, 65, a high voltage power supply, 67, an edge detection sensor, 70, an X-ray tube , 71-1 to 71-4: X-ray exit, 73-1 to 73-4: Collimator, 74-1 to 74-4: X-ray imager, OB: Measurement object, LN: Transport line

Claims (4)

一定方向に流れる搬送ライン上に載置された測定対象物に対してX線を出射するX線出射手段と、
前記測定対象物にて回折したX線を受光して、回折X線の強度分布を検出するX線撮像器とを備えたX線回折測定装置を複数備え、
前記それぞれのX線回折測定装置における前記X線撮像器により検出される回折X線の強度分布を、sinψ法により残量応力を算出するためのデータとして入力して記憶するコンピュータ装置を備えたX線回折測定システムにおいて、
前記それぞれのX線回折測定装置におけるX線出射手段は、中心軸が前記測定対象物の平面と略平行且つ前記搬送ラインの移動方向と略垂直になるよう配置されたX線管と、前記X線管から出射されたX線を前記中心軸と所定の角度を成す光軸を有する平行なX線にして前記測定対象物に対して出射するコリメータとからなり、
前記それぞれのX線回折測定装置は、前記X線管の中心軸と前記コリメータから出射されるX線の光軸とを含む基準平面が前記測定対象物の平面と成す角度が異なるとともに、前記それぞれのX線回折測定装置のコリメータから出射されるX線が前記測定対象物に照射される点を結んだラインが、前記搬送ラインの移動方向と平行になるよう配置され、
前記それぞれのX線回折測定装置におけるX線撮像器は、受光平面が前記基準平面に略垂直で、前記コリメータから出射されるX線により前記測定対象物にて標準の回折角で回折X線が発生したとき、前記受光平面と前記基準平面が交差するライン上の回折X線の強度分布におけるピークが、所定位置になるように配置されていることを特徴とするX線回折測定システム。
X-ray emission means for emitting X-rays to a measurement object placed on a transport line flowing in a certain direction,
An X-ray diffraction measuring device including an X-ray diffraction device that receives an X-ray diffracted by the measurement target and detects an X-ray intensity distribution of the diffracted X-ray,
A computer device for inputting and storing the intensity distribution of the diffracted X-rays detected by the X-ray imaging device in each of the X-ray diffraction measuring devices as data for calculating residual stress by a sin 2 ψ method; X-ray diffraction measurement system,
The X-ray emitting means in each of the X-ray diffraction measurement devices includes: an X-ray tube arranged so that a central axis is substantially parallel to a plane of the measurement object and substantially perpendicular to a moving direction of the transport line; A collimator that emits X-rays emitted from the tube into parallel X-rays having an optical axis that forms a predetermined angle with the central axis and emits the measurement object.
Each of the X-ray diffraction measurement devices is different in the angle formed by the reference plane including the central axis of the X-ray tube and the optical axis of the X-ray emitted from the collimator with the plane of the measurement object. A line connecting the points at which the X-rays emitted from the collimator of the X-ray diffraction measurement device irradiate the object to be measured is arranged so as to be parallel to the moving direction of the transport line,
An X-ray imager in each of the X-ray diffraction measurement apparatuses has a light receiving plane substantially perpendicular to the reference plane, and diffracted X-rays at a standard diffraction angle on the measurement object by X-rays emitted from the collimator. An X-ray diffraction measurement system, wherein when it occurs, a peak in an intensity distribution of diffracted X-rays on a line where the light receiving plane and the reference plane intersect is arranged at a predetermined position.
請求項1に記載のX線回折測定システムにおいて、
前記それぞれのX線回折測定装置は、前記X線出射手段と前記X線撮像器とを内部に備える筐体を備え、
前記筐体は、前記コリメータから出射されるX線の照射点であって、前記照射点にて標準の回折角で回折X線が発生したとき、前記回折X線の強度分布のピークが前記X線撮像器の所定位置になる照射点で、2つの可視の平行光が交差するよう可視の平行光を出射する可視光出射手段が取り付けられていることを特徴とするX線回折測定システム。
The X-ray diffraction measurement system according to claim 1,
Each of the X-ray diffraction measurement devices includes a housing including therein the X-ray emission unit and the X-ray imager,
The casing is an irradiation point of the X-ray emitted from the collimator, and when a diffraction X-ray is generated at a standard diffraction angle at the irradiation point, the peak of the intensity distribution of the diffraction X-ray is the X-ray. An X-ray diffraction measurement system, comprising: a visible light emitting unit that emits visible parallel light so that two visible parallel lights intersect at an irradiation point at a predetermined position of the line imager.
請求項1又は請求項2に記載のX線回折測定システムにおいて、
前記それぞれのX線回折測定装置の筐体は、前記X線管の中心軸と略平行又は略垂直な平面部分を有し、
前記平面部分は重力方向に対する傾き角度を測定する角度計であって、前記X線管の中心軸方向おける傾き角度と前記X線管の中心軸に垂直な方向における傾き角度を測定する角度計を取り付けていることを特徴とするX線回折測定システム。
In the X-ray diffraction measurement system according to claim 1 or 2,
The housing of each of the X-ray diffraction measurement devices has a plane portion that is substantially parallel or substantially perpendicular to the center axis of the X-ray tube,
The plane portion is a goniometer that measures a tilt angle with respect to the direction of gravity, and a goniometer that measures a tilt angle in a central axis direction of the X-ray tube and a tilt angle in a direction perpendicular to the central axis of the X-ray tube. An X-ray diffraction measurement system, which is attached.
一定方向に流れる搬送ライン上に載置された測定対象物に対して、X線を複数の方向から同時に出射するX線出射手段と、
前記X線出射手段から出射されるそれぞれのX線ごとに、前記測定対象物にて回折したX線を受光して回折X線の強度分布を検出する複数のX線撮像器と、
前記それぞれの出射されるX線ごとに前記X線撮像器により検出される回折X線の強度分布を、sinψ法により残量応力を算出するためのデータとして入力して記憶するコンピュータ装置とを備えたX線回折測定装置において、
前記X線出射手段は、中心軸が前記測定対象物の平面と略平行且つ搬送ラインの移動方向と略垂直になるよう配置されるとともにX線出射口を複数有するX線管と、前記それぞれのX線出射口から出射されるそれぞれのX線を前記中心軸と所定の角度を成す光軸を有する平行なX線にして前記測定対象物に対して出射する複数のコリメータとからなり、
前記それぞれのX線出射口とそれぞれのコリメータとは、前記X線管の中心軸と前記それぞれのコリメータから出射されるX線の光軸とを含むそれぞれの基準平面が前記測定対象物の平面と成す角度が異なるとともに、前記それぞれのコリメータから出射されるX線が前記測定対象物に照射される点を結んだラインが、前記搬送ラインの移動方向と平行になるように配置され、
前記複数のX線撮像器のそれぞれは、受光平面が前記それぞれの基準平面の内対応するものに略垂直で、前記それぞれのコリメータの内対応するものから出射されるX線により前記測定対象物にて標準の回折角で回折X線が発生したとき、前記受光平面と前記対応する基準平面が交差するライン上の回折X線の強度分布におけるピークが、所定位置になるように配置されていることを特徴とするX線回折測定装置。
An X-ray emitting unit that simultaneously emits X-rays from a plurality of directions for a measurement target placed on a transport line flowing in a certain direction,
For each X-ray emitted from the X-ray emission unit, a plurality of X-ray imagers that receive X-rays diffracted by the measurement object and detect the intensity distribution of the diffracted X-rays,
A computer device for inputting and storing the intensity distribution of diffracted X-rays detected by the X-ray imaging device for each of the emitted X-rays as data for calculating residual stress by a sin 2 ψ method; In an X-ray diffraction measuring device provided with
The X-ray emitting means is arranged so that a central axis is substantially parallel to a plane of the object to be measured and substantially perpendicular to a moving direction of a transport line, and has an X-ray tube having a plurality of X-ray emission ports; A plurality of collimators for emitting each of the X-rays emitted from the X-ray emission port to the measurement object as parallel X-rays having an optical axis forming a predetermined angle with the central axis,
Each of the X-ray emission ports and each of the collimators has a reference plane including a central axis of the X-ray tube and an optical axis of the X-ray emitted from each of the collimators, and a plane of the measurement object. The angle formed is different, and a line connecting points where the X-rays emitted from the respective collimators are irradiated on the measurement object is arranged so as to be parallel to the moving direction of the transport line,
Each of the plurality of X-ray imagers has a light-receiving plane substantially perpendicular to a corresponding one of the respective reference planes, and an X-ray emitted from a corresponding one of the respective collimators is used for the measurement object. When a diffracted X-ray is generated at a standard diffraction angle, the peak in the intensity distribution of the diffracted X-ray on a line where the light receiving plane and the corresponding reference plane intersect is arranged at a predetermined position. An X-ray diffraction measuring device, characterized by the following.
JP2018143036A 2018-07-31 2018-07-31 X-ray diffraction measurement system and X-ray diffraction measurement system Expired - Fee Related JP6600929B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018143036A JP6600929B1 (en) 2018-07-31 2018-07-31 X-ray diffraction measurement system and X-ray diffraction measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018143036A JP6600929B1 (en) 2018-07-31 2018-07-31 X-ray diffraction measurement system and X-ray diffraction measurement system

Publications (2)

Publication Number Publication Date
JP6600929B1 JP6600929B1 (en) 2019-11-06
JP2020020616A true JP2020020616A (en) 2020-02-06

Family

ID=68462287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018143036A Expired - Fee Related JP6600929B1 (en) 2018-07-31 2018-07-31 X-ray diffraction measurement system and X-ray diffraction measurement system

Country Status (1)

Country Link
JP (1) JP6600929B1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141661A (en) * 1974-10-07 1976-04-08 Hitachi Ltd Atsuenban no keijoseigyosochi
JPH0371008A (en) * 1989-08-09 1991-03-26 Kawasaki Steel Corp Method and device for detecting curvature of metallic strip
JPH05107124A (en) * 1991-02-19 1993-04-27 Sollac Method and device for nondestructive-measuring characteristic of continuously manufactured product by on-line
JP2001281175A (en) * 2000-03-31 2001-10-10 Kawasaki Steel Corp Measuring method for metal surface oxide and x-ray diffraction device
US20070111881A1 (en) * 2004-01-12 2007-05-17 Xurity Ltd An X-ray Diffraction (XRD) Means for Identifying the Content in a Volume of Interest and a Method Thereof
US20070206726A1 (en) * 2005-11-17 2007-09-06 Xintek, Inc. Systems and methods for x-ray imaging and scanning of objects
JP2011027550A (en) * 2009-07-24 2011-02-10 Kanazawa Univ X-ray stress measuring method
US20130343525A1 (en) * 2012-06-21 2013-12-26 Entech Scientific B.V. Method and device for identifying unknown substances in an object
JP2014190899A (en) * 2013-03-28 2014-10-06 Pulstec Industrial Co Ltd X-ray diffraction measurement equipment and x-ray diffraction measurement system
JPWO2015059835A1 (en) * 2013-10-25 2017-03-09 新日鐵住金株式会社 On-line plating adhesion judgment device for alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet production line

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141661A (en) * 1974-10-07 1976-04-08 Hitachi Ltd Atsuenban no keijoseigyosochi
JPH0371008A (en) * 1989-08-09 1991-03-26 Kawasaki Steel Corp Method and device for detecting curvature of metallic strip
JPH05107124A (en) * 1991-02-19 1993-04-27 Sollac Method and device for nondestructive-measuring characteristic of continuously manufactured product by on-line
JP2001281175A (en) * 2000-03-31 2001-10-10 Kawasaki Steel Corp Measuring method for metal surface oxide and x-ray diffraction device
US20070111881A1 (en) * 2004-01-12 2007-05-17 Xurity Ltd An X-ray Diffraction (XRD) Means for Identifying the Content in a Volume of Interest and a Method Thereof
US20070206726A1 (en) * 2005-11-17 2007-09-06 Xintek, Inc. Systems and methods for x-ray imaging and scanning of objects
JP2011027550A (en) * 2009-07-24 2011-02-10 Kanazawa Univ X-ray stress measuring method
US20130343525A1 (en) * 2012-06-21 2013-12-26 Entech Scientific B.V. Method and device for identifying unknown substances in an object
JP2014190899A (en) * 2013-03-28 2014-10-06 Pulstec Industrial Co Ltd X-ray diffraction measurement equipment and x-ray diffraction measurement system
JPWO2015059835A1 (en) * 2013-10-25 2017-03-09 新日鐵住金株式会社 On-line plating adhesion judgment device for alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet production line

Also Published As

Publication number Publication date
JP6600929B1 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
JP5835191B2 (en) Diffraction ring forming apparatus and diffraction ring forming system
JP2011092612A (en) Radiographic system
JP6055970B2 (en) Surface hardness evaluation method using X-ray diffractometer and X-ray diffractometer
WO2014128874A1 (en) Diffraction ring forming device and x-ray diffraction measurement device
JP5915943B2 (en) Diffraction ring formation system and X-ray diffraction measurement system
JP6060474B1 (en) X-ray diffractometer
JP6048547B1 (en) X-ray diffractometer
JP6492389B1 (en) X-ray diffraction measurement device
JP6037237B2 (en) X-ray diffractometer and measurement method using X-ray diffractometer
JP6600929B1 (en) X-ray diffraction measurement system and X-ray diffraction measurement system
JP6128333B2 (en) X-ray diffraction measurement method
JP2013190361A (en) X-ray inspection device and method for controlling the same
JP6115597B2 (en) X-ray diffractometer
JP5949704B2 (en) Diffraction ring formation method
JP2015145862A (en) X-ray diffraction measurement device and method for detecting x-ray incidence angle in x-ray diffraction measurement device
JP5962737B2 (en) X-ray diffraction measurement apparatus and X-ray diffraction measurement method
CN110101977B (en) Method and device for realizing position calibration of medical linear accelerator
JP6212835B1 (en) X-ray diffraction measuring apparatus and diffraction image width measuring method of X-ray diffraction image
JP6032500B2 (en) X-ray diffraction measurement method and incident angle adjustment jig
JP2020030160A (en) Diffraction ring imaging device
JP6844103B1 (en) X-ray diffraction measuring device
JP6924349B2 (en) X-ray diffraction measuring device
JP2021185342A (en) X-ray diffraction measurement device
JP2010538268A (en) Automatic X-ray optical alignment with 4-sector sensor
KR101381927B1 (en) Apparatus and method for obliquely scanning circuit elements using x-ray

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190922

R150 Certificate of patent or registration of utility model

Ref document number: 6600929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees