JP2020020264A - Wind power generation device and control method therefor - Google Patents

Wind power generation device and control method therefor Download PDF

Info

Publication number
JP2020020264A
JP2020020264A JP2018142114A JP2018142114A JP2020020264A JP 2020020264 A JP2020020264 A JP 2020020264A JP 2018142114 A JP2018142114 A JP 2018142114A JP 2018142114 A JP2018142114 A JP 2018142114A JP 2020020264 A JP2020020264 A JP 2020020264A
Authority
JP
Japan
Prior art keywords
wind
yaw
turbulence
degree
power generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018142114A
Other languages
Japanese (ja)
Other versions
JP6997049B2 (en
Inventor
正利 吉村
Masatoshi Yoshikawa
正利 吉村
啓 角谷
Hiromu Kakuya
啓 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018142114A priority Critical patent/JP6997049B2/en
Priority to PCT/JP2019/017423 priority patent/WO2020026543A1/en
Priority to TW108125773A priority patent/TWI702339B/en
Publication of JP2020020264A publication Critical patent/JP2020020264A/en
Application granted granted Critical
Publication of JP6997049B2 publication Critical patent/JP6997049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

To provide a wind power generation device capable of suppressing mechanical consumption while reducing a yaw deviation angle and improving a power generation amount through yaw control corresponding to a wind turbulence degree that is calculated at low cost and accurately, and a control method therefor.SOLUTION: A wind power generation device 1 comprises: a rotor 4 which is rotated by receiving a wind; a nacelle 5 which supports the rotor 4 in a rotatable manner; a tower 7 which supports the nacelle 5 in a yaw rotatable manner; an adjustment device 8 for adjusting a yaw of the nacelle 5 based on a yaw control command; and a control device 9 which determines the yaw control command to be sent to the adjustment device 8. The control device 9 includes: a yaw deviation angle calculation part 301 for calculating a yaw deviation angle from a value measured by a wind direction/wind velocity measuring part and a direction of the rotor 4; a wind turbulence degree calculation part 302 for calculating a wind turbulence degree from the value measured by the wind direction/wind velocity measuring part; and a control command creation part 304 which determines the yaw control command based on the yaw deviation angle and the wind turbulence degree. In the case where the wind turbulence degree is high, the control command creation part 304 stops yaw rotation on early stage.SELECTED DRAWING: Figure 3

Description

本発明は、風力発電装置とその制御方法に係り、風力発電装置の機械的消耗の増加を最小限にしつつ、発電性能を向上させることが可能な風力発電装置とその制御方法に関する。   The present invention relates to a wind power generator and a control method thereof, and more particularly to a wind power generator capable of improving power generation performance while minimizing an increase in mechanical wear of the wind power generator, and a control method thereof.

水平軸型の風力発電装置では、風車ロータを搭載するナセルを垂直軸まわりに旋回させるヨー旋回機構が備わっている。風力発電装置は、風車ロータの回転軸の方位角(以下、ナセル方位角と称する)と風向との偏差角を表す風向偏差(以下、ヨー偏差角と称する)が生じた場合、ロータの受風面積の減少により発電効率が低下するのを防ぐため、ヨー旋回機構を制御してヨー偏差角をなくすように動作することが知られている。これらヨー制御の方法として例えば、特許文献1、特許文献2、特許文献3に記載される技術が知られている。   The horizontal axis type wind power generator is provided with a yaw turning mechanism for turning a nacelle having a wind turbine rotor around a vertical axis. When a wind direction deviation (hereinafter, referred to as a yaw deviation angle) representing a deviation angle between an azimuth of a rotation axis of a wind turbine rotor (hereinafter, referred to as a nacelle azimuth) and a wind direction occurs, a wind power generator receives wind from a rotor. It is known that a yaw rotation mechanism is controlled so as to eliminate a yaw deviation angle in order to prevent a decrease in power generation efficiency due to a decrease in area. For example, techniques described in Patent Literature 1, Patent Literature 2, and Patent Literature 3 are known as methods of controlling the yaw.

特開2010―106727号公報JP 2010-106727 A 米国特許第9273668号公報US Patent No. 9273668 米国公開2014/0152013号公報US Publication No. 2014/0152013

ある地点における風向や風速を表す風況は、様々な周期を持つ変動成分を有する。また、時間帯によってもその周期的な変動成分の特徴が異なる。風況には、これらの変動成分がランダムに含まれるため、一般的なヨー制御方法は、例えばある所定期間のヨー偏差角が所定の閾値を超えた場合に、ヨー偏差角がゼロになるようにナセルをヨー旋回させる。
ヨー制御によりヨー偏差角を常にゼロに維持できた時、最も発電量が多くなる。しかし、ナセルの旋回速度よりも風向の変動速度の方が速い場合、ナセル方位角を風向に追従できない。また、風の乱れ度が高い場合、すなわち、風向変動が激しく、ヨー旋回中に風向が逆方向に変わる場合、ヨー制御の応答遅れによりヨー旋回し過ぎて、ヨー偏差角が高い状態でナセルを停止させてしまう。これらの場合、ヨー偏差角をゼロに維持することは困難である。しかし、ナセルの旋回速度を高くし過ぎたり、ヨー偏差角に対して過敏にヨー旋回させると、ナセル旋回機構やナセルの旋回を停止するブレーキ機構の機械的消耗が発生する。この制御方法を用いて、ヨー偏差角を積極的に抑制しようとすると、機械的摩耗が大きくなる恐れがある。
A wind condition representing a wind direction and a wind speed at a certain point has a fluctuation component having various periods. The characteristics of the periodic fluctuation component also differ depending on the time zone. Since these fluctuation components are randomly included in the wind condition, a general yaw control method is such that, for example, when the yaw deviation angle during a certain predetermined period exceeds a predetermined threshold, the yaw deviation angle becomes zero. And yaw the nacelle.
When the yaw deviation angle can always be maintained at zero by the yaw control, the amount of power generation becomes largest. However, when the speed of fluctuation of the wind direction is faster than the turning speed of the nacelle, the nacelle azimuth cannot follow the wind direction. In addition, when the degree of wind turbulence is high, that is, when the wind direction fluctuates greatly and the wind direction changes in the opposite direction during yaw rotation, the yaw rotation is excessively performed due to the response delay of the yaw control, and the nacelle is moved with the yaw deviation angle being high. Stop it. In these cases, it is difficult to maintain the yaw deviation angle at zero. However, if the turning speed of the nacelle is set too high, or if the yaw turning is performed too sensitively to the yaw deviation angle, mechanical wear of the nacelle turning mechanism and the brake mechanism for stopping the turning of the nacelle occurs. If the yaw deviation angle is actively suppressed by using this control method, mechanical wear may increase.

特許文献1に開示される方法では、特に風の乱れ度が高く、風向変動が激しい場合、ヨー旋回し過ぎてしまい、ヨー旋回後のヨー偏差角を十分抑制できない。したがって、ヨー偏差角を十分低減できないため発電性能が低下するのみならず、ヨー旋回のし過ぎにより機械的消耗が必要以上に増加する可能性がある。
したがって、風の乱れ度に応じてヨー制御のパラメータを調整し、ヨー旋回のし過ぎを防止し得るようヨー制御することが好ましい。しかし、風向測定値から風の乱れ度を算出する場合、風向測定に一般的な矢羽式風向計を用いると、矢羽の慣性の影響で風の乱れ度を精度良く算出するのが困難である。また、慣性の影響がない超音波式等の風向計はコストが高いため好ましくない。
In the method disclosed in Patent Literature 1, especially when the degree of wind turbulence is high and the wind direction fluctuates severely, the yaw rotation is excessive, and the yaw deviation angle after the yaw rotation cannot be sufficiently suppressed. Therefore, the yaw deviation angle cannot be sufficiently reduced, so that not only the power generation performance is reduced, but also mechanical wear may be increased more than necessary due to excessive yaw rotation.
Therefore, it is preferable to adjust the parameters of the yaw control in accordance with the degree of wind turbulence, and to perform the yaw control so as to prevent the yaw rotation from being excessive. However, when calculating the degree of wind turbulence from the measured wind direction, if a general arrow feather anemometer is used for wind direction measurement, it is difficult to accurately calculate the degree of wind turbulence due to the inertia of arrow feathers. is there. Further, an anemometer such as an ultrasonic type having no influence of inertia is not preferable because of its high cost.

そこで、本発明は、低コストで精度良く算出した風の乱れ度に応じてヨー制御により、ヨー偏差角を低減して発電量を向上しつつ、機械的消耗の必要以上の増加を抑制し得る風力発電装置とその制御方法を提供する。   Therefore, the present invention can suppress the unnecessarily increased mechanical consumption while reducing the yaw deviation angle and improving the power generation amount by the yaw control according to the wind turbulence degree accurately calculated at low cost. A wind power generator and a control method thereof are provided.

上記課題を解決するため、本発明に係る風力発電装置は、風を受けて回転するロータと、前記ロータを回転可能に支持するナセルと、前記ナセルをヨー旋回可能に支持するタワーと、ヨー制御指令に基づいて前記ナセルのヨーを調整する調整装置と、前記調整装置に送る前記ヨー制御指令を定める制御装置とを備える風力発電装置であって、前記制御装置は、風向風速測定部により測定された値と前記ロータの方向からヨー偏差角を算出するヨー偏差角計算部と、前記風向風速測定部により測定された値から風の乱れ度を算出する風の乱れ度計算部と、前記ヨー偏差角と前記風の乱れ度に基づき前記ヨー制御指令を定める制御指令作成部を備え、前記制御装置は、風の乱れ度が高い場合、ヨー旋回を早く停止することを特徴とする。   In order to solve the above problems, a wind power generator according to the present invention includes a rotor that rotates by receiving wind, a nacelle that rotatably supports the rotor, a tower that rotatably supports the nacelle, and a yaw control. An adjustment device that adjusts yaw of the nacelle based on a command, and a control device that determines the yaw control command to be sent to the adjustment device, wherein the control device is measured by a wind direction and wind speed measurement unit. A yaw deviation angle calculation unit that calculates a yaw deviation angle from the measured value and the direction of the rotor; a wind turbulence degree calculation unit that calculates a wind turbulence degree from a value measured by the wind direction / wind speed measurement unit; A control command creation unit that determines the yaw control command based on an angle and the degree of wind turbulence is provided, and the control device stops yaw turning quickly when the degree of wind turbulence is high.

また、本発明に係る風力発電装置の制御方法は、風を受けて回転するロータと、前記ロータを回転可能に支持するナセルと、前記ナセルをヨー旋回可能に支持するタワーと、ヨー制御指令に基づいて前記ナセルのヨーを調整する調整装置と、前記調整装置に送る前記ヨー制御指令を定める制御装置とを備える風力発電装置の制御方法であって、風向風速測定部により測定された値と前記ロータの方向からヨー偏差角を算出し、前記風向風速測定部により測定された値から風の乱れ度を算出し、少なくとも前記ヨー偏差角及び風の乱れ度に基づき、風の乱れ度が高い場合、ヨー旋回を早く停止させることを特徴とする。   In addition, the control method of the wind turbine generator according to the present invention includes a rotor that rotates by receiving a wind, a nacelle that rotatably supports the rotor, a tower that rotatably supports the nacelle, and a yaw control command. An adjustment device that adjusts the yaw of the nacelle based on the control device and a control device that determines the yaw control command to be sent to the adjustment device. When the yaw deviation angle is calculated from the direction of the rotor, the degree of wind turbulence is calculated from the value measured by the wind direction and wind speed measurement unit, and based on at least the yaw deviation angle and the degree of wind turbulence, the degree of wind turbulence is high. The yaw rotation is stopped early.

本発明によれば、低コストで精度良く算出した風の乱れ度に応じてヨー制御により、ヨー偏差角を低減して発電量を向上しつつ、機械的消耗の必要以上の増加を抑制し得る風力発電装置とその制御方法を提供することが可能となる。
具体的には、風の乱れ度を低コストで精度良く算出してヨー制御することができ、風向変動が激しい場合でもヨー旋回のし過ぎを抑制し、ヨー旋回時の風向に対するナセル方位角の追従性が向上する。また、ヨー旋回のし過ぎを抑制することで、ヨー旋回機構の機械的消耗の必要以上の増加が抑制される。すなわち、風力発電装置の発電性能の向上と機械的消耗の低減を両立させることが可能な風力発電装置とその制御方法を提供できる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
Advantageous Effects of Invention According to the present invention, it is possible to suppress unnecessarily increased mechanical wear while reducing the yaw deviation angle and improving the power generation amount by the yaw control according to the wind turbulence degree calculated accurately with low cost. It is possible to provide a wind power generator and a control method thereof.
Specifically, it is possible to accurately calculate the degree of wind turbulence at low cost and perform yaw control, suppress excessive yaw turning even when the wind direction fluctuates sharply, and set the nacelle azimuth angle with respect to the wind direction during yaw turning. Followability is improved. Further, by suppressing excessive yaw rotation, an unnecessary increase in mechanical wear of the yaw rotation mechanism is suppressed. That is, it is possible to provide a wind power generator and a control method for the wind power generator that can achieve both improvement in the power generation performance of the wind power generator and reduction in mechanical wear.
Problems, configurations, and effects other than those described above will be apparent from the following description of the embodiments.

本発明の一実施例に係る実施例1の風力発電装置の全体概略構成を示す側面図である。1 is a side view illustrating an overall schematic configuration of a wind turbine generator according to a first embodiment of the present invention. 図1に示す風力発電装置の上面図(平面図)である。FIG. 2 is a top view (plan view) of the wind turbine generator shown in FIG. 1. 図1に示す制御装置を構成するヨー制御部の機能を示すブロック線図である。FIG. 2 is a block diagram illustrating functions of a yaw control unit included in the control device illustrated in FIG. 1. 図3に示すヨー制御部の処理概要を示すフローチャートである。4 is a flowchart illustrating an outline of a process performed by a yaw control unit illustrated in FIG. 3. 実施例1に係るヨー制御部の効果を示す概要図であり、図5(a)は風速と風の乱れ度の時間変化を、図5(b)はヨー旋回停止閾値の時間変化を、図5(c)は風向とロータ軸角度の時間変化を、図5(d)はヨー偏差角の時間変化を示す図である。FIGS. 5A and 5B are schematic diagrams illustrating an effect of the yaw control unit according to the first embodiment. FIG. 5A illustrates a time change of a wind speed and a degree of turbulence of a wind, and FIG. 5 (c) is a diagram showing a time change of the wind direction and the rotor shaft angle, and FIG. 5 (d) is a diagram showing a time change of the yaw deviation angle. 本発明の他の実施例に係る実施例2のヨー制御部の機能を示すブロック線図である。FIG. 14 is a block diagram illustrating functions of a yaw control unit according to a second embodiment of the present invention.

以下、図面を用いて本発明の実施例について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施例に係る実施例1の風力発電装置の全体概略構成を示す側面図である。図1に示すように、風力発電装置1は、複数のブレード2と、ブレード2を接続するハブ3とで構成されるロータ4を備える。ロータ4は、ナセル5に回転軸(図1では省略する)を介して連結されており、回転することでブレード2の位置を変更可能である。ナセル5は、ロータ4を回転可能に支持している。ナセル5は、発電機6を備え、ブレード2が風を受けることでロータ4が回転し、その回転力が発電機6を回転させることで電力を発生させることができる。   FIG. 1 is a side view showing an overall schematic configuration of a wind turbine generator according to a first embodiment of the present invention. As shown in FIG. 1, the wind turbine generator 1 includes a rotor 4 including a plurality of blades 2 and a hub 3 connecting the blades 2. The rotor 4 is connected to the nacelle 5 via a rotation shaft (omitted in FIG. 1), and can change the position of the blade 2 by rotating. The nacelle 5 rotatably supports the rotor 4. The nacelle 5 includes a generator 6, and the rotor 4 rotates when the blade 2 receives wind, and the rotating force rotates the generator 6 to generate electric power.

ナセル5は、タワー7上に設置されており、ヨー旋回機構8(調整装置とも称される)によって垂直軸まわりにヨー旋回可能である。制御装置9は、風向と風速とを検出する風向風速センサ10から検出した風向や、風速Vwに基づいて、ヨー旋回機構8を制御する。風向風速センサ10は、風向計が矢羽式で風速計がカップ式である低コストで一般的なものを本実施例では想定しているが、Lidar(例えば、ドップラーライダー)や超音波風向風速計等であってもよく、ナセルやタワー等の風力発電装置に取り付けられていてもよいし、風車発電装置とは別構造物でマスト等に取り付けられていてもよい。   The nacelle 5 is installed on a tower 7 and is capable of yaw rotation about a vertical axis by a yaw rotation mechanism 8 (also referred to as an adjusting device). The control device 9 controls the yaw rotation mechanism 8 based on the wind direction detected by the wind direction sensor 10 that detects the wind direction and the wind speed, and the wind speed Vw. The wind direction sensor 10 is assumed to be a low-cost general wind direction sensor having an arrow head type and an anemometer cup type in the present embodiment. However, the wind direction sensor 10 may be a lidar (for example, a Doppler lidar) or an ultrasonic wind direction sensor. It may be a meter or the like, may be attached to a wind power generator such as a nacelle or a tower, or may be attached to a mast or the like by a structure different from the wind turbine generator.

なお、ヨー旋回機構8は、ヨーベアリングやヨーギア(ヨー旋回用歯車)、ヨー旋回モータ、ヨーブレーキ等から構成されている。また、ハブ3に対するブレード2の角度を変更可能なピッチアクチュエータ、発電機6が出力する有効電力や無効電力を制御する電力変換器や、電気的信号または機械的信号を検出するセンサ等を適宜位置に備えている。また、図1は、ナセル5からブレード2に向かう風向の風で発電するダウンウィンド式であるが、ブレード2からナセル5に向かう風向の風で発電するアップウィンド式であってもよい。   The yaw rotation mechanism 8 includes a yaw bearing, a yaw gear (gear for yaw rotation), a yaw rotation motor, a yaw brake, and the like. Further, a pitch actuator that can change the angle of the blade 2 with respect to the hub 3, a power converter that controls the active power and the reactive power output by the generator 6, a sensor that detects an electric signal or a mechanical signal, and the like are appropriately located. In preparation. Although FIG. 1 shows a downwind type in which power is generated by wind in a direction from the nacelle 5 to the blade 2, an upwind type in which power is generated by wind in a direction from the blade 2 to the nacelle 5 may be used.

図2は、図1の上面図(平面図)である。所定の基準方向となす風向をθw、所定の基準方向となすロータ回転軸の方向をθr、風向θwからロータ軸角度θrまでの偏差角であるヨー偏差角をΔθと定義し、これらの関係を図示している。ここで、「所定の基準方向」とは、例えば、北を0°として基準方向とする。なお、北に限らず基準となる方向を任意に設定しても良い。なお、風向θwは、計測周期ごとに取得された値であってもよいし、所定期間の平均方向であってもよいし、所定周波数領域のみを通過させるフィルタを介した方向であってもよいし、周辺の風況分布に基づき算出された方向であってもよい。また、ロータ軸角度θrは、ロータ回転軸の向く方向であってもよいし、ナセルの方向であってもよいし、ヨー旋回部のエンコーダにより計測された値等であってもよい。   FIG. 2 is a top view (plan view) of FIG. The direction of the wind that forms the predetermined reference direction is defined as θw, the direction of the rotor rotation axis that forms the predetermined reference direction is defined as θr, and the yaw deviation angle that is the deviation angle from the wind direction θw to the rotor shaft angle θr is defined as Δθ. It is illustrated. Here, the “predetermined reference direction” is, for example, the north as 0 ° and the reference direction. Note that the reference direction is not limited to north and may be set arbitrarily. The wind direction θw may be a value acquired for each measurement cycle, may be an average direction for a predetermined period, or may be a direction through a filter that passes only a predetermined frequency region. Alternatively, the direction may be a direction calculated based on the surrounding wind condition distribution. In addition, the rotor shaft angle θr may be a direction facing the rotor rotation axis, a nacelle direction, a value measured by an encoder of the yaw turning unit, or the like.

図3から図5を用いて、本実施例に係る風力発電装置1の制御装置9を構成するヨー制御部300について説明する。
図3は、図1に示す制御装置を構成するヨー制御部の機能を示すブロック線図である。図3に示すように、ヨー制御部300は、ヨー偏差角Δθを求めるヨー偏差角計算部301と、ヨー旋回停止閾値θyを算出するヨー旋回停止閾値算出部310と、ヨー偏差角Δθとヨー旋回停止閾値θyに基づいてヨー旋回の開始/駆動/停止を制御するヨー制御指令Cyを定める制御指令作成部304により構成されている。ヨー旋回停止閾値算出部310は、風の乱れ度計算部302、ヨー旋回閾値計算部303により構成されている。
The yaw control unit 300 included in the control device 9 of the wind turbine generator 1 according to the present embodiment will be described with reference to FIGS. 3 to 5.
FIG. 3 is a block diagram showing functions of a yaw control unit included in the control device shown in FIG. As shown in FIG. 3, the yaw control unit 300 includes a yaw deviation angle calculation unit 301 for calculating a yaw deviation angle Δθ, a yaw rotation stop threshold calculation unit 310 for calculating a yaw rotation stop threshold θy, a yaw deviation angle Δθ, and a yaw deviation angle Δθ. The control command generation unit 304 determines a yaw control command Cy for controlling the start / drive / stop of the yaw rotation based on the rotation stop threshold θy. The yaw rotation stop threshold calculation unit 310 includes a wind turbulence degree calculation unit 302 and a yaw rotation threshold calculation unit 303.

このうちヨー偏差角計算部301は、ロータ軸角度θrと風向θwに基づき、ヨー偏差角Δθを決定する。このヨー偏差角Δθは図2に示すように、風向θwとロータ軸角度θrの差分であり、ロータ軸が風向からどれくらいずれているかを示す。ここで、風向θwはナセル5に設置された風向風速センサ10から検出した値に限定せず、地面や他の場所に設置された値を利用するものであってもよい。また、ヨー偏差角計算部301は、ローパスフィルタに代表される、ヨー偏差角Δθの所定周波数領域のみを通過させるフィルタ(ローパスフィルタ)や、移動平均に代表される、直前の所定期間の値の平均値を利用する統計値を用いたものであってもよい。あるいはフーリエ変換をおこなうものであってもよい。   The yaw deviation angle calculator 301 determines the yaw deviation angle Δθ based on the rotor shaft angle θr and the wind direction θw. As shown in FIG. 2, the yaw deviation angle Δθ is a difference between the wind direction θw and the rotor shaft angle θr, and indicates how much the rotor shaft deviates from the wind direction. Here, the wind direction θw is not limited to the value detected from the wind direction / wind speed sensor 10 installed in the nacelle 5, and may be a value installed on the ground or another place. Further, the yaw deviation angle calculation unit 301 includes a filter (a low-pass filter) that passes only a predetermined frequency region of the yaw deviation angle Δθ, represented by a low-pass filter, and a value of a value of the immediately preceding predetermined period, represented by a moving average. A statistical value using an average value may be used. Alternatively, it may perform Fourier transform.

図3のヨー旋回停止閾値算出部310を構成する風の乱れ度計算部302は、風向風速センサ10から検出した風速Vwに代表される風況測定値Xwに基づき、所定の期間の風況データの変動を表す風の乱れ度Itを出力する。本実施例では、ロータ回転軸の方向の風の乱れの大きさと、ロータ回転軸と水平な直角方向の風の乱れの大きさに正の相関があることを利用して、風速Vwを風の乱れ度Itの算出に用いる。風の乱れ度Itを計算する手法の一例として、ここでは統計分析手法を用いて、以下の式(1)に示すように乱流強度で設定される。
It=σv/Vwave ・・・(1)
ここで、σvは所定期間における風速の標準偏差、Vwaveは所定期間における風速の平均値である。なお、所定期間をどのように設定すべきかは、各風力発電装置が設置された場所の環境事情、ヨー制御部300の計算能力、ヨー偏差角計算部301で用いるフィルタの設定値、ヨー旋回の駆動速度、ヨー駆動量等に応じて適宜設定されればよいが、ある程度頻度の高い風向変動に対応するよう、大まかには1秒乃至1時間の範囲とするのが好ましい。もしくは、所定期間は10秒乃至10分の範囲とするのがさらに好ましい。
The wind turbulence degree calculation unit 302 included in the yaw rotation stop threshold value calculation unit 310 in FIG. 3 is based on the wind condition measurement value Xw represented by the wind speed Vw detected from the wind direction wind speed sensor 10 and calculates the wind condition data for a predetermined period. Is output as the wind turbulence It representing the variation of the wind. In the present embodiment, utilizing the fact that the magnitude of wind turbulence in the direction of the rotor rotation axis and the magnitude of wind turbulence in the direction perpendicular to the rotor rotation axis have a positive correlation, the wind speed Vw is Used for calculating the degree of disturbance It. As an example of a method of calculating the wind turbulence It, a statistical analysis method is used here, and the turbulence intensity is set as shown in the following equation (1).
It = σv / Vwave (1)
Here, σv is a standard deviation of the wind speed in a predetermined period, and Vwave is an average value of the wind speed in a predetermined period. How the predetermined period should be set depends on the environmental conditions of the place where each wind power generation device is installed, the calculation capability of the yaw control unit 300, the set value of the filter used in the yaw deviation angle calculation unit 301, and the yaw rotation. It may be set as appropriate according to the driving speed, the yaw driving amount, and the like, but it is preferable to roughly set the range from 1 second to 1 hour so as to cope with the frequent fluctuation of the wind direction to some extent. Alternatively, the predetermined period is more preferably set in a range from 10 seconds to 10 minutes.

この所定期間の範囲は、ヨー制御によって低減できるヨー偏差角Δθの周波数領域に相当している。すなわち、範囲の上限は、風向風速センサ10の構造やノイズに起因する誤差の影響が現れる高周波数成分を除去することを目的として上記の値が好ましい。また、範囲の下限は、ヨー旋回停止閾値θyの値の違いによる影響が少なくなる低周波数成分を除去することを目的として上記の値が好ましい。   This range of the predetermined period corresponds to a frequency range of the yaw deviation angle Δθ that can be reduced by the yaw control. That is, the upper limit of the range is preferably the above value for the purpose of removing a high-frequency component in which an error caused by the structure or noise of the wind direction / wind speed sensor 10 appears. The lower limit of the range is preferably the above value for the purpose of removing a low-frequency component that is less affected by a difference in the yaw rotation stop threshold value θy.

図3に示すヨー旋回停止閾値算出部310を構成するヨー旋回閾値計算部303は、風の乱れ度Itに基づき、ヨー旋回を停止する閾値θyを決定する。
具体的には、ヨー旋回閾値計算部303においては、風の乱れ度Itが小さい場合と大きい場合とで、ヨー旋回停止閾値θyの大きさが変更されるように調整される。例えば、風の乱れ度Itが小さい場合はヨー旋回停止閾値θyを低くし、風の乱れ度Itが大きい場合はヨー旋回停止閾値θyを高くする。
The yaw rotation threshold calculation unit 303 included in the yaw rotation stop threshold calculation unit 310 illustrated in FIG. 3 determines the threshold θy for stopping the yaw rotation based on the wind turbulence It.
Specifically, the yaw rotation threshold calculation section 303 adjusts the yaw rotation stop threshold θy so that the magnitude of the yaw rotation stop threshold θy is changed depending on whether the wind turbulence It is small or large. For example, when the wind turbulence degree It is small, the yaw rotation stop threshold value θy is lowered, and when the wind turbulence degree It is large, the yaw rotation stop threshold value θy is increased.

ここで、ヨー旋回停止閾値θyの調整方法の理由について説明する。まず、ヨー旋回停止閾値θyが低い場合、風向θwにナセル方位がほぼ正対したときにヨー旋回を停止するため、ヨー旋回を停止した瞬間のヨー偏差角Δθyが非常に小さい。しかし、ヨー旋回中もしくはヨー旋回直後にヨー旋回方向と逆方向に風向θwが大きく変動する場合、ヨー旋回し過ぎることになるため、ヨー旋回開始時とは逆方向のヨー偏差角Δθyが増大してしまい発電量が少なくなる。一方、ヨー旋回停止閾値θyが高い場合、風向θwにナセル方位が正対する前にヨー旋回を停止するため、ヨー旋回を停止した瞬間のヨー偏差角Δθyはまだ残っている。しかし、ヨー旋回中もしくはヨー旋回直後にヨー旋回方向と逆方向に風向θwが大きく変動する場合、ヨー旋回のし過ぎを抑制することになるため、ヨー旋回開始時とは逆方向のヨー偏差角Δθyが小さく発電量が多くなる。さらに、ヨー旋回量が少なくなるため、ヨー旋回機構8の機械的消耗が低減する。   Here, the reason for adjusting the yaw rotation stop threshold value θy will be described. First, when the yaw rotation stop threshold value θy is low, the yaw rotation is stopped when the nacelle azimuth substantially confronts the wind direction θw. Therefore, the yaw deviation angle Δθy at the moment when the yaw rotation is stopped is very small. However, if the wind direction θw greatly changes in the direction opposite to the yaw turning direction during or immediately after the yaw turning, the yaw turning will be excessive, and the yaw deviation angle Δθy in the direction opposite to the start of the yaw turning will increase. As a result, the amount of power generation is reduced. On the other hand, when the yaw rotation stop threshold value θy is high, the yaw rotation is stopped before the nacelle direction is directly opposed to the wind direction θw, and therefore, the yaw deviation angle Δθy at the moment when the yaw rotation is stopped still remains. However, if the wind direction θw fluctuates greatly in the direction opposite to the yaw rotation direction during or immediately after the yaw rotation, the excessive yaw rotation is suppressed, so that the yaw deviation angle in the direction opposite to that at the start of the yaw rotation Δθy is small and the amount of power generation is large. Further, since the yaw rotation amount is reduced, the mechanical consumption of the yaw rotation mechanism 8 is reduced.

このとき、風の乱れ度Itが小さい場合、すなわち、ある程度風向変動が激しくない場合、ヨー旋回中もしくはヨー旋回直後にヨー旋回方向と逆方向に風向θwが大きく変動することが少ないため、ヨー旋回停止閾値θyを低くすることが好ましい。一方で、風の乱れ度Itが大きい場合、すなわち、ある程度風向変動が激しい場合、ヨー旋回中もしくはヨー旋回直後にヨー旋回方向と逆方向に風向θwが大きく変動することが多いため、ヨー旋回停止閾値θyを高くすることが好ましい。以上がヨー旋回停止閾値θyの調整方法の理由である。   At this time, when the wind turbulence degree It is small, that is, when the wind direction fluctuates to some extent, the wind direction θw rarely fluctuates greatly in the direction opposite to the yaw rotation direction during or immediately after the yaw rotation. It is preferable to lower the stop threshold value θy. On the other hand, when the degree of wind turbulence It is large, that is, when the wind direction fluctuates to some extent, the wind direction θw often fluctuates greatly in the direction opposite to the yaw rotation direction during or immediately after the yaw rotation. It is preferable to increase the threshold value θy. The above is the reason for adjusting the yaw rotation stop threshold value θy.

このように本実施例では、ヨー旋回停止閾値算出部310は、風向風速センサ10から検出した風速Vwに基づいて風の乱れ度Itを計算し、これに基づいてヨー旋回停止閾値θyを作成(算出)している。
ここで、ヨー旋回閾値計算部303は、ヨー旋回停止閾値θyを逐次出力しなくてもよく、それぞれ任意の周期やタイミングで出力してもよい。
As described above, in the present embodiment, the yaw rotation stop threshold calculation unit 310 calculates the degree of wind turbulence It based on the wind speed Vw detected from the wind direction / wind speed sensor 10 and creates the yaw rotation stop threshold θy based on this ( Calculation).
Here, the yaw rotation threshold calculation unit 303 does not have to sequentially output the yaw rotation stop threshold θy, and may output the yaw rotation stop threshold θy at any cycle or timing.

制御指令作成部304は、ヨー偏差角Δθとヨー旋回停止閾値θyに基づき、ヨー制御指令Cyを決定する。ヨー偏差角Δθが大きくなった場合、ヨー旋回を開始するためのヨー制御指令Cyがヨー旋回機構8に出力される。それを受け、ヨー偏差角Δθを減らす方向にナセル5をヨー旋回させるように、ヨー旋回機構8が動作する。そして、ヨー旋回している状態で、ヨー偏差角Δθが小さくなった場合、ヨー旋回を停止するためのヨー制御指令Cyがヨー旋回機構8に出力される。   The control command creation unit 304 determines the yaw control command Cy based on the yaw deviation angle Δθ and the yaw rotation stop threshold θy. When the yaw deviation angle Δθ increases, a yaw control command Cy for starting the yaw rotation is output to the yaw rotation mechanism 8. In response to this, the yaw rotation mechanism 8 operates so that the nacelle 5 performs yaw rotation in a direction to reduce the yaw deviation angle Δθ. Then, when the yaw deviation angle Δθ becomes smaller while the yaw rotation is being performed, a yaw control command Cy for stopping the yaw rotation is output to the yaw rotation mechanism 8.

図4は、図3に示すヨー制御部300の処理概要を示すフローチャートである。
図4に示すように、ステップS401では、ヨー偏差角計算部301がロータ軸角度θrを決定し、次のステップS402に進む。ステップS402では、ヨー偏差角計算部301が風向θwを決定し、次のステップS403に進む。ステップS403では、ヨー偏差角計算部301がロータ軸角度θrと風向θwに基づいてヨー偏差角Δθを決定し、次のステップS406に進む。このように、ステップS401からステップS403までの処理をヨー偏差角計算部301が実行する。
FIG. 4 is a flowchart showing an outline of processing of the yaw control unit 300 shown in FIG.
As shown in FIG. 4, in step S401, the yaw deviation angle calculation unit 301 determines the rotor shaft angle θr, and proceeds to the next step S402. In step S402, the yaw deviation angle calculation unit 301 determines the wind direction θw, and proceeds to the next step S403. In step S403, the yaw deviation angle calculation unit 301 determines the yaw deviation angle Δθ based on the rotor shaft angle θr and the wind direction θw, and proceeds to the next step S406. As described above, the processing from step S401 to step S403 is performed by the yaw deviation angle calculation unit 301.

ステップS401からステップS403までの処理と平行して、ステップS404では、ヨー旋回停止閾値算出部310を構成する風の乱れ度計算部302が風速Vwに代表される風況測定値Xwに基づいて風の乱れ度Itを決定し、次のステップS405に進む。ステップS405では、ヨー旋回停止閾値算出部310を構成するヨー旋回停止閾値計算部303がヨー旋回停止閾値θyを決定し、次のステップS406に進む。このようにステップS404からステップS405までの処理をヨー旋回停止閾値算出部310が実行する。
ステップS406では、制御指令作成部304がヨー偏差角Δθとヨー旋回停止閾値θyに基づいてヨー制御指令Cyを決定した後、一連の処理を終了する。
In parallel with the processing from step S401 to step S403, in step S404, the wind turbulence degree calculation unit 302 constituting the yaw rotation stop threshold value calculation unit 310 determines the wind based on the wind condition measurement value Xw represented by the wind speed Vw. Is determined, and the process proceeds to the next step S405. In step S405, the yaw rotation stop threshold calculator 303 constituting the yaw rotation stop threshold calculator 310 determines the yaw rotation stop threshold θy, and proceeds to the next step S406. As described above, the processing from step S404 to step S405 is performed by the yaw rotation stop threshold value calculation unit 310.
In step S406, after the control command creation unit 304 determines the yaw control command Cy based on the yaw deviation angle Δθ and the yaw rotation stop threshold θy, a series of processing ends.

次に、本実施例の効果を明確化するため、比較例の動作と合わせて概要を説明する。
図5は、本実施例に係るヨー制御部300の効果を示す概要図であり、横軸は全て共通の時刻を示す。図5(a)における縦軸は風速Vwと風の乱れ度It、図5(b)における縦軸はヨー旋回停止閾値θy、図5(c)における縦軸はロータ軸角度θrと風向θw、および図5(d)における縦軸はヨー偏差角Δθを示す。図5における破線は、本実施例に係るヨー制御部300を適用しない場合の比較例として、例えば、ヨー旋回停止閾値θyが常に低い場合の結果を示す。一方で、実線が本発明の実施例1に係るヨー制御部300を適用した場合の結果を示している。
Next, in order to clarify the effect of the present embodiment, an outline will be described together with the operation of the comparative example.
FIG. 5 is a schematic diagram illustrating the effect of the yaw control unit 300 according to the present embodiment, and the horizontal axis indicates a common time. The vertical axis in FIG. 5A is the wind speed Vw and the degree of wind turbulence It, the vertical axis in FIG. 5B is the yaw rotation stop threshold θy, and the vertical axis in FIG. 5C is the rotor axis angle θr and the wind direction θw. The vertical axis in FIG. 5D shows the yaw deviation angle Δθ. The broken line in FIG. 5 shows a result as a comparative example when the yaw control unit 300 according to the present embodiment is not applied, for example, when the yaw rotation stop threshold θy is always low. On the other hand, a solid line indicates a result when the yaw control unit 300 according to the first embodiment of the present invention is applied.

図5(a)に示されるように、風速Vwは時刻T1まで変動が穏やかで、時刻T1から時刻T9まで変動が激しく、時刻T9以降は変動が穏やかである。このとき、本実施例で計算される風の乱れ度Itは時刻T1からT9まで高い。したがって、図5(b)に示されるように、比較例のヨー旋回停止閾値θyは常に低いのに対して、本実施例のヨー旋回停止閾値θyは時刻T1から時刻T9の間高くなる。
このときの風向θwは、図5(c)に示されるように小さい変動を繰り返しつつ、時刻T1を過ぎて+側に大きく急変している。これに応じて本実施例と比較例は時刻T2から1回目のヨー旋回を開始して、ロータ軸角度θrが風向θwに追従している。そして、本実施例では、ヨー旋回停止閾値θyが高いため時刻T3でヨー旋回を停止しているのに対し、比較例ではヨー旋回停止閾値θyが本実施例より低いため、時刻T3よりも遅い時刻T4でヨー旋回を停止している。このとき、風向θwは時刻T3付近から今度は−側へ大きく急変し始めているため、本実施例と比較して比較例は風向θwに対してヨー旋回し過ぎてしまっている。その結果、図5(d)に示されるように、時刻T3過ぎから本実施例より比較例はヨー偏差角Δθが大きい。
As shown in FIG. 5A, the wind speed Vw fluctuates moderately until time T1, fluctuates drastically from time T1 to time T9, and fluctuates moderately after time T9. At this time, the wind turbulence It calculated in the present embodiment is high from time T1 to T9. Therefore, as shown in FIG. 5B, the yaw rotation stop threshold value θy of the comparative example is always low, whereas the yaw rotation stop threshold value θy of the present embodiment is high between time T1 and time T9.
At this time, the wind direction θw sharply changes to the + side after the time T1 while repeating a small change as shown in FIG. 5C. Accordingly, in this embodiment and the comparative example, the first yaw rotation is started from time T2, and the rotor shaft angle θr follows the wind direction θw. In the present embodiment, the yaw rotation stop threshold θy is high, so that the yaw rotation is stopped at the time T3. On the other hand, in the comparative example, the yaw rotation stop threshold θy is lower than in the present embodiment, so that the yaw rotation is later than the time T3. At time T4, the yaw rotation is stopped. At this time, since the wind direction θw has begun to change sharply to the negative side from the vicinity of the time T3, the comparative example is too yawed with respect to the wind direction θw as compared with the present embodiment. As a result, as shown in FIG. 5D, the yaw deviation angle Δθ of the comparative example is larger than that of the present embodiment after time T3.

そして、時刻T4を過ぎても風向θwの−側への急変が続いているため、比較例では時刻T5で2回目のヨー旋回を開始し、時刻T8でヨー旋回を停止している。それに対し、本実施例では、時刻T5より遅い時刻T6で2回目のヨー旋回を開始し、時刻T8より早い時刻T7でヨー旋回を停止している。このとき、図5(d)に示されるように、本実施例は1回目にヨー旋回し過ぎていないため、2回目のヨー旋回時も比較例よりヨー偏差角Δθが小さい。
したがって、この期間(時刻T3過ぎから時刻T7過ぎまでの期間)の発電出力は本実施例の方が比較例よりも大きくなる。すなわち、本実施例は、年間発電量が比較例よりも高くなることを示している。また、本実施例の方が、ヨー旋回量が少ないため、ヨー旋回機構8の機械的消耗を低減できることを示している。さらに、センサの慣性の影響が少ない構成で風の乱れ度を計算できるため、低コストと高精度の両立も実現している。
Then, since the wind direction θw continues to change abruptly to the minus side even after the time T4, in the comparative example, the second yaw rotation is started at the time T5, and the yaw rotation is stopped at the time T8. In contrast, in the present embodiment, the second yaw rotation is started at time T6 later than time T5, and the yaw rotation is stopped at time T7 earlier than time T8. At this time, as shown in FIG. 5D, in the present embodiment, since the first yaw rotation is not excessive, the yaw deviation angle Δθ is smaller than that in the comparative example also in the second yaw rotation.
Therefore, the power generation output during this period (the period from time T3 to time T7) is greater in the present embodiment than in the comparative example. That is, this example indicates that the annual power generation amount is higher than the comparative example. Further, it is shown that the present embodiment can reduce the mechanical wear of the yaw rotation mechanism 8 because the yaw rotation amount is small. Further, since the degree of wind turbulence can be calculated with a configuration in which the influence of the inertia of the sensor is small, both low cost and high accuracy are realized.

以上のように、本実施例によれば、低コストで精度良く算出した風の乱れ度に応じてヨー制御をし、ヨー偏差角を低減して発電量を向上しつつ、機械的消耗の必要以上の増加を抑制し得る風力発電装置とその制御方法を提供することが可能となる。具体的には、風速センサで検出した風速Vwを用いて風の乱れ度Itを計算し、風の乱れ度Itが高い場合は、ヨー旋回停止閾値θyを高くするとヨー旋回のし過ぎを抑制できる機会が多くなり、発電量が向上するためヨー旋回停止閾値θyを高くする。また、風の乱れ度Itが低い場合は、ヨー旋回停止閾値θyを高くしてヨー旋回のし過ぎを抑制する効果よりも、ヨー旋回停止閾値θyを低くして風向θwに追従させる効果の方が高くなるため、ヨー旋回停止閾値θyを低くする。このように風況に応じてヨー旋回停止閾値θyを可変することで、機械的消耗の増加を抑制しつつ、風力発電装置の発電性能を向上させることができる。   As described above, according to the present embodiment, the yaw control is performed in accordance with the wind turbulence calculated accurately at low cost, the yaw deviation angle is reduced, the power generation amount is improved, and mechanical consumption is required. It is possible to provide a wind turbine generator and a control method thereof that can suppress the above increase. Specifically, the degree of wind turbulence It is calculated using the wind speed Vw detected by the wind speed sensor, and when the degree of wind turbulence It is high, the yaw rotation stop threshold θy is increased to suppress excessive yaw rotation. Since the opportunity increases and the power generation amount increases, the yaw rotation stop threshold value θy is increased. Further, when the degree of wind turbulence It is low, the effect of lowering the yaw rotation stop threshold θy and following the wind direction θw is better than the effect of suppressing the excessive yaw rotation by increasing the yaw rotation stop threshold θy. Therefore, the yaw rotation stop threshold value θy is reduced. By varying the yaw rotation stop threshold value θy according to the wind conditions in this manner, it is possible to improve the power generation performance of the wind turbine generator while suppressing an increase in mechanical wear.

また、風力発電装置に過大な荷重がかからないようにすることを目的とし、ヨー偏差角Δθが過大になった場合、すぐに発電を抑制あるいは中止する機能が風力発電装置に備えられていることがある。本実施例は比較例よりもヨー旋回速度が高く、風向θwへの追従性が良いためヨー偏差角Δθが過大になりにくい。したがって、ヨー偏差角Δθが過大になって発電が抑制または中止される機会が減るため、発電量の向上に効果がある。   In addition, the purpose of the wind power generator is to prevent an excessive load from being applied to the wind power generator, and when the yaw deviation angle Δθ becomes excessive, the wind power generator may be provided with a function of immediately suppressing or stopping power generation. is there. In the present embodiment, the yaw rotation speed is higher than in the comparative example, and the followability to the wind direction θw is good, so that the yaw deviation angle Δθ is unlikely to be excessive. Therefore, the chance of suppressing or stopping the power generation due to the excessive yaw deviation angle Δθ is reduced, which is effective in improving the power generation amount.

図6は、本発明の他の実施例に係る実施例2のヨー制御部の機能を示すブロック線図である。本実施例では、ヨー旋回停止閾値θyが過去の経験若しくは計算により求めた値を固定設定値として予め制御装置9に設定されオフラインで運用する点が、上述の実施例1と異なる。その他の構成は上述の実施例1と同様である。また、図6では実施例1と同様の構成要素に同一符号を付している。   FIG. 6 is a block diagram illustrating functions of a yaw control unit according to a second embodiment of the present invention. The present embodiment is different from the above-described first embodiment in that the yaw rotation stop threshold value θy is set in advance in the control device 9 as a fixed setting value obtained by past experience or calculation and is operated offline. Other configurations are the same as those in the first embodiment. In FIG. 6, the same components as those in the first embodiment are denoted by the same reference numerals.

上述の実施例1では、図3および図4に示したように、ヨー旋回停止閾値算出部310は、毎制御周期、或は適宜のタイミングでヨー旋回停止閾値θyを算出し更新する構成とした。これに対し、図6に示す本実施例のヨー制御部600は、ヨー偏差角Δθを求めるヨー偏差角計算部301と、ヨー偏差角Δθとヨー旋回停止閾値θyに基づいてヨー旋回の開始/駆動/停止を制御するヨー制御指令Cyを定める制御指令作成部304により構成されており、ヨー旋回停止閾値θyを算出するヨー旋回停止閾値算出部310を備えていない。制御指令作成部304に与えられるヨー旋回停止閾値θyは、予めヨー制御部600を構成する制御指令作成部304にプリセットされ、あるいは適宜のタイミングでヨー旋回停止閾値入力部605により外部から設定される。ヨー旋回停止閾値入力部605はキーボード等の入力装置であって、作業員により入力されてもよい。   In the above-described first embodiment, as shown in FIGS. 3 and 4, the yaw rotation stop threshold calculation unit 310 calculates and updates the yaw rotation stop threshold θy in each control cycle or at an appropriate timing. . On the other hand, the yaw control unit 600 of the present embodiment shown in FIG. 6 includes a yaw deviation angle calculation unit 301 for obtaining the yaw deviation angle Δθ, and a yaw rotation start / stop based on the yaw deviation angle Δθ and the yaw rotation stop threshold θy. It comprises a control command creation unit 304 that determines a yaw control command Cy for controlling driving / stopping, and does not include a yaw rotation stop threshold calculation unit 310 that calculates a yaw rotation stop threshold θy. The yaw rotation stop threshold value θy given to the control command generation unit 304 is preset in the control command generation unit 304 constituting the yaw control unit 600 in advance, or is set externally by the yaw rotation stop threshold input unit 605 at an appropriate timing. . The yaw rotation stop threshold input unit 605 is an input device such as a keyboard, and may be input by an operator.

上述の実施例1に示したヨー旋回停止閾値算出部310の機能は、風力発電所とは別の場所に設けられた解析装置内に構成されており、例えば風力発電所建設前の研究、設計段階において求めた環境条件から、予め当該風力発電所の典型的な風況でのヨー旋回停止閾値θyを算出し、ヨー制御部600内にプリセット値として組み込んでおくものである。典型的な風況とは、例えば季節毎に、あるいは夕方とか朝方とか毎に、または風の乱れ度毎に準備され、適宜の条件で切り替え使用してもよい。   The function of the yaw rotation stop threshold value calculation unit 310 shown in the above-described first embodiment is configured in an analysis device provided in a location different from the wind power plant. A yaw rotation stop threshold value θy in a typical wind condition of the wind power plant is calculated in advance from the environmental conditions obtained in the stage, and is incorporated in the yaw control unit 600 as a preset value. The typical wind condition is prepared, for example, for each season, for each evening or morning, or for each degree of wind turbulence, and may be switched and used under appropriate conditions.

あるいは、上述の実施例1に示したヨー旋回停止閾値算出部310の機能は、風力発電所とは別の場所に設けられた解析装置内に構成されており、例えば風力発電所を設置後の運用段階において、観測した環境条件から、当該風力発電所の典型的な風況でのヨー旋回停止閾値θyを算出し、通信部を備えたヨー旋回停止閾値入力部605を介してヨー制御部600内の制御指令作成部304に与えるものである。この場合に、ヨー旋回停止閾値θyの設定は、現場の風況に応じてオンライン的に即時に対応する形式のものではなく、オフラインで求めておいた値を適宜のタイミングで与えて運用する。   Alternatively, the function of the yaw rotation stop threshold value calculation unit 310 shown in the above-described first embodiment is configured in an analysis device provided in a location different from the wind power plant, for example, after the wind power plant is installed. In the operation stage, a yaw rotation stop threshold θy in a typical wind condition of the wind power plant is calculated from the observed environmental conditions, and the yaw rotation stop threshold input unit 605 including a communication unit is used to calculate the yaw rotation stop threshold θy. This is given to the control command creation unit 304 in the inside. In this case, the setting of the yaw rotation stop threshold value θy is not of a type that immediately responds online on the basis of the wind conditions at the site, but is performed by giving a value obtained offline at an appropriate timing.

以上のように本実施例によれば、風車に解析装置を設ける必要が無く、既存の風車に対して大きな改修なく本発明制御を搭載するように更新でき、最適化された駆動速度に基づく制御を行うことができる。   As described above, according to the present embodiment, it is not necessary to provide an analysis device in a wind turbine, and it is possible to update an existing wind turbine to incorporate the control of the present invention without major modification, and control based on an optimized driving speed. It can be performed.

次に、本発明の他の実施例に係る実施例3の風力発電装置1について説明する。
本実施例の風力発電装置1は、上述の実施例1のヨー制御部300と同じ構成を有しているが、ヨー旋回停止閾値算出部310における処理が実施例1と異なる。
Next, a wind turbine generator 1 according to a third embodiment of the present invention will be described.
The wind turbine generator 1 of the present embodiment has the same configuration as the yaw control unit 300 of the above-described first embodiment, but differs from the first embodiment in the processing in the yaw rotation stop threshold value calculation unit 310.

本実施例のヨー旋回停止閾値算出部310では、上述の実施例1と同様に、風況測定値Xwとして風速Vwを入力するが、風の乱れ度Itの他に、所定の期間の平均風速Vwaveを計算する。ここで、平均風速Vwaveが高い場合、風の乱れ度Itが高いときもヨー旋回停止閾値θyを低くする。これは、風速Vwが高い場合は風の乱れ度Itが高くても、地形によってはヨー旋回し過ぎる風況が少ない場合を鑑みて、発電量の向上効果を高めるためである。同様に、平均風速Vwaveが低い場合も、風の乱れ度Itが高いときにヨー旋回停止閾値θyを低くする。   In the yaw rotation stop threshold value calculation unit 310 of this embodiment, the wind speed Vw is input as the wind condition measurement value Xw in the same manner as in the above-described first embodiment. Calculate Vwave. Here, when the average wind speed Vwave is high, the yaw rotation stop threshold value θy is set low even when the wind turbulence It is high. This is because the effect of improving the power generation amount is improved in consideration of the case where the wind speed Vw is high and the wind turbulence degree It is high, and the wind conditions in which the yaw turns too much depending on the terrain are small. Similarly, when the average wind speed Vwave is low, the yaw rotation stop threshold value θy is reduced when the wind turbulence degree It is high.

以上のように本実施例によれば、実施例1と同様の発電量を向上させる効果を、様々な地形に対応させることが可能となる。
なお、平均風速Vwaveは、ローパスフィルタに代表される、風速Vwの所定周波数領域のみを通過させるフィルタ(ローパスフィルタ)や、移動平均に代表される、直前の所定期間の値の平均値を利用する統計値を用いて算出しても、フーリエ変換をおこなって算出してもよい。あるいは、ヨー旋回停止閾値算出部310に入力する前に、平均風速Vwaveを算出してもよい。
As described above, according to the present embodiment, the same effect of improving the power generation amount as in the first embodiment can be applied to various terrains.
The average wind speed Vwave uses a filter (low-pass filter) such as a low-pass filter that passes only a predetermined frequency region of the wind speed Vw, or an average value of values in the immediately preceding predetermined period, such as a moving average. The calculation may be performed using a statistical value or may be performed by performing a Fourier transform. Alternatively, the average wind speed Vwave may be calculated before inputting to the yaw rotation stop threshold value calculation unit 310.

次に、本発明の他の実施例に係る実施例4の風力発電装置1について説明する。
本実施例の風力発電装置1は、上述の実施例1のヨー制御部300と同じ構成を有しているが、ヨー旋回停止閾値算出部310における処理が実施例1と異なる。
Next, a wind turbine generator 1 according to a fourth embodiment according to another embodiment of the present invention will be described.
The wind turbine generator 1 of the present embodiment has the same configuration as the yaw control unit 300 of the above-described first embodiment, but differs from the first embodiment in the processing in the yaw rotation stop threshold value calculation unit 310.

本実施例のヨー旋回停止閾値算出部310では、上述の実施例1と異なり、風況測定値Xwとして風速Vwに代えて風向θwに基づいて風の乱れ度It2を計算し、風の乱れ度It2に基づいてヨー旋回停止閾値θyを算出する。本実施例の風の乱れ度It2を計算する手法の一例として、ここでは統計分析手法を用いて、所定期間における風向θwの標準偏差σwとする。このとき、本発明の課題である矢羽式風向計の慣性が風の乱れ度の計算精度に与える悪影響を低減するため、風の乱れ度It2から慣性の影響を除く補正値を加える、或いは、発電量が向上するIt2とヨー旋回停止閾値θyの関係を予め求めておくことが好ましい。これにより、風速Vwに基づく乱流強度と比較して、ヨー偏差角Δθとより直接的な関係にある風向θwに基づく風向標準偏差で風の乱れ度を算出するため、精度よくヨー旋回し過ぎを抑制してヨー偏差角Δθを低減し、発電量を高めることができる。   Unlike the first embodiment, the yaw rotation stop threshold calculation unit 310 of this embodiment calculates the wind turbulence It2 based on the wind direction θw instead of the wind speed Vw as the wind condition measurement value Xw, and calculates the wind turbulence The yaw rotation stop threshold value θy is calculated based on It2. As an example of a method of calculating the wind turbulence It2 of this embodiment, a standard deviation σw of the wind direction θw in a predetermined period is used here using a statistical analysis method. At this time, in order to reduce the adverse effect of the inertia of the arrow feather anemometer, which is the subject of the present invention, on the calculation accuracy of the wind turbulence, a correction value for removing the influence of the inertia from the wind turbulence It2 is added, or It is preferable that the relationship between It2, at which the amount of generated power is improved, and the yaw rotation stop threshold value θy be determined in advance. Accordingly, the degree of wind turbulence is calculated based on the wind direction standard deviation based on the wind direction θw which is more directly related to the yaw deviation angle Δθ, as compared with the turbulence intensity based on the wind speed Vw. , The yaw deviation angle Δθ can be reduced, and the amount of power generation can be increased.

以上のように本実施例によれば、実施例1と同様の発電量を向上させる効果を、より精度よく実現することが可能となる。   As described above, according to the present embodiment, it is possible to more accurately achieve the same effect of improving the amount of power generation as in the first embodiment.

次に、本発明の他の実施例に係る実施例5の風力発電装置1について説明する。
本実施例の風力発電装置1は、上述の実施例1のヨー制御部300と同じ構成を有しているが、ヨー旋回停止閾値算出部310における処理が実施例1と異なる。
Next, a wind turbine generator 1 according to a fifth embodiment of the present invention will be described.
The wind turbine generator 1 of the present embodiment has the same configuration as the yaw control unit 300 of the above-described first embodiment, but differs from the first embodiment in the processing in the yaw rotation stop threshold value calculation unit 310.

本実施例のヨー旋回停止閾値算出部310では、上述の実施例1と異なり、風況測定値Xwとして風速Vwと風向θwに基づき、風の乱れ度It3を計算し、風の乱れ度It3に基づいてヨー旋回停止閾値θyを算出する。本実施例の風の乱れ度It3は、式(1)で計算した風の乱れ度Itと、上述の実施例4で示した風の乱れ度It2を組み合わせた以下の式(2)の値を用いる。
It3=α×It+β×It2 ・・・(2)
ここで、αとβはIt3を算出するための比重係数であり、風力発電装置1を設置するサイトの風況に応じて大きさを決定する。It3を用いてヨー旋回停止閾値θyを算出することにより、サイトの風況により適した風の乱れ度を算出できるため、精度よくヨー旋回し過ぎを抑制してヨー偏差角Δθを低減し、発電量を高めることができる。また、風速計か風向計のどちらかが故障しても風の乱れ度を算出できるため冗長性が高い。
以上のように本実施例によれば、風向風速センサのどちらかが故障しても実施例1と同様の発電量向上効果を実現できるため、冗長性を高くすることができる。
Unlike the first embodiment, the yaw rotation stop threshold value calculation unit 310 of the present embodiment calculates the wind turbulence It3 based on the wind speed Vw and the wind direction θw as the wind condition measurement value Xw, and calculates the wind turbulence It3. The yaw rotation stop threshold θy is calculated based on the yaw rotation stop threshold θy. The wind turbulence It3 of the present embodiment is a value of the following equation (2) obtained by combining the wind turbulence It2 calculated by the equation (1) and the wind turbulence It2 shown in the fourth embodiment. Used.
It3 = α × It + β × It2 (2)
Here, α and β are specific gravity coefficients for calculating It3, and determine the size according to the wind condition of the site where the wind turbine generator 1 is installed. By calculating the yaw rotation stop threshold value θy using It3, it is possible to calculate the degree of wind turbulence that is more suitable for the wind conditions at the site. Therefore, it is possible to accurately suppress excessive yaw rotation, reduce the yaw deviation angle Δθ, and generate power. The amount can be increased. Moreover, even if either the anemometer or the anemometer fails, the degree of wind turbulence can be calculated, so that the redundancy is high.
As described above, according to this embodiment, even if one of the wind direction and wind speed sensors fails, the same power generation amount improvement effect as that of the first embodiment can be realized, so that the redundancy can be increased.

次に、本発明の他の実施例に係る実施例6の風力発電装置1について説明する。
本実施例の風力発電装置1は、上述の実施例1のヨー制御部300と同じ構成を有しているが、ヨー旋回停止閾値算出部310における処理が実施例1と異なる。
Next, a wind turbine generator 1 according to a sixth embodiment of the present invention will be described.
The wind turbine generator 1 of the present embodiment has the same configuration as the yaw control unit 300 of the above-described first embodiment, but differs from the first embodiment in the processing in the yaw rotation stop threshold value calculation unit 310.

本実施例のヨー旋回停止閾値算出部310では、上述の実施例1と異なり、風況測定値Xwに代えて、風力発電装置1の発電出力Po、ブレードピッチ角γp、発電機トルクTg、またはロータ回転速度ωrに代表される、風況が変わると変動する風力発電装置1のパラメータのいずれか一つ以上を入力値とする。そしてこのパラメータの所定期間における変動量を計算し、計算した変動量を風の乱れ度としてヨー旋回停止閾値θyを算出する。これにより、風向風速センサが故障した場合でも、本発明の効果を実現することできる。   In the yaw rotation stop threshold value calculation unit 310 of this embodiment, unlike the first embodiment, instead of the wind condition measurement value Xw, the power generation output Po of the wind power generator 1, the blade pitch angle γp, the generator torque Tg, or One or more parameters of the wind power generator 1 that fluctuate when the wind conditions change, such as the rotor rotation speed ωr, are set as input values. Then, the fluctuation amount of this parameter in a predetermined period is calculated, and the yaw rotation stop threshold value θy is calculated using the calculated fluctuation amount as the wind turbulence degree. Thus, even when the wind direction / speed sensor fails, the effects of the present invention can be realized.

以上のように本実施例によれば、風向風速センサの状態によらず実施例1と同様の発電量向上効果を実現できるため、冗長性を高くすることができる。   As described above, according to the present embodiment, the same power generation amount improving effect as that of the first embodiment can be realized regardless of the state of the wind direction and wind speed sensor, so that the redundancy can be increased.

本発明は上述した実施例に限定されるものではなく、種々の変形が可能である。上述した実施例は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際にはほとんど全ての構成が相互に接続されていると考えてもよい。   The present invention is not limited to the embodiments described above, and various modifications are possible. The above-described embodiments are illustrated for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment. Further, the control lines and information lines shown in the figure indicate those which are considered necessary for the description, and do not necessarily indicate all the control lines and information lines necessary for the product. In fact, almost all components may be considered to be interconnected.

上述の実施例に対して可能な変形として、例えば以下のようなものが挙げられる。
(1)ヨー制御部300における風の乱れ度計算部302、およびヨー旋回停止閾値計算部304は、制御装置9に代えて、外部の装置に備えてもよい。
(2)本発明で計算したヨー制御のヨー旋回停止閾値θyは、同じサイトにおける他の風力発電装置1や、風況の近しい他サイトの風力発電装置1に適用してもよい。
(3)ヨー制御部300における風の乱れ度計算部302は、風速Vwをはじめとする風況測定値Xwを逐次入力せず、過去に蓄積された風況測定データのみで計算する構成としてもよい。
(4)上述の各実施例においては、風向風速センサ10はナセル5上に設置されているが、この場所に代えて、ナセル5内や風力発電装置1の周辺に設置してもよい。
(5)上述の各実施例において、ヨー旋回停止閾値θyは段階的に値を設定したり、直線や曲線のように連続的に値を設定したりしてもよい。
Possible modifications to the embodiment described above include, for example, the following.
(1) The wind turbulence degree calculation unit 302 and the yaw rotation stop threshold calculation unit 304 in the yaw control unit 300 may be provided in an external device instead of the control device 9.
(2) The yaw rotation stop threshold value θy of the yaw control calculated in the present invention may be applied to another wind power generator 1 at the same site or to a wind power generator 1 at another site where the wind condition is close.
(3) The wind turbulence degree calculation unit 302 in the yaw control unit 300 may be configured not to sequentially input the wind condition measurement values Xw including the wind speed Vw but to calculate only with the wind condition measurement data accumulated in the past. Good.
(4) In each of the embodiments described above, the wind direction and wind speed sensor 10 is installed on the nacelle 5, but may be installed in the nacelle 5 or around the wind power generator 1 instead of this location.
(5) In each of the above-described embodiments, the value of the yaw rotation stop threshold value θy may be set stepwise, or may be set continuously like a straight line or a curve.

1…風力発電装置
2…ブレード
3…ハブ
4…ロータ
5…ナセル
6…発電機
7…タワー
8…ヨー旋回機構
9…制御装置
10…風向風速センサ
300,600…ヨー制御部
301…ヨー偏差角計算部
302…風の乱れ度計算部
303…ヨー旋回停止閾値計算部
304…制御指令作成部
310…ヨー旋回停止閾値算出部
605…ヨー旋回停止閾値入力部
DESCRIPTION OF SYMBOLS 1 ... Wind power generator 2 ... Blade 3 ... Hub 4 ... Rotor 5 ... Nacell 6 ... Generator 7 ... Tower 8 ... Yaw turning mechanism 9 ... Control device 10 ... Wind direction / wind speed sensor 300, 600 ... Yaw control unit 301 ... Yaw deviation angle Calculation unit 302: Wind turbulence degree calculation unit 303: Yaw rotation stop threshold calculation unit 304: Control command creation unit 310: Yaw rotation stop threshold calculation unit 605: Yaw rotation stop threshold input unit

Claims (14)

風を受けて回転するロータと、前記ロータを回転可能に支持するナセルと、前記ナセルをヨー旋回可能に支持するタワーと、ヨー制御指令に基づいて前記ナセルのヨーを調整する調整装置と、前記調整装置に送る前記ヨー制御指令を定める制御装置とを備える風力発電装置であって、
前記制御装置は、風向風速測定部により測定された値と前記ロータの方向からヨー偏差角を算出するヨー偏差角計算部と、前記風向風速測定部により測定された値から風の乱れ度を算出する風の乱れ度計算部と、前記ヨー偏差角と前記風の乱れ度に基づき前記ヨー制御指令を定める制御指令作成部を備え、
前記制御装置は、風の乱れ度が高い場合、ヨー旋回を早く停止することを特徴とする風力発電装置。
A rotor that rotates in response to wind, a nacelle that rotatably supports the rotor, a tower that rotatably supports the nacelle, an adjusting device that adjusts yaw of the nacelle based on a yaw control command, A control device that determines the yaw control command to be sent to the adjustment device,
The control device calculates a yaw deviation angle calculating unit that calculates a yaw deviation angle from a value measured by a wind direction and wind speed measuring unit and the direction of the rotor, and calculates a degree of wind turbulence from a value measured by the wind direction and wind speed measuring unit. A wind turbulence degree calculation unit, and a control command creation unit that determines the yaw control command based on the yaw deviation angle and the wind turbulence degree,
The wind turbine generator according to claim 1, wherein the controller stops the yaw rotation quickly when the degree of wind turbulence is high.
請求項1に記載の風力発電装置において、
前記風の乱れ度は、予め前記制御指令作成部に設定されていることを特徴とする風力発電装置。
The wind power generator according to claim 1,
The wind power generation device is characterized in that the wind turbulence degree is set in the control command creation unit in advance.
請求項1に記載の風力発電装置において、
前記風の乱れ度は、通信部を介して風力発電装置の外部から設定されることを特徴とする風力発電装置。
The wind power generator according to claim 1,
The wind power generator is characterized in that the degree of wind turbulence is set from outside the wind power generator via a communication unit.
請求項1に記載の風力発電装置において、
前記制御装置は、前記風の乱れ度に基づいて、ヨー旋回停止閾値を計算するヨー旋回停止閾値計算部を備えることを特徴とする風力発電装置。
The wind power generator according to claim 1,
The wind power generator, wherein the control device includes a yaw rotation stop threshold calculation unit that calculates a yaw rotation stop threshold based on the wind turbulence degree.
請求項4に記載の風力発電装置において、
前記風の乱れ度計算部は、前記風向風速測定部により測定された風速から所定の期間における風速の標準偏差及び風速の平均値を求め、前記風速の標準偏差を前記風速の平均値にて除することにより求まる乱流強度を前記風の乱れ度とすることを特徴とする風力発電装置。
The wind power generator according to claim 4,
The wind turbulence degree calculation unit obtains a standard deviation of the wind speed and an average value of the wind speed in a predetermined period from the wind speed measured by the wind direction and wind speed measurement unit, and divides the standard deviation of the wind speed by the average value of the wind speed. A wind turbulence intensity obtained by performing the wind turbulence intensity.
請求項4に記載の風力発電装置において、
前記風の乱れ度計算部は、前記風向風速測定部により測定された風向から風向の標準偏差を求め、前記風向の標準偏差を前記風の乱れ度とすることを特徴とする風力発電装置。
The wind power generator according to claim 4,
The wind power generation device, wherein the wind turbulence degree calculation unit obtains a standard deviation of the wind direction from the wind direction measured by the wind direction / wind speed measurement unit, and uses the standard deviation of the wind direction as the wind turbulence degree.
請求項5に記載の風力発電装置において、
前記風の乱れ度計算部は、前記風向風速測定部により測定された風向から風向の標準偏差を求め、
前記ヨー旋回停止閾値計算部は、前記乱流強度に所定の係数を掛けた値と前記風向の標準偏差に所定の係数を掛けた値とを組み合わせたパラメータを求め、前記パラメータを前記風の乱れ度とすることを特徴とする風力発電装置。
The wind power generator according to claim 5,
The wind turbulence degree calculation unit determines the standard deviation of the wind direction from the wind direction measured by the wind direction and wind speed measurement unit,
The yaw rotation stop threshold calculation unit obtains a parameter obtained by combining a value obtained by multiplying the turbulence intensity by a predetermined coefficient and a value obtained by multiplying the standard deviation of the wind direction by a predetermined coefficient, and calculates the parameter as the wind turbulence. A wind power generator characterized by a degree.
請求項5乃至請求項7のうち何れか1項に記載の風力発電装置において、
前記ヨー旋回停止閾値計算部は、周波数分析のためにローパスフィルタ若しくはフーリエ変換のいずれかを用いることを特徴とする風力発電装置。
The wind power generator according to any one of claims 5 to 7,
The yaw rotation stop threshold calculation unit uses one of a low-pass filter and a Fourier transform for frequency analysis.
請求項4に記載の風力発電装置において、
前記ヨー旋回停止閾値計算部は、
少なくとも、発電出力、ブレードピッチ角、発電機トルク、及びロータ回転速度のうち何れか一つである、風況が変わると変動する前記風力発電装置の状態パラメータを用いて、前記状態パラメータの所定期間における変動量を求め、前記変動量を前記風の乱れ度とすることを特徴とする風力発電装置。
The wind power generator according to claim 4,
The yaw rotation stop threshold calculation unit,
At least, a power generation output, a blade pitch angle, a generator torque, and one of the rotor rotation speed, using a state parameter of the wind turbine generator that fluctuates when a wind condition changes, a predetermined period of the state parameter The wind power generation device according to claim 1, wherein the amount of fluctuation is obtained, and the amount of fluctuation is used as the degree of wind turbulence.
風を受けて回転するロータと、前記ロータを回転可能に支持するナセルと、前記ナセルをヨー旋回可能に支持するタワーと、ヨー制御指令に基づいて前記ナセルのヨーを調整する調整装置と、前記調整装置に送る前記ヨー制御指令を定める制御装置とを備える風力発電装置の制御方法であって、
風向風速測定部により測定された値と前記ロータの方向からヨー偏差角を算出し、
前記風向風速測定部により測定された値から風の乱れ度を算出し、
少なくとも前記ヨー偏差角及び風の乱れ度に基づき、風の乱れ度が高い場合、ヨー旋回を早く停止させることを特徴とする風力発電装置の制御方法。
A rotor that rotates in response to wind, a nacelle that rotatably supports the rotor, a tower that rotatably supports the nacelle, an adjusting device that adjusts yaw of the nacelle based on a yaw control command, A control device that determines the yaw control command to be sent to the adjustment device,
Calculate the yaw deviation angle from the value measured by the wind direction and wind speed measurement unit and the direction of the rotor,
Calculate the degree of wind turbulence from the value measured by the wind direction and wind speed measurement unit,
A method for controlling a wind power generator, comprising: stopping yaw rotation quickly when wind turbulence is high based on at least the yaw deviation angle and wind turbulence.
請求項10に記載の風力発電装置の制御方法において、
風向風速測定部により測定された風速から所定の期間における風速の標準偏差及び風速の平均値を求め、前記風速の標準偏差を前記風速の平均値にて除することにより求まる乱流強度に基づいて、風の乱れ度を算出することを特徴とする風力発電装置の制御方法。
In the control method of the wind turbine generator according to claim 10,
Based on the turbulence intensity obtained by calculating the standard deviation of the wind speed and the average value of the wind speed in a predetermined period from the wind speed measured by the wind direction and wind speed measurement unit, and dividing the standard deviation of the wind speed by the average value of the wind speed. And calculating the degree of wind turbulence.
請求項10に記載の風力発電装置の制御方法において、
前記風向風速測定部により測定された風向から風向の標準偏差を求め、前記風向の標準偏差に基づいて、風の乱れ度を算出することを特徴とする風力発電装置の制御方法。
In the control method of the wind turbine generator according to claim 10,
A method for controlling a wind power generator, comprising: obtaining a standard deviation of a wind direction from a wind direction measured by the wind direction and wind speed measuring unit; and calculating a degree of wind turbulence based on the standard deviation of the wind direction.
請求項11に記載の風力発電装置の制御方法において、
前記風向風速測定部により測定された風向から風向の標準偏差を求め、
前記乱流強度と前記風向の標準偏差とに基づいて、風の乱れ度を算出することを特徴とする風力発電装置の制御方法。
In the control method of the wind turbine generator according to claim 11,
Determine the standard deviation of the wind direction from the wind direction measured by the wind direction and wind speed measurement unit,
A method for controlling a wind power generator, comprising calculating a degree of wind turbulence based on the turbulence intensity and the standard deviation of the wind direction.
請求項13に記載の風力発電装置の制御方法において、
前記乱流強度に所定の係数を掛けた値と前記風向の標準偏差に所定の係数を掛けた値とを組み合わせたパラメータを求め、前記パラメータを前記風の乱れ度とすることを特徴とする風力発電装置の制御方法。
In the control method of the wind power generator according to claim 13,
A parameter obtained by combining a value obtained by multiplying the turbulence intensity by a predetermined coefficient and a value obtained by multiplying the standard deviation of the wind direction by a predetermined coefficient, wherein the parameter is the degree of wind turbulence. A control method for a power generator.
JP2018142114A 2018-07-30 2018-07-30 Wind power generators and their control methods Active JP6997049B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018142114A JP6997049B2 (en) 2018-07-30 2018-07-30 Wind power generators and their control methods
PCT/JP2019/017423 WO2020026543A1 (en) 2018-07-30 2019-04-24 Wind power generator and method for controlling same
TW108125773A TWI702339B (en) 2018-07-30 2019-07-22 Wind power generation device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018142114A JP6997049B2 (en) 2018-07-30 2018-07-30 Wind power generators and their control methods

Publications (2)

Publication Number Publication Date
JP2020020264A true JP2020020264A (en) 2020-02-06
JP6997049B2 JP6997049B2 (en) 2022-01-17

Family

ID=69231578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018142114A Active JP6997049B2 (en) 2018-07-30 2018-07-30 Wind power generators and their control methods

Country Status (3)

Country Link
JP (1) JP6997049B2 (en)
TW (1) TWI702339B (en)
WO (1) WO2020026543A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7455722B2 (en) 2020-10-15 2024-03-26 株式会社日立製作所 Wind power generator and its control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349413A (en) * 2001-05-24 2002-12-04 Mitsubishi Electric Corp Wind power generation system
JP2006233912A (en) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd Wind turbine generator, its control method, and method for controlling pitch-angle of blade
JP2008261245A (en) * 2007-04-10 2008-10-30 Mitsubishi Heavy Ind Ltd Wind power generator and its control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6933990B2 (en) 2018-02-23 2021-09-08 株式会社日立製作所 Wind power generators and their control methods
JP2019143583A (en) 2018-02-23 2019-08-29 株式会社日立製作所 Wind power generator and control method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349413A (en) * 2001-05-24 2002-12-04 Mitsubishi Electric Corp Wind power generation system
JP2006233912A (en) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd Wind turbine generator, its control method, and method for controlling pitch-angle of blade
JP2008261245A (en) * 2007-04-10 2008-10-30 Mitsubishi Heavy Ind Ltd Wind power generator and its control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7455722B2 (en) 2020-10-15 2024-03-26 株式会社日立製作所 Wind power generator and its control method

Also Published As

Publication number Publication date
TWI702339B (en) 2020-08-21
JP6997049B2 (en) 2022-01-17
TW202007855A (en) 2020-02-16
WO2020026543A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
EP2784303B1 (en) Method of operating a wind turbine
KR101846175B1 (en) Methods and systems for determining a pitch angle offset signal and for controlling a rotor frequency of a rotor of a wind turbine for speed avoidance control
TWI688708B (en) Wind power generator and its control method
EP3271576A1 (en) Damping oscillations in a wind turbine
WO2012136663A1 (en) Method and controller for generating a blade pitch angle control signal and wind turbine comprising the controller
EP2981710A1 (en) Method for controlling thrust load on a wind turbine
US11293401B2 (en) Tower damping in wind turbine power production
EP3724488B1 (en) Tower damping during power production of a wind turbine
TWI661124B (en) Wind power generation device, control method and modification method thereof
EP3404257B1 (en) System and method for controlling a pitch angle of a wind turbine rotor blade
TWI695119B (en) Wind power generator and its control method
WO2020026543A1 (en) Wind power generator and method for controlling same
JP6655202B2 (en) Wind power generator, its control device, and its control method
JP5550501B2 (en) Horizontal axis windmill
WO2023110385A1 (en) Method for starting up a wind turbine
JP2022065271A (en) Wind turbine generator and method of controlling the same
DK202170577A1 (en) Controller for a wind turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211216

R150 Certificate of patent or registration of utility model

Ref document number: 6997049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150