JP2020019981A - Ni-BASED WELD METAL AND WELD STRUCTURE - Google Patents

Ni-BASED WELD METAL AND WELD STRUCTURE Download PDF

Info

Publication number
JP2020019981A
JP2020019981A JP2018143194A JP2018143194A JP2020019981A JP 2020019981 A JP2020019981 A JP 2020019981A JP 2018143194 A JP2018143194 A JP 2018143194A JP 2018143194 A JP2018143194 A JP 2018143194A JP 2020019981 A JP2020019981 A JP 2020019981A
Authority
JP
Japan
Prior art keywords
mass
less
weld metal
concentration
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018143194A
Other languages
Japanese (ja)
Other versions
JP7011987B2 (en
Inventor
尚登 茂中
Naoto Shigenaka
尚登 茂中
宮田 肇
Hajime Miyata
肇 宮田
青池 聡
Satoshi Aoike
聡 青池
祐策 丸野
Yusaku Maruno
祐策 丸野
山内 博史
Hiroshi Yamauchi
博史 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2018143194A priority Critical patent/JP7011987B2/en
Publication of JP2020019981A publication Critical patent/JP2020019981A/en
Application granted granted Critical
Publication of JP7011987B2 publication Critical patent/JP7011987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

To provide an Ni-based weld metal excellent in SCC resistance and capable of maintaining soundness of a weld zone exposed to corrosive environment, and a weld structure using the same.SOLUTION: A Ni-based weld metal contains Cr:24 mass% to 32 mass% and one or more kind of Nb, Ta and Ti, and has [%Nb]+{%Ta]+2[%Ti] of 0.42 to 4.32, where Nb concentration (mass%) is [%Nb], Ta concentration (mass%) is [%Ta], and Ti concentration (mass%) is [%Ti]. A weld structure has a weld zone formed by the Ni-based weld metal.SELECTED DRAWING: Figure 9

Description

本発明は、腐食環境で使用可能な耐SCC性に優れるNi基溶接金属、及び、これを用いた溶接構造物に関する。   The present invention relates to a Ni-based weld metal which can be used in a corrosive environment and has excellent SCC resistance, and a welded structure using the same.

沸騰水型原子炉(Boiling Water Reactor:BWR)や、加圧水型原子炉(Pressurized Water Reactor:PWR)では、配管、構造材、機器等に施行された溶接部に、約300℃に達する高温・高圧の原子炉水が接液し得る。また、原子炉水中には、放射線の作用で、腐食を促進する各種のラジカルが発生する。原子炉内の溶接部には、このような過酷な腐食環境で残留応力が作用するため、応力腐食割れ(Stress Corrosion Cracking:SCC)に対して、種々の観点から対策が講じられている。   In boiling water reactors (Boiling Water Reactor: BWR) and pressurized water reactors (Pressurized Water Reactor: PWR), high temperatures and high pressures of about 300 ° C are applied to welds applied to piping, structural materials, equipment, etc. Of reactor water may come into contact with the liquid. In addition, various radicals that promote corrosion are generated in the reactor water by the action of radiation. Since a residual stress acts on a weld in a nuclear reactor in such a severe corrosive environment, measures against stress corrosion cracking (SCC) are taken from various viewpoints.

応力腐食割れに対する対策としては、水素注入、貴金属注入等の水化学的手法で腐食環境を緩和する技術が知られている。また、熱処理や冷却処理、ピーニング等を施して引張残留応力を除去する技術も知られている。また、材料自体の改良も行われており、C量を減らして耐SCC性を付与した低炭素ステンレス鋼や、Nbを添加して固溶C量を低減したNi基合金等も開発されている。   As a countermeasure against stress corrosion cracking, a technique for mitigating a corrosive environment by a water chemistry method such as hydrogen injection or noble metal injection is known. In addition, a technique for removing a tensile residual stress by performing heat treatment, cooling treatment, peening, or the like is also known. In addition, the materials themselves have been improved, and low carbon stainless steels having SCC resistance by reducing the amount of C and Ni-based alloys having a reduced amount of solid solution C by adding Nb have been developed. .

溶接材料としては、原子炉の炉内構造物の支持部、原子炉圧力容器の貫通部やノズル部等をはじめとして、耐熱性や耐食性に優れるNi基溶接金属が用いられている。Ni基溶接金属は、炭素が固溶し難く、靭性が良好で熱疲労にも強いため、炭素鋼、低合金鋼、ステンレス鋼等の異材溶接にも用いられている。Ni基合金の溶接には、ティグ溶接、ミグ溶接、被覆アーク溶接等が用いられてきたが、電子ビーム溶接、レーザ溶接等も利用されるようになっている。   As a welding material, a Ni-based weld metal excellent in heat resistance and corrosion resistance is used, including a support portion of a reactor internal structure, a penetration portion of a reactor pressure vessel, a nozzle portion, and the like. Ni-based weld metals are hardly dissolved in carbon, have good toughness, and are resistant to thermal fatigue. Therefore, Ni-based weld metals are also used for welding dissimilar materials such as carbon steel, low alloy steel, and stainless steel. TIG welding, MIG welding, covered arc welding, and the like have been used for welding Ni-based alloys, but electron beam welding, laser welding, and the like have also been used.

従来、原子炉内の溶接部には、Ni基溶接金属として、76Ni−15Cr−8Fe等の600系合金相当の溶接金属が使用されてきた。600系合金相当の溶接金属としては、ティグ溶接等の用途に82合金、被覆アーク溶接等の用途に182合金があり、耐熱性や耐食性が良好であるとされていた。ところが、近年、原子力発電所の一次冷却系において、600系合金相当の溶接金属を用いた溶接部にも、応力腐食割れが発生した事例が報告されるようになった。   Conventionally, a weld metal equivalent to a 600 series alloy such as 76Ni-15Cr-8Fe has been used as a Ni-based weld metal in a welded portion in a nuclear reactor. As welding metals equivalent to 600 series alloys, there are 82 alloys for applications such as TIG welding and 182 alloys for applications such as covered arc welding, which are said to have good heat resistance and corrosion resistance. However, in recent years, in the primary cooling system of a nuclear power plant, a case has been reported in which stress corrosion cracking has also occurred in a welded portion using a weld metal equivalent to a 600 series alloy.

このような状況下、近年では、600系合金相当の溶接金属に代替する溶接材料として、Cr量を増やして耐SCC性を向上させた62Ni−29Cr−9Fe等の690系合金相当の溶接金属が普及しつつある。従来、690系合金相当のNi基溶接金属や、690系合金相当のNi基合金に関して、耐食性、耐SCC性、耐溶接割れ性等を、化学組成を制御して向上させる技術が提案されている。   Under these circumstances, in recent years, a welding metal equivalent to a 690 series alloy, such as 62Ni-29Cr-9Fe, which has been improved in SCC resistance by increasing the amount of Cr, has been used as a welding material instead of a welding metal equivalent to a 600 series alloy. Spreading. Conventionally, with respect to a Ni-base weld metal equivalent to a 690 series alloy or a Ni-base alloy equivalent to a 690 series alloy, a technique for controlling the chemical composition of corrosion resistance, SCC resistance, weld crack resistance, and the like by controlling the chemical composition has been proposed. .

例えば、特許文献1には、重量%で、Cr:26〜約30%、Fe:2〜約4%、Mn:2〜約4%、Nb:2〜約3%、Mo:1〜約3%、Ti:0.6%以下、C:0.03%以下、N:0.05%以下、Al:0.6%以下、Si:0.5%以下、Cu:0.01%以下、P:0.02%以下、S:0.01%以下、残部がNi及び不可避的不純物からなる溶接材料が記載されている(請求項16参照)。   For example, Patent Document 1 discloses that, by weight%, Cr: 26 to about 30%, Fe: 2 to about 4%, Mn: 2 to about 4%, Nb: 2 to about 3%, Mo: 1 to about 3 %, Ti: 0.6% or less, C: 0.03% or less, N: 0.05% or less, Al: 0.6% or less, Si: 0.5% or less, Cu: 0.01% or less, A welding material comprising P: 0.02% or less, S: 0.01% or less, and the balance consisting of Ni and unavoidable impurities is described (see claim 16).

また、特許文献2には、質量%で、Cr:29〜37%、Al:0.001〜1.8%、Fe:0.10〜7.0%、Si:0.001〜0.50%、Mn:0.005〜2.0%、Ti:0.00〜1.00%及び/又はNb:0.00〜1.10%、Mg及び/又はCa:それぞれ0.0002〜0.05%、C:0.005〜0.12%、N:0.001〜0.050%、P:0.001〜0.030%、O:0.0001〜0.020%、S:最大0.010%、Mo:最大2.0%、W:最大2.0%、残部がNi及び不可避的不純物からなる合金が記載されている(請求項1参照)。   Patent Document 2 discloses that, by mass%, Cr: 29 to 37%, Al: 0.001 to 1.8%, Fe: 0.10 to 7.0%, Si: 0.001 to 0.50 %, Mn: 0.005 to 2.0%, Ti: 0.00 to 1.00%, and / or Nb: 0.00 to 1.10%, Mg and / or Ca: 0.0002 to 0. 0%, respectively. 05%, C: 0.005 to 0.12%, N: 0.001 to 0.050%, P: 0.001 to 0.030%, O: 0.0001 to 0.020%, S: maximum It describes an alloy comprising 0.010%, Mo: 2.0% at maximum, W: 2.0% at maximum, and the balance being Ni and unavoidable impurities (see claim 1).

また、特許文献3には、重量%で、C:0.04%以下、Si:0.01〜0.5%、Mn:7%以下、Cr:28〜31.5%、Nb:0.5%以下、Ta:0.005〜3.0%、Fe:7〜11%、A1:0.01〜0.4%、Ti:0.01〜0.45%、V:0.5%以下を含有し、不可避不純物としてP:0.02%以下、S:0.015%以下、0:0.01%以下、N:0.002〜0.1%を含有し、残部がNiからなる組成を有する溶加材が記載されている(請求項1参照)。   In Patent Document 3, C: 0.04% or less, Si: 0.01 to 0.5%, Mn: 7% or less, Cr: 28 to 31.5%, Nb: 0. 5% or less, Ta: 0.005 to 3.0%, Fe: 7 to 11%, A1: 0.01 to 0.4%, Ti: 0.01 to 0.45%, V: 0.5% And P: 0.02% or less, S: 0.015% or less, 0: 0.01% or less, N: 0.002 to 0.1% as inevitable impurities, with the balance being Ni A filler having the following composition is described (see claim 1).

また、特許文献4には、質量%で、Cr:28.5〜31.0%、Fe:11%以下、Mn:1.0%未満、Nb+Ta:2.1〜4.0%、Mo:7.0%以下、Si:0.50%未満、Ti:0.35%以下、Al:0.25%以下、Cu:0.20%未満、W:1.0%未満、Co:0.12%未満、Zr:0.10%未満、S:0.01%未満、B:0.01%未満、C:0.03%未満、P:0.02%未満、Mg+Ca:0.002〜0.015%を含有し、残部がNi及び不可避的不純物からなる溶化材が記載されている(請求項6参照)。   Patent Document 4 discloses that, by mass%, Cr: 28.5 to 31.0%, Fe: 11% or less, Mn: less than 1.0%, Nb + Ta: 2.1 to 4.0%, Mo: 7.0% or less, Si: less than 0.50%, Ti: 0.35% or less, Al: 0.25% or less, Cu: less than 0.20%, W: less than 1.0%, Co: 0. Less than 12%, Zr: less than 0.10%, S: less than 0.01%, B: less than 0.01%, C: less than 0.03%, P: less than 0.02%, Mg + Ca: 0.002 to 0.002% A solubilizer containing 0.015% and a balance of Ni and unavoidable impurities is described (see claim 6).

特表2013−527805号公報JP-T-2013-527805 特表2015−520300号公報JP-T-2015-520300 国際公開第2005/070612号International Publication No. 2005/070612 国際公開第2008/021650号International Publication No. 2008/021650

従来、600系合金相当の溶接金属については、耐SCC性を評価するための評価指標が確立しており、化学成分の濃度範囲と耐SCC性の発現に必要な濃度範囲との対応が良好であった。一方、新しく普及しつつある690系合金相当の溶接金属については、評価指標が規格化されてなく十分に確立していない現状がある。そのため、適切な化学組成を自在に選定することができず、優れた耐SCC性を安定して確保することができなかったり、選定できる化学組成の範囲が制約されたりする問題が生じている。   Conventionally, an evaluation index for evaluating the SCC resistance of a weld metal equivalent to a 600 series alloy has been established, and the correspondence between the concentration range of the chemical component and the concentration range required for the development of the SCC resistance is good. there were. On the other hand, there is a current situation in which the evaluation index of the newly spread welding metal equivalent to the 690 series alloy is not standardized and is not sufficiently established. For this reason, an appropriate chemical composition cannot be freely selected, and there arises a problem that excellent SCC resistance cannot be stably ensured and a range of selectable chemical compositions is restricted.

そこで、本発明は、耐SCC性に優れ、腐食環境に晒される溶接部の健全性を保つことができるNi基溶接金属、及び、これを用いた溶接構造物を提供することを目的とする。   Accordingly, an object of the present invention is to provide a Ni-based weld metal having excellent SCC resistance and capable of maintaining the integrity of a welded portion exposed to a corrosive environment, and a welded structure using the same.

前記課題を解決するために本発明に係るNi基溶接金属は、Cr:24質量%以上32質量%未満であり、Nb、Ta及びTiのうちの一種以上を含有し、Nbの濃度(質量%)を[%Nb]、Taの濃度(質量%)を[%Ta]、Tiの濃度(質量%)を[%Ti]としたとき、[%Nb]+[%Ta]+2[%Ti]が、4.32以下である。また、本発明に係る溶接構造物は、前記のNi基溶接金属で溶接部が形成される。   In order to solve the above-mentioned problems, a Ni-based weld metal according to the present invention has a Cr content of 24% by mass or more and less than 32% by mass, contains one or more of Nb, Ta, and Ti, and has a Nb concentration (% by mass). ) Is [% Nb], the concentration of Ta (% by mass) is [% Ta], and the concentration of Ti (% by mass) is [% Ti]. [% Nb] + [% Ta] +2 [% Ti] Is 4.32 or less. Further, in the welded structure according to the present invention, a welded portion is formed by the Ni-based weld metal.

本発明によれば、耐SCC性に優れ、腐食環境に晒される溶接部の健全性を保つことができるNi基溶接金属、及び、これを用いた溶接構造物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the Ni-base weld metal which is excellent in SCC resistance and can maintain the integrity of the weld part exposed to a corrosive environment, and a welded structure using the same can be provided.

Ni基溶接金属の安定化パラメータ(mNBar値)と粒界侵食速度との関係を示す図である。It is a figure which shows the relationship between the stabilization parameter (mNBar value) of Ni-base weld metal, and a grain boundary erosion rate. Ni基溶接金属の安定化パラメータ(mNBar値)と最大き裂深さ・ビッカース硬さとの関係を示す図である。It is a figure which shows the relationship between the stabilization parameter (mNBar value) of Ni-base weld metal, the maximum crack depth, and Vickers hardness. Ni基溶接金属の添加元素濃度とビッカース硬さ・SCCモードとの関係を示す図である。It is a figure which shows the relationship between the additive element density | concentration of Ni-base weld metal, and Vickers hardness / SCC mode. Ni基溶接金属のCr濃度とき裂進展速度との関係を示す図である。It is a figure which shows the relationship between the Cr concentration of Ni-base weld metal and a crack growth rate. Fe−Cr−Niの800℃における三元系状態図である。FIG. 3 is a ternary phase diagram of Fe—Cr—Ni at 800 ° C. Fe−Cr−Niの650℃における三元系状態図である。FIG. 3 is a ternary phase diagram of Fe—Cr—Ni at 650 ° C. オーステナイト単相が安定になるCr濃度の上限値と温度との関係を示す図である。It is a figure which shows the relationship between the upper limit of Cr concentration at which an austenite single phase becomes stable, and temperature. Ni基溶接金属のCr濃度と添加元素濃度との関係を示す図である。It is a figure which shows the relationship between the Cr density | concentration of Ni-base weld metal and the addition element density | concentration. 本発明に係るNi基溶接金属の化学組成と一般的な溶接金属の化学組成との異同関係を示す図である。It is a figure which shows the difference between the chemical composition of the Ni-base weld metal which concerns on this invention, and the chemical composition of a general weld metal.

以下、本発明の一実施形態に係るNi基溶接金属、及び、これを用いた溶接構造物について、図を参照しながら説明する。なお、本明細書において、「〜」で示す数値範囲は、それらの数値を下限値と上限値として含む数値範囲を意味する。   Hereinafter, a Ni-based weld metal according to an embodiment of the present invention and a welded structure using the same will be described with reference to the drawings. In the present specification, a numerical range indicated by “to” means a numerical range including those numerical values as a lower limit and an upper limit.

本実施形態に係るNi基溶接金属は、ニッケルを主体とするNi−Cr−Fe系合金であり、溶接による溶融及び凝固によって溶接部を形成する金属である。このNi基溶接金属は、溶接で母材の一部と一体化した溶接金属の形態や、溶接部に移行しているが母材と一体化していない溶着金属の形態や、溶接材料の形態のうち、いずれの形態で用いられてもよい。溶接材料としては、棒状、板状、帯状、粉体状等の適宜の溶化材や、フラックス入り溶化材や、消耗電極等のいずれであってもよい。   The Ni-based weld metal according to the present embodiment is a Ni-Cr-Fe-based alloy mainly composed of nickel, and is a metal that forms a weld by melting and solidifying by welding. This Ni-based weld metal has a form of a weld metal integrated with a part of the base metal by welding, a form of a weld metal that has migrated to a weld but is not integrated with the base metal, or a form of a weld material. Of these, any form may be used. The welding material may be any of a rod-shaped, plate-shaped, band-shaped, powdered, or other appropriate solubilizing material, a flux-containing solubilizing material, and a consumable electrode.

本実施形態に係るNi基溶接金属は、690系合金相当の化学組成を有しており、主成分のNiに加えて、24〜32質量%のCrと、Nb、Ta及びTiのうちの一種以上を少なくとも含有している。このNi基溶接金属では、Nbの濃度(質量%)を[%Nb]、Taの濃度(質量%)を[%Ta]、Tiの濃度(質量%)を[%Ti]としたとき、[%Nb]+[%Ta]+2[%Ti]が、後記する安定化パラメータ(mNBar値)に基づいて、4.32以下に制限される。   The Ni-based weld metal according to the present embodiment has a chemical composition equivalent to that of a 690 series alloy, and in addition to Ni as the main component, 24-32% by mass of Cr and one of Nb, Ta, and Ti. It contains at least the above. In this Ni-based weld metal, when the concentration (% by mass) of Nb is [% Nb], the concentration (% by mass) of Ta is [% Ta], and the concentration (% by mass) of Ti is [% Ti], % Nb] + [% Ta] +2 [% Ti] is limited to 4.32 or less based on a stabilization parameter (mNBar value) described later.

本実施形態に係るNi基溶接金属では、Nb、Ta及びTiのうちの一種以上が、安定化パラメータ(mNBar値)に基づいて制限された濃度範囲となるように添加されることで、粒界型応力腐食割れ(Inter-granular Stress Corrosion Cracking:IGSCC)、及び、粒内型応力腐食割れ(Trans-granular Stress Corrosion Cracking:TGSCC)のいずれもが抑制される。   In the Ni-based weld metal according to the present embodiment, one or more of Nb, Ta, and Ti are added so as to be in a concentration range limited based on a stabilization parameter (mNBar value), so that a grain boundary is obtained. Inter-granular Stress Corrosion Cracking (IGSCC) and Trans-granular Stress Corrosion Cracking (TGSCC) are all suppressed.

一般に、溶接部の応力腐食割れ(SCC)は、金属組織に鋭敏化等を生じる材料的な因子と、溶接時の凝固に伴って溶接部の周辺に生じる引張残留応力と、腐食電位等の環境因子が重畳することによって発生するとされている。粒界の鋭敏化は、結晶粒界にCr炭化物が析出して、その近傍にCr欠乏層を生じる現象であり、IGSCCを発生、進展させる一因とされている。   Generally, stress corrosion cracking (SCC) of a welded portion is caused by material factors that cause sensitization of the metal structure, residual tensile stress generated around the welded portion due to solidification during welding, and environmental factors such as corrosion potential. It is said to be caused by the superposition of factors. Grain boundary sensitization is a phenomenon in which Cr carbide precipitates at crystal grain boundaries and forms a Cr-deficient layer in the vicinity thereof, and is considered to be a factor that causes IGSCC to be generated and propagated.

一方、TGSCCは、300Hv程度以上の硬化部位で発生、進展することが、原子力発電所の一次冷却系における事例等で広く確認されている。TGSCCは、溶接時に硬化が進行する熱影響部や、溶接後に加工歪みが導入される強加工部位で、発生し易くなると考えられている。   On the other hand, it has been widely confirmed that TGSCC is generated and propagates in a hardened portion of about 300 Hv or more in a case of a primary cooling system of a nuclear power plant. It is considered that TGSCC is likely to occur in a heat-affected zone where hardening proceeds during welding, or in a strongly-worked portion where working strain is introduced after welding.

690系合金相当の溶接金属として一般的な52合金や152合金は、600系合金と比較してCr量が多く、耐SCC性が良好である。しかしながら、従来、690合金相当の溶接金属については、耐SCC性の評価指標が規格化されていない。また、耐SCC性の評価に妥当な試験法も必ずしも統一されていない。そのため、現状では、690合金相当の濃度範囲と、優れた耐SCC性の発現に必要な濃度範囲とが、良好な対応関係になく、化学組成の選定の適切さや、選定の自由度が、確保され難い状態になっている。   52 alloys and 152 alloys, which are general welding metals equivalent to 690 series alloys, have a higher Cr content and better SCC resistance than 600 series alloys. However, conventionally, an evaluation index of SCC resistance has not been standardized for a weld metal equivalent to a 690 alloy. In addition, test methods appropriate for the evaluation of SCC resistance are not always unified. Therefore, at present, there is no good correspondence between the concentration range equivalent to the 690 alloy and the concentration range required for the development of excellent SCC resistance, and the appropriateness of chemical composition selection and the freedom of selection are secured. It is hard to be done.

そこで、本実施形態では、690系合金相当のNi基溶接金属に関して、優れた耐SCC性を発現する化学組成を正しく選定できるようにするために、化学成分の濃度関係を規定する安定化パラメータ(mNBar)を導入し、3種の添加元素(Nb、Ta及びTi)の濃度を制限する。安定化パラメータ(mNBar)は、次の数式(I)で表される。   Therefore, in the present embodiment, a stabilization parameter (for stabilizing the concentration relationship of the chemical components (Ni-base weld metal equivalent to 690 series alloy) that defines the concentration relationship of the chemical components so that the chemical composition exhibiting excellent SCC resistance can be correctly selected. mNBar) to limit the concentrations of the three additional elements (Nb, Ta and Ti). The stabilization parameter (mNBar) is represented by the following equation (I).

Figure 2020019981
Figure 2020019981

数式(I)中、[%Nb]はNb濃度(質量%)、[%Ta]はTa濃度(質量%)、[%Ti]はTi濃度(質量%)、[%C]はC濃度(質量%)、[%Cr]はCr濃度(質量%)である。   In the formula (I), [% Nb] is the Nb concentration (% by mass), [% Ta] is the Ta concentration (% by mass), [% Ti] is the Ti concentration (% by mass), and [% C] is the C concentration (%). % By mass) and [% Cr] are Cr concentrations (% by mass).

Nb、Ta及びTiの3種の添加元素は、溶接金属中で炭化物を形成するため、Cr炭化物の析出による鋭敏化を抑制する作用を示す。そのため、安定化パラメータ(mNBar)を導入して濃度を制限すると、主要なSCCモードであるIGSCCを防止することができる。   The three additional elements of Nb, Ta and Ti form carbides in the weld metal, and therefore have an effect of suppressing sensitization due to precipitation of Cr carbides. Therefore, if the stabilization parameter (mNBar) is introduced to limit the concentration, IGSCC, which is the main SCC mode, can be prevented.

数式(I)は、炭素の原子数に対する3種の添加元素(Nb、Ta及びTi)の原子数の比を、Cr濃度の関数として補正したものである。数式(I)のCr濃度項は、以下の図1と同様に、既存の9種のNi基溶接金属を粒界腐食試験に供し、粒界侵食速度の測定結果にフィッティングさせて導出したものである。はじめに、Cr濃度項をA×(B)で表される変数と仮定しておき、測定結果にフィッティングさせて変数を調整している。 Equation (I) is obtained by correcting the ratio of the number of atoms of the three additional elements (Nb, Ta, and Ti) to the number of carbon atoms as a function of the Cr concentration. The Cr concentration term in the formula (I) is derived by subjecting nine existing Ni-based weld metals to a grain boundary corrosion test and fitting the measured results to the grain boundary erosion rate, as in FIG. 1 below. is there. First, the Cr concentration term is assumed to be a variable represented by A × (B) i , and the variable is adjusted by fitting to the measurement result.

図1は、Ni基溶接金属の安定化パラメータ(mNBar値)と粒界侵食速度との関係を示す図である。
図1において、縦軸は、Ni基溶接金属を粒界腐食試験に供して測定した粒界侵食速度(Inter-granular Penetration rate:IGP)値、横軸は、Ni基溶接金属について計算したmNBar値(フィッティング後の数式(I))を示す。●のプロットは、既存の6種類の690系合金相当の溶接金属(52溶接合金、152溶接合金)のそれぞれを供試材とした場合の結果であり、○のプロットは、既存の3種類の600系合金相当の溶接金属(82溶接合金、182溶接合金)のそれぞれを供試材とした場合の結果である。
FIG. 1 is a diagram showing a relationship between a stabilization parameter (mNBar value) of a Ni-based weld metal and a grain boundary erosion rate.
In FIG. 1, the vertical axis represents an inter-granular penetration rate (IGP) value measured by subjecting a Ni-base weld metal to an intergranular corrosion test, and the horizontal axis represents an mNBar value calculated for the Ni-base weld metal. (Formula (I) after fitting) is shown. The plots of ● show the results when each of the existing six types of weld metal (52 weld alloy, 152 weld alloy) equivalent to the 690 series alloy was used as the test material, and the plot of ○ shows the three existing types of weld metal. It is a result in the case where each of the welding metals (82 welding alloy, 182 welding alloy) equivalent to the 600 series alloy was used as the test material.

粒界腐食試験は、各供試材のビードオン試験片を作製し、ASTM G28規格に準拠した改良ストライカ試験に供して行った。通常の規格条件では全面腐食が進行する可能性があるため、硫酸(ρ20=1.84g/mL)280mLを720mLの蒸留水に添加した50%硫酸に、通常の2倍量に相当する50gの硫酸鉄(II)を添加し、その沸騰溶液中に試験片を24時間浸漬した。その後、低値で検出性が低い腐食減量測定に代えて、試験片の断面の顕微鏡観察を行い、24時間後の最大の粒界侵食深さを測定した。 In the intergranular corrosion test, a bead-on test piece of each test material was prepared and subjected to an improved striker test conforming to the ASTM G28 standard. Since general corrosion may progress under normal standard conditions, 50 g of 50% sulfuric acid obtained by adding 280 mL of sulfuric acid (ρ 20 = 1.84 g / mL) to 720 mL of distilled water is equivalent to twice the normal amount. Was added, and the test piece was immersed in the boiling solution for 24 hours. Then, instead of the corrosion weight loss measurement having a low value and low detectability, the cross section of the test piece was observed with a microscope, and the maximum grain boundary erosion depth after 24 hours was measured.

図1に示すように、mNBar値が大きいほど、IGP値が低下し、mNBar値が8を超えると、IGP値が顕著に小さい値となっている。mNBar値は、既存の600系及び690系のいずれについても、IGP値と良い相関を示しており、Ni基溶接金属の耐SCC性の評価指標として有効であることが分かる。mNBar値が8以上のNi基溶接金属には、優れた耐SCC性が備わるといえる。数式(I)を用いた外挿によると化学組成の選定の範囲を拡張することができるといえる。   As shown in FIG. 1, as the mNBar value increases, the IGP value decreases. When the mNBar value exceeds 8, the IGP value decreases significantly. The mNBar value shows a good correlation with the IGP value in both of the existing 600 series and 690 series, and it can be seen that the mNBar value is effective as an evaluation index of the SCC resistance of the Ni-based weld metal. It can be said that a Ni-base weld metal having an mNBar value of 8 or more has excellent SCC resistance. According to the extrapolation using the formula (I), it can be said that the range of selection of the chemical composition can be expanded.

図2は、Ni基溶接金属の安定化パラメータ(mNBar値)と最大き裂深さ・ビッカース硬さとの関係を示す図である。
図2において、左軸は、Ni基溶接金属を隙間付き定歪み曲げ試験(Creviced bent beam test:CBB試験)に供して測定した最大き裂深さ(長さ)、右軸は、Ni基溶接金属のビッカース硬さ(Hv5)、横軸は、Ni基溶接金属のmNBar値を示す。■のプロットは、ビッカース硬さの測定結果であり、●のプロットは、IGSCCの最大き裂深さの測定結果であり、○のプロットは、TGSCCの最大き裂深さの測定結果である。供試材は、いずれも、690系合金相当の溶接金属である。
FIG. 2 is a diagram showing the relationship between the stabilization parameter (mNBar value) of Ni-based weld metal and the maximum crack depth / Vickers hardness.
In FIG. 2, the left axis is the maximum crack depth (length) measured by subjecting the Ni-base weld metal to a constant strain bending bending test (CBB test) with a gap, and the right axis is the Ni-base weld. The Vickers hardness (Hv5) of the metal and the horizontal axis indicate the mNBar value of the Ni-based weld metal. The plot of (1) is the measurement result of Vickers hardness, the plot of (、) is the measurement result of the maximum crack depth of IGSCC, and the plot of (○) is the measurement result of the maximum crack depth of TGSCC. The test materials are all weld metals equivalent to 690 series alloys.

CBB試験は、幅2mm×長さ10mm×厚さ0.2mmの各供試材のビードオン試験片を作製し、加速腐食試験に供して行った。試験片は、グラファイトウールで隙間を付け、1%の曲げ歪みを付与して試験治具に取り付けた。原子炉水の溶存酸素濃度としては約200ppb、過酸化水素濃度としては100〜1000ppb、導電率としては0.1μS/cmが想定される。そのため、腐食条件は、溶存酸素濃度:約40ppm、過酸化水素濃度:約20ppm、硫酸イオン濃度:約100ppm、導電率:20μS/cm以下とし、この条件で循環させている高温・高圧の純水中に、試験片を最長4000時間浸漬した。その後、試験片の断面の顕微鏡観察を行い、最大き裂深さを測定した。   In the CBB test, a bead-on test piece of each test material having a width of 2 mm, a length of 10 mm and a thickness of 0.2 mm was prepared and subjected to an accelerated corrosion test. The test piece was attached to a test jig by providing a gap with graphite wool and imparting a bending strain of 1%. It is assumed that the dissolved oxygen concentration of the reactor water is about 200 ppb, the hydrogen peroxide concentration is 100 to 1000 ppb, and the conductivity is 0.1 μS / cm. Therefore, the corrosion conditions are: dissolved oxygen concentration: about 40 ppm, hydrogen peroxide concentration: about 20 ppm, sulfate ion concentration: about 100 ppm, conductivity: 20 μS / cm or less, and high-temperature high-pressure pure water circulated under these conditions. The test piece was immersed therein for up to 4000 hours. Then, the cross section of the test piece was observed under a microscope, and the maximum crack depth was measured.

図2に示すように、mNBar値が大きいほど、IGSCCの最大き裂深さが小さくなることが分かる。一般に、IGSCCの最大き裂深さが50μm以下であれば、き裂がそれ以上に進展し難いため、優れた耐SCC性を備えていると評価できる。これに対し、図中でIGSCCの最大き裂深さが50μm以下になるのは、mNBar値が8以上のときである。一方、mNBar値が大きいと、析出硬化によって硬さが上昇し、mNBar値が約35のとき、約300Hvの硬さとなってTGSCCを生じることが分かる。   As shown in FIG. 2, it can be seen that the larger the mNBar value, the smaller the maximum crack depth of the IGSCC. In general, if the maximum crack depth of the IGSCC is 50 μm or less, the crack does not easily propagate further, and thus it can be evaluated that the IGSCC has excellent SCC resistance. On the other hand, the maximum crack depth of the IGSCC in the figure becomes 50 μm or less when the mNBar value is 8 or more. On the other hand, it can be seen that when the mNBar value is large, the hardness increases due to precipitation hardening, and when the mNBar value is about 35, the hardness becomes about 300 Hv and TGSCC occurs.

図2に示す結果によると、Ni基溶接金属のmNBar値の好ましい範囲は、IGSCCとTGSCCの両方を防止する観点から、次の数式(II)を満たす範囲である。   According to the results shown in FIG. 2, the preferable range of the mNBar value of the Ni-based weld metal is a range that satisfies the following equation (II) from the viewpoint of preventing both IGSCC and TGSCC.

Figure 2020019981
Figure 2020019981

図3は、Ni基溶接金属の添加元素濃度とビッカース硬さ・SCCモードとの関係を示す図である。
図3において、縦軸は、Ni基溶接金属の試験片のビッカース硬さ(Hv5)、横軸は、Ni基溶接金属の3種の添加元素(Nb、Ta及びTi)の濃度(質量%)を合算した計算値(数式(I)の部分変数の計算値)を示す。●のプロットは、690系合金相当の溶接金属のうち、IGSCCの発生、進展が確認されたがTGSCCが発生しなかった供試材の結果、○のプロットは、既存の600系合金相当の溶接金属であり、IGSCCの発生、進展が確認されたがTGSCCが発生しなかった供試材の結果、◆のプロットは、690系合金相当の溶接金属のうち、TGSCCが発生した供試材の結果である。
FIG. 3 is a diagram showing the relationship between the additive element concentration of the Ni-based weld metal and Vickers hardness / SCC mode.
In FIG. 3, the vertical axis represents the Vickers hardness (Hv5) of the Ni-based weld metal test piece, and the horizontal axis represents the concentration (% by mass) of the three additional elements (Nb, Ta, and Ti) of the Ni-based weld metal. Are calculated (the calculated values of the partial variables of the formula (I)). The plot of ● shows the results of the test material in which the generation and progress of IGSCC was confirmed but the TGSCC did not occur among the weld metals equivalent to the 690 series alloy. The plot of ○ shows the welding of the existing 600 series alloy. As a result of the test material which was a metal and IGSCC generation and progress were confirmed but TGSCC did not occur, the plot of ◆ shows the result of the test material in which TGSCC was generated among the weld metals equivalent to 690 series alloy. It is.

図3に示すように、Ni基溶接金属において、添加元素(Nb、Ta及びTi)の濃度が高くなると、析出硬化によって硬さが上昇し、[%Nb]+[%Ta]+2[%Ti]≒5.3である690系にTGSCCが発生することが確認された。一方、[%Nb]+[%Ta]+2[%Ti]≒4.32であり、硬さが約300Hvである600系や、硬さがより小さい690系では、IGSCCについては発生するものの、TGSCCについては発生しなかった。   As shown in FIG. 3, when the concentration of the additional elements (Nb, Ta, and Ti) in the Ni-base weld metal increases, the hardness increases due to precipitation hardening, and [% Nb] + [% Ta] +2 [% Ti ] It was confirmed that TGSCC was generated in the 690 system with $ 5.3. On the other hand, in the case of [% Nb] + [% Ta] +2 [% Ti] ≒ 4.32 and the hardness of about 600 Hv of about 300 Hv or about 690 Hg with smaller hardness, although IGSCC occurs, It did not occur for TGSCC.

図3に示す結果によると、Ni基溶接金属の3種の添加元素(Nb、Ta及びTi)の濃度を合算した計算値([%Nb]+[%Ta]+2[%Ti])の好ましい範囲は、析出硬化を抑制してTGSCCを防止する観点から、次の数式(III)を満たす範囲である。   According to the results shown in FIG. 3, the calculated value ([% Nb] + [% Ta] +2 [% Ti]) obtained by adding the concentrations of the three types of additional elements (Nb, Ta and Ti) of the Ni-base weld metal is preferable. The range satisfies the following formula (III) from the viewpoint of suppressing precipitation hardening and preventing TGSCC.

Figure 2020019981
Figure 2020019981

図4は、Ni基溶接金属のCr濃度とき裂進展速度との関係を示す図である。
図4において、縦軸は、Ni基溶接金属(182溶接合金、82溶接合金)におけるき裂進展速度(Crack Growth Rate:CGR)値、横軸は、Ni基溶接金属のCr濃度(質量%)を示す。図4は、公知文献(G. A. Young, et al., 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems, 2007, p808-831)の試験結果を引用したものである。
FIG. 4 is a diagram showing the relationship between the Cr concentration of the Ni-based weld metal and the crack growth rate.
In FIG. 4, the vertical axis represents the crack growth rate (CGR) value of the Ni-base weld metal (182 weld alloy, 82 weld alloy), and the horizontal axis represents the Cr concentration (% by mass) of the Ni-base weld metal. Is shown. FIG. 4 cites test results of known literature (GA Young, et al., 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems, 2007, p808-831).

□のプロットは、680°F、溶存水素濃度:20scc/kg−Hの腐食条件の下、応力拡大係数:45ksi(in)0.5、試験温度:360℃、試験時間:221日間として測定した結果であり、○のプロットは、640°F、溶存水素濃度:20scc/kg−Hの腐食条件の下、応力拡大係数:40ksi(in)0.5、試験温度:360℃、試験時間:95日間として測定した結果である。矢印を付したプロットは、SCCが発生しなかったことを示す。 The plots of □ are measured under corrosion conditions of 680 ° F., dissolved hydrogen concentration: 20 scc / kg-H 2 , stress intensity factor: 45 ksi (in) 0.5 , test temperature: 360 ° C., and test time: 221 days. The plot of ○ indicates a stress intensity factor of 40 ksi (in) 0.5 , a test temperature of 360 ° C., and a test time under corrosion conditions of 640 ° F., dissolved hydrogen concentration: 20 scc / kg-H 2. : Results measured for 95 days. The plot with the arrow indicates that no SCC occurred.

図4に示すように、Cr濃度が高くなると、SCCのき裂進展速度は小さくなることが、公知文献で報告されている。き裂進展速度は、Cr濃度が19質量%を超えると急激に低下し、24質量%以上になると略一定になっている。□のプロットで示される過酷条件においても、Cr濃度が24質量%以上であれば、十分な水準の耐SCC性が得られることが分かる。   As shown in FIG. 4, it is reported in the publicly known literature that as the Cr concentration increases, the crack growth rate of SCC decreases. The crack growth rate rapidly decreases when the Cr concentration exceeds 19% by mass, and becomes substantially constant when the Cr concentration exceeds 24% by mass. It can be seen that a sufficient level of SCC resistance can be obtained when the Cr concentration is 24% by mass or more even under the severe conditions shown by the plots of □.

図4に示す結果によると、Ni基溶接金属のCr濃度([%Cr])の好ましい範囲は、SCCの進展を抑制して高耐食化させる観点から、次の数式(IV)を満たす範囲である。   According to the results shown in FIG. 4, the preferable range of the Cr concentration ([% Cr]) of the Ni-based weld metal is a range satisfying the following formula (IV) from the viewpoint of suppressing the progress of SCC and increasing the corrosion resistance. is there.

Figure 2020019981
Figure 2020019981

図5は、Fe−Cr−Niの800℃における三元系状態図である。図6は、Fe−Cr−Niの650℃における三元系状態図である。また、図7は、オーステナイト単相が安定になるCr濃度の上限値と温度との関係を示す図である。
図5及び図6に示すように、Ni−Cr−Fe系合金は、フェライト安定化元素であるCrの濃度が高いと、オーステナイト相(γ相)とフェライト相(α相)との混相になり、靭性や耐食性が低下する。そのため、Ni基溶接金属のCr濃度は、オーステナイト単相が安定になる上限値以下に調整することが好ましい。
FIG. 5 is a ternary phase diagram of Fe—Cr—Ni at 800 ° C. FIG. 6 is a ternary phase diagram at 650 ° C. of Fe—Cr—Ni. FIG. 7 is a graph showing the relationship between the upper limit of the Cr concentration at which the austenite single phase becomes stable and the temperature.
As shown in FIG. 5 and FIG. 6, when the concentration of Cr, which is a ferrite stabilizing element, is high, the Ni—Cr—Fe alloy becomes a mixed phase of an austenite phase (γ phase) and a ferrite phase (α phase). , Toughness and corrosion resistance decrease. Therefore, the Cr concentration of the Ni-based weld metal is preferably adjusted to be equal to or less than the upper limit at which the austenite single phase becomes stable.

690系合金相当の一般的な溶接金属は、Fe濃度が2〜17質量%の範囲にある。このFe濃度の下限値2質量%を考慮すると、三元系状態図から、オーステナイト相の単相組織が安定に形成されるときのCr濃度の上限値を求めることができる。図5に示す800℃では、実線で示すように、Fe濃度が2質量%であるとき、α’+γ領域とγ領域との相境界線に対する交点から、Cr濃度の上限値として、35.4質量%が導かれる。また、図6に示す650℃では、同様に、Cr濃度の上限値として、34.4質量%が導かれる。   A common weld metal equivalent to a 690 series alloy has an Fe concentration in the range of 2 to 17% by mass. Considering the lower limit of 2% by mass of the Fe concentration, the upper limit of the Cr concentration when the austenite single-phase structure is formed stably can be determined from the ternary phase diagram. At 800 ° C. shown in FIG. 5, as shown by the solid line, when the Fe concentration is 2% by mass, the upper limit value of the Cr concentration is 35.4 from the intersection with the phase boundary between the α ′ + γ region and the γ region. % By weight is derived. At 650 ° C. shown in FIG. 6, 34.4 mass% is similarly derived as the upper limit of the Cr concentration.

これらCr濃度の上限値と温度との関係を直線近似すると、図7に示すように回帰線が得られる。原子炉水の最高温度としては、約300℃が想定されるため、回帰線に内挿すると、オーステナイト単相を安定させるために必要なCr濃度の上限値として、約32質量%が導かれる。   When the relationship between the upper limit of the Cr concentration and the temperature is linearly approximated, a regression line is obtained as shown in FIG. Since the maximum temperature of the reactor water is assumed to be about 300 ° C., when interpolated into the regression line, about 32% by mass is derived as the upper limit value of the Cr concentration necessary for stabilizing the austenite single phase.

図7に示す結果によると、Ni基溶接金属のCr濃度([%Cr])の好ましい範囲は、オーステナイト相の単相組織を得る観点から、次の数式(V)を満たす範囲である。   According to the results shown in FIG. 7, the preferable range of the Cr concentration ([% Cr]) of the Ni-based weld metal is a range that satisfies the following equation (V) from the viewpoint of obtaining a single-phase structure of an austenite phase.

Figure 2020019981
Figure 2020019981

以上の数式(II)、(III)、(IV)及び(V)に基づくと、Ni基溶接金属は、優れた耐SCC性とオーステナイト相の単相組織を備える観点から、Cr濃度が24〜32質量%であり、3種の添加元素(Nb、Ta及びTi)の濃度を合算した計算値([%Nb]+[%Ta]+2[%Ti])が4.32以下に制限されることが好ましいといえる。   Based on the above formulas (II), (III), (IV) and (V), the Ni-base weld metal has a Cr concentration of 24 to 24 from the viewpoint of having excellent SCC resistance and a single-phase structure of austenite phase. 32% by mass, and the calculated value ([% Nb] + [% Ta] +2 [% Ti]) of the sum of the concentrations of the three types of additional elements (Nb, Ta and Ti) is limited to 4.32 or less. It can be said that it is preferable.

なお、本実施形態に係るNi基溶接金属は、添加元素として、Nb、Ta及びTiのうちの一種を添加してもよいし、複数種を添加してもよい。また、Ni、Cr、Feや、3種の添加元素(Nb、Ta及びTi)の他に、他の元素を含有してもよい。以下、Ni基溶接金属に添加することができる化学成分や、Ni基溶接金属が含有することを許容される化学成分について具体的に説明する。   The Ni-based weld metal according to the present embodiment may include one or more of Nb, Ta, and Ti as additional elements. Further, other elements may be contained in addition to Ni, Cr, Fe and three kinds of additive elements (Nb, Ta, and Ti). Hereinafter, the chemical components that can be added to the Ni-based weld metal and the chemical components that are allowed to be contained in the Ni-based weld metal will be specifically described.

(炭素:C)
Cは、オーステナイト相を安定化し、硬さ、強度等の向上に寄与する。しかし、C量が多すぎると、炭化物の過剰な析出によって、耐SCC性や靭性が低下する。よって、C量は、0.01質量%以上が好ましい。また、0.15質量%以下が好ましく、0.10質量%以下がより好ましく、0.06質量%以下が更に好ましく、0.04質量%以下が更に好ましい。Cを添加する場合、C量は、0.02質量%以上、好ましくは0.10質量%以上、より好ましくは0.15質量%以上、且つ、0.3質量%以下、好ましくは0.25質量%以下、より好ましくは0.20質量%以下等とすることができる。
(Carbon: C)
C stabilizes the austenite phase and contributes to improvement in hardness, strength and the like. However, if the amount of C is too large, SCC resistance and toughness decrease due to excessive precipitation of carbides. Therefore, the amount of C is preferably 0.01% by mass or more. Further, the content is preferably 0.15% by mass or less, more preferably 0.10% by mass or less, further preferably 0.06% by mass or less, and further preferably 0.04% by mass or less. When C is added, the amount of C is 0.02% by mass or more, preferably 0.10% by mass or more, more preferably 0.15% by mass or more and 0.3% by mass or less, preferably 0.25% by mass or less. Mass% or less, more preferably 0.20 mass% or less.

(マンガン:Mn)
Mnは、脱酸剤として働き、オーステナイト相を安定化し、耐高温割れ性等の向上に寄与する。しかし、Mn量が多すぎると、延性や靭性が低下する。よって、Mn量は、4.0質量%以下が好ましく、3.0質量%以下がより好ましく、2.0質量%以下が更に好ましく、1.5質量%以下が更に好ましく、1.0質量%以下が更に好ましい。Mnを添加する場合、Mn量は、1.0質量%以上、好ましくは2.0質量%以上、より好ましくは3.0質量%以上、且つ、5.0質量%以下、好ましくは4.0質量%以下等とすることができる。
(Manganese: Mn)
Mn acts as a deoxidizing agent, stabilizes the austenite phase, and contributes to improvement in hot cracking resistance and the like. However, if the amount of Mn is too large, ductility and toughness decrease. Therefore, the Mn content is preferably 4.0% by mass or less, more preferably 3.0% by mass or less, still more preferably 2.0% by mass or less, further preferably 1.5% by mass or less, and 1.0% by mass. The following are more preferred. When Mn is added, the amount of Mn is 1.0% by mass or more, preferably 2.0% by mass or more, more preferably 3.0% by mass or more, and 5.0% by mass or less, preferably 4.0% by mass or less. % Or less.

(鉄:Fe)
Feは、オーステナイト相を安定化し、硬さ、強度等の向上に寄与する。しかし、Fe量が多すぎると、σ相、ラーベス相等を析出して延性や靭性が低下したり、割れ感受性が高くなったりする。よって、他の合金元素を添加する場合、Fe量は、1.0質量%以上が好ましく、2.0質量%以上がより好ましく、2.5質量%以上が更に好ましい。また、7.0質量%以下が好ましく、5.0質量%以下がより好ましく、3.0質量%以下が更に好ましい。Feで高強度化を図る場合、Fe量は、7.0質量%以上が好ましく、8.0質量%以上がより好ましく、9.0質量%以上が更に好ましく、10.0質量%以上が更に好ましい。また、17.0質量%以下が好ましく、14.0質量%以下がより好ましく、11.0質量%以下が更に好ましい。
(Iron: Fe)
Fe stabilizes the austenite phase and contributes to improvement in hardness, strength and the like. However, if the amount of Fe is too large, a σ phase, a Laves phase, etc. are precipitated, and ductility and toughness are reduced, and crack sensitivity is increased. Therefore, when adding another alloy element, the amount of Fe is preferably 1.0% by mass or more, more preferably 2.0% by mass or more, and still more preferably 2.5% by mass or more. Moreover, 7.0 mass% or less is preferable, 5.0 mass% or less is more preferable, and 3.0 mass% or less is still more preferable. When increasing the strength with Fe, the amount of Fe is preferably 7.0% by mass or more, more preferably 8.0% by mass or more, further preferably 9.0% by mass or more, and further preferably 10.0% by mass or more. preferable. Moreover, 17.0 mass% or less is preferable, 14.0 mass% or less is more preferable, and 11.0 mass% or less is still more preferable.

(リン:P)
Pは、不可避的不純物であり、凝固割れ、液化割れ等を含む高温割れの感受性を増大させる。よって、P量は、0.04質量%以下が好ましく、0.03質量%以下がより好ましく、0.02質量%以下が更に好ましい。
(Phosphorus: P)
P is an inevitable impurity and increases the susceptibility to hot cracking including solidification cracking, liquefaction cracking and the like. Therefore, the amount of P is preferably 0.04% by mass or less, more preferably 0.03% by mass or less, and still more preferably 0.02% by mass or less.

(硫黄:S)
Sは、不可避的不純物であり、凝固割れ、液化割れ等を含む高温割れの感受性を増大させる。よって、S量は、0.02質量%以下が好ましく、0.015質量%以下がより好ましく、0.01質量%以下が更に好ましい。
(Sulfur: S)
S is an inevitable impurity and increases the susceptibility to hot cracking including solidification cracking, liquefaction cracking and the like. Therefore, the S content is preferably equal to or less than 0.02% by mass, more preferably equal to or less than 0.015% by mass, and still more preferably equal to or less than 0.01% by mass.

(ケイ素:Si)
Siは、脱酸剤として働き、耐酸化性、濡れ性等の向上に寄与する。しかし、Si量が多すぎると、靭性、耐食性、溶接性が低下し、割れ感受性が高くなる。よって、Si量は、1.0質量%以下が好ましく、0.8質量%以下がより好ましく、0.5質量%以下が更に好ましい。Siを添加する場合、Si量は、1.0質量%以上、好ましくは1.5質量%以上、より好ましくは2.0質量%以上、且つ、5.0質量%以下、好ましくは4.0質量%以下、より好ましくは3.0質量%以下等とすることができる。
(Silicon: Si)
Si acts as a deoxidizing agent and contributes to improvements in oxidation resistance, wettability, and the like. However, if the amount of Si is too large, toughness, corrosion resistance, and weldability are reduced, and crack susceptibility is increased. Therefore, the amount of Si is preferably 1.0% by mass or less, more preferably 0.8% by mass or less, and still more preferably 0.5% by mass or less. When Si is added, the amount of Si is 1.0% by mass or more, preferably 1.5% by mass or more, more preferably 2.0% by mass or more, and 5.0% by mass or less, preferably 4.0% by mass or less. Mass% or less, more preferably 3.0 mass% or less.

(銅:Cu)
Cuは、オーステナイト相を安定化し、硬さ、強度等の向上に寄与する。しかし、Cu量が多すぎると、延性、耐食性、溶接性が低下する。よって、Cu量は、1.0質量%以下が好ましく、0.5質量%以下がより好ましく、0.3質量%以下が更に好ましい。Cuを添加する場合、Cu量は、0.5質量%以上、好ましくは1.0質量%以上、より好ましくは1.5質量%以上、且つ、3.0質量%以下、好ましくは2.0質量%以下等とすることができる。
(Copper: Cu)
Cu stabilizes the austenite phase and contributes to improvements in hardness, strength, and the like. However, if the amount of Cu is too large, ductility, corrosion resistance, and weldability deteriorate. Therefore, the amount of Cu is preferably equal to or less than 1.0% by mass, more preferably equal to or less than 0.5% by mass, and still more preferably equal to or less than 0.3% by mass. When adding Cu, the amount of Cu is 0.5% by mass or more, preferably 1.0% by mass or more, more preferably 1.5% by mass or more, and 3.0% by mass or less, preferably 2.0% by mass or less. % Or less.

(コバルト:Co)
Coは、オーステナイト相を安定化し、溶接性等の向上に寄与する。しかし、Co量が多すぎると、σ相を析出して延性や靭性が低下したり、放射線環境下において放射化したりする。よって、Co量は、5.0質量%以下が好ましく、3.0質量%以下がより好ましく、1.0質量%以下が更に好ましい。Coを添加する場合、Co量は、27.0質量%以上、好ましくは28.0質量%以上、且つ、32.0質量%以下、好ましくは31.0質量%以下等とすることができる。
(Cobalt: Co)
Co stabilizes the austenite phase and contributes to improvement in weldability and the like. However, if the amount of Co is too large, the σ phase is precipitated and the ductility and toughness are reduced, or the material is activated in a radiation environment. Therefore, the amount of Co is preferably 5.0% by mass or less, more preferably 3.0% by mass or less, and still more preferably 1.0% by mass or less. When Co is added, the amount of Co can be 27.0% by mass or more, preferably 28.0% by mass or more, and 32.0% by mass or less, preferably 31.0% by mass or less.

(アルミニウム:Sol・Al)
Alは、脱酸剤として働き、耐酸化性等の向上に寄与する。しかし、Al量が多すぎると、靭性や溶接性が低下する。よって、Al量は、1.5質量%以下が好ましく、1.3質量%以下がより好ましく、1.1質量%以下が更に好ましく、0.8質量%以下が更に好ましく、0.6質量%以下が更に好ましい。Alを添加する場合、Al量は、1.0質量%以上、好ましくは1.5質量%以上、より好ましくは2.0質量%以上、且つ、5.0質量%以下、好ましくは4.0質量%以下、より好ましくは3.0質量%以下等とすることができる。
(Aluminum: Sol / Al)
Al acts as a deoxidizing agent and contributes to improvement of oxidation resistance and the like. However, if the amount of Al is too large, toughness and weldability decrease. Therefore, the amount of Al is preferably 1.5% by mass or less, more preferably 1.3% by mass or less, still more preferably 1.1% by mass or less, further preferably 0.8% by mass or less, and 0.6% by mass. The following are more preferred. When Al is added, the amount of Al is 1.0% by mass or more, preferably 1.5% by mass or more, more preferably 2.0% by mass or more, and 5.0% by mass or less, preferably 4.0% by mass or less. Mass% or less, more preferably 3.0 mass% or less.

(チタン:Ti)
Tiは、炭化物を析出して鋭敏化を妨げる他、脱酸剤として働き、耐高温割れ性等の向上に寄与する。しかし、Ti量が多すぎると、過剰な炭化物を析出して靭性、耐食性が低下したり、溶接性が低下したり、割れ感受性が高くなったりする。よって、Tiを添加する場合、Ti量は、0.1質量%以上が好ましく、0.2質量%以上がより好ましく、0.4質量%以上が更に好ましく、0.6質量%以上が更に好ましく、1.0質量%以上が更に好ましい。また、2.16質量%以下が好ましく、2.0質量%以下がより好ましく、1.5質量%以下が更に好ましい。
(Titanium: Ti)
Ti precipitates carbides to prevent sensitization, acts as a deoxidizing agent, and contributes to improvement of hot cracking resistance and the like. However, if the amount of Ti is too large, excessive carbides are precipitated, and the toughness and corrosion resistance are reduced, the weldability is reduced, and the crack sensitivity is increased. Therefore, when adding Ti, the amount of Ti is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, still more preferably 0.4% by mass or more, and still more preferably 0.6% by mass or more. , 1.0% by mass or more is more preferable. Further, the content is preferably 2.16% by mass or less, more preferably 2.0% by mass or less, and still more preferably 1.5% by mass or less.

(ニオブ,タンタル:Nb,Ta)
NbやTaは、炭化物を析出して鋭敏化を妨げる他、耐高温割れ性等の向上に寄与する。しかし、Nb量やTa量が多すぎると、過剰な炭化物や金属間化合物を析出して靭性、耐食性が低下したり、割れ感受性が高くなったりする。よって、Nb量及びTa量の合計は、0.1質量%以上が好ましく、0.3質量%以上がより好ましく、0.5質量%以上が更に好ましく、1.0質量%以上が更に好ましく、1.5質量%以上、2.0質量%以上等とすることもできる。また、Nb量及びTa量の合計は、4.32質量%以下が好ましく、4.0質量%以下がより好ましく、3.5質量%以下が更に好ましく、3.0質量%以下、2.5質量%以下等とすることもできる。
(Niobium, tantalum: Nb, Ta)
Nb and Ta precipitate carbides to prevent sensitization and also contribute to improvement of hot cracking resistance and the like. However, if the amount of Nb or Ta is too large, excessive carbides and intermetallic compounds are precipitated, and the toughness and corrosion resistance are reduced, and the crack sensitivity is increased. Therefore, the total of the Nb amount and the Ta amount is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, still more preferably 0.5% by mass or more, and still more preferably 1.0% by mass or more, It can be 1.5% by mass or more, 2.0% by mass or more. The total of the Nb amount and the Ta amount is preferably 4.32% by mass or less, more preferably 4.0% by mass or less, still more preferably 3.5% by mass or less, and 3.0% by mass or less, 2.5% by mass or less. % Or less.

(モリブデン:Mo)
Moは、硬さ、強度、耐酸化性、耐食性等の向上に寄与する。しかし、Mo量が多すぎると、偏析して靭性や耐食性が低下したり、割れ感受性が高くなったりする。よって、Mo量は、2.0質量%以下が好ましく、1.0質量%以下がより好ましく、0.7質量%以下が更に好ましく、0.5質量%以下が更に好ましい。Moを添加する場合、Mo量は、1.0質量%以上、好ましくは2.0質量%以上、より好ましくは3.0質量%以上、更に好ましくは4.0質量%以上、且つ、7.0質量%以下、好ましくは6.0質量%以下、より好ましくは5.0質量%以下等とすることができる。
(Molybdenum: Mo)
Mo contributes to improvements in hardness, strength, oxidation resistance, corrosion resistance, and the like. However, if the Mo content is too large, segregation may occur, resulting in reduced toughness and corrosion resistance and increased cracking susceptibility. Therefore, the Mo amount is preferably 2.0% by mass or less, more preferably 1.0% by mass or less, further preferably 0.7% by mass or less, and still more preferably 0.5% by mass or less. When Mo is added, the amount of Mo is 1.0% by mass or more, preferably 2.0% by mass or more, more preferably 3.0% by mass or more, still more preferably 4.0% by mass or more, and 7.0% by mass. It can be 0% by mass or less, preferably 6.0% by mass or less, more preferably 5.0% by mass or less.

(その他の添加元素)
Ni基溶接金属は、以上の元素の他に、目的に応じて、その他の添加元素が添加されてもよい。その他の添加元素としては、例えば、W、Mg、Ca、V、Zr、B、N等が挙げられる。その他の添加元素は、合計の濃度が0.50質量%以下であることが好ましい。BやNの濃度は、それぞれ、0.05質量%以下が好ましく、0.03質量%以下がより好ましく、0.01質量%以下が更に好ましい。
(Other added elements)
Other additive elements may be added to the Ni-base weld metal depending on the purpose in addition to the above elements. Examples of the other additive elements include W, Mg, Ca, V, Zr, B, and N. It is preferable that the total concentration of the other additive elements is 0.50% by mass or less. The concentrations of B and N are each preferably 0.05% by mass or less, more preferably 0.03% by mass or less, and still more preferably 0.01% by mass or less.

(不可避的不純物)
Ni基溶接金属は、意図的に添加される添加元素を除く残部が、Ni及び不可避的不純物からなる。不可避的不純物としては、Ni基溶接金属の原料中に混入している不純物や、Ni基溶接金属の製造過程で混入する不純物や、被溶接材から浸入する不純物等があり、例えば、意図的に添加されない前記の各元素の他、Sn、Pb、O等が挙げられる。不可避的不純物は、各元素毎の濃度が0.05質量%以下、合計の濃度が0.50質量%以下であれば含有することを許容される。
(Inevitable impurities)
The remainder of the Ni-based weld metal excluding the intentionally added elements consists of Ni and unavoidable impurities. The unavoidable impurities include impurities mixed in the raw material of the Ni-base weld metal, impurities mixed in the manufacturing process of the Ni-base weld metal, and impurities entering from the material to be welded. In addition to the above-mentioned elements which are not added, Sn, Pb, O and the like can be mentioned. Inevitable impurities are permitted to be contained if the concentration of each element is 0.05% by mass or less and the total concentration is 0.50% by mass or less.

次に、本実施形態に係るNi基溶接金属の化学組成と、690系合金相当の一般的な溶接金属の化学組成との異同関係について説明する。   Next, the difference between the chemical composition of the Ni-based weld metal according to the present embodiment and the chemical composition of a general weld metal equivalent to a 690 alloy will be described.

図8は、Ni基溶接金属のCr濃度と添加元素濃度との関係を示す図である。
図8において、縦軸は、Ni基溶接金属の3種の添加元素(Nb、Ta及びTi)の濃度(質量%)を合算した計算値(数式(I)の部分変数の計算値)、横軸は、Ni基溶接金属のCr濃度(質量%)を示す。破線は、数式(I)に[%C]=0.01、mNBar値=8を代入した結果、実線は、数式(I)に[%C]=0.01、mNBar値=35を代入した結果、一点鎖線は、数式(I)に[%C]=0.055、mNBar値=8を代入した結果、二点鎖線は、数式(I)に[%C]=0.055、mNBar値=35を代入した結果である。
FIG. 8 is a diagram showing the relationship between the Cr concentration of the Ni-based weld metal and the concentration of the added element.
In FIG. 8, the vertical axis represents the calculated value (calculated value of the partial variables in the formula (I)) obtained by adding the concentrations (% by mass) of the three types of additional elements (Nb, Ta, and Ti) of the Ni-based weld metal. The axis indicates the Cr concentration (% by mass) of the Ni-based weld metal. The dashed line is obtained by substituting [% C] = 0.01 and mNBar value = 8 into the formula (I), and the solid line is obtained by substituting [% C] = 0.01 and mNBar value = 35 into the formula (I). As a result, the one-dot chain line is obtained by substituting [% C] = 0.555 and the mNBar value = 8 into the mathematical formula (I). As a result, the two-dot chain line is [% C] = 0.55 and the mNBar value into the mathematical formula (I). = 35.

690系合金相当の一般的な溶接金属は、C濃度が0.25質量%以下の範囲にあり、多くは10−2質量%オーダーの低C量に抑えられている。一方、Ni基溶接金属のmNBar値の好ましい範囲は、数式(II)に示されるように8〜35の範囲である。これらの数値を数式(I)に代入すると、図8に示す各曲線が得られる。これらの曲線は、Cr濃度や添加元素濃度について、耐SCC性を確保するにあたって採用し得る許容濃度範囲を示しているといえる。 A general weld metal equivalent to a 690 series alloy has a C concentration in the range of 0.25% by mass or less, and is often suppressed to a low C amount of the order of 10 -2 % by mass. On the other hand, a preferable range of the mNBar value of the Ni-based weld metal is a range of 8 to 35 as shown in Expression (II). By substituting these numerical values into Equation (I), the respective curves shown in FIG. 8 are obtained. It can be said that these curves show the allowable concentration ranges that can be employed for securing the SCC resistance with respect to the Cr concentration and the additive element concentration.

例えば、C濃度が0.01質量%以上、且つ、mNBar値が最小値8以上のNi基溶接金属では、図8の破線よりも上の領域の濃度が許容される。一方、C濃度が0.055質量%以下であり、且つ、mNBar値が最大値35以下のNi基溶接金属では、二点鎖線よりも下の領域の濃度が許容される。また、mNBar値が最大値35以下であり、C濃度が更に高いNi基溶接金属の場合は、二点鎖線よりも上方の領域の濃度が許容されることになる。   For example, in a Ni-based weld metal having a C concentration of 0.01% by mass or more and an mNBar value of a minimum value of 8 or more, the concentration in a region above the broken line in FIG. 8 is allowed. On the other hand, in the case of a Ni-based weld metal having a C concentration of 0.055% by mass or less and an mNBar value of 35 or less, the concentration in the region below the two-dot chain line is allowed. In the case of a Ni-based weld metal having an mNBar value of 35 or less and a higher C concentration, the concentration in a region above the two-dot chain line is allowed.

690系合金相当の一般的な溶接金属としては、アメリカ機械学会(American Society of Mechanical Engineers:ASME)規格に、690系合金相当の溶接金属が規定されている。また、特許文献1〜4に、690系合金相当の溶接金属や690系合金が記載されている。これらの規格や文献中に示される化学組成の規格値及び文献値を表1に示す。   As a general weld metal equivalent to a 690 series alloy, a weld metal equivalent to a 690 series alloy is defined in American Society of Mechanical Engineers (ASME) standards. Patent Literatures 1 to 4 disclose a weld metal equivalent to a 690-based alloy and a 690-based alloy. Table 1 shows these specifications and the standard values of chemical compositions and literature values shown in the literature.

Figure 2020019981
Figure 2020019981

図9は、本発明に係るNi基溶接金属の化学組成と一般的な溶接金属の化学組成との異同関係を示す図である。
図9において、縦軸は、図8と同様に、3種の添加元素(Nb、Ta及びTi)の濃度(質量%)を合算した計算値(数式(I)の部分変数の計算値)、横軸は、Cr濃度(質量%)を示す。図中の太線枠は、図8の破線よりも上の領域のうち、数式(II)、(III)、(IV)及び(V)を満たす領域を示している。また、斜線で網掛けされた領域は、690系合金相当の一般的な溶接金属の規格値、ドットで網掛けされた領域は、690系合金相当の一般的な溶接金属の文献値に相当する(表1参照)。
FIG. 9 is a diagram showing the difference between the chemical composition of the Ni-based weld metal according to the present invention and the chemical composition of a general weld metal.
In FIG. 9, the vertical axis represents the calculated value (calculated value of the partial variable of the formula (I)) obtained by adding the concentrations (% by mass) of the three types of additional elements (Nb, Ta, and Ti), as in FIG. 8. The horizontal axis shows the Cr concentration (% by mass). The bold frame in the drawing indicates a region that satisfies the formulas (II), (III), (IV), and (V) in the region above the broken line in FIG. The hatched area corresponds to the standard value of a general weld metal equivalent to the 690 series alloy, and the shaded area corresponds to the literature value of a general weld metal equivalent to the 690 series alloy. (See Table 1).

また、これら690系合金相当の一般的な溶接金属(表1参照)について、3種の添加元素(Nb、Ta及びTi)の濃度(質量%)を合算した計算値と、Cr濃度(質量%)と、図9における領域の符号とを表2に示す。   In addition, with respect to these common weld metals corresponding to the 690 series alloy (see Table 1), a calculated value obtained by adding the concentrations (% by mass) of three kinds of additional elements (Nb, Ta and Ti) and a Cr concentration (% by mass) ) And the codes of the regions in FIG. 9 are shown in Table 2.

Figure 2020019981
Figure 2020019981

図9において、図8の破線よりも上の領域のうち、数式(II)、(III)、(IV)及び(V)を満たす領域(図9の太線枠)は、優れた耐SCC性とオーステナイト相の単相組織を備えるNi基溶接金属となり得る。この領域のうち、既存の規格値や文献値と重複していない領域は、化学組成の選定の自由度を、従来よりも拡張する領域になるといえる。   In FIG. 9, among the regions above the broken line in FIG. 8, the regions satisfying the formulas (II), (III), (IV), and (V) (the thick frame in FIG. 9) have excellent SCC resistance. It can be a Ni-based weld metal having an austenitic single phase structure. Among these regions, a region that does not overlap with existing standard values and literature values can be said to be a region in which the degree of freedom in selecting a chemical composition is extended more than before.

すなわち、図9の太線枠内に示されるように、本実施形態に係るNi基溶接金属の好ましい一形態としては、Cr:24質量%以上26質量%未満であり、[%Nb]+[%Ta]+2[%Ti]が、0.42以上4.32以下であるNi基溶接金属が挙げられる。   That is, as shown in the thick line frame of FIG. 9, as one preferred form of the Ni-based weld metal according to the present embodiment, Cr: 24% by mass or more and less than 26% by mass, and [% Nb] + [% Ni-based weld metal in which Ta] +2 [% Ti] is 0.42 or more and 4.32 or less.

また、本実施形態に係るNi基溶接金属の好ましい他の形態としては、Cr:26質量%以上27質量%未満であり、[%Nb]+[%Ta]+2[%Ti]が、1.5を超え2.0未満であるNi基溶接金属が挙げられる。また、Cr:26質量%以上27質量%未満であり、[%Nb]+[%Ta]+2[%Ti]が、規格値を除いた3.6を超え4.32以下であるNi基溶接金属や、規格値と文献値とを除いた4.2を超え4.32以下であるNi基溶接金属が挙げられる。   Further, as another preferable embodiment of the Ni-based weld metal according to the present embodiment, Cr is not less than 26% by mass and less than 27% by mass, and [% Nb] + [% Ta] +2 [% Ti] is 1.%. A Ni-based weld metal having a value of more than 5 and less than 2.0 is exemplified. In addition, Cr: not less than 26% by mass and less than 27% by mass, and Ni-based welding in which [% Nb] + [% Ta] +2 [% Ti] exceeds 3.6 excluding the standard value and is 4.32 or less. Examples include metals and Ni-based weld metals that exceed 4.2 and not more than 4.32 excluding the standard value and the literature value.

また、本実施形態に係るNi基溶接金属の好ましい他の形態としては、Cr:31質量%を超え31.5質量%以下であり、[%Nb]+[%Ta]+2[%Ti]が、規格値のみを除いた3.0を超え4.32以下であるNi基溶接金属が挙げられる。   Further, as another preferable embodiment of the Ni-based weld metal according to the present embodiment, Cr is more than 31% by mass and not more than 31.5% by mass, and [% Nb] + [% Ta] +2 [% Ti] is And a Ni-based weld metal exceeding 3.0 and not more than 4.32 excluding only the standard value.

また、本実施形態に係るNi基溶接金属の好ましい他の形態としては、Cr:31.5質量%を超え32質量%以下であり、[%Nb]+[%Ta]+2[%Ti]が、規格値を除いた4.32以下であるNi基溶接金属や、規格値と文献値とを除いた3.1を超え4.32以下であるNi基溶接金属が挙げられる。   Further, as another preferable embodiment of the Ni-based weld metal according to the present embodiment, Cr is more than 31.5% by mass and 32% by mass or less, and [% Nb] + [% Ta] +2 [% Ti] is And a Ni-based weld metal of 4.32 or less excluding the standard value, and a Ni-based weld metal of more than 3.1 and 4.32 or less excluding the standard value and the literature value.

なお、以上の本実施形態に係るNi基溶接金属は、溶接金属や溶着金属の形態とされる場合、溶接部の全体が前記の化学組成を満たしていればよい。また、溶化材等の溶接材料の形態とされる場合、溶接材料自体、若しくは、フラックス等で被覆された溶接材料の心材、又は、溶接材料を用いて形成した溶接部の全体が前記の化学組成を満たしていればよい。   When the Ni-based weld metal according to the present embodiment described above is in the form of a weld metal or a weld metal, the entire welded portion only needs to satisfy the above chemical composition. In the case of the form of a welding material such as a solubilized material, the welding material itself, the core material of the welding material coated with a flux or the like, or the entire welded portion formed using the welding material has the chemical composition described above. What is necessary is just to satisfy.

本実施形態に係るNi基溶接金属に用いる溶接方法は、特に制限されるものではない。溶接方法としては、例えば、ティグ溶接、ミグ溶接、被覆アーク溶接、サブマージアーク溶接、エレクトロスラグ溶接、電子ビーム溶接、レーザ溶接等の各種の溶接方法を用いることができる。継手種類、開先形状、入熱量、溶接速度、溶接姿勢、ビード形状等は、用途や化学組成等に応じて適宜調整することができる。   The welding method used for the Ni-based weld metal according to the present embodiment is not particularly limited. As a welding method, for example, various welding methods such as TIG welding, MIG welding, covered arc welding, submerged arc welding, electroslag welding, electron beam welding, and laser welding can be used. The joint type, groove shape, heat input, welding speed, welding position, bead shape, and the like can be appropriately adjusted according to the application, chemical composition, and the like.

また、本実施形態に係るNi基溶接金属によって接合される被溶接材は、特に制限されるものではない。被溶接材としては、例えば、ニッケル基合金、低炭素鋼、低合金鋼、ステンレス鋼等が挙げられる。Ni基溶接金属を被溶接材同士の接合に用いる場合、被溶接材同士は、同材溶接されてもよいし、異材溶接されてもよい。   The material to be welded by the Ni-based weld metal according to the present embodiment is not particularly limited. Examples of the material to be welded include a nickel-based alloy, a low-carbon steel, a low-alloy steel, and a stainless steel. When the Ni-base weld metal is used for joining the materials to be welded, the materials to be welded may be welded to each other with the same material or different materials.

以上の本実施形態に係るNi基溶接金属によると、24〜32質量%のCrを含有し、[%Nb]+[%Ta]+2[%Ti]が4.32以下に制限されているため、靭性や延性が良好なオーステナイト相の単相組織となり、IGSCCとTGSCCの両方が抑制される。また、化学組成が耐SCC性の評価指標として有効なmNBarに基づいているため、優れた耐SCC性が備わる化学組成を、より正確に選定することができる。また、化学組成の選定に際して、各成分濃度を自在に選択する自由度も拡張される。そのため、耐SCC性に優れており、腐食環境に晒される溶接部の健全性を長期間にわたって安定的に保つことができるNi基溶接金属が得られる。   According to the above-described Ni-based weld metal according to the present embodiment, it contains 24 to 32% by mass of Cr, and [% Nb] + [% Ta] +2 [% Ti] is limited to 4.32 or less. A single-phase structure of an austenite phase having good toughness and ductility is obtained, and both IGSCC and TGSCC are suppressed. Further, since the chemical composition is based on mNBar, which is effective as an evaluation index of SCC resistance, a chemical composition having excellent SCC resistance can be more accurately selected. In addition, when selecting a chemical composition, the degree of freedom in freely selecting the concentration of each component is expanded. Therefore, a Ni-based weld metal having excellent SCC resistance and capable of stably maintaining the soundness of a welded portion exposed to a corrosive environment over a long period of time is obtained.

次に、以上の本実施形態に係るNi基溶接金属を用いた溶接構造物について説明する。   Next, a welded structure using the Ni-based weld metal according to the present embodiment will be described.

本実施形態に係る溶接構造物は、被溶接材間を接合する溶接部を有し、溶接部の少なくとも一部が、前記のNi基溶接金属で形成される。溶接構造物の溶接部は、溶接金属や溶着金属の形態のNi基溶接金属、又は、溶接材料の形態のNi基溶接金属によって、24〜32質量%のCrと、Nb、Ta及びTiのうちの一種以上と、を少なくとも含有し、[%Nb]+[%Ta]+2[%Ti]が4.32以下に制限された化学組成とされる。   The welded structure according to the present embodiment has a welded portion for joining the materials to be welded, and at least a part of the welded portion is formed of the Ni-based weld metal. The welded portion of the welded structure is formed of a Ni-based weld metal in the form of a weld metal or a weld metal, or a Ni-based weld metal in the form of a weld material, with 24 to 32% by mass of Cr and Nb, Ta, and Ti. And a chemical composition in which [% Nb] + [% Ta] +2 [% Ti] is limited to 4.32 or less.

本実施形態に係る溶接構造物は、Ni基溶接金属で形成される溶接部が、機械加工や研削加工を施されて、表面の硬化層が除去されていてもよい。また、溶接部は、機械加工や研削加工を施された後、安定化熱処理を施されていてもよい。また、溶接部は、機械加工や研削加工を施された後、ピーニング処理や研磨処理を施されていてもよい。ピーニング処理としては、例えば、ショットピーニング、ウォータジェットピーニング、レーザピーニング等が挙げられる。   In the welded structure according to the present embodiment, the welded portion formed of the Ni-based weld metal may be subjected to machining or grinding to remove the hardened layer on the surface. Further, the welded portion may be subjected to a stabilizing heat treatment after being subjected to machining or grinding. Further, the welded portion may be subjected to a peening process or a polishing process after being subjected to a mechanical process or a grinding process. Examples of the peening processing include shot peening, water jet peening, and laser peening.

本実施形態に係る溶接構造物は、原子力設備の構造材として好適に用いられる。特に、原子炉の炉内構造物として好適であり、高温・高圧の原子炉水が接液する部位に好ましく用いられる。Ni基溶接金属を用いる溶接部は、被溶接材同士を接合する接合部であってもよいし、機能性の付与や補修の目的等で形成される肉盛溶接部であってもよい。   The welded structure according to the present embodiment is suitably used as a structural material for nuclear facilities. In particular, it is suitable as an internal structure of a nuclear reactor, and is preferably used for a portion where high-temperature and high-pressure reactor water comes into contact with liquid. The welded portion using the Ni-based weld metal may be a joined portion for joining materials to be welded, or may be a build-up welded portion formed for the purpose of imparting functionality or repairing.

Ni基溶接金属を用いる溶接部の具体例としては、中性子計装検出管、制御棒案内管等が貫通する原子炉圧力容器の底部や下鏡部の貫通部分や、原子炉圧力容器の下鏡部のクラッド部分や、シュラウド、シュラウドサポートシリンダ、シュラウドサポートレグ、シュラウドサポートプレート等で構成される炉心シュラウドの支持部や、その他の計測用のノズル部や、給水入口のノズル部や、再循環水入口のノズル部等が挙げられる。   Specific examples of the welded portion using the Ni-based weld metal include a bottom portion of a reactor pressure vessel through which a neutron instrumentation detection tube, a control rod guide tube, and the like penetrate, a lower mirror portion of the reactor pressure vessel, and a lower mirror of the reactor pressure vessel. Core, shroud, shroud support cylinder, shroud support leg, shroud support plate, etc., core shroud support, other nozzles for measurement, nozzle at feed water inlet, recirculated water For example, a nozzle portion at the entrance may be used.

以上の本実施形態に係る溶接構造物によると、靭性や延性が良好なオーステナイト相の単相組織となり、IGSCCとTGSCCの両方が抑制されるNi基溶接金属で溶接部が形成される。そのため、高放射線量下に晒される原子炉設備の配管、構造材、機器等の健全性を長期間にわたって維持することができる。300℃前後の高温・高圧の原子炉水が接液するような部位についても、応力腐食割れが安定的に阻止される溶接部が得られる。   According to the above-described welded structure of the present embodiment, a single-phase structure of an austenitic phase having good toughness and ductility is formed, and a welded portion is formed of a Ni-based weld metal in which both IGSCC and TGSCC are suppressed. Therefore, it is possible to maintain the soundness of the piping, structural materials, equipment, and the like of the nuclear reactor equipment exposed to a high radiation dose for a long period of time. A welded portion in which stress corrosion cracking is stably prevented is obtained even in a portion where high-temperature and high-pressure reactor water of about 300 ° C. comes into contact with liquid.

以上、本発明に係るNi基溶接金属、及び、これを用いた溶接構造物の実施形態について説明したが、本発明は前記の実施形態に限定されるものではなく、技術的範囲を逸脱しない限り、様々な変形例が含まれる。例えば、前記の実施形態は、必ずしも説明した全ての構成を備えるものに限定されない。Ni基溶接金属は、主要元素以外の組成、施行法、用途等が、前記の実施形態に必ずしも限定されるものではない。   As described above, the embodiments of the Ni-based weld metal according to the present invention and the welded structure using the same have been described. However, the present invention is not limited to the above-described embodiments, and does not depart from the technical scope. Various modifications are included. For example, the above embodiments are not necessarily limited to those having all the configurations described above. The composition, execution method, application, etc. of the Ni-base weld metal other than the main elements are not necessarily limited to the above embodiments.

Claims (6)

Cr:24質量%以上26質量%未満であり、Nb、Ta及びTiのうちの一種以上を含有し、Nbの濃度(質量%)を[%Nb]、Taの濃度(質量%)を[%Ta]、Tiの濃度(質量%)を[%Ti]としたとき、[%Nb]+[%Ta]+2[%Ti]が、0.42以上4.32以下であるNi基溶接金属。   Cr: not less than 24% by mass and less than 26% by mass, containing one or more of Nb, Ta and Ti, the concentration of Nb (% by mass) is [% Nb], and the concentration of Ta (% by mass) is [% A Ni-based weld metal in which [% Nb] + [% Ta] +2 [% Ti] is 0.42 or more and 4.32 or less when the concentration (mass%) of Ta] and Ti is [% Ti]. Cr:26質量%以上27質量%未満であり、Nb、Ta及びTiのうちの一種以上を含有し、Nbの濃度(質量%)を[%Nb]、Taの濃度(質量%)を[%Ta]、Tiの濃度(質量%)を[%Ti]としたとき、[%Nb]+[%Ta]+2[%Ti]が、1.5を超え2.0未満であるNi基溶接金属。   Cr: not less than 26% by mass and less than 27% by mass, contains one or more of Nb, Ta and Ti, and has a Nb concentration (% by mass) of [% Nb] and a Ta concentration (% by mass) of [% When the concentration (% by mass) of [Ta] and Ti is [% Ti], [% Nb] + [% Ta] +2 [% Ti] is more than 1.5 and less than 2.0. . Cr:26質量%以上27質量%未満であり、Nb、Ta及びTiのうちの一種以上を含有し、Nbの濃度(質量%)を[%Nb]、Taの濃度(質量%)を[%Ta]、Tiの濃度(質量%)を[%Ti]としたとき、[%Nb]+[%Ta]+2[%Ti]が、4.2を超え4.32以下であるNi基溶接金属。   Cr: not less than 26% by mass and less than 27% by mass, contains one or more of Nb, Ta and Ti, and has a Nb concentration (% by mass) of [% Nb] and a Ta concentration (% by mass) of [% When the concentration (% by mass) of [Ta] and Ti is [% Ti], [% Nb] + [% Ta] +2 [% Ti] is a Ni-based weld metal exceeding 4.2 and not more than 4.32. . Cr:31.5質量%を超え32質量%以下であり、Nb、Ta及びTiのうちの一種以上を含有し、Nbの濃度(質量%)を[%Nb]、Taの濃度(質量%)を[%Ta]、Tiの濃度(質量%)を[%Ti]としたとき、[%Nb]+[%Ta]+2[%Ti]が、3.1を超え4.32以下であるNi基溶接金属。   Cr: more than 31.5% by mass and not more than 32% by mass, containing one or more of Nb, Ta and Ti, the concentration (% by mass) of Nb is [% Nb], and the concentration of Ta (% by mass). Where [% Nb] + [% Ta] +2 [% Ti] is greater than 3.1 and less than or equal to 4.32, where [% Ta] and Ti concentration (% by mass) are [% Ti]. Base weld metal. 請求項1から請求項4のいずれか一項に記載のNi基溶接金属で溶接部が形成された溶接構造物。   A welded structure in which a weld is formed with the Ni-based weld metal according to any one of claims 1 to 4. 原子炉の炉内構造物である請求項5に記載の溶接構造物。   The welded structure according to claim 5, which is an internal structure of a nuclear reactor.
JP2018143194A 2018-07-31 2018-07-31 Ni-based weld metal and welded structure Active JP7011987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018143194A JP7011987B2 (en) 2018-07-31 2018-07-31 Ni-based weld metal and welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018143194A JP7011987B2 (en) 2018-07-31 2018-07-31 Ni-based weld metal and welded structure

Publications (2)

Publication Number Publication Date
JP2020019981A true JP2020019981A (en) 2020-02-06
JP7011987B2 JP7011987B2 (en) 2022-01-27

Family

ID=69588166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018143194A Active JP7011987B2 (en) 2018-07-31 2018-07-31 Ni-based weld metal and welded structure

Country Status (1)

Country Link
JP (1) JP7011987B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09108888A (en) * 1995-10-18 1997-04-28 Kobe Steel Ltd Material for powder build-up welding
WO2004110695A1 (en) * 2003-06-10 2004-12-23 Sumitomo Metal Industries, Ltd. Austenitic steel weld joint
JP2010227955A (en) * 2009-03-26 2010-10-14 Sumitomo Metal Ind Ltd Weld metal and welding material
JP2011121088A (en) * 2009-12-10 2011-06-23 Kobe Steel Ltd Ni-Cr-Fe ALLOY-BASED WELD METAL EXCELLENT IN CRACK RESISTANCE
JP2014018836A (en) * 2012-07-19 2014-02-03 Toshiba Corp Ni-BASED WELDING MATERIAL AND DIFFERENT MATERIAL WELDED TURBINE ROTOR
JP2014111265A (en) * 2012-12-05 2014-06-19 Sanyo Special Steel Co Ltd Cladding powder alloy
CN106881540A (en) * 2015-12-16 2017-06-23 海宁瑞奥金属科技有限公司 A kind of nickel-base alloy, wlding
JP2017205800A (en) * 2016-05-20 2017-11-24 株式会社東芝 Ni-BASED ALLOY FOR WELDING, AND FILLER MATERIAL FOR BOILING WATER REACTOR
JP2017221964A (en) * 2016-06-16 2017-12-21 新日鐵住金株式会社 Austenitic heat-resistant alloy weld metal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09108888A (en) * 1995-10-18 1997-04-28 Kobe Steel Ltd Material for powder build-up welding
WO2004110695A1 (en) * 2003-06-10 2004-12-23 Sumitomo Metal Industries, Ltd. Austenitic steel weld joint
JP2010227955A (en) * 2009-03-26 2010-10-14 Sumitomo Metal Ind Ltd Weld metal and welding material
JP2011121088A (en) * 2009-12-10 2011-06-23 Kobe Steel Ltd Ni-Cr-Fe ALLOY-BASED WELD METAL EXCELLENT IN CRACK RESISTANCE
JP2014018836A (en) * 2012-07-19 2014-02-03 Toshiba Corp Ni-BASED WELDING MATERIAL AND DIFFERENT MATERIAL WELDED TURBINE ROTOR
JP2014111265A (en) * 2012-12-05 2014-06-19 Sanyo Special Steel Co Ltd Cladding powder alloy
CN106881540A (en) * 2015-12-16 2017-06-23 海宁瑞奥金属科技有限公司 A kind of nickel-base alloy, wlding
JP2017205800A (en) * 2016-05-20 2017-11-24 株式会社東芝 Ni-BASED ALLOY FOR WELDING, AND FILLER MATERIAL FOR BOILING WATER REACTOR
JP2017221964A (en) * 2016-06-16 2017-12-21 新日鐵住金株式会社 Austenitic heat-resistant alloy weld metal

Also Published As

Publication number Publication date
JP7011987B2 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
EP2671669B1 (en) Ni-BASED HIGH-CR ALLOY WIRE FOR WELDING, ROD FOR ARC-SHIELDED WELDING, AND METAL FOR ARC-SHIELDED WELDING
EP2552639B1 (en) Nickel-based alloy, welding consumable formed from the said alloy and use of the consumable in a welding process.
US9808877B2 (en) Alloy, overlay, and methods thereof
Bhanu et al. Electron beam welding of P91 steel and incoloy 800HT and their microstructural studies for advanced ultra super critical (AUSC) power plants
JP7011987B2 (en) Ni-based weld metal and welded structure
KR102075451B1 (en) TIG welding method for two-phase stainless steel
Mouginot et al. Microstructures of nickel-base alloy dissimilar metal welds
Shaikh et al. Stress corrosion cracking (SCC) of austenitic stainless and ferritic steel weldments
JP2014005509A (en) Highly corrosion-resistant austenitic stainless steel and weld joint structure
JP2007024609A (en) Manufacturing method of spent fuel storage rack
Saluja et al. Depiction of detrimental metallurgical effects in grade 304 austenitic stainless steel arc welds
JP2013208627A (en) HIGH CORROSION RESISTANT Ni-BASED WELD METAL, WELDED STRUCTURE USING THE SAME, AND NUCLEAR POWER PLANT
JP3170166B2 (en) Filler for Ni-base high Cr alloy
Chan et al. Laser surface melting (LSM) of stainless steels for mitigating intergranular corrosion (IGC)
Çam et al. Progress in low transformation temperature (LTT) filler wires
US11732332B2 (en) Nickel-base alloy welding material, welding material for nuclear reactor, nuclear power apparatus and nuclear power structure, and method of repairing nuclear power apparatus and nuclear power structure
JP7370830B2 (en) Nickel-based alloy welding materials, welding materials for nuclear reactors, nuclear equipment and structures, and repair methods for nuclear equipment and structures
JPS62222049A (en) B-containing stainless steel excellent in corrosion resistance
El-Mahallawi et al. Welding-associated failures in power boilers
JP2003041346A (en) Two-phase stainless steel for radioactive material storage container and method for manufacturing radioactive material storage container
Arunkumar et al. Review on Weldability Prospects of Super Austenitic Stainless Steels
JP2892295B2 (en) Welding method for stainless steel with excellent nitric acid corrosion resistance
JP3131597B2 (en) Nitrate resistant austenitic stainless steel and weld metal
JPH0331556B2 (en)
Abbood et al. Corrosion Behavior in Different Media of Dissimilar Super Duplex Stainless Steel 2507 and Austenitic Stainless Steel 316 Welding by Using GTAW Process with Filler Type 316L

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220117

R150 Certificate of patent or registration of utility model

Ref document number: 7011987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150