JP2020016650A - Film thickness measurement method, and device of the same - Google Patents

Film thickness measurement method, and device of the same Download PDF

Info

Publication number
JP2020016650A
JP2020016650A JP2019130910A JP2019130910A JP2020016650A JP 2020016650 A JP2020016650 A JP 2020016650A JP 2019130910 A JP2019130910 A JP 2019130910A JP 2019130910 A JP2019130910 A JP 2019130910A JP 2020016650 A JP2020016650 A JP 2020016650A
Authority
JP
Japan
Prior art keywords
spectral intensity
light
thin film
data
trend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019130910A
Other languages
Japanese (ja)
Other versions
JP6912045B2 (en
Inventor
貴彦 森田
Takahiko Morita
貴彦 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYSTEMROAD CO Ltd
Original Assignee
SYSTEMROAD CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SYSTEMROAD CO Ltd filed Critical SYSTEMROAD CO Ltd
Publication of JP2020016650A publication Critical patent/JP2020016650A/en
Application granted granted Critical
Publication of JP6912045B2 publication Critical patent/JP6912045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

To provide a film thickness measurement method that enables a precise measurement of a thickness of a thin film, eliminating an adverse effect by a trend of a light intensity spectrum arising from the thin film or a kind or color of a base material of the thin film or lessening the adverse effect.SOLUTION: A film thickness measurement method has: a spectroscopic intensity measurement step of measuring spectroscopic intensity of interference light by a thin film 3; and a calculation step of subjecting data about the spectroscopic intensity of the interference light to a Fourier transform, and calculating a thickness t of the thin film 3 on the basis of a position of a peak appearing in a power spectrum obtained by the Fourier transform. The film thickness measurement method further has a step of obtaining a trend of the spectroscopic intensity of the interference light, and preparing spectroscopic intensity correction data in which an impact of the trend is caused to be eliminated or reduced. In the thickness calculation step, the spectroscopic intensity correction data is used as the data about the spectroscopic intensity of the interference light, and becomes an object of the Fourier transform.SELECTED DRAWING: Figure 4

Description

本発明は、光透過性を有する薄膜の厚さを測定する方法および装置に関する。   The present invention relates to a method and an apparatus for measuring the thickness of a thin film having optical transparency.

膜厚測定の一例として、干渉法がある(たとえば、特許文献1を参照)。この干渉法においては、所定の波長範囲の光を測定対象の薄膜に照射することにより、前記光の薄膜による干渉光の分光強度を測定し、かつこの測定された光強度スペクトルに現れる干渉光成分の波形に基づいて前記薄膜の厚みを算出する。前記厚みの算出は、具体的には、前記光強度スペクトルをフーリエ変換し、かつこの変換により得られたパワースペクトルに現れるピークの位置に基づいて行なわれる。   As an example of the film thickness measurement, there is an interference method (for example, see Patent Document 1). In this interferometry, by irradiating light in a predetermined wavelength range to a thin film to be measured, the spectral intensity of the interference light by the thin film of the light is measured, and the interference light component appearing in the measured light intensity spectrum is measured. The thickness of the thin film is calculated based on the waveform of (1). Specifically, the calculation of the thickness is performed based on a Fourier transform of the light intensity spectrum and a peak position appearing in a power spectrum obtained by the transform.

しかしながら、前記したように薄膜の厚さを測定する場合、薄膜またはその基材の種類や色により、光強度スペクトルに平坦ではないトレンド(干渉光成分以外のスペクトルの変動・趨勢)が見られる場合がある。これに対し、このようなトレンドの影響を考慮することなく、測定により得られた光強度スペクトルにフーリエ変換を施して物理膜厚のパワースペクトルを取得する従来の手法によれば、期待される物理膜厚の成分がトレンドに由来するパワースペクトル成分に埋もれる場合がある。これでは、薄膜の厚みを正確に測定することは困難となる。
なお、従来においては、薄膜が形成される基材のサンプルに光を照射し、このサンプルについてのトレンドを予め求めておき、かつこのトレンドを用いて薄膜の光強度スペクトルを補正することも検討されてきた。ただし、このような手段によれば、サンプルを別途準備する必要があるなど、煩雑である。
However, when the thickness of a thin film is measured as described above, a non-flat trend (fluctuation / trend of a spectrum other than the interference light component) is observed in the light intensity spectrum due to the type and color of the thin film or its base material. There is. On the other hand, according to the conventional method of performing the Fourier transform on the light intensity spectrum obtained by the measurement to obtain the power spectrum of the physical film thickness without considering the influence of such a trend, The component of the film thickness may be buried in the power spectrum component derived from the trend. This makes it difficult to accurately measure the thickness of the thin film.
Conventionally, it has been considered to irradiate a sample of a base material on which a thin film is formed with light, obtain a trend for this sample in advance, and correct the light intensity spectrum of the thin film using this trend. Have been. However, such means is complicated, such as the necessity of preparing a sample separately.

特開平07−294220号公報JP-A-07-294220

本発明は、前記した事情に鑑みてなされたものであり、薄膜またはその基材の種類や色に起因する光強度スペクトルのトレンドによる悪影響をなくし、または少なくし、薄膜の厚みを正確に測定することが可能な膜厚測定方法、およびその装置を提供することを、その課題としている。   The present invention has been made in view of the above-described circumstances, and eliminates or reduces the adverse effect due to the trend of the light intensity spectrum caused by the type and color of the thin film or its base material, and accurately measures the thickness of the thin film. It is an object of the present invention to provide a film thickness measuring method capable of performing the method and an apparatus therefor.

上記の課題を解決するため、本発明では、次の技術的手段を講じている。   In order to solve the above problems, the present invention takes the following technical measures.

本発明の第1の側面により提供される膜厚測定方法は、所定の波長範囲の光を薄膜に照射し、前記光の前記薄膜による干渉光の分光強度を測定する分光強度測定ステップと、この分光強度測定ステップにより得られた前記干渉光の分光強度に関するデータをフーリエ変換し、かつこの変換により得られたパワースペクトルに現れるピークの位置に基づいて前記薄膜の厚さを算出する厚さ算出ステップと、を有する、膜厚測定方法であって、前記干渉光の分光強度のトレンドを求め、かつ前記干渉光の分光強度から前記トレンドの影響を除外または減少させた分光強度補正データを作成するステップを、さらに有しており、前記厚さ算出ステップにおいては、前記干渉光の分光強度に関するデータとして、前記分光強度補正データを用い、前記フーリエ変換の対象とすることを特徴としている。   The film thickness measuring method provided by the first aspect of the present invention includes: irradiating a thin film with light in a predetermined wavelength range, and measuring a spectral intensity of interference light of the light by the thin film; A thickness calculating step of performing a Fourier transform on the data regarding the spectral intensity of the interference light obtained in the spectral intensity measuring step, and calculating a thickness of the thin film based on a position of a peak appearing in a power spectrum obtained by the conversion; Obtaining a trend of the spectral intensity of the interference light, and creating spectral intensity correction data in which the influence of the trend is excluded or reduced from the spectral intensity of the interference light. And further comprising, in the thickness calculating step, using the spectral intensity correction data as data relating to the spectral intensity of the interference light, It is characterized in that the object of Rie conversion.

本発明において、好ましくは、前記分光強度補正データは、前記トレンドと測定された分光強度との比または差に基づいて求める。   In the present invention, preferably, the spectral intensity correction data is obtained based on a ratio or a difference between the trend and the measured spectral intensity.

本発明において、好ましくは、前記トレンドを求める手法として、測定された分光強度のデータに平滑化を施す。   In the present invention, preferably, as a method of obtaining the trend, the data of the measured spectral intensity is smoothed.

本発明の第2の側面により提供される膜厚測定装置は、所定の波長範囲の光を薄膜に照射するための光源と、前記光の前記薄膜による干渉光の分光強度を測定するための光検出器と、この光検出器を用いて得られた前記干渉光の分光強度に関するデータをフーリエ変換し、かつこの変換により得られたパワースペクトルに現れるピークの位置に基づいて前記薄膜の厚さを算出可能なデータ処理手段と、を備えている、膜厚測定装置であって、前記データ処理手段は、前記干渉光の分光強度のトレンドを求め、かつ前記干渉光の分光強度から前記トレンドの影響を除外または減少させた分光強度補正データを作成するとともに、前記干渉光の分光強度に関するデータとして、前記分光強度補正データを用い、前記フーリエ変換の対象とすることが可能な構成とされていることを特徴としている。   A film thickness measuring apparatus provided by the second aspect of the present invention includes a light source for irradiating a thin film with light in a predetermined wavelength range, and a light for measuring a spectral intensity of interference light of the light by the thin film. Detector, Fourier transform data on the spectral intensity of the interference light obtained using this photodetector, and based on the position of the peak appearing in the power spectrum obtained by this conversion, the thickness of the thin film A data processing means capable of calculating, wherein the data processing means obtains a trend of the spectral intensity of the interference light, and obtains the influence of the trend from the spectral intensity of the interference light. Create and reduce spectral intensity correction data, and use the spectral intensity correction data as data relating to the spectral intensity of the interference light, and use the spectral intensity correction data as an object of the Fourier transform. It is characterized in that there is a configurable.

本発明のその他の特徴および利点は、添付図面を参照して以下に行なう発明の実施の形態の説明から、より明らかになるであろう。   Other features and advantages of the present invention will become more apparent from the following description of embodiments of the invention with reference to the accompanying drawings.

本発明に係る膜厚測定装置の一例を示す概略説明図である。It is a schematic explanatory view showing an example of a film thickness measuring device concerning the present invention. (a)は、図1に示す測定装置で取得される干渉光成分の波形の一例を示し、(b)は、(a)の波形に対しフーリエ変換を施すことにより得られるパワースペクトルを示し、(c)は補正が施されたパワースペクトルを示すグラフである。(A) shows an example of a waveform of an interference light component acquired by the measuring device shown in FIG. 1, (b) shows a power spectrum obtained by performing a Fourier transform on the waveform of (a), (C) is a graph showing a corrected power spectrum. (a)〜(d)は従来の測定方法を説明するグラフである。(A)-(d) is a graph explaining the conventional measuring method. (a)〜(e)は本発明に係る測定方法を説明するグラフである。(A)-(e) is a graph explaining the measuring method concerning this invention. (a)〜(e)は本発明と従来技術との比較説明図である。(A)-(e) is comparative explanatory drawing of this invention and a prior art.

以下、本発明の好ましい実施の形態について、図面を参照して具体的に説明する。   Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.

図1に示す膜厚測定装置Aは、干渉法による膜厚測定が可能なものであり、光源1、光検出器2、およびデータ処理手段5を備えている。データ処理手段5は、後述する各種のデータ処理を実行するものであり、たとえばパーソナルコンピュータを用いて構成されている。ただし、これに代えて、膜厚測定専用のデータ処理装置として構成されていてもよい。測定対象の薄膜3は、基材4上に成膜されている。光源1は、所定の波長範囲の光を発することが可能な光源であって、たとえば白色光源である。この膜厚測定装置Aにおいては、光源1から発せられた光(測定光)の一部が薄膜3の表面3aで反射される。 前記測定光の一部は薄膜3を透過し、薄膜3と基材4との界面3bで反射される。 薄膜3からの戻り光には、表面3aによる反射光、および界面3bによる反射光が含まれる。   A film thickness measuring apparatus A shown in FIG. 1 is capable of measuring a film thickness by an interference method, and includes a light source 1, a photodetector 2, and a data processing unit 5. The data processing means 5 executes various types of data processing described later, and is configured using, for example, a personal computer. However, instead of this, a data processing device dedicated to film thickness measurement may be configured. The thin film 3 to be measured is formed on a substrate 4. The light source 1 is a light source capable of emitting light in a predetermined wavelength range, and is, for example, a white light source. In the film thickness measuring device A, a part of the light (measuring light) emitted from the light source 1 is reflected by the surface 3a of the thin film 3. Part of the measurement light passes through the thin film 3 and is reflected at the interface 3b between the thin film 3 and the substrate 4. The return light from the thin film 3 includes light reflected by the surface 3a and light reflected by the interface 3b.

図2に、干渉法を用いた膜厚検出のためのデータ処理の基本的な概要を示す。以下、簡単のため図1の照射角度θを90度とする。   FIG. 2 shows a basic outline of data processing for film thickness detection using an interference method. Hereinafter, for simplicity, the irradiation angle θ in FIG.

図1に示される膜厚測定装置Aにおいては、薄膜3からの前記した戻り光を光検出器2によって受けることにより、理想的には、たとえば図2(a)に示されるような干渉光成分の波形が取得される(分光強度測定ステップ)。同図の光強度スペクトルは、トレンドがみられない理想に近いものとして示されている。ここで、トレンドとは、干渉光成分以外のスペクトルの変動・趨勢である。   In the film thickness measuring apparatus A shown in FIG. 1, the above-mentioned return light from the thin film 3 is received by the photodetector 2, and ideally, for example, an interference light component as shown in FIG. Is obtained (spectral intensity measurement step). The light intensity spectrum shown in the same drawing is shown as being close to an ideal where no trend is observed. Here, the trend is a fluctuation / trend of a spectrum other than the interference light component.

図2(a)に示した干渉光成分の波形に対し、フーリエ変換を施すことにより、表面3aおよび界面3bの相互間の物理膜厚(薄膜3の厚み)tと薄膜3の屈折率n2の積に応じた光路差2×t×n2に対するパワースペクトルが、図2(b)のように得られる。また、光路差に対するパワースペクトルに屈折率補正を施すことにより、物理膜厚に対するパワースペクトルが図2(c)のように得られる。原理的には、図2(c)において、薄膜3の厚みtに対応する位置にピークが現れ、このことにより厚みtを検出することができる(厚さ算出ステップ)。   By performing Fourier transform on the waveform of the interference light component shown in FIG. 2A, the physical film thickness (thickness of the thin film 3) t between the surface 3a and the interface 3b and the refractive index n2 of the thin film 3 are obtained. A power spectrum for an optical path difference 2 × t × n2 according to the product is obtained as shown in FIG. Further, by performing a refractive index correction on the power spectrum corresponding to the optical path difference, a power spectrum corresponding to the physical film thickness is obtained as shown in FIG. In principle, in FIG. 2 (c), a peak appears at a position corresponding to the thickness t of the thin film 3, whereby the thickness t can be detected (thickness calculation step).

図3(a)〜(d)に、従来の手法を用いた、光強度スペクトルの解析に関する具体例が示されている。まず、図3(a)のラインL1の波形には、物理膜厚が0.5μmである薄膜3から得られる干渉光成分が含まれている。干渉法では、図3(a)に示されるように、できるだけ平坦なトレンドをもつ波形の方が望ましい。図3(a)の波形に膜厚演算を施して得られる物理膜厚に対するパワースペクトルは、図3(b)に示されており、期待される物理膜厚(今回の例では0.5μm)の位置に明瞭なピークが現れる。   FIGS. 3A to 3D show specific examples relating to the analysis of the light intensity spectrum using the conventional method. First, the waveform of the line L1 in FIG. 3A includes an interference light component obtained from the thin film 3 having a physical film thickness of 0.5 μm. In the interferometry, as shown in FIG. 3A, a waveform having a trend as flat as possible is desirable. The power spectrum for the physical film thickness obtained by performing the film thickness calculation on the waveform of FIG. 3A is shown in FIG. 3B, and the expected physical film thickness (0.5 μm in this example) A clear peak appears at the position.

一方、薄膜3または基材4の種類によっては、図3(c)のラインL2の波形のように、平坦でないトレンドをもつ場合が観測され得る。このような波形は、一例として薄膜3または基材4が無色でない場合に観測され易い。
図3(d)には、従来用いられてきたフーリエ変換を利用した演算を施して得られるパワースペクトルが示されている。平坦でないトレンドに由来する0μm付近のパワースペクトル成分に、期待される物理膜厚(今回の例では0.5μm)の成分が埋もれており、パワースペクトルのピークは、0.5μmから位置ずれしている。このことから理解されるように、従来の膜厚演算手法は、平坦でないトレンドをもつ波形に対して余り有効ではない。
On the other hand, depending on the type of the thin film 3 or the base material 4, it may be observed that the waveform has a non-flat trend like the waveform of the line L2 in FIG. Such a waveform is easily observed, for example, when the thin film 3 or the substrate 4 is not colorless.
FIG. 3D shows a power spectrum obtained by performing an operation using a Fourier transform that has been conventionally used. The component of the expected physical film thickness (0.5 μm in this example) is buried in the power spectrum component around 0 μm derived from the uneven trend, and the peak of the power spectrum is shifted from 0.5 μm. I have. As can be understood from this, the conventional film thickness calculation method is not very effective for waveforms having an uneven trend.

図4(a)〜(e)に、本発明の実施形態による光強度スペクトルの解析の概要が示されている。本実施形態においては、まず図4(a)のラインL2で示す光強度スペクトル(図3(c)と同一)の波形から、図4(b)のラインL3で示すトレンド(干渉光の分光強度のトレンドスペクトル)を求める。このトレンドは、光強度スペクトルの平滑化(スムージング)を施して得られたものであり、前記平滑化は、たとえば移動平均法などを用いて行なわれる。   FIGS. 4A to 4E show an outline of the analysis of the light intensity spectrum according to the embodiment of the present invention. In the present embodiment, first, from the waveform of the light intensity spectrum (same as FIG. 3C) shown by the line L2 in FIG. 4A, the trend (the spectral intensity of the interference light) shown by the line L3 in FIG. Is obtained. This trend is obtained by smoothing (smoothing) the light intensity spectrum, and the smoothing is performed using, for example, a moving average method.

次いで、前記トレンドに基づき、たとえば図4(c)のラインL3’に示すような補正用データを作成する。この補正用データは、たとえばラインL3で示すトレンドの逆数に100を乗じたものである。その後は、ラインL3’で示す補正用データを、図4(a)のラインL2で示す光強度スペクトルのデータに乗じることにより、図4(d)のラインL2’で示す分光強度補正データを作成する。この分光強度補正データは、ラインL3のトレンドスペクトルと、ラインL2の分光強度スペクトルとの比を算出することにより、ラインL2の分光強度スペクトルからトレンドの影響を除外または減少させたデータ(補正された分光強度スペクトル)である。この分光強度補正データをフーリエ変換すると、図4(e)に示すようなパワースペクトルが得られる。このパワースペクトルにおいては、期待される物理膜厚(今回の例では0.5μm)の位置にピークが得られる。   Next, based on the trend, for example, correction data as shown by a line L3 'in FIG. 4C is created. This correction data is obtained, for example, by multiplying the reciprocal of the trend indicated by the line L3 by 100. Thereafter, by multiplying the correction data indicated by the line L3 ′ with the data of the light intensity spectrum indicated by the line L2 in FIG. 4A, the spectral intensity correction data indicated by the line L2 ′ in FIG. 4D is created. I do. The spectral intensity correction data is obtained by calculating the ratio of the trend spectrum of the line L3 to the spectral intensity spectrum of the line L2, thereby eliminating or reducing the influence of the trend from the spectral intensity spectrum of the line L2 (corrected data). (Spectral intensity spectrum). When this spectral intensity correction data is subjected to Fourier transform, a power spectrum as shown in FIG. 4E is obtained. In this power spectrum, a peak is obtained at the position of the expected physical film thickness (0.5 μm in this example).

図5は、前記した説明を理解し易いように纏めたものである。従来においては、図5(a)のラインL2で示した分光強度スペクトルをそのままフーリエ変換し、同図(b)に示すようなパワースペクトルを得ていた。これに対し、本発明(本実施形態)においては、同図(c),(d)に示すような処理を経て、トレンドを除外または減少させたラインL2’で示した分光強度補正データを求め、かつこれをフーリエ変換し、同図(e)に示すようなパワースペクトルを得ている。   FIG. 5 summarizes the above description for easy understanding. Conventionally, the spectral intensity spectrum shown by the line L2 in FIG. 5A is directly subjected to Fourier transform to obtain a power spectrum as shown in FIG. On the other hand, in the present invention (the present embodiment), the spectral intensity correction data indicated by the line L2 'from which the trend is eliminated or reduced is obtained through the processes shown in FIGS. , And a Fourier transform thereof to obtain a power spectrum as shown in FIG.

以上の説明から理解されるように、本実施形態によれば、ラインL2で示す光強度スペクトルに平坦ではないトレンドがみられる場合においても、薄膜3の厚みを正確に測定することが可能となる。
また、本実施形態によれば、基材4のサンプルを別途準備して、そのトレンドを事前に求めておくといった必要もない。さらに、サンプルを別途準備してそのトレンドを事前に求めておく手法によれば、基材4や薄膜3の表面形状などにより、光の反射率・透過率が相違したものとなり、トレンドを適切に除ききれない場合があるが、本実施形態によれば、そのような不具合もない。
As understood from the above description, according to the present embodiment, it is possible to accurately measure the thickness of the thin film 3 even when a non-flat trend is observed in the light intensity spectrum indicated by the line L2. .
Further, according to the present embodiment, it is not necessary to separately prepare a sample of the base material 4 and obtain the trend in advance. Furthermore, according to the method of preparing a sample separately and determining its trend in advance, the reflectance and transmittance of light differ depending on the surface shape of the base material 4 and the thin film 3, and the trend is appropriately determined. In some cases, the problem cannot be eliminated, but according to the present embodiment, there is no such problem.

本発明は、上述した実施形態の内容に限定されない。本発明に係る膜厚測定方法の各ステップの具体的な内容は、本発明の意図する範囲内において種々に変更可能である。同様に、本発明に係る膜厚測定装置の各部の具体的な構成は、本発明の意図する範囲内において種々に設計変更可能である。   The present invention is not limited to the contents of the above-described embodiment. The specific contents of each step of the film thickness measuring method according to the present invention can be variously changed within the range intended by the present invention. Similarly, the specific configuration of each part of the film thickness measuring apparatus according to the present invention can be variously changed within the range intended by the present invention.

上述の実施形態においては、ラインL2’で示す分光強度補正データを求めるための手法として、ラインL3で示すトレンドと、ラインL2で示す分光強度スペクトルとの比に基づく手法を用いているが、本発明はこれに限定されず、たとえばそれらの差に基づいて求めてもよい。勿論、これら以外の手法を採用してもよい。
トレンドを求める手法としては、測定された分光強度のデータに平滑化を施す手法とは別の手法を用いることが可能であり、たとえばデジタルフィルタリングなどの手法を用いることもできる。
光源は、所望の分光強度スペクトルを得るのに必要な波長範囲をもつ光源であればよく、白色光源以外の光源を用いることもできる。
In the above-described embodiment, as a method for obtaining the spectral intensity correction data indicated by the line L2 ′, a method based on the ratio between the trend indicated by the line L3 and the spectral intensity spectrum indicated by the line L2 is used. The invention is not limited to this, and may be determined based on, for example, their difference. Of course, other methods may be adopted.
As a method of obtaining a trend, a method different from a method of performing smoothing on the measured spectral intensity data can be used. For example, a method such as digital filtering can be used.
The light source may be a light source having a wavelength range necessary to obtain a desired spectral intensity spectrum, and a light source other than a white light source may be used.

A 膜厚測定装置
1 光源
2 光検出器
3 薄膜
4 基材
5 データ処理手段
A film thickness measuring device 1 light source 2 photodetector 3 thin film 4 substrate 5 data processing means

Claims (4)

所定の波長範囲の光を薄膜に照射し、前記光の前記薄膜による干渉光の分光強度を測定する分光強度測定ステップと、
この分光強度測定ステップにより得られた前記干渉光の分光強度に関するデータをフーリエ変換し、かつこの変換により得られたパワースペクトルに現れるピークの位置に基づいて前記薄膜の厚さを算出する厚さ算出ステップと、
を有する、膜厚測定方法であって、
前記干渉光の分光強度のトレンドを求め、かつ前記干渉光の分光強度から前記トレンドの影響を除外または減少させた分光強度補正データを作成するステップを、さらに有しており、
前記厚さ算出ステップにおいては、前記干渉光の分光強度に関するデータとして、前記分光強度補正データを用い、前記フーリエ変換の対象とすることを特徴とする、膜厚測定方法。
Irradiating the thin film with light in a predetermined wavelength range, a spectral intensity measuring step of measuring the spectral intensity of the interference light by the thin film of the light,
Thickness calculation for Fourier transforming the data on the spectral intensity of the interference light obtained in the spectral intensity measuring step, and calculating the thickness of the thin film based on the position of the peak appearing in the power spectrum obtained by the conversion. Steps and
A method for measuring a film thickness, comprising:
Finding the trend of the spectral intensity of the interference light, and creating spectral intensity correction data excluding or reducing the effect of the trend from the spectral intensity of the interference light, further comprising:
In the thickness calculation step, the spectral intensity correction data is used as data relating to the spectral intensity of the interference light, and the data is subjected to the Fourier transform.
請求項1に記載の膜厚測定方法であって、
前記分光強度補正データは、前記トレンドと測定された分光強度との比または差に基づいて求める、膜厚測定方法。
The film thickness measuring method according to claim 1, wherein
The method for measuring a film thickness, wherein the spectral intensity correction data is obtained based on a ratio or a difference between the trend and the measured spectral intensity.
請求項1または2に記載の膜厚測定方法であって、
前記トレンドを求める手法として、測定された分光強度のデータに平滑化を施す、膜厚測定方法。
The film thickness measuring method according to claim 1 or 2,
As a technique for obtaining the trend, a film thickness measuring method for smoothing measured spectral intensity data.
所定の波長範囲の光を薄膜に照射するための光源と、
前記光の前記薄膜による干渉光の分光強度を測定するための光検出器と、
この光検出器を用いて得られた前記干渉光の分光強度に関するデータをフーリエ変換し、かつこの変換により得られたパワースペクトルに現れるピークの位置に基づいて前記薄膜の厚さを算出可能なデータ処理手段と、
を備えている、膜厚測定装置であって、
前記データ処理手段は、前記干渉光の分光強度のトレンドを求め、かつ前記干渉光の分光強度から前記トレンドの影響を除外または減少させた分光強度補正データを作成するとともに、前記干渉光の分光強度に関するデータとして、前記分光強度補正データを用い、前記フーリエ変換の対象とすることが可能な構成とされていることを特徴とする、膜厚測定方法。
A light source for irradiating the thin film with light in a predetermined wavelength range,
A light detector for measuring the spectral intensity of the interference light by the thin film of the light,
Fourier transform of the data on the spectral intensity of the interference light obtained using this photodetector, and data capable of calculating the thickness of the thin film based on the position of the peak appearing in the power spectrum obtained by this conversion Processing means;
A film thickness measuring device comprising:
The data processing means obtains a spectral intensity trend of the interference light, and creates spectral intensity correction data in which the influence of the trend is removed or reduced from the spectral intensity of the interference light, and the spectral intensity of the interference light. Characterized in that the spectral intensity correction data is used as the data relating to the data, and the data can be subjected to the Fourier transform.
JP2019130910A 2018-07-17 2019-07-16 Film thickness measurement method and its equipment Active JP6912045B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018134217 2018-07-17
JP2018134217 2018-07-17

Publications (2)

Publication Number Publication Date
JP2020016650A true JP2020016650A (en) 2020-01-30
JP6912045B2 JP6912045B2 (en) 2021-07-28

Family

ID=69581579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019130910A Active JP6912045B2 (en) 2018-07-17 2019-07-16 Film thickness measurement method and its equipment

Country Status (1)

Country Link
JP (1) JP6912045B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116429257A (en) * 2023-03-11 2023-07-14 上海精测半导体技术有限公司 Spectrum measurement system and spectrum type thickness measurement system
JP7378670B1 (en) * 2022-11-17 2023-11-13 三菱電機株式会社 Optical measurement device, acquisition method, acquisition program, and recording medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280520A (en) * 1994-04-11 1995-10-27 Toray Ind Inc Method and device for measuring thickness of thin film, and manufacture of optical filter and high polymer film
JPH10311708A (en) * 1997-05-13 1998-11-24 Tokyo Seimitsu Co Ltd Film thickness meter of interference type
JPH11153415A (en) * 1997-11-20 1999-06-08 Denso Corp Semiconductor thickness measuring device
JP2009053157A (en) * 2007-08-29 2009-03-12 Ricoh Co Ltd Method and apparatus for measuring film thickness of thin film coating layer
JP2011237355A (en) * 2010-05-13 2011-11-24 Panasonic Corp Film thickness measuring method and film thickness measuring apparatus
US20150029517A1 (en) * 2013-07-25 2015-01-29 Samsung Electronics Co., Ltd. Method for measuring thickness of object
JP2016200459A (en) * 2015-04-08 2016-12-01 株式会社荏原製作所 Film thickness measuring method, film thickness measuring device, polishing method, and polishing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280520A (en) * 1994-04-11 1995-10-27 Toray Ind Inc Method and device for measuring thickness of thin film, and manufacture of optical filter and high polymer film
JPH10311708A (en) * 1997-05-13 1998-11-24 Tokyo Seimitsu Co Ltd Film thickness meter of interference type
JPH11153415A (en) * 1997-11-20 1999-06-08 Denso Corp Semiconductor thickness measuring device
JP2009053157A (en) * 2007-08-29 2009-03-12 Ricoh Co Ltd Method and apparatus for measuring film thickness of thin film coating layer
JP2011237355A (en) * 2010-05-13 2011-11-24 Panasonic Corp Film thickness measuring method and film thickness measuring apparatus
US20150029517A1 (en) * 2013-07-25 2015-01-29 Samsung Electronics Co., Ltd. Method for measuring thickness of object
JP2016200459A (en) * 2015-04-08 2016-12-01 株式会社荏原製作所 Film thickness measuring method, film thickness measuring device, polishing method, and polishing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7378670B1 (en) * 2022-11-17 2023-11-13 三菱電機株式会社 Optical measurement device, acquisition method, acquisition program, and recording medium
WO2024105835A1 (en) * 2022-11-17 2024-05-23 三菱電機株式会社 Light measurement device, acquisition method, acquisition program, and recording medium
CN116429257A (en) * 2023-03-11 2023-07-14 上海精测半导体技术有限公司 Spectrum measurement system and spectrum type thickness measurement system
WO2024187978A1 (en) * 2023-03-11 2024-09-19 上海精测半导体技术有限公司 Spectral measurement system and spectral thickness measurement system

Also Published As

Publication number Publication date
JP6912045B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
KR102549058B1 (en) Optical measurement apparatus and optical measurement method
JP5637738B2 (en) Deformation measuring apparatus and deformation measuring method
US9841383B2 (en) Multiscale uniformity analysis of a material
JP4323991B2 (en) Spectral reflectance measuring device, film thickness measuring device, and spectral reflectance measuring method
JP6119926B1 (en) Metal body shape inspection apparatus and metal body shape inspection method
WO2011083544A1 (en) Film thickness measuring apparatus using interference and method of measuring film thickness using interference
US9243889B2 (en) Device for optical coherence tomography
JP2020016650A (en) Film thickness measurement method, and device of the same
CN105300326A (en) Method and device for quantitative determination of paint surface flatness
JPWO2019124104A1 (en) Object shape measuring device, method, and program
JP2008014696A (en) Image display device and method, and unevenness inspection device and method
US9091633B2 (en) Apparatus and method for locating the centre of a beam profile
US11454795B2 (en) Surface sensing in optical microscopy and automated sample scanning systems
EP2863169B1 (en) Apparatus and method for measuring caliper of creped tissue paper
JP5958627B1 (en) Sliding device
TW201339564A (en) White-light interference measuring device and interfere measuring method thereof
CN111316086B (en) Optical detection method for surface defects and related device
US20220011238A1 (en) Method and system for characterizing surface uniformity
JP2010060385A (en) Device and method for measuring liquid membrane thickness
KR101436403B1 (en) Shadow Moire Method using Sine Wave Grationg and Measuring Apparatus using the same
JP2007147505A (en) Method and device for measuring surface profile
JP7296844B2 (en) Analysis device, analysis method, interference measurement system, and program
JP6677407B2 (en) Observation method of fault structure, observation device, and computer program
JP2011196766A (en) Method for measuring shape of measured object having light transmittance
JP2016200439A (en) Coating film unevenness measurement method and coating film unevenness measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210625

R150 Certificate of patent or registration of utility model

Ref document number: 6912045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250