JP2016200439A - Coating film unevenness measurement method and coating film unevenness measurement device - Google Patents

Coating film unevenness measurement method and coating film unevenness measurement device Download PDF

Info

Publication number
JP2016200439A
JP2016200439A JP2015079030A JP2015079030A JP2016200439A JP 2016200439 A JP2016200439 A JP 2016200439A JP 2015079030 A JP2015079030 A JP 2015079030A JP 2015079030 A JP2015079030 A JP 2015079030A JP 2016200439 A JP2016200439 A JP 2016200439A
Authority
JP
Japan
Prior art keywords
light
coating film
electrode pattern
image
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015079030A
Other languages
Japanese (ja)
Inventor
柳沢 恭行
Yasuyuki Yanagisawa
恭行 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2015079030A priority Critical patent/JP2016200439A/en
Publication of JP2016200439A publication Critical patent/JP2016200439A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an image measurement method capable of performing the inspection of coating unevenness generated due to delicate drying conditions perceivable at last by human eyes which has been difficult in the past and an image measurement device.SOLUTION: A coating film inspection device includes: a transparent substrate 4 having a periodic electrode pattern 3 formed on the surface; an electric power supply 13 for applying a voltage to the electrode pattern; a light source 1 for irradiating light on a coating film 5 coated on the transparent substrate; and an image detector 12 provided with a collimate lens 2 using light from the light source as substantially parallel light and detecting an image of diffraction light generated from the coating film by light irradiation. The coating film is coated on the transparent substrate 4 formed with the periodic electrode pattern on the surface, and the voltage is applied to the electrode pattern 3, and zeroth order diffraction light close to the diffraction angle in which light intensity of a first side lobe becomes zero is detected from among the diffraction light generated when light is irradiated on the coating film 5.SELECTED DRAWING: Figure 1

Description

本発明はインクや高分子樹脂溶液などの塗料を基板に塗布した塗膜の乾燥過程において塗膜に発生する塗膜ムラを測定する方法および塗膜ムラ測定装置に関する。   The present invention relates to a method and an apparatus for measuring coating film unevenness that occur in a coating film during a drying process of a coating film in which a coating material such as ink or a polymer resin solution is applied to a substrate.

光学フィルムやガスバリアフィルム、液晶関連のカラーフィルタなど、インクや高分子樹脂溶液などの塗料で塗膜を形成する工程では、外観上のムラが原因で製品が欠陥となる場合がある。光学フィルムやカラーフィルタでは光学特性の欠陥となり、ガスバリアフィルムではバリア性能の不良などが生じる。   In the process of forming a coating film with a paint such as an ink or a polymer resin solution such as an optical film, a gas barrier film, or a liquid crystal-related color filter, the product may be defective due to uneven appearance. Optical films and color filters cause defects in optical characteristics, and gas barrier films cause poor barrier performance.

このようなムラの発生を抑えるには、各塗料と各塗布乾燥条件において、どの段階でムラが生じるかを測定し、最適な塗料と塗布乾燥条件を把握して適用することでムラを発生させないことが有効である。しかし、塗膜は通常約1μm〜数百μmと薄く、着色があったり透明である場合や、照明条件と塗膜を目視で見る角度またはカメラなどで撮像する角度がムラによって異なることなど、光学的に観察するには困難な場合が多い。   In order to suppress the occurrence of such unevenness, measure at which stage unevenness occurs in each paint and each coating and drying condition, and identify and apply the optimal paint and coating and drying conditions so that unevenness does not occur It is effective. However, the coating film is usually as thin as about 1 μm to several hundred μm, and it is colored or transparent, and the illumination conditions and the angle at which the coating film is visually observed or taken with a camera etc. vary depending on unevenness. Often difficult to observe.

塗膜のムラを画像検査する方法として、塗膜のムラを照明方法などを変えて強調して画像計測する方法が多く用いられているが、ムラを光学的に強調して画像化する従来の方法では、ムラはわずかな照明方法や角度を変えて撮像するが、わずかな反射光や透過光の変化に起因するムラを高感度に画像化することが難しかった(特許文献1)。   As a method for inspecting the unevenness of the coating film, a method of measuring the image by emphasizing the unevenness of the coating film by changing the illumination method or the like is often used. In this method, unevenness is picked up by slightly changing the illumination method and angle, but it is difficult to image unevenness due to slight changes in reflected light and transmitted light with high sensitivity (Patent Document 1).

また、塗膜が液体の状態で塗布されて乾燥する過程においては、塗料と乾燥条件を変えてムラが発生しない条件を求めたい場合、ムラを強調して測定することが難しい。また、ムラがどの乾燥段階で生じるかを確認したい場合も、塗膜の性状は変化していき、光学条件も異なっていくので、ムラを画像測定することは難しかった。   Further, in the process of applying a coating film in a liquid state and drying, it is difficult to measure with emphasis on unevenness when it is desired to change the paint and drying conditions to obtain a condition that does not cause unevenness. Also, when it is desired to confirm in which drying stage the unevenness occurs, it is difficult to measure the unevenness image because the properties of the coating film change and the optical conditions also differ.

特開平10−142101号公報JP-A-10-142101

本発明は、上記の問題点を解決するためになされたものであり、従来難しかった、人間の目でようやく感知できるような、乾燥条件により発生する微少な塗膜ムラの検査が可能な画像測定方法および画像測定装置を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and image measurement capable of inspecting minute coating film unevenness caused by drying conditions, which has been difficult in the past and can be finally detected by the human eye. It is to provide a method and an image measuring device.

上記の課題を解決するための手段として、請求項1に記載の発明は、表面に周期的な電極パターンを形成させた透明基板上に塗膜を形成し、前記電極パターンに電圧を印加すると共に、略平行光を照射し、発生する回折光のうち、第一サイドローブの、光強度が零になる回折角度に近い0次回折光を検出することを特徴とする塗膜ムラ測定方法である。   As means for solving the above problems, the invention according to claim 1 is characterized in that a coating film is formed on a transparent substrate having a periodic electrode pattern formed on the surface, and a voltage is applied to the electrode pattern. In this coating film unevenness measuring method, the first side lobe is irradiated with substantially parallel light, and zero-order diffracted light close to the diffraction angle at which the light intensity becomes zero is detected.

また、請求項2に記載の発明は、前記回折光のサイドローブにおいて回折光強度がピーク強度より低下した回折角度で回折光を画像検出することを特徴とする請求項1記載の塗膜ムラ測定方法である。   The invention according to claim 2 is characterized in that diffracted light is image-detected at a diffraction angle at which the diffracted light intensity is lower than the peak intensity in the side lobe of the diffracted light. Is the method.

また、請求項3に記載の発明は、前記光照射を、多波長の略平行光でおこなうことを特
徴とする請求項1または請求項2に記載の塗膜ムラ測定方法である。
The invention according to claim 3 is the coating film unevenness measuring method according to claim 1 or 2, wherein the light irradiation is performed with substantially parallel light of multiple wavelengths.

また、請求項4に記載の発明は、表面に周期的な電極パターンを形成させた透明基板と、
前記電極パターンに電圧を印加するための電源と、
前記透明基板上の塗布された塗膜に光照射するための光源と、光源からの光を略平行光とするコリメートレンズを具備し
光照射により、塗膜から生じる回折光の画像を検出する画像検出器と、
を備えた塗膜検査装置であって、
前記塗膜を、表面に周期的な電極パターンを形成させた透明基板上に塗布し、前記電極パターンに電圧を印加させ、前記塗膜に光照射したときに発生する回折光のうち、第一サイドローブの、光強度が零になる回折角度に近い0次回折光を検出することを特徴とする塗膜ムラ測定装置である。
The invention according to claim 4 is a transparent substrate having a periodic electrode pattern formed on the surface,
A power source for applying a voltage to the electrode pattern;
An image that includes a light source for irradiating the coated film on the transparent substrate with light and a collimator lens that makes light from the light source substantially parallel light, and detects an image of diffracted light generated from the film by light irradiation. A detector;
A coating film inspection apparatus comprising:
Of the diffracted light generated when the coating film is applied on a transparent substrate having a periodic electrode pattern formed on the surface, a voltage is applied to the electrode pattern, and the coating film is irradiated with light, the first A coating film unevenness measuring apparatus that detects zero-order diffracted light close to a diffraction angle at which the light intensity of a side lobe becomes zero.

また、請求項5に記載の発明は、前記回折光のサイドローブにおいて回折光強度がピーク強度より低下した回折角度で回折光を画像検出することを特徴とする請求項4記載の塗膜ムラ測定装置である。   Further, the invention according to claim 5 is characterized in that the diffracted light image is detected at a diffraction angle at which the diffracted light intensity is lower than the peak intensity in the side lobe of the diffracted light. Device.

また、請求項6に記載の発明は、記光照射を、多波長の略平行光でおこなうことを特徴とする請求項4または請求項5に記載の塗膜ムラ測定装置である。   The invention according to claim 6 is the coating film unevenness measuring apparatus according to claim 4 or claim 5, wherein the light irradiation is performed with substantially parallel light of multiple wavelengths.

本発明の装置によれば、乾燥中の塗膜のムラを、基板に電場を印加することで周期的な電極パターンに沿って変形させ、ムラを回折光の変化として強調できるので、人間の目でようやく感知できるような、乾燥条件により発生する微少な塗膜ムラを高感度に検出することができる。また、塗膜の厚さの違いによるムラだけでなく、場所によって異なる塗膜の乾燥状態の違いについても、工程内において測定することができる。   According to the apparatus of the present invention, unevenness of the coating film during drying can be deformed along a periodic electrode pattern by applying an electric field to the substrate, and the unevenness can be emphasized as a change in diffracted light. It is possible to detect with high sensitivity minute coating unevenness that occurs due to drying conditions that can be finally detected. Moreover, not only unevenness due to the difference in the thickness of the coating film but also the difference in the dry state of the coating film that varies depending on the location can be measured in the process.

本発明の塗膜ムラ測定装置の構成を示した断面概念図である。It is a section conceptual diagram showing the composition of the coating-film nonuniformity measuring device of the present invention. 本発明の実施形態1を説明する説明図である。It is explanatory drawing explaining Embodiment 1 of this invention. 本発明の実施形態2を説明する説明図である。It is explanatory drawing explaining Embodiment 2 of this invention. 本発明の実施形態3を説明する説明図である。It is explanatory drawing explaining Embodiment 3 of this invention. 本発明の実施形態4を説明する説明図である。It is explanatory drawing explaining Embodiment 4 of this invention. 本発明の実施形態に用いる電極のパターンの概念図である。It is a conceptual diagram of the pattern of the electrode used for embodiment of this invention.

以下本発明を実施するための形態を、図面を用いて詳細に説明する。図1は、本発明の塗膜ムラ測定装置の構成を示しており、表面に周期的な電極パターン3を形成させた透明基板4、電極パターン3に電圧を印加するための電源13、透明基板4上に塗布された塗膜5に光照射するための光源1、光源からの光を略平行光とするコリメートレンズ2、塗膜5から生じる回折光の画像を検出する画像検出器12からなっており、透明基板4としては、可視光を透過する石英ガラス基材などが用いられる。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. FIG. 1 shows the configuration of a coating film unevenness measuring apparatus according to the present invention, a transparent substrate 4 having a periodic electrode pattern 3 formed on the surface, a power supply 13 for applying a voltage to the electrode pattern 3, and a transparent substrate. 4 includes a light source 1 for irradiating the coating film 5 applied on the light 4, a collimating lens 2 that makes light from the light source substantially parallel light, and an image detector 12 that detects an image of diffracted light generated from the coating film 5. As the transparent substrate 4, a quartz glass base material that transmits visible light or the like is used.

表面に周期的な電極パターン3を形成させた透明基板4上の塗膜4を形成した後、電極パターンに電圧を印加し、コリメートレンズ2により略平行光となった光を照射する。光源1としては、ハロゲン光、メタルハライド光、LED光、キセノン光などが用いられる。   After the coating film 4 on the transparent substrate 4 having the periodic electrode pattern 3 formed on the surface is formed, a voltage is applied to the electrode pattern, and the collimating lens 2 irradiates light that has become substantially parallel light. As the light source 1, halogen light, metal halide light, LED light, xenon light, or the like is used.

電極パターン3の周期構造6は、光を透過する開口部であり、透明基板4において周期
構造6以外の部分では光は透過しない構造とする。周期構造6をもつ透明基板4では、1次元方向で考えた場合、周期構造の幅7と、周期構造の間隔8の関係によって回折光が生じる。図6に、本発明の実施形態に用いるすだれ状電極のパターンを示す。
The periodic structure 6 of the electrode pattern 3 is an opening that transmits light, and the transparent substrate 4 has a structure that does not transmit light in portions other than the periodic structure 6. In the transparent substrate 4 having the periodic structure 6, when considered in a one-dimensional direction, diffracted light is generated by the relationship between the width 7 of the periodic structure and the interval 8 of the periodic structure. FIG. 6 shows a pattern of the interdigital electrode used in the embodiment of the present invention.

光源1から塗膜5の照射位置までの距離9と、光源1から塗膜5への垂線と照射位置までの距離10において、距離10を距離9で割ったもの、すなわち光源1から照射位置との方向余弦pをとる。回折角度11は、90度から方向余弦pの逆余弦を差分したものとなる。   The distance 10 from the light source 1 to the irradiation position of the coating film 5 and the distance 10 from the light source 1 to the coating film 5 and the vertical line to the irradiation position are obtained by dividing the distance 10 by the distance 9, that is, from the light source 1 to the irradiation position. The direction cosine p is taken. The diffraction angle 11 is obtained by subtracting the inverse cosine of the direction cosine p from 90 degrees.

<実施形態1>
図2は、本発明の実施形態1を説明する説明図であり、方向余弦pで光源装置1から特定の波長の光を照射した場合、画像検出器12では、周期構造6と塗膜5を透過した光で生じる回折光が検出される。方向余弦pと画像検出器12で検出される回折光の光強度の関係を示している。
<Embodiment 1>
FIG. 2 is an explanatory diagram for explaining Embodiment 1 of the present invention. When light of a specific wavelength is irradiated from the light source device 1 with the direction cosine p, the image detector 12 has the periodic structure 6 and the coating film 5 formed thereon. Diffracted light generated by the transmitted light is detected. The relationship between the direction cosine p and the light intensity of the diffracted light detected by the image detector 12 is shown.

周期構造の幅7をs、周期構造の間隔8をdとおき、照射エリアの周期構造の数をNとする。画像検出器12で検出される回折光の強度は、図2(a)に示すように波長λをdで割った周期ごとに鋭い強度が表れるsin(Nx)/sin(x)の2乗の特性の項16と、図2(b)に示すように波長λをsで割った周期ごとに強度が零となるsinc(x)の2乗の特性の項17の積で表される。   Suppose that the width 7 of the periodic structure is s, the interval 8 of the periodic structure is d, and the number of the periodic structures in the irradiation area is N. The intensity of the diffracted light detected by the image detector 12 is the square of sin (Nx) / sin (x) in which a sharp intensity appears for each period obtained by dividing the wavelength λ by d as shown in FIG. As shown in FIG. 2B, the characteristic term 16 is expressed by the product of the squared characteristic term 17 of sinc (x) in which the intensity becomes zero for each period obtained by dividing the wavelength λ by s.

すなわち、画像検出器12で検出される光強度18は、図2(c)に示すように方向余弦pに対し、ある波長λにおいて、λ/dの周期で鋭い光強度が表れ、λ/sの周期で零になるsinc関数の2乗で増減する。   That is, the light intensity 18 detected by the image detector 12 shows a sharp light intensity with a period of λ / d at a certain wavelength λ with respect to the direction cosine p as shown in FIG. It increases / decreases by the square of the sinc function that becomes zero in the period of.

ここで、周期構造の間隔8が比較的大きいと、光強度18において、方向余弦pに対しλ/dの間隔で発生する各次数の回折が近づいてしまう。そのため、画像検出器12で、各次数の回折光のみを検出することが難しくなってしまう。各次数の回折光において、寸法の変化が光強度の変化に最も影響を及ぼす方向余弦pにおける角度は限られているため、寸法の変化によってあまり光強度の変化が生じない成分も検出されてしまい、感度が低下してしまう。   Here, if the interval 8 of the periodic structure is relatively large, in the light intensity 18, diffraction of each order generated at an interval of λ / d approaches the direction cosine p. Therefore, it becomes difficult for the image detector 12 to detect only the diffracted light of each order. In each order of the diffracted light, since the angle at the direction cosine p where the change in the dimension has the greatest influence on the change in the light intensity is limited, a component that does not change much in the light intensity due to the change in the dimension is detected. Sensitivity will decrease.

ここで、光強度18は項17で示されるように、方向余弦pに対しsinc(x)の2乗を包絡線として項16の成分が増減する。周期構造の幅sは、必ず周期構造の間隔dより小さいため、方向余弦pに対しsinc(x)の2乗の特性で増減する周期は、方向余弦pに対する光強度18のピーク間隔であるλ/dより大きくなる。   Here, as indicated by the term 17, the light intensity 18 increases or decreases in the component of the term 16 with the square of sinc (x) as an envelope with respect to the direction cosine p. Since the width s of the periodic structure is necessarily smaller than the interval d of the periodic structure, the period that increases or decreases with the square of sinc (x) with respect to the direction cosine p is the peak interval of the light intensity 18 with respect to the direction cosine p. Greater than / d.

電源13から交互に電圧印加と接地をした対向する電極パターン3に電圧を印加すると、電極パターン間に電気力線15が生じる。塗膜5を電気力線15が通ると、塗膜5と空気の誘電率が異なるためマクスウェル応力が働き、電場によって塗膜5が変形する。   When a voltage is applied from the power source 13 to the opposing electrode patterns 3 that are alternately applied and grounded, lines of electric force 15 are generated between the electrode patterns. When the electric lines of force 15 pass through the coating film 5, Maxwell stress acts because the dielectric constant of the coating film 5 is different from that of air, and the coating film 5 is deformed by an electric field.

周期構造の幅7がsのときに透過する光の強度が、塗膜5が変形することで変化し、幅7が等価的にs’としたときの光の強度となった場合、図2(d)に示すようにsの場合の方向余弦pに対する光強度19が、s’では光強度20の特性となる。画像検出器12を用いて画角21の範囲の光強度を検出したとする。このときsinc(x)の2乗の特性において光強度が零となる方向余弦pが変化する。そのため、回折角度が0より大きく包絡線が初めて0になる回折角度に近い回折光を画像検出器12で検出し、画像処理装置14で画像における光強度変化が生じている部分を求めることで、塗膜5の変形を光強度の変化として検出することができる。   In the case where the intensity of light transmitted when the width 7 of the periodic structure is s changes as the coating film 5 is deformed, and the width 7 is equivalent to the intensity of light when the width 7 is equivalently s ′, FIG. As shown in (d), the light intensity 19 with respect to the direction cosine p in the case of s becomes a characteristic of the light intensity 20 in s ′. It is assumed that the light intensity in the range of the angle of view 21 is detected using the image detector 12. At this time, the direction cosine p where the light intensity becomes zero changes in the square characteristic of sinc (x). Therefore, the image detector 12 detects diffracted light close to the diffraction angle where the diffraction angle is greater than 0 and the envelope is 0 for the first time, and the image processing device 14 obtains the portion where the light intensity change occurs in the image, The deformation of the coating film 5 can be detected as a change in light intensity.

塗膜5の変形の大きさは、膜の厚さや乾燥状態の違いによって異なり、また、回折光はわずかな形状の変化が光の強度の変化として顕著に表れるため、膜の厚さや乾燥状態の違いがムラの画像として検出できる。電圧印加のときと非印加のときの画像の差異がなければ、塗膜は乾燥しているものとして乾燥状態を確認できる。このように乾燥中の塗膜のムラを、電圧を印加することで検出できる。   The magnitude of the deformation of the coating film 5 varies depending on the thickness of the film and the difference in the dry state, and the diffracted light shows a slight change in shape as a change in the light intensity. The difference can be detected as an uneven image. If there is no difference between images when voltage is applied and when voltage is not applied, it is possible to confirm the dry state as the coating film is dry. Thus, the unevenness of the coating film during drying can be detected by applying a voltage.

周期的回路パターンのムラも見えるが、寸法精度が高い回路パターンを用い、さらに電圧ON−OFFのときの差から生じるムラを検出することで、塗膜のムラが検出できる。   Although unevenness of the periodic circuit pattern is also visible, the unevenness of the coating film can be detected by using a circuit pattern with high dimensional accuracy and detecting the unevenness caused by the difference between the voltage ON and OFF.

<実施形態2>
請求項2記載の本発明の実施形態2を図1、図3を用いて説明する。周期構造の幅7がsのときの,方向余弦pに対する光強度22は、電源13の電圧の印加によって塗膜5が変形して周期構造の幅7が等価的にs’となった場合、光強度23の特性となる。ここで、回折光のサイドローブにおいて回折光強度が低下する画角24、または画角25で,画像検出器12で光強度を検出する。これにより、周期構造の幅7がsの場合と、塗膜が変形して周期構造の幅7が等価的にs’となった部分では、両者の光強度の差が生じるため、周期構造の欠陥を光強度分布として検出できる。
<Embodiment 2>
A second embodiment of the present invention described in claim 2 will be described with reference to FIGS. When the width 7 of the periodic structure is s, the light intensity 22 with respect to the direction cosine p is, when the coating film 5 is deformed by application of the voltage of the power supply 13 and the width 7 of the periodic structure is equivalently s ′, The light intensity is 23. Here, the light intensity is detected by the image detector 12 at the field angle 24 or the field angle 25 at which the diffracted light intensity decreases in the side lobe of the diffracted light. Thereby, in the case where the width 7 of the periodic structure is s and in the portion where the coating film is deformed and the width 7 of the periodic structure is equivalently s ′, a difference in light intensity between the two occurs, so that the periodic structure Defects can be detected as a light intensity distribution.

<実施形態3>
用いた光源を多波長の光にした以外は実施形態1と同じ条件で行った場合を、図1、図4を用いて説明する。光源1から多波長の光を、コリメートレンズ2で略平行光として、基板4へ照射する。周期構造6の幅7がsのとき、波長λの場合には方向余弦pに対して光強度26となり、波長λ’の場合には方向余弦pに対して光強度27となる。ここで電源13の電圧の印加によって塗膜3が変形し周期構造6の幅7が等価的にs’になった場合、波長λ、波長λ’の光強度はそれぞれ、光強度28、光強度29となる。
<Embodiment 3>
A case where the light source is used under the same conditions as in the first embodiment except that light of multiple wavelengths is used will be described with reference to FIGS. The substrate 4 is irradiated with multi-wavelength light from the light source 1 as substantially parallel light by the collimator lens 2. When the width 7 of the periodic structure 6 is s, when the wavelength is λ, the light intensity is 26 with respect to the direction cosine p, and when the wavelength is λ ′, the light intensity is 27 with respect to the direction cosine p. Here, when the coating film 3 is deformed by application of the voltage of the power source 13 and the width 7 of the periodic structure 6 is equivalently s ′, the light intensities at the wavelengths λ and λ ′ are the light intensity 28 and the light intensity, respectively. 29.

多波長の光において、全波長で第一サイドローブの光強度が零になる回折角度に近い回折角である画角30で回折光を画像検出器12を用いて検出し、画像処理装置14で光の強度が変化する部分を求めることで、電源13の電圧の印加によって、塗膜5が変形し周期構造の幅7が等価的にs’になった場合の塗膜5の膜厚や乾燥状態の違いのムラを光強度変化として検出することができる。   In multi-wavelength light, diffracted light is detected using the image detector 12 at an angle of view 30 that is close to the diffraction angle at which the light intensity of the first side lobe becomes zero at all wavelengths. By obtaining a portion where the intensity of light changes, the coating film 5 is deformed by application of the voltage of the power source 13 and the film thickness and drying of the coating film 5 when the width 7 of the periodic structure is equivalently s ′. Unevenness in the difference in state can be detected as a change in light intensity.

光源が多波長であることで、全波長で第一サイドローブの光強度が零になる回折角度に近い回折角の画角で、回折光を画像検出器12を用いて検出するときに、光強度が零になる回折角度では周期構造の寸法変化に対する感度が悪く、また零になる回折角度から隔たりすぎた角度でも寸法変化によって変化しない光強度の割合が増えてしまい、感度が悪くなる。   When the diffracted light is detected using the image detector 12 at an angle of view close to the diffraction angle at which the light intensity of the first side lobe is zero at all wavelengths, the light source is multi-wavelength. At the diffraction angle at which the intensity is zero, the sensitivity to the dimensional change of the periodic structure is poor, and even when the angle is too far from the diffraction angle at which the intensity is zero, the ratio of the light intensity that does not change due to the dimensional change increases.

また、単波長の略平行光ではそのための画角の設定が難しい。そこで、多波長にすると、いずれかの波長で感度が高まることで、画角の設定を容易に、感度よく寸法変化を検出することができた。   In addition, it is difficult to set the angle of view for single-wavelength substantially parallel light. Therefore, when the number of wavelengths is increased, the sensitivity is increased at any wavelength, so that the dimensional change can be easily detected with a high sensitivity by setting the angle of view.

以上、基板4では周期構造6を光源1の照明光が透過する例で示した。基板4において周期構造6では光を反射し、周期構造6以外の部分では光を反射しない場合、光源1を画像検出器14と同方向から基板4を照射することで、同様の効果が実現できる。   As described above, the substrate 4 is shown as an example in which the illumination light from the light source 1 passes through the periodic structure 6. In the substrate 4, when the periodic structure 6 reflects light and the portion other than the periodic structure 6 does not reflect light, the same effect can be realized by irradiating the substrate 4 with the light source 1 from the same direction as the image detector 14. .

<実施形態4>
用いた光源を、多波長の光にした以外は、実施形態2同じ条件でいった場合を、図1、図5を用いて説明する。光源1から多波長の光を、コリメートレンズ2で略平行光として、基板4へ照射する。周期構造6の幅7がsのとき,波長λの場合、方向余弦pに対して光
強度31、波長λ’の場合、方向余弦pに対して光強度32となる。ここで電源13の電圧の印加によって塗膜3が変形し周期構造6の幅7がs’になった場合、波長λ、波長λ’での光強度はそれぞれ、光強度33、光強度34の特性となる。
<Embodiment 4>
A case where the light source used is the same as that of the second embodiment except that the light source is multi-wavelength light will be described with reference to FIGS. The substrate 4 is irradiated with multi-wavelength light from the light source 1 as substantially parallel light by the collimator lens 2. When the width 7 of the periodic structure 6 is s, when the wavelength is λ, the light intensity is 31 with respect to the direction cosine p, and when the wavelength is λ ′, the light intensity is 32 with respect to the direction cosine p. Here, when the coating film 3 is deformed by application of the voltage of the power source 13 and the width 7 of the periodic structure 6 becomes s ′, the light intensities at the wavelength λ and the wavelength λ ′ are the light intensity 33 and the light intensity 34, respectively. It becomes a characteristic.

ここで、多波長の各波長の回折光のサイドローブにおいて、回折光強度が低下する画角35、または画角36で,画像検出器8で光強度を検出する。これにより、電源13の電圧の印加によって、塗膜5が変形し周期構造6の幅7が等価的にs’になった場合の塗膜5の膜厚や乾燥状態の違いのムラを光強度変化として検出することができる。   Here, the light intensity is detected by the image detector 8 at the angle of view 35 or the angle of view 36 where the diffracted light intensity decreases in the side lobes of the diffracted light of multiple wavelengths. As a result, unevenness in the difference in film thickness and dry state of the coating film 5 when the coating film 5 is deformed and the width 7 of the periodic structure 6 is equivalently s ′ by application of the voltage of the power source 13 It can be detected as a change.

以上のことから、本発明の塗膜ムラ測定方法及び測定装置によって、例えばインクや高分子樹脂溶液などの塗料を基板に塗布した塗膜の乾燥過程において、基板に形成した周期的な電極パターンに電圧を加えて電場を生じさせ、電場によって変形する塗膜の回折光から塗膜の乾燥過程のムラを画像検出することができる。   From the above, by the coating film unevenness measuring method and measuring apparatus of the present invention, in the drying process of the coating film in which a coating material such as ink or polymer resin solution is applied to the substrate, the periodic electrode pattern formed on the substrate is formed. An electric field is generated by applying a voltage, and the unevenness in the drying process of the coating film can be detected from the diffracted light of the coating film deformed by the electric field.

1・・・光源
2・・・コリメートレンズ
3・・・電極パターン
4・・・透明基板
5・・・塗膜
6・・・周期構造
7・・・周期構造の幅
8・・・周期構造の間隔
9・・・距離
10・・・距離
11・・・回折角度
12・・・画像検出器
13・・・電源
14・・・画像処理装置
15・・・電気力線
16・・・項
17・・・項
18・・・光強度
19・・・光強度
20・・・光強度
21・・・画角
22・・・光強度
23・・・光強度
24・・・画角
25・・・画角
26・・・光強度
27・・・光強度
28・・・光強度
29・・・光強度
30・・・画角
31・・・光強度
32・・・光強度
33・・・光強度
34・・・光強度
35・・・画角
36・・・画角
DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Collimating lens 3 ... Electrode pattern 4 ... Transparent substrate 5 ... Coating film 6 ... Periodic structure 7 ... Periodic structure width 8 ... Periodic structure Interval 9 ... Distance 10 ... Distance 11 ... Diffraction angle 12 ... Image detector 13 ... Power source 14 ... Image processing device 15 ... Field of electric force 16 ... Section 17 Item 18: Light intensity 19: Light intensity 20: Light intensity 21 ... Angle of view 22 ... Light intensity 23 ... Light intensity 24 ... Angle of view 25 ... Angle of view Angle 26 ... Light intensity 27 ... Light intensity 28 ... Light intensity 29 ... Light intensity 30 ... Angle of view 31 ... Light intensity 32 ... Light intensity 33 ... Light intensity 34 ... Light intensity 35 ... Field angle 36 ... Field angle

Claims (6)

表面に周期的な電極パターンを形成させた透明基板上に塗膜を形成し、前記電極パターンに電圧を印加すると共に、略平行光を照射し、発生する回折光のうち、第一サイドローブの、光強度が零になる回折角度に近い0次回折光を検出することを特徴とする塗膜ムラ測定方法。   A coating film is formed on a transparent substrate having a periodic electrode pattern formed on the surface, a voltage is applied to the electrode pattern, and substantially parallel light is irradiated. A method for measuring coating film unevenness, comprising detecting zero-order diffracted light close to a diffraction angle at which the light intensity becomes zero. 前記回折光のサイドローブにおいて回折光強度がピーク強度より低下した回折角度で回折光を画像検出することを特徴とする請求項1記載の塗膜ムラ測定方法。   2. The method for measuring coating film unevenness according to claim 1, wherein the diffracted light is image-detected at a diffraction angle at which the diffracted light intensity is lower than the peak intensity in the side lobe of the diffracted light. 前記光照射を、多波長の略平行光でおこなうことを特徴とする請求項1または請求項2に記載の塗膜ムラ測定方法。   The coating film unevenness measuring method according to claim 1, wherein the light irradiation is performed with multi-wavelength substantially parallel light. 表面に周期的な電極パターンを形成させた透明基板と、
前記電極パターンに電圧を印加するための電源と、
前記透明基板上の塗布された塗膜に光照射するための光源と、光源からの光を略平行光とするコリメートレンズを具備し
光照射により、塗膜から生じる回折光の画像を検出する画像検出器と、
を備えた塗膜検査装置であって、
前記塗膜を、表面に周期的な電極パターンを形成させた透明基板上に塗布し、前記電極パターンに電圧を印加させ、前記塗膜に光照射したときに発生する回折光のうち、第一サイドローブの、光強度が零になる回折角度に近い0次回折光を検出することを特徴とする塗膜ムラ測定装置。
A transparent substrate having a periodic electrode pattern formed on the surface;
A power source for applying a voltage to the electrode pattern;
An image that includes a light source for irradiating the coated film on the transparent substrate with light and a collimator lens that makes light from the light source substantially parallel light, and detects an image of diffracted light generated from the film by light irradiation. A detector;
A coating film inspection apparatus comprising:
Of the diffracted light generated when the coating film is applied on a transparent substrate having a periodic electrode pattern formed on the surface, a voltage is applied to the electrode pattern, and the coating film is irradiated with light, the first A coating film unevenness measuring apparatus for detecting zero-order diffracted light close to a diffraction angle at which the light intensity of a side lobe becomes zero.
前記回折光のサイドローブにおいて回折光強度がピーク強度より低下した回折角度で回折光を画像検出することを特徴とする請求項4記載の塗膜ムラ測定装置。   5. The coating film unevenness measuring apparatus according to claim 4, wherein an image of the diffracted light is detected at a diffraction angle at which the diffracted light intensity is lower than the peak intensity in the side lobe of the diffracted light. 前記光照射を、多波長の略平行光でおこなうことを特徴とする請求項4または請求項5に記載の塗膜ムラ測定装置。   6. The coating film unevenness measuring apparatus according to claim 4 or 5, wherein the light irradiation is performed with substantially parallel light having multiple wavelengths.
JP2015079030A 2015-04-08 2015-04-08 Coating film unevenness measurement method and coating film unevenness measurement device Pending JP2016200439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015079030A JP2016200439A (en) 2015-04-08 2015-04-08 Coating film unevenness measurement method and coating film unevenness measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015079030A JP2016200439A (en) 2015-04-08 2015-04-08 Coating film unevenness measurement method and coating film unevenness measurement device

Publications (1)

Publication Number Publication Date
JP2016200439A true JP2016200439A (en) 2016-12-01

Family

ID=57422919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015079030A Pending JP2016200439A (en) 2015-04-08 2015-04-08 Coating film unevenness measurement method and coating film unevenness measurement device

Country Status (1)

Country Link
JP (1) JP2016200439A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072477A (en) * 2015-10-07 2017-04-13 凸版印刷株式会社 Coated film unevenness detection device and coated film unevenness detection method
CN112162095A (en) * 2020-09-24 2021-01-01 上海印标包装有限公司 Hydrophilic film and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072477A (en) * 2015-10-07 2017-04-13 凸版印刷株式会社 Coated film unevenness detection device and coated film unevenness detection method
CN112162095A (en) * 2020-09-24 2021-01-01 上海印标包装有限公司 Hydrophilic film and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6506274B2 (en) Multi-scale uniformity analysis of materials
JP5637738B2 (en) Deformation measuring apparatus and deformation measuring method
TWI420068B (en) Interferometry for lateral metrology
CN110196021A (en) Coating layer thickness and its application are measured based on Optical coherence tomography technology
KR20090084245A (en) Method for measuring thickness
WO2016181206A1 (en) The measurement setup for determining position of focal plane and effective focal length of an optical system and the method of determining position of focal plane and effective focal length of an optical system
JP2016200439A (en) Coating film unevenness measurement method and coating film unevenness measurement device
US10228329B2 (en) Arrangement for determining properties and/or parameters of a sample and/or of at least one film formed on the surface of a sample
JP2007155379A (en) Three-dimensional shape measuring device and three-dimensional shape measuring method
US10969343B2 (en) Measuring method, measuring arrangement and measuring device
TW201339564A (en) White-light interference measuring device and interfere measuring method thereof
KR20170055661A (en) Apparatus of real time imaging spectroscopic ellipsometry for large-area thin film measurements
EP2577265A1 (en) Apparatus and method for locating the centre of a beam profile
Nagato et al. Defect inspection technology for a gloss-coated surface using patterned illumination
JP2010060385A (en) Device and method for measuring liquid membrane thickness
JP2014020870A (en) Surface shape inspection device and surface shape inspection method
US10466274B2 (en) Arrangement for spatially resolved determination of the specific electrical resistance and/or the specific electrical conductivity of samples
US11041798B2 (en) Arrangement for determining the achievable adhesive strength before forming a connection having material continuity to a surface of a joining partner
JP4961777B2 (en) Coating unevenness inspection method
JP6679872B2 (en) Coating unevenness detection device and coating unevenness detection method
JP2018040714A (en) Device and method for measuring coating film irregularity image
JP6912045B2 (en) Film thickness measurement method and its equipment
JP6981111B2 (en) Viscosity distribution measuring device and viscosity distribution measuring method for coating film
JP5317759B2 (en) Method and system for quantifying orientation state of scaly material in coating film
TW201420993A (en) Multi-function measurement system for thin film elements