JPH10311708A - Film thickness meter of interference type - Google Patents

Film thickness meter of interference type

Info

Publication number
JPH10311708A
JPH10311708A JP12202097A JP12202097A JPH10311708A JP H10311708 A JPH10311708 A JP H10311708A JP 12202097 A JP12202097 A JP 12202097A JP 12202097 A JP12202097 A JP 12202097A JP H10311708 A JPH10311708 A JP H10311708A
Authority
JP
Japan
Prior art keywords
light
film thickness
light intensity
intensity distribution
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12202097A
Other languages
Japanese (ja)
Inventor
Takao Inaba
高男 稲葉
Kenji Sakai
謙児 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP12202097A priority Critical patent/JPH10311708A/en
Publication of JPH10311708A publication Critical patent/JPH10311708A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a film thickness of interference type capable of accurately measuring simultaneously the film thicknesses of a thin film formed on the substrate of a wafer, etc., and capable of measuring the film thickness distribution, even where these film thicknesses exist plurally within ranges of micron and submicron order. SOLUTION: Light is emitted from a light source 10 on a thin film having a plurality of film thicknesses formed on the silicon substrate of a wafer 50, the interfering light reflected on the front and rear of the film thickness is separated into the light of each wavelength by a spectral prism 16. The intensity of light separated into each wavelength thereof is made photoelectric transfer into an electric signal by a detector 18, and the light intensity distribution of the interfering light is detected. This light intensity distribution of the interfering light is made Fourier transform into a frequency component by a fast Fourier transform(FFT) 20, and the frequency band of light intensity distribution of the interfering light corresponding to each film thickness is elected by a filter 22, on the basis of the distribution of frequency component thereof. The frequency component is made inverse Fourier transform into the light intensity distribution by an inverse FFT 24 per elected frequency band, and the film thickness is found from the light intensity distribution by a fitting 26.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は干渉式膜厚計に係
り、特にシリコン基板上に形成された酸化膜(SiO2)等
の薄膜の膜厚及び金属膜(W、Al、Cu等)の段差を
光学的に測定する干渉式膜厚計に関する。
The present invention relates to relates to interferometric film thickness meter, in particular oxide film formed on a silicon substrate (SiO 2) thin film thickness and a metal film such as (W, Al, Cu, etc.) The present invention relates to an interference-type film thickness meter that optically measures a step.

【0002】[0002]

【従来の技術】近年、半導体素子の高集積化の要求に伴
い、ウェーハの高密度化及び多層化が進んでいる。これ
により、ウェーハ上に回路配線パターンを形成する露光
装置の焦点深度が浅くなり、ウェーハの平面度が高精度
に要求されている。この高精度の平坦化を実現する装置
として化学的機械研磨(CMP)装置が知られている。
化学的機械研磨装置は、ケミカル研磨材を研磨面に供給
しながらウェーハの表面を研磨布に押し付けてウェーハ
表面を研磨する。
2. Description of the Related Art In recent years, with the demand for higher integration of semiconductor devices, the density and the number of wafers have been increased. As a result, the depth of focus of an exposure apparatus for forming a circuit wiring pattern on a wafer becomes shallower, and a high degree of flatness of the wafer is required. A chemical mechanical polishing (CMP) apparatus is known as an apparatus for realizing this high-precision planarization.
The chemical mechanical polishing apparatus polishes the wafer surface by pressing the surface of the wafer against a polishing cloth while supplying a chemical abrasive to the polishing surface.

【0003】その研磨量を管理する方法として、例え
ば、ウェーハの基板上に絶縁膜(SiO2 )が形成され
ているものに対しては、干渉式膜厚計等によって絶縁膜
の膜厚を測定する方法が知られている。干渉式膜厚計
は、ウェーハ表面の絶縁膜に光を照射して絶縁膜の表面
と裏面とで光を反射させ、これらの干渉光の各波長の光
強度を検出する。そして、その各波長の光強度(例え
ば、ピーク波長)から膜厚を求めている。
As a method of controlling the polishing amount, for example, when an insulating film (SiO 2 ) is formed on a wafer substrate, the thickness of the insulating film is measured by an interference type film thickness meter or the like. There are known ways to do this. The interference type film thickness meter irradiates the insulating film on the wafer surface with light, reflects the light on the front surface and the back surface of the insulating film, and detects the light intensity of each wavelength of the interference light. Then, the film thickness is determined from the light intensity (for example, peak wavelength) of each wavelength.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ウェー
ハの基板上に薄膜形成装置(CVD装置等)によりアル
ミ配線パターンが施され、その配線上に絶縁膜(SiO
2 )が形成されたようなものについては、近年の高集積
化によってミクロン、サブミクロンオーダーの範囲内に
配線パターンが存在し、この範囲で複数の膜厚が存在す
る場合がある。この場合に上記従来の干渉式膜厚計によ
り絶縁膜の膜厚を測定しようとすると、絶縁膜に照射し
た光のスポット内において、配線パターンの多種の段差
を含み、結果的に複数の膜厚に対する平均的な膜厚を測
定することしかできなかった。このため、配線パターン
が形成された箇所において表面の平坦化が実現されてい
るかを検出することが出来ないという問題があった。
However, an aluminum wiring pattern is formed on a substrate of a wafer by a thin film forming apparatus (such as a CVD apparatus), and an insulating film (SiO 2) is formed on the wiring.
In the case where 2 ) is formed, a wiring pattern exists in the range of microns and submicrons due to recent high integration, and a plurality of film thicknesses may exist in this range. In this case, when trying to measure the film thickness of the insulating film by the above-mentioned conventional interference type film thickness meter, in the spot of the light irradiated on the insulating film, various steps of the wiring pattern are included, and as a result, a plurality of film thicknesses are obtained. Only the average film thickness could be measured. For this reason, there was a problem that it was not possible to detect whether or not the surface was flattened at the portion where the wiring pattern was formed.

【0005】本発明はこのような事情に鑑みてなされた
もので、ウェーハ等の基板上に形成された薄膜の膜厚が
ミクロン、サブミクロンのオーダーの範囲で複数存在し
ている場合にも、精度良くこれらの膜厚を同時に測定す
ることができ、膜厚分布を測定することができる干渉式
膜厚計を提供することを目的とする。
The present invention has been made in view of such circumstances, and even when a plurality of thin films formed on a substrate such as a wafer have a thickness in the order of microns or submicrons, An object of the present invention is to provide an interference-type film thickness meter capable of simultaneously measuring these film thicknesses with high accuracy and measuring a film thickness distribution.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するために、基板上に形成された薄膜の複数の膜厚を測
定する干渉式膜厚計であって、前記ウェーハの薄膜に光
を照射する光照射手段と、前記ウェーハの薄膜の前面で
反射した光と、前記薄膜の裏面で反射した光の干渉光を
各波長に分光する分光手段と、前記分光手段によって分
光された各波長の光強度を電気信号に光電変換し、前記
干渉光の波長に対する光強度分布を検出する光電変換手
段と、前記光電手段によって検出した光強度分布を周波
数成分にフーリエ変換するフーリエ変換手段と、前記フ
ーリエ変換手段によって得られた周波数成分の分布に基
づいて各膜厚による干渉光の光強度分布の周波数帯域を
選出し、該選出した周波数帯域毎に前記周波数成分を抽
出するフィルタ手段と、前記フィルタ手段によって前記
周波数帯域毎に抽出された周波数成分を、前記周波数帯
域毎に光強度分布に逆フーリエ変換する逆フーリエ変換
手段と、前記逆フーリエ変換手段によって得られた各周
波数帯域毎の光強度分布に基づいて各周波数帯域毎の光
強度分布が示す膜厚を求め、前記ウェーハの薄膜の複数
の膜厚を求める膜厚算出手段と、からなることを特徴と
している。
According to the present invention, there is provided an interference type film thickness meter for measuring a plurality of film thicknesses of a thin film formed on a substrate. Light irradiating means for irradiating light, light reflected on the front surface of the thin film of the wafer, and spectral means for separating interference light of light reflected on the back surface of the thin film into each wavelength, and each wavelength separated by the spectral means. Photoelectric conversion of the light intensity into an electrical signal, photoelectric conversion means for detecting a light intensity distribution with respect to the wavelength of the interference light, Fourier transform means for Fourier transforming the light intensity distribution detected by the photoelectric means into frequency components, A filter for selecting a frequency band of the light intensity distribution of the interference light with each film thickness based on the distribution of the frequency components obtained by the Fourier transform means, and extracting the frequency component for each of the selected frequency bands. Inverse Fourier transform means for inversely Fourier transforming the frequency components extracted for each frequency band by the filter means into a light intensity distribution for each frequency band, and for each frequency band obtained by the inverse Fourier transform means And a film thickness calculating means for obtaining a plurality of film thicknesses of the thin film of the wafer based on the light intensity distribution of each frequency band based on the light intensity distribution.

【0007】本発明によれば、基板上に形成された複数
の膜厚を有する薄膜に光を照射し、薄膜の前面と後面で
反射した干渉光を各波長の光に分光する。そして、この
分光した各波長の光強度を電気信号に光電変換し、干渉
光の光強度分布を検出する。次に、この干渉光の光強度
分布を周波数成分にフーリエ変換し、その周波数成分の
分布に基づいて、各膜厚による干渉光の光強度分布の周
波数帯域を選出する。そして、この選出した各周波数帯
域毎に周波数成分を光強度分布に逆フーリエ変換し、こ
の光強度分布から膜厚を求める。
According to the present invention, a thin film having a plurality of film thicknesses formed on a substrate is irradiated with light, and the interference light reflected on the front and rear surfaces of the thin film is split into light of each wavelength. Then, the separated light intensities of the respective wavelengths are photoelectrically converted into electric signals, and the light intensity distribution of the interference light is detected. Next, the light intensity distribution of the interference light is Fourier-transformed into frequency components, and a frequency band of the light intensity distribution of the interference light with each film thickness is selected based on the distribution of the frequency components. Then, the frequency components are inversely Fourier-transformed into the light intensity distribution for each of the selected frequency bands, and the film thickness is obtained from the light intensity distribution.

【0008】これにより、基板上に形成された薄膜の膜
厚が複数存在する場合にも、精度良くこれらの膜厚をそ
れぞれ同時に測定することができる。
Thus, even when there are a plurality of film thicknesses of the thin film formed on the substrate, it is possible to simultaneously measure each of these film thicknesses with high accuracy.

【0009】[0009]

【発明の実施の形態】以下添付図面に従って本発明に係
る干渉式膜厚計の好ましい実施の形態について詳説す
る。図1は本発明に係る干渉式膜厚計の一実施の形態を
示した構成図である。尚、以下、ウェーハの基板上に形
成された絶縁膜(SiO2 )の膜厚を測定する場合につ
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a configuration diagram showing one embodiment of an interference type film thickness meter according to the present invention. Hereinafter, a case where the thickness of the insulating film (SiO 2 ) formed on the substrate of the wafer is measured will be described.

【0010】同図に示すように例えばハロゲンランプや
キセノンランプ等の光源10から光が出射される。光源
10から出射された光はビームスプリッター12を介し
てレンズ14に導かれ、レンズ14により最適なスポッ
トまで集光されてウェーハ50の表面に照射される。図
2に示すようにウェーハ50のシリコン基板51の表面
には、アルミ配線パターン52がミクロン又はサブミク
ロンのオーダーで形成され、その上に絶縁膜(Si
2 )54が形成されている。ウェーハ50に照射され
た光は例えば、同図に示すように配線パターン52を含
むスポットSの範囲に照射され、そのスポットSの範囲
内において一部が絶縁膜54の表面54Aで反射し、一
部が絶縁膜内に進行し、基板表面54又は配線パターン
表面54Cで反射する。従って、絶縁膜に照射された光
は、同図及びで示す複数の膜厚からなる絶縁膜54
の表面54Aと裏面54B、54Cとで反射される。
As shown in FIG. 1, light is emitted from a light source 10 such as a halogen lamp or a xenon lamp. The light emitted from the light source 10 is guided to a lens 14 via a beam splitter 12, condensed to an optimum spot by the lens 14, and irradiated on the surface of the wafer 50. As shown in FIG. 2, on a surface of a silicon substrate 51 of a wafer 50, an aluminum wiring pattern 52 is formed on the order of microns or submicrons, and an insulating film (Si) is formed thereon.
O 2 ) 54 are formed. The light applied to the wafer 50 is applied to, for example, the area of the spot S including the wiring pattern 52 as shown in FIG. The portion advances into the insulating film and is reflected on the substrate surface 54 or the wiring pattern surface 54C. Accordingly, the light applied to the insulating film is converted into the insulating film 54 having a plurality of film thicknesses shown in FIG.
Are reflected by the front surface 54A and the back surfaces 54B and 54C of the first and second surfaces.

【0011】このようにして絶縁膜54で反射された光
は、絶縁膜54の膜厚分の光路差によって生じる位相差
によって干渉し、この干渉した光(干渉光)は図1に示
すようにビームスプリッター12により反射されて分光
プリズム16に入射される。分光プリズム16に入射し
た干渉光は、各波長の光に分光され、ディテクター18
に入射される。
The light reflected by the insulating film 54 interferes with a phase difference caused by an optical path difference corresponding to the thickness of the insulating film 54, and the interfering light (interfering light) as shown in FIG. The light is reflected by the beam splitter 12 and enters the spectral prism 16. The interference light incident on the spectral prism 16 is split into light of each wavelength, and the light is detected by the detector 18.
Is incident on.

【0012】ディテクター18は光を電気信号に変換す
る受光素子により構成され、このディテクター18に入
射した干渉光は、各波長毎に光電変換される。これによ
り、干渉光の各波長の光強度を示す光強度分布が得られ
る。図3は、このディテクター18によって得られる光
強度分布の一例を示した図である。同図横軸は波長、縦
軸は光強度を示す。同図に示すように、ディテクター1
8によって得られる光強度分布は、干渉によって強度の
山と谷を形成する。尚、絶縁膜の屈折率をn、絶縁膜の
膜厚をdとすると、干渉光の光強度が極大となる波長λ
の条件は、nd=(2m+1)λ/4であり、極小とな
る波長λの条件は、nd=(2m)λ/4である。尚、
mは干渉の次数で整数である。
The detector 18 is composed of a light receiving element for converting light into an electric signal, and the interference light incident on the detector 18 is photoelectrically converted for each wavelength. Thus, a light intensity distribution indicating the light intensity of each wavelength of the interference light is obtained. FIG. 3 is a diagram showing an example of the light intensity distribution obtained by the detector 18. In the figure, the horizontal axis indicates wavelength, and the vertical axis indicates light intensity. As shown in FIG.
The light intensity distribution obtained by 8 forms peaks and valleys of intensity by interference. Here, assuming that the refractive index of the insulating film is n and the thickness of the insulating film is d, the wavelength λ at which the light intensity of the interference light is maximized
Is nd = (2m + 1) λ / 4, and the condition of the minimum wavelength λ is nd = (2m) λ / 4. still,
m is the order of interference and is an integer.

【0013】ここで、上記絶縁膜54で反射された干渉
光には、図2に示したように膜厚と膜厚によって干
渉した干渉光が混在している。従って、上記ディテクタ
ー18によって得られた図3に示す光強度分布には、こ
れらの膜厚と膜厚の干渉により観測される光強度分
布が重ね合わせられている。即ち、仮に図2に示す膜厚
によって干渉した干渉光の光強度分布を図4(1)に
示す分布とし、図2に示す膜厚によって干渉した干渉
光の光強度分布を図4(2)に示す分布とすると、上記
ディテクター18によって得られた図3に示す光強度分
布は、これらの図4(1)と図4(2)に示す光強度分
布を加算した分布となる。
Here, the interference light reflected by the insulating film 54 includes the film thickness and the interference light interfering with the film thickness as shown in FIG. Accordingly, the light intensity distribution observed by the interference between the film thicknesses is superimposed on the light intensity distribution shown in FIG. 3 obtained by the detector 18. That is, the light intensity distribution of the interference light interfering with the film thickness shown in FIG. 2 is assumed to be the distribution shown in FIG. 4A, and the light intensity distribution of the interference light interfering with the film thickness shown in FIG. 3, the light intensity distribution shown in FIG. 3 obtained by the detector 18 is a distribution obtained by adding the light intensity distributions shown in FIGS. 4 (1) and 4 (2).

【0014】従って、ディテクター18で得られた光強
度分布を、次に各膜厚に対する光強度分布に分解し、分
解した光強度分布から各膜厚を求める。そこで、図1に
示すようにディテクター18で得られた光強度分布の波
形をまず、FFT(Fast Fourier Transform:高速フー
リエ変換)20によりフーリエ変換し、光強度分布の波
形を周波数成分に分解する。
Accordingly, the light intensity distribution obtained by the detector 18 is then decomposed into light intensity distributions for each film thickness, and each film thickness is determined from the decomposed light intensity distribution. Therefore, as shown in FIG. 1, the waveform of the light intensity distribution obtained by the detector 18 is first subjected to Fourier transform by an FFT (Fast Fourier Transform: Fast Fourier Transform) 20, and the waveform of the light intensity distribution is decomposed into frequency components.

【0015】そして、この分解した周波数成分の分布
(周波数分布)から特徴のある周波数帯域をフィルター
22によって抽出する。例えば、周波数分布のうちピー
ク近傍の周波数帯域を抽出する。図2に示したように、
2種類の膜厚、による干渉光の光強度分布の場合に
は、周波数分布の2箇所にピークを発生させるため、こ
れらの2箇所のピーク近傍の周波数帯域をそれぞれ抽出
する。尚、2種類の膜厚が明らかに相違する場合には、
広域と低域で周波数成分を分離するようにしてもよい。
また、異なる膜厚が多数存在する場合には、周波数分布
に現れるピークも同数存在するが、この場合もピーク近
傍の周波数帯域をそれぞれ抽出する。
A characteristic frequency band is extracted by the filter 22 from the distribution (frequency distribution) of the decomposed frequency components. For example, a frequency band near a peak is extracted from the frequency distribution. As shown in FIG.
In the case of the light intensity distribution of the interference light with two types of film thicknesses, peaks are generated at two places in the frequency distribution, and the frequency bands near the peaks at these two places are respectively extracted. If the two types of film thickness are clearly different,
Frequency components may be separated into a wide band and a low band.
When there are many different film thicknesses, the same number of peaks appear in the frequency distribution. In this case as well, frequency bands near the peaks are extracted.

【0016】これにより、複数の膜厚により生じた干渉
光の光強度分布が各膜厚毎の光強度分布の周波数成分に
分割される。そして、このようにしてフィルターによっ
て抽出した各周波数帯域の周波数成分に基づいて逆FF
T24により逆フーリエ変換を行い、各周波数帯域の周
波数成分が示す光強度分布を求める。これにより、各膜
厚による干渉光の光強度分布が求められ、図3に示した
光強度分布の場合は、図4(1)、(2)に示す膜厚
と膜厚による干渉光の光強度分布がそれぞれ得られ
る。
Thus, the light intensity distribution of the interference light generated by the plurality of film thicknesses is divided into the frequency components of the light intensity distribution for each film thickness. Then, based on the frequency components of each frequency band extracted by the filter in this way, the inverse FF
The inverse Fourier transform is performed by T24, and the light intensity distribution indicated by the frequency component in each frequency band is obtained. Thus, the light intensity distribution of the interference light according to each film thickness is obtained. In the case of the light intensity distribution shown in FIG. 3, the light of the interference light according to the film thickness and the film thickness shown in FIGS. An intensity distribution is obtained respectively.

【0017】以上のように各膜厚による干渉光の光強度
分布を求めた後、この光強度分布からフィッティング2
6により各膜厚を算出する。フィッティング26は、上
記逆FFT24により得られた光強度分布と理論式によ
り算出される光強度分布との差が最小となる膜厚を算出
する。即ち、膜厚をパラメータとする理論式の光強度分
布が測定によって得られた光強度分布と最適に一致する
ように理論式の膜厚を決定する。これにより各膜厚によ
る干渉光の光強度分布から各膜厚が求められ、例えば、
図4(1)、(2)に示した膜厚と膜厚による干渉
光の光強度分布からその膜厚及び膜厚が求められ
る。
After obtaining the light intensity distribution of the interference light according to each film thickness as described above, fitting 2
Each film thickness is calculated according to 6. The fitting 26 calculates a film thickness at which the difference between the light intensity distribution obtained by the inverse FFT 24 and the light intensity distribution calculated by the theoretical formula is minimized. That is, the film thickness of the theoretical formula is determined such that the light intensity distribution of the theoretical formula using the film thickness as a parameter optimally matches the light intensity distribution obtained by the measurement. Thereby, each film thickness is obtained from the light intensity distribution of the interference light by each film thickness.
The film thickness and the film thickness are obtained from the light intensity distribution of the interference light according to the film thickness and the film thickness shown in FIGS.

【0018】尚、上記干渉式膜厚計は、例えば、CMP
装置に搭載される。図2に示したように、ウェーハのシ
リコン基板51上に配線パターン52が形成され、その
上に絶縁膜54が形成されたものの絶縁膜表面を研磨す
る場合に、上記干渉式膜厚計によって膜厚及び膜厚
を測定する。仮に、配線パターンの高さが既知である場
合には、この高さと膜厚の加算値が膜厚と一致した
場合に絶縁膜の表面が平坦に研磨されたと判断すること
ができる。
The above-mentioned interference type film thickness meter is, for example, a CMP type.
Mounted on the device. As shown in FIG. 2, when a wiring pattern 52 is formed on a silicon substrate 51 of a wafer, and an insulating film 54 is formed thereon, the insulating film surface is polished. Measure thickness and thickness. If the height of the wiring pattern is known, if the sum of the height and the film thickness matches the film thickness, it can be determined that the surface of the insulating film has been polished flat.

【0019】また、上記逆FFT24によって得られた
各膜厚による干渉光の光強度分布から各膜厚を求める方
法は、上記フィッティングに限らず、例えば、光強度分
布のピーク波長から求めるようにしてもよい。また、上
記実施の形態では、ウェーハの基板上に形成されたSi
2 等の絶縁膜の膜厚を測定する場合について説明した
が、これに限らず、基板上に形成された金属膜(例え
ば、タングステンW、アルミニウムAl、銅Cu等)で
も光を透過することができるため、これらの金属膜の膜
厚も測定することができる。従って、金属膜の表面に例
えば段差がある場合にこの段差を測定することができ
る。
The method of obtaining each film thickness from the light intensity distribution of the interference light with each film thickness obtained by the inverse FFT 24 is not limited to the above-described fitting, but may be performed, for example, from the peak wavelength of the light intensity distribution. Is also good. In the above embodiment, the Si formed on the substrate of the wafer
The case where the thickness of the insulating film such as O 2 is measured has been described. However, the present invention is not limited to this, and it is possible to transmit light even with a metal film (for example, tungsten W, aluminum Al, copper Cu, etc.) formed on the substrate. Therefore, the thickness of these metal films can also be measured. Therefore, for example, when there is a step on the surface of the metal film, this step can be measured.

【0020】[0020]

【発明の効果】以上説明したように本発明に係る干渉式
膜厚計によれば、基板上に形成された複数の膜厚を有す
る薄膜に光を照射し、薄膜の前面と後面で反射した干渉
光を各波長の光に分光する。そして、この分光した各波
長の光強度を電気信号に光電変換し、干渉光の光強度分
布を検出する。次に、この干渉光の光強度分布を周波数
成分にフーリエ変換し、その周波数成分の分布に基づい
て、各膜厚による干渉光の光強度分布の周波数帯域を選
出する。そして、この選出した各周波数帯域毎に周波数
成分を光強度分布に逆フーリエ変換し、この光強度分布
から膜厚を求める。これにより、基板上に形成された薄
膜の膜厚が複数存在する場合にも、精度良くこれらの膜
厚をそれぞれ同時に測定することができる。
As described above, according to the interference type thickness meter according to the present invention, a thin film having a plurality of film thicknesses formed on a substrate is irradiated with light and reflected on the front and rear surfaces of the thin film. The interference light is split into light of each wavelength. Then, the separated light intensities of the respective wavelengths are photoelectrically converted into electric signals, and the light intensity distribution of the interference light is detected. Next, the light intensity distribution of the interference light is Fourier-transformed into frequency components, and a frequency band of the light intensity distribution of the interference light with each film thickness is selected based on the distribution of the frequency components. Then, the frequency components are inversely Fourier-transformed into the light intensity distribution for each of the selected frequency bands, and the film thickness is obtained from the light intensity distribution. Thus, even when there are a plurality of thin film thicknesses formed on the substrate, these film thicknesses can be simultaneously measured with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明に係る干渉式膜厚計の一実施の
形態を示した構成図である。
FIG. 1 is a configuration diagram showing an embodiment of an interference type film thickness meter according to the present invention.

【図2】図2は、被測定ワークの一例であるウェーハの
表面の構成を示した断面図である。
FIG. 2 is a cross-sectional view illustrating a configuration of a surface of a wafer as an example of a workpiece to be measured.

【図3】図3は、ディテクターによって得られる光強度
分布の一例を示した図である。
FIG. 3 is a diagram illustrating an example of a light intensity distribution obtained by a detector.

【図4】図4(1)及び(2)は、それぞれ図2に示す
膜厚及び膜厚により観測される光強度分布を示した
図である。
4 (1) and 4 (2) are diagrams showing the film thickness and the light intensity distribution observed with the film thickness shown in FIG. 2, respectively.

【符号の説明】[Explanation of symbols]

10…光源 12…ビームスプリッター 14…レンズ 16…分光プリズム 18…ディテクター 20…FFT(高速フーリエ変換) 22…フィルター 24…逆FFT 26…フィッティング DESCRIPTION OF SYMBOLS 10 ... Light source 12 ... Beam splitter 14 ... Lens 16 ... Spectral prism 18 ... Detector 20 ... FFT (fast Fourier transform) 22 ... Filter 24 ... Inverse FFT 26 ... Fitting

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成された薄膜の複数の膜厚を
測定する干渉式膜厚計であって、 前記ウェーハの薄膜に光を照射する光照射手段と、 前記ウェーハの薄膜の前面で反射した光と、前記薄膜の
裏面で反射した光の干渉光を各波長に分光する分光手段
と、 前記分光手段によって分光された各波長の光強度を電気
信号に光電変換し、前記干渉光の波長に対する光強度分
布を検出する光電変換手段と、 前記光電手段によって検出した光強度分布を周波数成分
にフーリエ変換するフーリエ変換手段と、 前記フーリエ変換手段によって得られた周波数成分の分
布に基づいて各膜厚による干渉光の光強度分布の周波数
帯域を選出し、該選出した周波数帯域毎に前記周波数成
分を抽出するフィルタ手段と、 前記フィルタ手段によって前記周波数帯域毎に抽出され
た周波数成分を、前記周波数帯域毎に光強度分布に逆フ
ーリエ変換する逆フーリエ変換手段と、 前記逆フーリエ変換手段によって得られた各周波数帯域
毎の光強度分布に基づいて各周波数帯域毎の光強度分布
が示す膜厚を求め、前記ウェーハの薄膜の複数の膜厚を
求める膜厚算出手段と、 からなることを特徴とする干渉式膜厚計。
1. An interference type film thickness meter for measuring a plurality of film thicknesses of a thin film formed on a substrate, comprising: a light irradiating means for irradiating light to the thin film of the wafer; Reflected light and spectral means for separating the interference light of the light reflected on the back surface of the thin film into respective wavelengths; and photoelectrically converting the light intensity of each wavelength spectrally separated by the spectral means into an electric signal; A photoelectric conversion unit that detects a light intensity distribution with respect to a wavelength, a Fourier transform unit that Fourier-transforms the light intensity distribution detected by the photoelectric unit into a frequency component, and a frequency component distribution obtained by the Fourier transform unit. Filter means for selecting a frequency band of the light intensity distribution of the interference light according to the film thickness, and extracting the frequency component for each of the selected frequency bands; Inverse Fourier transform means for inverse Fourier transforming the extracted frequency components into light intensity distributions for each of the frequency bands, and each frequency band based on the light intensity distribution for each frequency band obtained by the inverse Fourier transform means A film thickness calculating means for obtaining a film thickness indicated by each light intensity distribution and obtaining a plurality of film thicknesses of the thin film of the wafer.
【請求項2】 前記膜厚算出手段は、前記フーリエ逆変
換手段によって得られた各周波数帯域毎の光強度分布と
所定の膜厚の場合に理論的に得られる光強度分布とのフ
ィッティングにより前記所定の膜厚を算出することを特
徴とする請求項1の干渉式膜厚計。
2. The method according to claim 1, wherein the film thickness calculating unit performs fitting by using a light intensity distribution for each frequency band obtained by the inverse Fourier transform unit and a light intensity distribution theoretically obtained for a predetermined film thickness. The interference type film thickness meter according to claim 1, wherein a predetermined film thickness is calculated.
JP12202097A 1997-05-13 1997-05-13 Film thickness meter of interference type Pending JPH10311708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12202097A JPH10311708A (en) 1997-05-13 1997-05-13 Film thickness meter of interference type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12202097A JPH10311708A (en) 1997-05-13 1997-05-13 Film thickness meter of interference type

Publications (1)

Publication Number Publication Date
JPH10311708A true JPH10311708A (en) 1998-11-24

Family

ID=14825602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12202097A Pending JPH10311708A (en) 1997-05-13 1997-05-13 Film thickness meter of interference type

Country Status (1)

Country Link
JP (1) JPH10311708A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271047B1 (en) 1998-05-21 2001-08-07 Nikon Corporation Layer-thickness detection methods and apparatus for wafers and the like, and polishing apparatus comprising same
US7271916B2 (en) * 2002-11-14 2007-09-18 Fitel Usa Corp Characterization of optical fiber using Fourier domain optical coherence tomography
WO2008114471A1 (en) 2007-02-20 2008-09-25 Mitsubishi Heavy Industries, Ltd. Film thickness measuring method, its apparatus, and manufacturing system for thin-film device
JP2008233063A (en) * 2007-02-21 2008-10-02 Canon Inc Surface profile measuring apparatus, exposure device, and computer
JP2009283578A (en) * 2008-05-20 2009-12-03 Tokyo Seimitsu Co Ltd Method for monitoring polished state of wafer and device for monitoring polished state
JP2010016016A (en) * 2008-06-30 2010-01-21 Tokyo Seimitsu Co Ltd Method for detecting polishing end point and polishing apparatus
JP2010019636A (en) * 2008-07-09 2010-01-28 Canon Inc Multilayered structure measuring method and multilayered structure measuring apparatus
JP2010114327A (en) * 2008-11-07 2010-05-20 Tokyo Seimitsu Co Ltd Detecting method and detecting device for time of end point of polishing
JP2011518312A (en) * 2007-12-14 2011-06-23 インテクプラス カンパニー、リミテッド 3D shape measuring device
JP2012063149A (en) * 2010-09-14 2012-03-29 Tokyo Electron Ltd Temperature measuring device, and temperature measuring method
CN103063149A (en) * 2011-10-20 2013-04-24 仓敷纺织株式会社 Interference thickness meter
JP2013145229A (en) * 2011-12-16 2013-07-25 Toray Eng Co Ltd Film thickness measurement method and device based on interference color model conformity
CN104792418A (en) * 2015-02-06 2015-07-22 中国科学院电子学研究所 End surface inclined reflected light waveguide Fourier spectrograph
JP2020016650A (en) * 2018-07-17 2020-01-30 株式会社システムロード Film thickness measurement method, and device of the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670200B2 (en) 1998-05-21 2003-12-30 Nikon Corporation Layer-thickness detection methods and apparatus for wafers and the like, and polishing apparatus comprising same
US6271047B1 (en) 1998-05-21 2001-08-07 Nikon Corporation Layer-thickness detection methods and apparatus for wafers and the like, and polishing apparatus comprising same
US7271916B2 (en) * 2002-11-14 2007-09-18 Fitel Usa Corp Characterization of optical fiber using Fourier domain optical coherence tomography
US8184303B2 (en) 2007-02-20 2012-05-22 Mitsubishi Heavy Industries, Ltd. Film-thickness measurement method and apparatus therefor, and thin-film device fabrication system
WO2008114471A1 (en) 2007-02-20 2008-09-25 Mitsubishi Heavy Industries, Ltd. Film thickness measuring method, its apparatus, and manufacturing system for thin-film device
JP2008233063A (en) * 2007-02-21 2008-10-02 Canon Inc Surface profile measuring apparatus, exposure device, and computer
JP2011518312A (en) * 2007-12-14 2011-06-23 インテクプラス カンパニー、リミテッド 3D shape measuring device
JP2009283578A (en) * 2008-05-20 2009-12-03 Tokyo Seimitsu Co Ltd Method for monitoring polished state of wafer and device for monitoring polished state
JP2010016016A (en) * 2008-06-30 2010-01-21 Tokyo Seimitsu Co Ltd Method for detecting polishing end point and polishing apparatus
JP2010019636A (en) * 2008-07-09 2010-01-28 Canon Inc Multilayered structure measuring method and multilayered structure measuring apparatus
JP2010114327A (en) * 2008-11-07 2010-05-20 Tokyo Seimitsu Co Ltd Detecting method and detecting device for time of end point of polishing
JP2012063149A (en) * 2010-09-14 2012-03-29 Tokyo Electron Ltd Temperature measuring device, and temperature measuring method
US8777483B2 (en) 2010-09-14 2014-07-15 Tokyo Electron Limited Temperature measuring apparatus and temperature measuring method
CN103063149A (en) * 2011-10-20 2013-04-24 仓敷纺织株式会社 Interference thickness meter
KR20130043577A (en) * 2011-10-20 2013-04-30 구라시키 보세키 가부시키가이샤 Interference thickness meter
JP2013088358A (en) * 2011-10-20 2013-05-13 Kurabo Ind Ltd Interference type film thickness meter
JP2013145229A (en) * 2011-12-16 2013-07-25 Toray Eng Co Ltd Film thickness measurement method and device based on interference color model conformity
CN104792418A (en) * 2015-02-06 2015-07-22 中国科学院电子学研究所 End surface inclined reflected light waveguide Fourier spectrograph
JP2020016650A (en) * 2018-07-17 2020-01-30 株式会社システムロード Film thickness measurement method, and device of the same

Similar Documents

Publication Publication Date Title
US6204922B1 (en) Rapid and accurate thin film measurement of individual layers in a multi-layered or patterned sample
JPH10311708A (en) Film thickness meter of interference type
US6172756B1 (en) Rapid and accurate end point detection in a noisy environment
TW516075B (en) Method and apparatus for controlling operation of a substrate processing chamber
EP0735565B1 (en) Method and apparatus for monitoring the dry etching of a dielectric film to a given thickness
US7884024B2 (en) Apparatus and method for optical interference fringe based integrated circuit processing
US5333049A (en) Apparatus and method for interferometrically measuring the thickness of thin films using full aperture irradiation
US5365340A (en) Apparatus and method for measuring the thickness of thin films
US6100985A (en) Method and apparatus for measurements of patterned structures
US5724144A (en) Process monitoring and thickness measurement from the back side of a semiconductor body
US6153116A (en) Method of detecting end point and monitoring uniformity in chemical-mechanical polishing operation
TWI311793B (en) Chamber stability monitoring by an integrated metrology tool
US20050264806A1 (en) Calibration as well as measurement on the same workpiece during fabrication
US20060073619A1 (en) Semiconductor fabricating apparatus and method and apparatus for determining state of semiconductor fabricating process
JPH0723843B2 (en) Apparatus and method for measuring thin film layer thickness by deforming the thin film layer in a concentrating reflector
JP2002526918A (en) Method and apparatus for improving the accuracy of a plasma etching process
JPH07260437A (en) Method and device for measuring film thickness in multilayered thin-film laminated layer
JP3327175B2 (en) Detection unit and wafer polishing apparatus provided with the detection unit
US6895360B2 (en) Method to measure oxide thickness by FTIR to improve an in-line CMP endpoint determination
KR20030038018A (en) end point detector in semiconductor fabricating equipment and method therefore
JP4427767B2 (en) Measuring method
Chan et al. Process control and monitoring with laser interferometry based endpoint detection in chemical mechanical planarization
EP0412728A2 (en) Interferometric method and apparatus for controlling film thickness
JP2005294365A (en) Method and device for polishing end detection and semiconductor device
JP4487370B2 (en) Polishing state measuring apparatus, measuring method, polishing apparatus, and semiconductor device manufacturing method