JP2020016607A - Optical measurement device - Google Patents

Optical measurement device Download PDF

Info

Publication number
JP2020016607A
JP2020016607A JP2018141432A JP2018141432A JP2020016607A JP 2020016607 A JP2020016607 A JP 2020016607A JP 2018141432 A JP2018141432 A JP 2018141432A JP 2018141432 A JP2018141432 A JP 2018141432A JP 2020016607 A JP2020016607 A JP 2020016607A
Authority
JP
Japan
Prior art keywords
gas
measurement
sample
light
optical measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018141432A
Other languages
Japanese (ja)
Other versions
JP7129694B2 (en
Inventor
祐光 古川
Sukemitsu Furukawa
祐光 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2018141432A priority Critical patent/JP7129694B2/en
Publication of JP2020016607A publication Critical patent/JP2020016607A/en
Application granted granted Critical
Publication of JP7129694B2 publication Critical patent/JP7129694B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

To enable optical measurements of many measurement targets easily and quickly even if the measurement targets lie outdoors, are bumpy, or have easily damageable surfaces.SOLUTION: An optical measurement device 1 comprises injection ports 3a provided around a measurement light emission unit 1g, and a gas injector 3 configured to inject gas of known components through the injection ports 3a in order to replace the atmosphere in a measurement light passage with the gas.SELECTED DRAWING: Figure 2

Description

本発明は、分光光度計、あるいはそれと同等の機能を備えたレーザー(特に波長可変レーザー)、カスケードレーザー、Swept Source(波長掃引光源)などの広い波長帯域をもつ光源に検出器を組み合わせた光学計測器に関し、特に野外で安定した計測を行う光学計測器に関するものである。   The present invention relates to optical measurement that combines a spectrophotometer or a light source with a wide wavelength band such as a laser (especially a tunable laser), a cascade laser, and a swept source (swept light source) with equivalent functions with a detector. The present invention relates to an optical measuring instrument for performing stable measurement outdoors.

分光光度計などの光学計測器を用いて計測を行う際には、対象の試料以外の影響を極力排除あるいは一定に維持する必要がある。例えば、果物の完熟度などを計測する際には、試料の測定波長に影響を及ぼす大気中の湿度や二酸化炭素濃度などにより、計測結果が変化し、精度の高い計測結果を得ることができない。
図1は、大気中で分光光度計を用いた場合の計測結果の一例を示すもので、赤外分光器から、2.5μmから20μmの範囲の測定波長を大気中において行った結果を示している。
図1から明らかなように、波長4.1−4.4μm付近の測定波長に対し強い吸収特性を有する二酸化炭素、2.0−2.9μm付近と5.0−7.7μm付近の測定波長に対し強い吸収特性を有する水蒸気が分光計測結果に大きな影響を及ぼしていることが分かる。
When performing measurement using an optical measuring instrument such as a spectrophotometer, it is necessary to eliminate or keep the influence of the target sample as small as possible. For example, when measuring the degree of ripeness of a fruit, the measurement result changes due to atmospheric humidity, carbon dioxide concentration, and the like that affect the measurement wavelength of the sample, and a highly accurate measurement result cannot be obtained.
FIG. 1 shows an example of a measurement result in a case where a spectrophotometer is used in the atmosphere, and shows a result obtained by performing a measurement wavelength in the range of 2.5 μm to 20 μm in the atmosphere from an infrared spectrometer. .
As is clear from FIG. 1, carbon dioxide having a strong absorption characteristic at a measurement wavelength around 4.1-4.4 μm, and water vapor having a strong absorption characteristic at a measurement wavelength around 2.0-2.9 μm and around 5.0-7.7 μm are formed. It can be seen that this has a great effect on the spectroscopic measurement results.

このように、大気中で分光計測を行うと、大気中に含まれる二酸化炭素や水蒸気等により大きな影響を受け、しかも、これらの濃度は分光計測を行う環境によって大きく変動することから、特に、指標となる波長がこれらの吸収特性と交錯する場合、計測精度の信頼性が大きく損なわれることになる。
そこで、特許文献1に開示されているように、試料室内に窒素ガスを導入し、内部が完全に窒素に入れ替わった状態にして、他のガス成分や湿度の変動による影響を排除している。
また、特許文献2や非特許文献1には、空気等が装置内に入らないよう、全反射プリズム(ATRプリズム)の試料設置面だけを外部に露出させた分光光度計が開示されている。
As described above, when spectroscopic measurement is performed in the atmosphere, it is greatly affected by carbon dioxide, water vapor, and the like contained in the air, and the concentration of the spectrometer greatly varies depending on the environment in which the spectroscopic measurement is performed. If these wavelengths intersect with these absorption characteristics, the reliability of measurement accuracy will be greatly impaired.
Therefore, as disclosed in Patent Literature 1, nitrogen gas is introduced into the sample chamber, and the inside is completely replaced with nitrogen, thereby eliminating the influence of other gas components and fluctuations in humidity.
Patent Document 2 and Non-Patent Document 1 disclose a spectrophotometer in which only a sample setting surface of a total reflection prism (ATR prism) is exposed to the outside so that air or the like does not enter the inside of the apparatus.

特開2005−207838号公報JP 2005-207838 A 特許第3830571号公報Japanese Patent No. 3830571

N.J.Harrick, “Internal Reflection Spectroscopy: theory and applications,”Interscience Publisher (1967)N.J.Harrick, “Internal Reflection Spectroscopy: theory and applications,” Interscience Publisher (1967)

しかし、こうした分光光度計では、計測対象の試料を完全に封入できる空間を有する試料室が必要となり、分光光度計を大型化させる原因となっている。また、試料を試料室内にセットした後、試料室を閉じて窒素ガスに入れ替える必要があるため、数分から数時間の作業が必要となり、大きな負担を与えている。
さらに、例えば収穫前の果物の完熟度を分光光度計で計測する際には、野外で作業が行われており、しかも、果物表面に影響を与えることなく、簡便かつ短時間に数多くの果物の計測を行う必要があることから、試料室付き分光光度計を利用することは実質的に不可能である。
However, such a spectrophotometer requires a sample chamber having a space in which a sample to be measured can be completely enclosed, which causes an increase in the size of the spectrophotometer. In addition, after setting the sample in the sample chamber, it is necessary to close the sample chamber and replace it with nitrogen gas, which requires several minutes to several hours of work, which is a heavy burden.
Further, for example, when measuring the ripeness of fruits before harvesting with a spectrophotometer, work is performed outdoors, and without affecting the fruit surface, a large number of fruits can be easily and quickly prepared. The use of a spectrophotometer with a sample chamber is virtually impossible because of the need to perform measurements.

また、全反射プリズムを利用したものでは、試料と測定光の相互作用距離をプリズム面から光の一波長程度にする必要があるため、試料をプリズムに密着させなければならず、紙などのミクロでも凹凸のある試料、丸みのある試料、果実など傷みやすい試料等には利用することができない。   In the case of using a total reflection prism, the interaction distance between the sample and the measurement light needs to be about one wavelength of light from the prism surface. However, it cannot be used for a sample having irregularities, a rounded sample, a sample that is easily damaged such as fruit, and the like.

そこで、本発明の目的は、分光光度計などの光学計測器により計測を行う際、光学計測器からの入射光の光路、計測対象からの反射光の光路の少なくとも一部を含む空間を予め成分が既知の気体で充填することにより、試料室を使用することなく、野外でも安定した高精度の計測を可能にするとともに、凹凸があったり、表面が傷みやすい計測対象に対しても、光学計測器に直接接触させることなく、簡便かつ短時間に数多くの計測を効率的に行えるようにすることにある。   Therefore, an object of the present invention is to measure in advance an optical path of an incident light from an optical measuring instrument and a space including at least a part of an optical path of a reflected light from an object to be measured when measuring with an optical measuring instrument such as a spectrophotometer. Is filled with a known gas to enable stable and high-precision measurement even in the field without using a sample chamber, and optical measurement even for measurement targets that have irregularities or whose surface is easily damaged. An object of the present invention is to make it possible to efficiently perform a large number of measurements easily and in a short time without directly contacting the instrument.

この課題を解決するため、本発明の光学計測器は、外気開放空間のうち、入射光の光路、反射光の光路の少なくとも一部を包含する空間に向けて、成分が既知の気体を噴射して、この気体で外気を置換するガス噴射装置を備えるようにした。   In order to solve this problem, the optical measuring instrument of the present invention injects a gas having a known component toward a space that includes at least a part of the optical path of incident light and the optical path of reflected light in the open-air open space. Thus, a gas injection device for replacing the outside air with this gas is provided.

本発明によれば、入射光、反射光など、計測に用いる光が通過する光路を包含する空間が、成分が既知の気体で充填されているため、試料室を用いることなく野外での計測を可能にするとともに、環境に影響を受けることのない正確な計測結果を得ることが可能となる。しかも、試料に直接接触させる必要もないので、凹凸があったり、表面が傷みやすい計測対象であっても、簡便かつ短時間に、高精度の計測を行うことができる。   According to the present invention, a space including an optical path through which light used for measurement passes, such as incident light and reflected light, is filled with a known gas, so that measurement in the field can be performed without using a sample chamber. In addition to making it possible, it is possible to obtain accurate measurement results without being affected by the environment. In addition, since there is no need to directly contact the sample, even a measurement target having irregularities or a surface that is easily damaged can be measured easily and in a short time with high accuracy.

図1は、大気中で分光光度計を用いた場合の計測結果の一例を示す図である。FIG. 1 is a diagram illustrating an example of a measurement result when a spectrophotometer is used in the atmosphere. 図2は、分光光度計に適用した実施例を示す図である。FIG. 2 is a diagram showing an embodiment applied to a spectrophotometer. 図3は、大気中で赤外分光器を用いて行った計測結果を、窒素ガス噴射の前後で比較した一例を示す図である。FIG. 3 is a diagram illustrating an example in which measurement results obtained by using an infrared spectrometer in the atmosphere are compared before and after nitrogen gas injection. 図4は、窒素吹き付けにより除去された物質の吸光度スペクトルを示す図である。FIG. 4 is a diagram showing an absorbance spectrum of a substance removed by blowing nitrogen.

本実施例は、分光光度計に適用したものである。
分光分析は、発光・蛍光・吸収等の光を利用した解析に用いられるが、特に赤外分光では吸光度スペクトル解析が主となり、物質中に含まれる有機物を定量分析することなどに用いられる。例えば、イチゴを吸光度スペクトル解析する場合には、グルコース・フルクトースなどの糖の吸収やクエン酸などの酸の吸収により定量分析を行うものである。
This embodiment is applied to a spectrophotometer.
Spectroscopic analysis is used for analysis utilizing light such as light emission, fluorescence, and absorption. In particular, infrared spectroscopy is mainly used for analyzing absorbance spectra, and is used for quantitative analysis of organic substances contained in substances. For example, when performing an absorbance spectrum analysis of a strawberry, quantitative analysis is performed by absorption of a sugar such as glucose and fructose or absorption of an acid such as citric acid.

分光光度計は、光源、分光器、分光プローブと、光源からの光を分光プローブに案内する光ファイバ、分光プローブから試料表面に向けて照射された光が試料表面で反射することにより生成される反射光を集光し、分光器に案内する入力用光ファイバとで構成されている。分光器は、試料表面からの反射光の強度をスペクトル解析することで、試料の糖度などを計測する。   A spectrophotometer is generated by reflecting a light source, a spectroscope, a spectroscopic probe, an optical fiber for guiding light from the light source to the spectroscopic probe, and light irradiated from the spectroscopic probe toward the sample surface on the sample surface. And an input optical fiber for condensing the reflected light and guiding it to the spectroscope. The spectrometer measures the sugar content of the sample by analyzing the spectrum of the intensity of the reflected light from the sample surface.

具体的には、本実施例の光学計測器1は、図2に示すように、光源1a、分光器1b、分光器プローブ本体1c、光源1aから試料2に照射される入射光を案内する光ファイバ1d、試料2から反射される試料反射光を分光器1bに案内する光ファイバ1eなどから構成されている。分光器1bは、試料2に照射される入射光と、試料2からの反射光の強度をスペクトル解析し、試料分析を行う。   Specifically, as shown in FIG. 2, the optical measuring instrument 1 of the present embodiment is a light source 1a, a spectroscope 1b, a spectroscope probe main body 1c, and a light for guiding incident light emitted from the light source 1a to the sample 2. It comprises a fiber 1d, an optical fiber 1e for guiding the sample reflected light reflected from the sample 2 to the spectroscope 1b, and the like. The spectroscope 1b analyzes the spectrum of the intensity of the incident light irradiated on the sample 2 and the intensity of the reflected light from the sample 2, and performs the sample analysis.

分光器プローブ本体1cには、その端部から下方に延びるグリップ部1fが設けられており、このグリップ部1fの内部に窒素が充填されたガスボンベ3が収容されている。
光源1aからの光を試料2に向けて照射する計測光出射部1gの周囲には、ガスボンベ3に貯留された窒素ガスを試料2に向けて噴射する噴射口3aが配設されている。
噴出口3aは、例えば、光路を囲むように配置された円周状のスリットあるいは、光路に対し同軸円上に配設された複数の小孔などからなる。
The spectroscope probe main body 1c is provided with a grip portion 1f extending downward from an end thereof, and a gas cylinder 3 filled with nitrogen is accommodated in the grip portion 1f.
An injection port 3a for injecting the nitrogen gas stored in the gas cylinder 3 toward the sample 2 is provided around the measurement light emitting portion 1g that irradiates the light from the light source 1a toward the sample 2.
The ejection port 3a is composed of, for example, a circumferential slit arranged so as to surround the optical path, or a plurality of small holes arranged coaxially with the optical path.

なお、ガスボンベ3と分光器プローブ本体1cの先端に設けた噴出口3aの間は、本体内の配管を介して連通しており、この配管には、噴出口3aからの窒素ガス噴射をオンオフするバルブが設けられている。
また、分光プローブ器本体1cとグリップ部1fの境界部分にはトリガ1hが設けられており、このトリガ1hを引くことにより、光源1aからの光照射、分光器1bの作動を開始し、トリガ1hを離すことにより、これらの作動を停止することができる。
このトリガ1hと、ガスボンベ3と噴出口3aとを結ぶ配管に設けたバルブとは連動しており、分光分析を開始するためトリガ1hを引き始めると、光源1bからの光照射、分光器1bの作動開始に先だって、バルブを開放し、噴出口3aから窒素噴出を開始させるようにしている。
The gas cylinder 3 and the jet port 3a provided at the tip of the spectrometer probe main body 1c communicate with each other through a pipe in the main body, and the nitrogen gas jet from the jet port 3a is turned on and off to this pipe. A valve is provided.
A trigger 1h is provided at the boundary between the spectroscopic probe device main body 1c and the grip portion 1f. When the trigger 1h is pulled, light irradiation from the light source 1a and operation of the spectroscope 1b are started, and the trigger 1h is started. By releasing, these operations can be stopped.
The trigger 1h is linked with a valve provided in a pipe connecting the gas cylinder 3 and the jet port 3a, and when the trigger 1h is started to start spectroscopic analysis, light irradiation from the light source 1b and light from the spectroscope 1b are started. Prior to the start of the operation, the valve is opened to start the nitrogen ejection from the ejection port 3a.

分光器1bによる分光計測は、噴出口3aから噴出した窒素により、入射光と反射光が通過する分光計測領域内の外気が一掃され、窒素でほぼ充填された状態で行う。窒素ガスの噴出量は、最小限、噴射口の径と、分光器プローブ本体1cと試料2間の光路長により規定される空間の体積を充填するものであればよい。
また、試料と分光器プローブ本体1cとの距離は噴出ガスの到達可能範囲であれば、近接位置から遠方まで適用可能である。噴出ガスの到達可能範囲より遠方に置かれた試料に対しても、入射光路あるいは反射光路の一部が窒素ガスで置換されることによって、ある程度の効果が得られる。
なお、大気中の二酸化炭素や水蒸気などの影響を最小限にするため、分光器プローブ本体1cの計測光照射部を試料2に可能な限り近接させることも考えられるが、たとえ分光プローブ本体1cが試料2に接着しているように見えても、試料2の表面に存在する凹凸によってわずかな隙間が存在し、窒素ガスの噴出によって、こうしたわずかな空間の大気を窒素で置換することが可能となる。
The spectral measurement by the spectroscope 1b is performed in a state in which the outside air in the spectral measurement region through which the incident light and the reflected light pass is purged by the nitrogen ejected from the ejection port 3a, and the nitrogen is almost filled. The amount of the nitrogen gas to be ejected may be at least a value that fills the volume of the space defined by the diameter of the injection port and the optical path length between the spectroscope probe main body 1c and the sample 2.
The distance between the sample and the spectroscope probe main body 1c can be applied from a near position to a distant position as long as it is within a reachable range of the ejected gas. For a sample placed farther than the reachable range of the ejected gas, a certain effect can be obtained by replacing a part of the incident optical path or the reflected optical path with nitrogen gas.
In order to minimize the influence of carbon dioxide and water vapor in the atmosphere, it is conceivable to bring the measurement light irradiation part of the spectroscope probe body 1c as close to the sample 2 as possible. Even though it appears to be adhered to the sample 2, there is a slight gap due to the unevenness existing on the surface of the sample 2, and it is possible to replace the atmosphere in such a small space with nitrogen by ejecting nitrogen gas. Become.

噴出した窒素が短時間で光路中に満たされるようにするためには、噴出口3aは、距離に応じて遠方から近方をカバーできるように複数配置され、しかも、様々な方向に噴射するよう設定されていることが好ましい。また噴出口3aのそれぞれで到達距離を変えるために、複数穴における穴径の違いや装置内部に圧力勾配が生じるようにしてもよいし、同時に行えるようになっていてもよい。   In order for the ejected nitrogen to be filled in the optical path in a short time, a plurality of ejection ports 3a are arranged so as to cover from far to near in accordance with the distance, and moreover, are ejected in various directions. Preferably, it is set. In addition, in order to change the reaching distance in each of the ejection ports 3a, a difference in hole diameter among a plurality of holes or a pressure gradient may be generated inside the apparatus, or they may be performed simultaneously.

なお、噴出させるガスは、窒素に限らず、湿度や二酸化炭素濃度等が一定の大気を含め、成分が既知の気体であれば、基準試料を用いた計測結果に基づいて校正を行うことにより正確な計測値を求めることができる。対象となる試料や計測項目、求められる計測精度などに応じて最適なガスを選択すればよい。
また、こうした気体を噴出させるためには小型のガスボンベを用いるのが簡易かつ利便性が高いが、大型ボンベ、圧縮装置などを用いることも可能である。圧縮装置と各種ガス吸収材・エアフィルターとの組み合わせで周囲環境のガスを取り込みながらの永続的な利用も考えられる。
In addition, the gas to be ejected is not limited to nitrogen, but may be an accurate gas by performing calibration based on a measurement result using a reference sample if the gas is a gas having a known component, including the atmosphere having a constant humidity and carbon dioxide concentration. Measurement values can be obtained. The optimum gas may be selected according to the target sample, the measurement item, the required measurement accuracy, and the like.
Although it is simple and convenient to use a small gas cylinder to eject such gas, a large cylinder, a compression device, or the like can also be used. Permanent use while taking in the gas of the surrounding environment by combining a compression device with various gas absorbing materials and air filters is also conceivable.

比較的長い時間の積算を必要とするなど、分光測定が短時間で終わらない場合には、気体噴出量を最小限に低減させることも考えられる。すなわち、気体の拡散等で失われていく量だけを補充すればよいため、一旦所望の気体置換が終了すれば、この状態を維持するのに必要な最小限の噴出量に低減させたり、間欠噴射するようにしてもよい。   When spectroscopic measurement is not completed in a short time, such as when integration of a relatively long time is required, it is conceivable to reduce the gas ejection amount to a minimum. In other words, since only the amount lost due to gas diffusion or the like needs to be replenished, once the desired gas replacement is completed, it is reduced to the minimum amount required to maintain this state, You may make it inject.

図3は、大気中で赤外分光器を用いて行った計測結果を、窒素ガス噴射の前後で比較した一例を示している。また、図4は窒素吹き付けにより除去された物質の吸光度スペクトルを示している。
この例では、特に窒素ガスを噴射する以前の大気状態では、特に波数が2300〜2400cm-1の領域で変動がみられたが、窒素ガス噴射後は、この変動はほぼ消失し、安定した計測結果が得られた。これにより、特に大気中に含まれるCOが窒素ガスにより置換されることによって、環境によって濃度が変化するCOの影響をほぼ除去し得ることが確認できた。
FIG. 3 shows an example in which measurement results obtained by using an infrared spectrometer in the atmosphere are compared before and after nitrogen gas injection. FIG. 4 shows an absorbance spectrum of a substance removed by blowing nitrogen.
In this example, especially in the atmospheric state before nitrogen gas injection, fluctuations were observed especially in the wave number range of 2300 to 2400 cm -1 , but after nitrogen gas injection, this fluctuation almost disappeared and stable measurement The result was obtained. Thus, it was confirmed that the influence of CO 2 , whose concentration changes depending on the environment, can be substantially eliminated by replacing CO 2 contained in the atmosphere with nitrogen gas.

なお、分光器は、赤外分光器に限らず種々の波長域の分光器においても同様に用いることが可能である。
また、多くの場合、入射光と反射光が通過する空間内の外気を予め成分が判明している気体で完全に入れ替える必要はなく、外気中に存在する除去すべき物質が一定量以下になればよい。このため、気体噴出時間・流量等によって制御したり、分光モニタリングによって一定量以下になったことを検出するなどで、気体噴出を停止あるいは低下させて、目的の試料測定を開始することが可能である。
The spectrometer is not limited to an infrared spectrometer, but can be used in spectrometers in various wavelength ranges.
In many cases, it is not necessary to completely replace the outside air in the space where the incident light and the reflected light pass with a gas whose components are known in advance, and the amount of the substance to be removed present in the outside air can be reduced to a certain amount or less. I just need. For this reason, it is possible to stop or reduce the gas ejection and start the target sample measurement by controlling the gas ejection time and flow rate, etc., or detecting that the gas ejection has become a certain amount or less by spectroscopic monitoring. is there.

測定試料を本体の外側に置く方法としては、ATR法が提案されているが、ATRプリズムは光の相互作用領域が表面の極近傍に限られているため、試料に凹凸がある場合や、曲率等でATRプリズムに接触させることが困難な場合には測定が難しいものとなっていた。本発明では、測定プローブから離れたところに置かれた試料でも測定可能となるため、ATRプリズムを使用せずに試料測定できる。   The ATR method has been proposed as a method for placing a measurement sample outside the main body. However, since the ATR prism has a light interaction area limited to a region very close to the surface, the ATR prism may have irregularities or a curvature. For example, when it is difficult to bring the ATR prism into contact with the ATR prism, the measurement is difficult. According to the present invention, it is possible to measure even a sample placed away from the measurement probe, so that the sample can be measured without using an ATR prism.

なお、時間的な変化がゆるやかな環境においては、試料が分光器から離れていても測定できる場合がある。これは、試料と同じ位置に拡散反射板などの参照面をおいてリファレンス測定とし、試料測定の結果との比較を行うときである。リファレンス測定に妨害物質の影響が含まれているため、試料測定の結果から引くことが可能である。
ただし、この場合には毎回、参照面の設置とリファレンス測定と試料の距離を参照面に合わせる作業・治具などが必要となり、煩雑である。本発明により、このような場合でも大きく省力化が可能となる。
Note that in an environment where the temporal change is gradual, measurement may be possible even when the sample is far from the spectroscope. This is when reference measurement such as a diffuse reflection plate is placed at the same position as the sample as reference measurement, and comparison with the result of sample measurement is performed. Since the influence of interfering substances is included in the reference measurement, it can be subtracted from the result of the sample measurement.
However, in this case, it is necessary to set up the reference surface and to perform a work / jig for adjusting the distance between the reference measurement and the sample to the reference surface every time, which is complicated. According to the present invention, even in such a case, it is possible to greatly reduce labor.

本発明が有効となる光学機器は、大気中の二酸化炭素や水分が問題となる分光法が適用される装置である。分光法には主に検出側で分光を行うものと、光源側で分光を行うものとがある。前者は従来からよく見られる分光器であり、後者は波長可変光源(広帯域光源と波長選択機器との組み合わせ、スーパーコンティニューム光源、波長掃引レーザー、量子カスケードレーザー、複数の単一波長光源を組み合わせたもの、等)を用いるものである。本発明は、これらいずれの分光法にも適用可能である。   An optical apparatus to which the present invention is effective is an apparatus to which spectroscopy in which carbon dioxide and moisture in the atmosphere are problematic is applied. There are two types of spectroscopy, one mainly performing spectroscopy on the detection side and the other performing spectroscopy on the light source side. The former is a commonly used spectrometer, and the latter is a tunable light source (a combination of a broadband light source and a wavelength selection device, a supercontinuum light source, a wavelength-swept laser, a quantum cascade laser, and multiple single-wavelength light sources. , Etc.). The present invention is applicable to any of these spectroscopy.

さらに、たとえ光源が、一時的にパージされた分光装置への経路とほぼ同一の光路に中には置かれなくとも、検出経路を一時的なパージで安定化させるだけでも、本発明の効果は発揮される。
分光プローブの前側にプローブ直径と同じ円柱を配置して、フードを装着すれば、窒素の直進性、収束性が高まり、さらに、必要な噴出量を低減することができる。
Further, even if the light source is not placed in the same optical path as the path to the temporarily purged spectroscopic device, the effect of the present invention can be obtained even if the detection path is only stabilized by the temporary purge. Be demonstrated.
If a cylinder having the same diameter as the probe diameter is arranged on the front side of the spectroscopic probe and a hood is attached, the straightness and convergence of nitrogen can be improved, and the required ejection amount can be reduced.

以上説明したように本発明によれば、窒素ガス等で置換するための試料室を使用することなく、さらには、凹凸があったり、表面が傷みやすい計測対象に対しても、外気開放の状態で、しかも、計測対象に接触させることなく、短時間で高精度の計測が可能になるので、FT−IR糖度計などを野外で利用する場合など広く活用されることが期待できる。   As described above, according to the present invention, without using a sample chamber for replacing with nitrogen gas or the like, and further, even for a measurement object having irregularities or a surface that is easily damaged, the outside air is released. In addition, since high-precision measurement can be performed in a short time without contacting the object to be measured, it can be expected that the FT-IR saccharimeter or the like will be widely used, for example, when it is used outdoors.

1:光学計測器
1a:光源
1b:分光器1
1c:分光器プローブ本体
1f:グリップ部
1g:計測光出射部
1h:トリガ
2:試料
3:ガスボンベ
3a:噴射口
1: Optical measuring instrument 1a: Light source 1b: Spectroscope 1
1c: Spectroscope probe main body 1f: Grip part 1g: Measurement light emitting part 1h: Trigger 2: Sample 2: Gas cylinder 3a: Injection port

Claims (4)

外気に開放された空間のうち、入射光の光路、反射光の光路の少なくとも一部を包含する空間に向けて成分が既知の気体を噴射し、この気体で前記空間内の外気を置換するガス噴射装置を備えた光学計測器。   Among the spaces opened to the outside air, a gas whose component is injected toward a space including at least a part of the optical path of the incident light and the light path of the reflected light, and a gas that replaces the outside air in the space with the gas. Optical measuring instrument equipped with an injection device. 前記光学計測器の計測光出射部周辺に、前記気体を噴射する噴射口を備えていることを特徴とする請求項1に記載された光学計測器。   The optical measuring instrument according to claim 1, further comprising an injection port for injecting the gas around a measurement light emitting unit of the optical measuring instrument. 前記光学計測器に、計測光の出射開始及び出射停止を行うためのスイッチを設け、前記スイッチに連動して、前記気体の噴射開始及び噴射停止を行うようにしたことを特徴とする請求項1または2に記載された光学計測器。   2. The optical measuring device according to claim 1, wherein a switch for starting and stopping emission of the measurement light is provided, and the gas injection is started and stopped in conjunction with the switch. Or the optical measuring device described in 2. 前記気体の噴射時間を予め定めた時間、あるいは、分光計測器の計測結果に基づいて定めたことを特徴とする請求項1から3のいずれか1項に記載された光学計測器。

The optical measuring instrument according to any one of claims 1 to 3, wherein the gas injection time is determined based on a predetermined time or a measurement result of a spectrometer.

JP2018141432A 2018-07-27 2018-07-27 Optical measuring instrument Active JP7129694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018141432A JP7129694B2 (en) 2018-07-27 2018-07-27 Optical measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018141432A JP7129694B2 (en) 2018-07-27 2018-07-27 Optical measuring instrument

Publications (2)

Publication Number Publication Date
JP2020016607A true JP2020016607A (en) 2020-01-30
JP7129694B2 JP7129694B2 (en) 2022-09-02

Family

ID=69580326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018141432A Active JP7129694B2 (en) 2018-07-27 2018-07-27 Optical measuring instrument

Country Status (1)

Country Link
JP (1) JP7129694B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160373A (en) * 1974-12-19 1979-07-10 United Technologies Corporation Vehicle exhaust gas analysis system with gas blockage interlock
JPS5961756A (en) * 1982-09-30 1984-04-09 Shimadzu Corp Apparatus for measuring carbon
JPS6222543U (en) * 1985-07-24 1987-02-10
JPS62176747U (en) * 1986-04-30 1987-11-10
JPS6324145A (en) * 1986-07-02 1988-02-01 Sanyo Kokusaku Pulp Co Ltd Method and instrument for measuring water of sheet in drier part
JPH04332849A (en) * 1991-05-08 1992-11-19 Hitachi Ltd Atomic absorption spectrophotometer
JP2009250767A (en) * 2008-04-04 2009-10-29 Shin Nikkei Co Ltd Oil film detector and method of detecting oil film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160373A (en) * 1974-12-19 1979-07-10 United Technologies Corporation Vehicle exhaust gas analysis system with gas blockage interlock
JPS5961756A (en) * 1982-09-30 1984-04-09 Shimadzu Corp Apparatus for measuring carbon
JPS6222543U (en) * 1985-07-24 1987-02-10
JPS62176747U (en) * 1986-04-30 1987-11-10
JPS6324145A (en) * 1986-07-02 1988-02-01 Sanyo Kokusaku Pulp Co Ltd Method and instrument for measuring water of sheet in drier part
JPH04332849A (en) * 1991-05-08 1992-11-19 Hitachi Ltd Atomic absorption spectrophotometer
JP2009250767A (en) * 2008-04-04 2009-10-29 Shin Nikkei Co Ltd Oil film detector and method of detecting oil film

Also Published As

Publication number Publication date
JP7129694B2 (en) 2022-09-02

Similar Documents

Publication Publication Date Title
Nadezhdinskii et al. High sensitivity methane analyzer based on tuned near infrared diode laser
DE19717145C2 (en) Method for the selective detection of gases and gas sensor for its implementation
CN110730903B (en) Spectrum measuring method, spectrum measuring apparatus, and broadband pulse light source unit
Jochum et al. All-in-one: A versatile gas sensor based on fiber enhanced Raman spectroscopy for monitoring postharvest fruit conservation and ripening
US6744503B2 (en) Monitoring of vapor phase polycyclic aromatic hydrocarbons
US20140319352A1 (en) Long-path infrared spectrometer
JP2019520570A (en) Photothermal interference device and method
US9851248B2 (en) Spectroscopy system using waveguide and employing a laser medium as its own emissions detector
US20230003653A1 (en) Stimulated raman spectroscopy for real-time, high- resolution molecular analysis of gases in hollow core fibres
Fjodorow et al. A broadband Tm/Ho-doped fiber laser tunable from 1.8 to 2.09 µm for intracavity absorption spectroscopy
Catoire et al. A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation
Watt et al. Cavity enhanced spectroscopy of high-temperature H 2 O in the near-infrared using a supercontinuum light source
EP3441750A1 (en) Method for isotopic measurement
JP2020016607A (en) Optical measurement device
Paul et al. Infrared cavity ringdown and integrated cavity output spectroscopy for trace species monitoring
Yi et al. Intercomparison of IBBCEAS, NitroMAC and FTIR analyses for HONO, NO 2 and CH 2 O measurements during the reaction of NO 2 with H 2 O vapour in the simulation chamber CESAM
Minutolo et al. Self-and foreign-broadening and shift coefficients for C 2 H 2 lines at 1.54 μm
Tripathi et al. An optical sensor for multi-species impurity monitoring in hydrogen fuel
Sonnenschein et al. Development of CO2 cavity ring-down spectroscopy for medical applications
Cias et al. Absorption Cross-Sections of the C–H Overtone of Volatile Organic Compounds: 2 Methyl-1, 3-Butadiene (Isoprene), 1, 3-Butadiene, and 2, 3-Dimethyl-1, 3-Butadiene
Nau et al. Detection of formaldehyde in flames using UV and MIR absorption spectroscopy
CN114384059B (en) Gas detection device and method
CN108279215B (en) Photoelectric gas detection device and working method thereof
Brandstetter et al. Tunable Mid-IR lasers: A new avenue to robust and versatile physical chemosensors
Zielcke et al. A new calibration system for lightweight, compact and mobile Cavity-Enhanced Differential Optical Absorption Spectroscopy instruments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220302

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220816

R150 Certificate of patent or registration of utility model

Ref document number: 7129694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150