JP2020015086A - ソルダペースト - Google Patents

ソルダペースト Download PDF

Info

Publication number
JP2020015086A
JP2020015086A JP2018141543A JP2018141543A JP2020015086A JP 2020015086 A JP2020015086 A JP 2020015086A JP 2018141543 A JP2018141543 A JP 2018141543A JP 2018141543 A JP2018141543 A JP 2018141543A JP 2020015086 A JP2020015086 A JP 2020015086A
Authority
JP
Japan
Prior art keywords
mass
solder
ppm
acid
solder paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018141543A
Other languages
English (en)
Other versions
JP6643691B2 (ja
Inventor
浩由 川▲崎▼
Hiroyoshi Kawasaki
浩由 川▲崎▼
正人 白鳥
Masato Shiratori
正人 白鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senju Metal Industry Co Ltd
Original Assignee
Senju Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senju Metal Industry Co Ltd filed Critical Senju Metal Industry Co Ltd
Priority to JP2018141543A priority Critical patent/JP6643691B2/ja
Publication of JP2020015086A publication Critical patent/JP2020015086A/ja
Application granted granted Critical
Publication of JP6643691B2 publication Critical patent/JP6643691B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

【課題】本発明は、増粘抑制効果、信頼性及び濡れ性をバランスよく両立可能なソルダペーストを提供することを目的とする。【解決手段】本発明のソルダペーストは、はんだ材料とフラックスとからなるソルダペーストであって、前記はんだ材料が、Sn又はSn系合金、20〜300質量ppmのAs、0〜3000質量ppmのSb、0〜10000質量ppmのBi及び0〜5100質量ppmのPb(ただし、Bi及びPbの含有量が同時に0質量ppmになることはない)を含有し、前記フラックスが、ヒンダードフェノール系化合物を含有するソルダペースト。【選択図】なし

Description

本発明は、ソルダペーストに関する。
電子機器の基板への電子部品の接合及び組立ては、コスト面及び信頼性の観点から、ソルダペーストを用いたはんだ付けにより行われることが多い。
ソルダペーストを電子機器の基板へ塗布する方法としては、例えば、メタルマスクを用いたスクリーン印刷を用いる方法がある。この場合、ソルダペーストの印刷性を確保するために、ソルダペーストの粘度を適度に調整する必要がある。しかし、ソルダペーストは、保存安定性に劣り、その結果、ソルダペーストの粘度が経時的に上昇することがある。
また、ソルダペーストを構成するはんだ材料において、液相線温度(TL)と固相線温度(TS)との差(ΔT=TL−TS)が大きくなると、例えば、電子機器の基板にソルダペーストを塗布し、凝固させる際にはんだ材料の組織が不均一となりやすく、その結果、将来的な信頼性が低下することがある。
更に、一般的にはんだ材料には、溶融した際に電子部品の金属上を広がっていく性質(濡れ性)が求められるところ、P、Ge、Gaなどの元素を添加した場合には、はんだ材料の濡れ性が低下してしまう。はんだ材料の濡れ性が悪いとはんだ付け不良が発生する原因になる。
特許文献1には、無鉛系はんだ粉末、ロジン系樹脂、活性剤、溶剤、及びヒンダードフェノール系化合物を含有するソルダペーストが開示されている。この文献には、無鉛系はんだ粉末にヒンダードフェノール系化合物を組み合わせると、無鉛系はんだ粉末とソルダペースト膜のリフロー時の劣化が防止できることが開示されている。この文献には、Sn:96.5質量%、Ag:3.0質量%、Cu:0.5質量%の組成を有する無鉛系はんだ粉末を用いた実施例のみが開示されている。
特開2002−283097号公報
しかしながら、特許文献1には、経時的な粘度上昇を抑制したり、信頼性及び濡れ性に優れたりすることを目的としてものではない。このため、増粘抑制効果、信頼性及び濡れ性をバランスよく両立させたソルダペーストが望まれている。
したがって、本発明は、増粘抑制効果、信頼性及び濡れ性をバランスよく両立可能なソルダペーストを提供することを目的とする。
本発明者らは、上記課題を解決するべく鋭意研究した結果、はんだ材料とフラックスとからなるソルダペーストであって、はんだ材料が、Sn又はSn系合金、及び特定の割合でAs、Sb、Bi及びPbを含有し、フラックスがヒンダードフェノール系化合物を含有することにより、上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明のソルダペーストは、はんだ材料とフラックスとからなるソルダペーストであって、前記はんだ材料が、Sn又はSn系合金、20〜300質量ppmのAs、0〜3000質量ppmのSb、0〜10000質量ppmのBi及び0〜5100質量ppmのPb(ただし、Bi及びPbの含有量が同時に0質量ppmになることはない)を含有し、前記フラックスが、ヒンダードフェノール系化合物を含有する。
本発明によれば、増粘抑制効果、信頼性及び濡れ性をバランスよく両立可能なソルダペーストを提供可能である。
以下、本発明を実施するための形態(以下、「本実施形態」という。)について説明する。ただし、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
本明細書において、「増粘抑制効果」とは、ソルダペーストを調製した際に、調製したソルダペーストの経時的な粘度上昇を抑制できる効果をいう。
なお、本明細書において、各元素の含有量は、例えば、JIS Z 3910 に準拠にしてICP−AESで分析することにより測定することができる。
[ソルダペースト]
本実施形態のソルダペーストは、はんだ材料とフラックスとからなるソルダペーストである。はんだ材料は、Sn又はSn系合金、20〜300質量ppmのAs、0〜3000質量ppmのSb、0〜10000質量ppmのBi及び0〜5100質量ppmのPb(ただし、Bi及びPbの含有量が同時に0質量ppmになることはない)を含有する。ただし、Bi及びPbの含有量が同時に0質量ppmになることはなく、Sb、Bi及びPbのうちの2種類以上が含まれていること(2種以上の含有量が0質量ppm超)が好ましく、Sb、Bi及びPbのすべてが含まれていること(3種すべての含有量が0質量ppm超)も好ましい。
フラックスは、ヒンダードフェノール系化合物を含有する。本実施形態のソルダペーストは、上記の構成を備えることにより、増粘抑制効果を向上できる。また、本実施形態のソルダペーストを構成するはんだ材料は、上記の構成を備えることにより、液相線温度(TL)と固相線温度(TS)との差(ΔT=TL−TS)を小さくできる。このため、例えば、上記はんだ材料を含有するソルダペーストを電子機器の基板に塗布し、凝固させても、ソルダペーストは、はんだ材料の組織の均一性を保つことができる。その結果、ソルダペーストは、サイクル特性等の信頼性に優れる。更に、本実施形態のソルダペーストを構成するはんだ材料は、上記の構成を備えることにより、濡れ性に優れるため、はんだ付け不良の発生を抑制できる。このように、ソルダペーストは、上記構成を備えることにより、増粘抑制効果、信頼性及び濡れ性をバランスよく両立できる。
(はんだ材料)
はんだ材料は、Sn又はSn系合金を含有する。Sn又はSn系合金は、不可避不純物を含んでもよい。
Snは、例えば、99.9%以上の純度を有するSn(3N材)であってもよく、99.99%以上の純度を有するSn(4N材)であってもよく、99.999%の純度を有するSn(5N材)であってもよい。
Snの含有量は、はんだ材料全体に対して、例えば、40質量%以上であってもよく、50質量%以上であってもよく、70質量%以上であってもよく、90質量%以上であってもよい。
Sn系合金としては、例えば、Sn−Ag合金、Sn−Cu合金、Sn−Ag−Cu合金、Sn−Ag−Cu−Ni−Co合金、Sn−In合金、Sn−Sb合金等の組成を有する合金、上記組成を有する合金にAs、Ag、Cu、In、Ni、Co、Ge、P、Fe、Zn、Al、Ga等を添加した合金が挙げられる。Sn系合金中のSnの含有量は、特に限定されず、例えば、40質量%超とすることができる。
Sn及びSn系合金は、ΔTを小さくすることにより、信頼性に優れる観点から、Sn、Sn−Cu合金、又はSn−Ag−Cu合金であることが好ましい。Sn−Cu合金は、同様の観点から、0を超え、1.0質量%以下(好ましくは0.5〜1.0質量%)のCuを含有し、残部がSnであることが好ましい。Sn−Ag−Cu合金は、同様の観点から、0を超え、3.5質量%以下(好ましくは1.0〜3.5質量%)のAgを含有し、0を超え、1.0質量%以下(好ましくは0.1〜1.0質量%)のCuを含有し、残部がSnであることが好ましい。
Agの含有量は、ΔTを小さくすることにより、信頼性に優れる観点から、はんだ材料全体に対して0.05〜3.5質量%であることが好ましく、0.1〜3.0質量%であることがより好ましく、0.5〜3.0質量%であることが更に好ましい。また、Cuの含有量は、ΔTを小さくすることにより、信頼性に優れる観点から、はんだ材料全体に対して0.01〜0.9質量%であることが好ましく、0.05〜0.75質量%であることがより好ましく、0.1〜0.7質量%であることが更に好ましい。なお、上記のAg及びCuの含有量の好ましい数値範囲は各々独立したものであって、Ag及びCuの含有量は各々独立して決定することができる。
はんだ材料は、20〜300質量ppmのAsを含有する。Asの含有量が20質量ppm以上であることにより、粘度上昇が抑制され、増粘抑制効果に優れる。Asの含有量が300質量ppm以下であることにより、濡れ性が劣化することを一層抑制できる。このため、Asの含有量が20〜300質量ppmであることにより、本実施形態のソルダペーストは、増粘抑制効果及び信頼性をバランスよく両立できる。同様の観点から、Asの含有量は、はんだ材料全体に対して、30〜250質量ppmであることが好ましく、50〜200質量ppmであることがより好ましい。Asは、Sn又はSn系合金と共に(例えば、金属間化合物や固溶体等)を構成していてもよいし、Sn系合金とは別に、例えばAs単体や酸化物として、存在していてもよい。
本実施形態において、はんだ材料全体の質量に対するSbの含有量は0〜3000質量ppm、Biの含有量は0〜10000質量ppm、Pbの含有量は0〜5100質量ppmである。Sb、Bi又はPbが十分に存在していると粘度上昇が抑制される傾向にある。その理由は明らかではないが、これらの元素はSnに対して貴な金属であり、そのため、Sn−Sb/Bi/Pb合金はSnよりもイオン化しにくく、フラックスへのイオン状態(塩)としての溶出が起こりにくくなるためと考えられる。ただし、機序はこれによらない。また、Bi及びPbは、はんだ材料がAsを含む場合に起こる濡れ性の低下を抑制する傾向もある。一方で、Bi及びPbの含有量が大きすぎると、固相線温度が低下し、液相線温度(TL)と固相線温度(TS)との差(ΔT=TL−TS)が大きくなり、溶融はんだの凝固過程において、BiやPbの含有量が少ない高融点の結晶相が先に析出し、その後、BiやPbの濃度が高い低融点の結晶相が偏析するため、はんだ材料の機械的強度等が劣化し、サイクル特性等の信頼性を低下させるおそれがある。特に、Bi濃度が高い結晶相は硬くて脆いため、はんだ材料中で偏析すると信頼性が著しく低下するおそれがある。
以上の観点から、Sb、Bi及びPbの含有量の好ましい範囲は以下の通りである。
Sb含有量の下限は、好ましくは25質量ppm以上であり、より好ましくは50質量ppm以上であり、さらに好ましくは100質量ppm以上であり、特に好ましくは300質量ppm以上である。また、Sb含有量の上限は、好ましくは1150質量ppm以下であり、より好ましくは500質量ppm以下である。
Bi含有量の下限は、好ましくは25質量ppm以上であり、より好ましくは50質量ppm以上であり、さらに好ましくは75質量ppm以上であり、特に好ましくは100質量ppm以上であり、最も好ましくは250質量ppm以上である。また、Bi含有量の上限は、好ましくは1000質量ppm以下であり、より好ましくは600質量ppm以下であり、さらに好ましくは500質量ppm以下である。
Pb含有量の下限は、好ましくは25質量ppm以上であり、より好ましくは50質量ppm以上であり、さらに好ましくは75質量ppm以上であり、特に好ましくは100質量ppm以上であり、最も好ましくは250質量pp以上である。また、Pb含有量の上限は、好ましくは5000質量ppm以下であり、より好ましくは1000質量ppm以下であり、さらに好ましくは850質量ppm以下であり、特に好ましくは500質量ppm以下である。
Sb、Bi、及び、Pbは、はんだ材料全体の質量に対する含有量が上述の条件を満たしていれば、全部がSnやSn系合金と共に合金(金属間化合物や固溶体等)を構成していてもよいし、その一部がSn系合金とは別に存在していてもよい。
本実施形態において、As、Sb、Bi、及びPbの含有量は、下記(1)式を満たすことが好ましい。
275≦2As+Sb+Bi+Pb (1)
上記(1)式中、As、Sb、Bi、及びPbは、各々のはんだ材料中の含有量(質量ppm)を表す。
As、Sb、Bi及びPbは、いずれもペーストとしたときの粘土上昇を抑制する効果(増粘抑制効果)を示す元素であるので、増粘抑制の観点からは、これらの合計が275ppm以上であることが好ましい。(1)式中、As含有量を2倍にしたのは、AsがSbやBiやPbと比較して増粘抑制効果が高いためである。
2As+Sb+Bi+Pbは、好ましくは350以上であり、より好ましくは1200以上である。一方、2As+Sb+Bi+Pbに上限はないが、ΔTを適した範囲にする観点から、好ましくは25200であり、より好ましくは18600以下であり、更に好ましくは10200以下であり、特に好ましくは5300以下(好ましくは3800以下)である。
上記好ましい態様の中から上限および下限を適宜選択したものが、下記(1a)式および(1b)式である。
275≦2As+Sb+Bi+Pb≦25200 (1a)
275≦2As+Sb+Bi+Pb≦5300 (1b)
上記(1a)及び(1b)式中、As、Sb、Bi、及びPbは、各々のはんだ材料中の含有量(質量ppm)を表す。
本実施形態において、As、Sb、Bi、及びPbの含有量は、下記(2)式を満たすことが好ましい。
0.01≦(2As+Sb)/(Bi+Pb)≦10.00 (2)
上記(2)式中、As、Sb、Bi、及びPbは、各々のはんだ材料中の含有量(質量ppm)を表す。
一般に、As及びSbの含有量が多いとはんだ材料の濡れ性が劣化する傾向にある。一方、Bi及びPbは、Asを含有することによる濡れ性の劣化を抑制するが、含有量が多すぎるとΔTが広がるため、厳密な管理が必要である。特に、Bi及びPbを同時に含有する合金組成では、ΔTが広がりやすく、BiおよびPbの含有量を増加させて過度に濡れ性を向上させようとするとΔTが広がってしまう。一方、AsやSbの含有量を増加させて増粘抑制効果を向上させようとすると濡れ性が劣化してしまう。しかし、As及びSbのグループと、Bi及びPbのグループに分け、両グループの合計含有量が式(2)の関係を満足するようにすれば、As及びSbのグループとBi及びPbグループの含有量の間のバランスが適正になり、増粘抑制効果、ΔTの狭窄化、および濡れ性のすべてを同時に満たすことができる。
(2As+Sb)/(Bi+Pb)が0.01未満であると、Bi及びPbの含有量の合計がAs及びPbの含有量の合計と比較して相対的に多くなるため、ΔTが広がってしまう。(2As+Sb)/(Bi+Pb)は0.01以上であることが好ましく、より好ましくは0.02以上であり、さらに好ましくは0.41以上であり、なお好ましくは0.90以上であり、特に好ましくは1.00以上であり、最も好ましくは1.40以上である。一方、(2As+Sb)/(Bi+Pb)が10.00を超えると、As及びSbの含有量の合計がBi及びPbの含有量の合計より相対的に多くなるため、濡れ性が劣化してしまう。(2As+Sb)/(Bi+Pb)は10.00以下であることが好ましく、より好ましくは5.33以下であり、さらに好ましくは4.50以下であり、なお好ましくは2.67以下であり、特に好ましくは4.18以下であり、最も好ましくは2.30以下である。
なお、(2)式の分母は「Bi+Pb」であるので、式(2)が満たされる場合には、BiおよびPbのうちの少なくとも1種が必ず含有されることになる。Bi及びPbのいずれも含有しないはんだ材料は、前述のように、濡れ性が劣る傾向にある。
上記好ましい態様の中から上限および下限を適宜選択したものが、下記(2a)式である。
0.31≦(2As+Sb)/(Bi+Pb)≦10.00 (2a)
上記(2a)式中、As、Sb、Bi、及びPbは、各々のはんだ材料中の含有量(質量ppm)を表す。
なお、本実施形態において、As、Sb、Bi及びPbの含有量は、上述の式(1)及び式(2)の少なくとも一方を満たしていることが好ましく、両方満たしていることがより好ましい。
本実施形態において、ソルダペーストは、酸化ジルコニウム粉末をさらに含むことができる。ソルダペースト全体の質量に対する酸化ジルコニウム粉末の含有量は、0.05〜20.0質量%が好ましく、0.05〜10.0質量%がより好ましく、0.1〜3質量%が最も好ましい。酸化ジルコニウム粉末の含有量が上記範囲内であれば、フラックスに含まれる活性剤が酸化ジルコニウム粉末と優先的に反応し、はんだ粉末表面のSnやSn酸化物との反応が起こりにくくなることで経時変化による粘度上昇を更に抑制する効果が発揮される。
ソルダペーストに添加する酸化ジルコニウム粉末の粒径の上限に限定はないが、5μm以下であることが好ましい。粒径が5μm以下であるとペーストの印刷性を維持することができる。また、下限も特に限定されることはないが、0.5μm以上であることが好ましい。上記粒径は、酸化ジルコニウム粉末のSEM写真を撮影し、視野内に存在する各粒子について画像解析により投影円相当径を求めたときの、投影円相当径が0.1μm以上であるものの投影円相当径の平均値とする。酸化ジルコニウム粒子の形状は特に限定されないが、異形状であればフラックスとの接触面積が大きく増粘抑制効果がある。球形であると良好な流動性が得られるためにペーストとしての優れた印刷性が得られる。所望の特性に応じて適宜形状を選択すればよい。
本実施形態のはんだ材料の製造方法としては、特に限定されず、例えば、原料金属を溶融混合することにより製造する方法が挙げられる。
本実施形態において、はんだ材料の形態は、特に限定されず、例えば、粉末状の形態(はんだ粉末)等の粒子状の形態であってもよい。はんだ材料の形態は、流動性に優れる観点から、粒子状の形態であることが好ましく、粉末状の形態であることがより好ましい。
粒子状のはんだ材料の製造方法としては、例えば、溶融させたはんだ材料を滴下して粒子を得る滴下法や遠心噴霧する噴霧法、バルクのはんだ材料を粉砕する方法等が挙げられる。滴下法や噴霧法において、滴下や噴霧は、粒子状とするために不活性雰囲気や溶媒中で行うことが好ましい。
また、はんだ材料が粒子状である場合、はんだ材料は、JIS Z 3284−1:2004における粉末サイズの分類(表2)において記号1〜8に該当するサイズ(粒度分布)を有していることが好ましく、記号4〜8に該当するサイズ(粒度分布)を有していることがより好ましく、記号5〜8に該当するサイズ(粒度分布)を有していることが更に好ましい。これにより、微細な部品へのはんだ付けが可能となる。
[フラックス]
本明細書において、「フラックス」とは、ソルダペーストにおけるはんだ材料以外の成分全体をいう。
フラックスは、金属不活性化剤としてヒンダードフェノール系化合物を含有する。フラックスがヒンダードフェノール系化合物を含有することにより、はんだ材料は、増粘抑制効果を向上できる。
ヒンダードフェノール系化合物とは、フェノールのオルト位の少なくとも一方に嵩高い置換基(例えばt−ブチル基等の分岐状又は環状アルキル基)を有するフェノール系化合物をいう。ヒンダードフェノール系化合物としては、特に限定されず、例えば、ビス[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオン酸][エチレンビス(オキシエチレン)]、N,N’−ヘキサメチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロパンアミド]、1,6−ヘキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオナート]、2,2’−メチレンビス[6−(1−メチルシクロヘキシル)−p−クレゾール]、2,2’−メチレンビス(6−tert−ブチル−p−クレゾール)、2,2’−メチレンビス(6−tert−ブチル−4−エチルフェノール)、トリエチレングリコール−ビス〔3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕、1,6−ヘキサンジオール−ビス−〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、2,2−チオ−ジエチレンビス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルフォスフォネート−ジエチルエステル、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン等が挙げられる。これらのヒンダードフェノール系化合物は、1種を単独で、又は2種以上を組み合わせて用いられる。
ヒンダードフェノール系化合物の含有量は、フラックス全体に対して、0.5〜10質量%であることが好ましい。含有量が0.5質量%以上であることにより、ソルダペーストは、増粘抑制効果を一層向上できる。含有量が10質量%以下であることにより、ソルダペーストは、はんだ濡れ性を一層向上できる。同様の観点から、含有量は、1.0〜5.0質量%であることがより好ましく、2.0〜4.0質量%であることが更に好ましい。
フラックスは、樹脂を含有することが好ましい。樹脂の含有量は、フラックス全体に対して、例えば、30〜60質量%であってもよい。
樹脂としては、特に限定されず、例えば、ロジン系樹脂、(メタ)アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、フェノキシ樹脂、ビニルエーテル系樹脂、テルペン樹脂、変性テルペン樹脂(例えば、芳香族変性テルペン樹脂、水添テルペン樹脂、水添芳香族変性テルペン樹脂等)、テルペンフェノール樹脂、変性テルペンフェノール樹脂(例えば、水添テルペンフェノール樹脂等)、スチレン樹脂、変性スチレン樹脂(例えば、スチレンアクリル樹脂、スチレンマレイン樹脂等)、キシレン樹脂、変性キシレン樹脂(例えば、フェノール変性キシレン樹脂、アルキルフェノール変性キシレン樹脂、フェノール変性レゾール型キシレン樹脂、ポリオール変性キシレン樹脂、ポリオキシエチレン付加キシレン樹脂等)等が挙げられる。これらの樹脂は、1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でも、樹脂は、ロジン系樹脂及び(メタ)アクリル系樹脂からなる群より選択される1種以上であることが好ましい。なお、ここでいう「(メタ)アクリル系樹脂」とは、メタクリル系樹脂及びアクリル系樹脂を包含する概念をいう。
ロジン系樹脂としては、例えば、ガムロジン、ウッドロジン、トール油ロジン等の原料ロジン、原料ロジンから得られる誘導体が挙げられる。誘導体としては、例えば、精製ロジン、水添ロジン、不均化ロジン、重合ロジン及びα,β不飽和カルボン酸変性物(アクリル化ロジン)、マレイン化ロジン、フマル化ロジン等)、並びに重合ロジンの精製物、水素化物及び不均化物、並びにα,β不飽和カルボン酸変性物の精製物、水素化物、不均化物等が挙げられる。これらのロジン系樹脂は、1種を単独で、又は2種以上を組み合わせて用いられる。
ロジン系樹脂の含有量は、フラックス全体に対して、例えば、30〜60質量%であってもよい。
(メタ)アクリル系樹脂としては、例えば、(メタ)アクリル系モノマーの単独重合体、2種類以上の(メタ)アクリル系モノマーの共重合体が挙げられる。(メタ)アクリル系モノマーとしては、(メタ)アクリル酸、イタコン酸、マレイン酸、クロトン酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸プロピル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル等が挙げられる。これらの(メタ)アクリル系樹脂は、1種を単独で、又は2種以上を組み合わせて用いられる。
樹脂は、(メタ)アクリル系樹脂を含有することにより、温度サイクル信頼性を向上できる。高温と低温の繰り返しのサーマルストレスを実装部又は接合部に与えた際に、ロジンのような結晶性の高い材料は割れて、その亀裂から吸湿する虞がある。これに対し、樹脂に軟らかい(メタ)アクリル系樹脂を含めることにより、上記亀裂を抑制し、その結果、温度サイクル信頼性を向上できる。(メタ)アクリル系樹脂の含有量は、フラックス全体に対して、例えば、0〜40質量%であり、温度サイクル信頼性に優れる観点から、20〜30質量%であることが好ましい。(メタ)アクリル系樹脂の含有量は、樹脂全体に対して、例えば、0〜80質量%であり、温度サイクル信頼性に優れる観点から、30〜80質量%であることが好ましい。
フラックスは、はんだ付け性を向上させるために有機酸系活性剤(有機酸)を含有してもよい。有機酸としては、アジピン酸、アゼライン酸、エイコサン二酸、クエン酸、グリコール酸、コハク酸、サリチル酸、ジグリコール酸、ジピコリン酸、ジブチルアニリンジグリコール酸、スベリン酸、セバシン酸、チオグリコール酸、テレフタル酸、ドデカン二酸、パラヒドロキシフェニル酢酸、ピコリン酸、フェニルコハク酸、フタル酸、フマル酸、マレイン酸、マロン酸、ラウリン酸、安息香酸、酒石酸、イソシアヌル酸トリス(2−カルボキシエチル)、グリシン、1,3−シクロヘキサンジカルボン酸、2,2−ビス(ヒドロキシメチル)プロピオン酸、2,2−ビス(ヒドロキシメチル)ブタン酸、2,3−ジヒドロキシ安息香酸、2,4−ジエチルグルタル酸、2−キノリンカルボン酸、3−ヒドロキシ安息香酸、リンゴ酸、p−アニス酸、ステアリン酸、12−ヒドロキシステアリン酸、オレイン酸、リノール酸、リノレン酸、ダイマー酸、水添ダイマー酸、トリマー酸、水添トリマー酸等が挙げられる。
有機酸の含有量は、フラックス全体に対して、例えば、0〜10質量%であってもよい。
フラックスは、はんだ付け性を向上させるためにアミン系活性剤(アミン)を含有してもよい。アミンとしては、例えば、アミン脂肪族アミン、芳香族アミン、アミノアルコール、イミダゾール、ベンゾトリアゾール、アミノ酸、グアニジン、ヒドラジド等が挙げられる。脂肪族アミンとしては、例えば、ジメチルアミン、エチルアミン、1−アミノプロパン、イソプロピルアミン、トリメチルアミン、アリルアミン、n−ブチルアミン、ジエチルアミン、sec−ブチルアミン、tert−ブチルアミン、N,N−ジメチルエチルアミン、イソブチルアミン、シクロヘキシルアミン等が挙げられる。芳香族アミンとしては、例えば、アニリン、N−メチルアニリン、ジフェニルアミン、N−イソプロピルアニリン、p−イソプロピルアニリン等が挙げられる。アミノアルコールとしては、例えば、2−アミノエタノール、2−(エチルアミノ)エタノール、ジエタノールアミン、ジイソプロパノールアミン、トリエタノールアミン、N−ブチルジエタノールアミン、トリイソプロパノールアミン、N,N−ビス(2−ヒドロキシエチル)−N−シクロヘキシルアミン、N,N,N',N'−テトラキス(2−ヒドロキシプロピル)エチレンジアミン、N,N,N',N'',N''−ペンタキス(2−ヒドロキシプロピル)ジエチレントリアミン等が挙げられる。イミダゾールとしては、例えば、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテイト、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2'―メチルイミダゾリル−(1')]―エチル−s−トリアジン、2,4−ジアミノ−6−[2'―ウンデシルイミダゾリル−(1')]―エチル−s−トリアジン、2,4−ジアミノ−6−[2'―エチル−4'―メチルイミダゾリル−(1')]―エチル−s−トリアジン、2,4−ジアミノ−6−[2'―メチルイミダゾリル−(1')]―エチル−s−トリアジンイソシアヌル酸付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2,3−ジヒドロ−1H−ピロロ[1,2−a]ベンズイミダゾール、1−ドデシル−2−メチル−3−ベンジルイミダゾリウムクロライド、2−メチルイミダゾリン、2−フェニルイミダゾリン、2,4−ジアミノ−6−ビニル−s−トリアジン、2,4−ジアミノ−6−ビニル−s−トリアジンイソシアヌル酸付加物、2,4−ジアミノ−6−メタクリロイルオキシエチル−s−トリアジン、エポキシ―イミダゾールアダクト、2−メチルベンゾイミダゾール、2−オクチルベンゾイミダゾール、2−ペンチルベンゾイミダゾール、2−(1−エチルペンチル)ベンゾイミダゾール、2−ノニルベンゾイミダゾール、2−(4−チアゾリル)ベンゾイミダゾール、ベンゾイミダゾール等が挙げられる。ベンゾトリアゾールとしては、例えば、2−(2'―ヒドロキシ−5'―メチルフェニル)ベンゾトリアゾール、2−(2'―ヒドロキシ−3'―tert−ブチル−5'―メチルフェニル)−5−クロロベンゾトリアゾール、2−(2'―ヒドロキシ−3',5'―ジ−tert−アミルフェニル)ベンゾトリアゾール、2−(2'―ヒドロキシ−5'−tert−オクチルフェニル)ベンゾトリアゾール、2,2’―メチレンビス[6−(2H−ベンゾトリアゾール−2−イル)−4−tert−オクチルフェノール]、6−(2−ベンゾトリアゾリル)−4−tert−オクチル−6'−tert−ブチル−4'−メチル−2,2'−メチレンビスフェノール、1,2,3−ベンゾトリアゾール、1−[N,N−ビス(2−エチルヘキシル)アミノメチル]ベンゾトリアゾール、カルボキシベンゾトリアゾール、1−[N,N−ビス(2−エチルヘキシル)アミノメチル]メチルベンゾトリアゾール、2,2’―[[(メチル−1H−ベンゾトリアゾール−1−イル)メチル]イミノ]ビスエタノール、1,2,3−ベンゾトリアゾールナトリウム塩水溶液、1−(1',2'―ジカルボキシエチル)ベンゾトリアゾール、1−(2,3−ジカルボキシプロピル)ベンゾトリアゾール、1−[(2−エチルヘキシルアミノ)メチル]ベンゾトリアゾール、2,6−ビス[(1H−ベンゾトリアゾール−1−イル)メチル]−4−メチルフェノール、5−メチルベンゾトリアゾール等が挙げられる。アミノ酸としては、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン塩酸塩、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リジン一塩酸塩、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、バリン、β-アラニン、γ-アミノ酪酸、δ-アミノ吉草酸、ε-アミノヘキサン酸、ε-カプロラクタム、7−アミノヘプタン酸等が挙げられる。グアニジンとしては、例えば、カルボジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、1,3−ビス(ヒドラジノカルボノエチル)−5−イソプロピルヒダントイン、セバシン酸ジヒドラジド、ドデカン二酸ジヒドラジド、7,11−オクタデカジエン−1,18−ジカルボヒドラジド、イソフタル酸ジヒドラジド等が挙げられる。ヒドラジドとしては、例えば、ジシアンジアミド、1,3−ジフェニルグアニジン、1,3−ジ−o−トリルグアニジン等が挙げられる。
アミンの含有量は、フラックス全体に対して、例えば、0〜20質量%であってもよい。
フラックスは、はんだ付け性を向上させるために、共有結合性ハロゲン活性剤(共有結合性ハロゲン)を含有してもよい。共有結合性ハロゲンとしては、例えば、トランス−2,3−ジブロモ−2−ブテン−1,4−ジオール、2,3−ジブロモ−1,4−ブタンジオール、2,3−ジブロモ−1−プロパノール、2,3−ジクロロ−1−プロパノール、1,1,2,2−テトラブロモエタン、2,2,2−トリブロモエタノール、ペンタブロモエタン、四臭化炭素、2,2−ビス(ブロモメチル)−1,3−プロパンジオール、meso−2,3−ジブロモこはく酸、クロロアルカン、塩素化脂肪酸エステル、臭化n−ヘキサデシルトリメチルアンモニウム、トリアリルイソシアヌレート6臭化物、2,2−ビス[3,5−ジブロモ−4−(2,3−ジブロモプロポキシ)フェニル]プロパン、ビス[3,5−ジブロモ−4−(2,3−ジブロモプロポキシ)フェニル]スルホン、エチレンビスペンタブロモベンゼン、2−クロロメチルオキシラン、ヘット酸、ヘット酸無水物、臭化ビスフェノールA型エポキシ樹脂等が挙げられる。
共有結合性ハロゲンの含有量は、フラックス全体に対して、例えば、0〜5質量%であってもよい。
フラックスは、はんだ付け性を向上させるためにアミンハロゲン化水素酸塩活性剤(アミンハロゲン化水素酸塩)を含有してもよい。アミンハロゲン化水素酸塩としては、アミンとして例示したアミンのハロゲン化水素酸塩が挙げられる。アミンハロゲン化水素酸塩としては、例えば、ステアリルアミン塩酸塩、ジエチルアニリン塩酸塩、ジエタノールアミン塩酸塩、2−エチルヘキシルアミン臭化水素酸塩、ピリジン臭化水素酸塩、イソプロピルアミン臭化水素酸塩、シクロヘキシルアミン臭化水素酸塩、ジエチルアミン臭化水素酸塩、モノエチルアミン臭化水素酸塩、1,3−ジフェニルグアニジン臭化水素酸塩、ジメチルアミン臭化水素酸塩、ジメチルアミン塩酸塩、ロジンアミン臭化水素酸塩、2−エチルヘキシルアミン塩酸塩、イソプロピルアミン塩酸塩、シクロヘキシルアミン塩酸塩、2−ピペコリン臭化水素酸塩、1,3−ジフェニルグアニジン塩酸塩、ジメチルベンジルアミン塩酸塩、ヒドラジンヒドラート臭化水素酸塩、ジメチルシクロヘキシルアミン塩酸塩、トリノニルアミン臭化水素酸塩、ジエチルアニリン臭化水素酸塩、2−ジエチルアミノエタノール臭化水素酸塩、2−ジエチルアミノエタノール塩酸塩、塩化アンモニウム、ジアリルアミン塩酸塩、ジアリルアミン臭化水素酸塩、モノエチルアミン塩酸塩、モノエチルアミン臭化水素酸塩、ジエチルアミン塩酸塩、トリエチルアミン臭化水素酸塩、トリエチルアミン塩酸塩、ヒドラジン一塩酸塩、ヒドラジン二塩酸塩、ヒドラジン一臭化水素酸塩、ヒドラジン二臭化水素酸塩、ピリジン塩酸塩、アニリン臭化水素酸塩、ブチルアミン塩酸塩、へキシルアミン塩酸塩、n−オクチルアミン塩酸塩、ドデシルアミン塩酸塩、ジメチルシクロヘキシルアミン臭化水素酸塩、エチレンジアミン二臭化水素酸塩、ロジンアミン臭化水素酸塩、2−フェニルイミダゾール臭化水素酸塩、4−ベンジルピリジン臭化水素酸塩、L−グルタミン酸塩酸塩、N−メチルモルホリン塩酸塩、ベタイン塩酸塩、2−ピペコリンヨウ化水素酸塩、シクロヘキシルアミンヨウ化水素酸塩、1,3−ジフェニルグアニジンフッ化水素酸塩、ジエチルアミンフッ化水素酸塩、2−エチルヘキシルアミンフッ化水素酸塩、シクロヘキシルアミンフッ化水素酸塩、エチルアミンフッ化水素酸塩、ロジンアミンフッ化水素酸塩、シクロヘキシルアミンテトラフルオロホウ酸塩、ジシクロヘキシルアミンテトラフルオロホウ酸塩等が挙げられる。
アミンハロゲン化水素酸塩の含有量は、フラックス全体に対して、例えば、0〜2質量%であってもよい。
フラックスは、溶剤を含有してもよい。溶剤としては、水、アルコール系溶剤、グリコールエーテル系溶剤、テルピネオール類等が挙げられる。アルコール系溶剤としては、イソプロピルアルコール、1,2−ブタンジオール、イソボルニルシクロヘキサノール、2,4−ジエチル−1,5−ペンタンジオール、2,2−ジメチル−1,3−プロパンジオール、2,5−ジメチル−2,5−ヘキサンジオール、2,5−ジメチル−3−ヘキシン−2,5−ジオール、2,3−ジメチル−2,3−ブタンジオール、1,1,1−トリス(ヒドロキシメチル)エタン、2−エチル−2−ヒドロキシメチル−1,3−プロパンジオール、2,2′−オキシビス(メチレン)ビス(2−エチル−1,3−プロパンジオール)、2,2−ビス(ヒドロキシメチル)−1,3−プロパンジオール、1,2,6−トリヒドロキシヘキサン、ビス[2,2,2−トリス(ヒドロキシメチル)エチル]エーテル、1−エチニル−1−シクロヘキサノール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール、エリトリトール、トレイトール、グアヤコールグリセロールエーテル、3,6−ジメチル−4−オクチン−3,6−ジオール、2,4,7,9−テトラメチル−5−デシン−4,7−ジオール等が挙げられる。グリコールエーテル系溶剤としては、ジエチレングリコールモノ−2−エチルヘキシルエーテル、エチレングリコールモノフェニルエーテル、2−メチルペンタン−2,4−ジオール、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールモノブチルエーテル、ヘキシルジグリコール、テトラエチレングリコールジメチルエーテル等が挙げられる。
溶媒の含有量は、例えば、フラックス全体に対して、0〜80質量%であってもよい。
フラックスは、チキソ剤を含有してもよい。チキソ剤としては、例えば、ワックス系チキソ剤、アマイド系チキソ剤等が挙げられる。ワックス系チキソ剤としては、例えば、ヒマシ硬化油等が挙げられる。アマイド系チキソ剤としては、例えば、ラウリン酸アマイド、パルミチン酸アマイド、ステアリン酸アマイド、ベヘン酸アマイド、ヒドロキシステアリン酸アマイド、飽和脂肪酸アマイド、オレイン酸アマイド、エルカ酸アマイド、不飽和脂肪酸アマイド、p−トルエンメタンアマイド、芳香族アマイド、メチレンビスステアリン酸アマイド、エチレンビスラウリン酸アマイド、エチレンビスヒドロキシステアリン酸アマイド、飽和脂肪酸ビスアマイド、メチレンビスオレイン酸アマイド、不飽和脂肪酸ビスアマイド、m−キシリレンビスステアリン酸アマイド、芳香族ビスアマイド、飽和脂肪酸ポリアマイド、不飽和脂肪酸ポリアマイド、芳香族ポリアマイド、置換アマイド、メチロールステアリン酸アマイド、メチロールアマイド、脂肪酸エステルアマイド等が挙げられる。
チキソ剤の含有量は、フラックス全体に対して、例えば、0〜15質量%であってもよい。
本実施形態において、はんだ材料の含有量と、フラックスの含有量との質量比(はんだ材料:フラックス)は、はんだ材料95質量%:フラックス5質量%〜はんだ材料5質量%:フラックス95質量%であってもよく、好ましくははんだ材料95質量%:フラックス5質量%〜はんだ材料85質量%:フラックス15質量%であってもよい。
本実施形態において、ソルダペーストは、本実施形態のはんだ材料(はんだ粉末)とフラックスとを公知の方法により混練することにより製造することができる。
本実施形態のソルダペーストは、例えば、電子機器における微細構造の回路基板に用いられ、具体的には、メタルマスクを用いた印刷法、ディスペンサを用いた吐出法、又は転写ピンによる転写法等により、はんだ付け部に塗布し、リフローを行うことができる。
以下、本発明について実施例により具体的に説明するが、本発明は実施例に記載の内容に限定されるものではない。
(はんだ粉末の調整)
表1〜表10に示す各金属を表1〜表10に示す組成になるように、溶融混合し、Ar雰囲気中で遠心噴霧することにより粉末を調製した。各表中の数値は、はんだ粉末の合計が100質量%としたときの各金属の含有量(質量%)を表し、「Bal」は、残部を表す。また、各はんだ粉末の平均粒子径をJIS Z3284−1:2004に準じて測定し、測定値からJIS Z3284−1:2004の粉末サイズ分類の表2に従って分類した。各表中に示す数値は、JIS Z3284−1:2004の表2における粉末サイズの記号を示す。
(フラックスの調製)
表1〜表10に示す各材料を、表1〜表10に示す組成となるように加熱撹拌した後、冷却することによりフラックスを調製した。各表中の数値は、フラックスの合計が100質量%としたときの各材料の含有量(質量%)を表す。以下に表中に示す各材料の試薬名及びCAS番号を示す。
・「金属不活性化剤A」
試薬名:ビス[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオン酸][エチレンビス(オキシエチレン)]
CAS No.36443−68−2
・「金属不活性化剤B」
試薬名:N,N’−ヘキサメチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロパンアミド]
CAS No.23128−74−7
・「金属不活性化剤C」
試薬名:1,6−ヘキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオナート]
CAS No.35074−77−2
・「金属不活性化剤D」
試薬名:2,2’−メチレンビス[6−(1−メチルシクロヘキシル)−p−クレゾール]
CAS No.77−62−3
・「金属不活性化剤E」
試薬名:2,2’−メチレンビス(6−tert−ブチル−p−クレゾール)
CAS No.119−47−1
・「金属不活性化剤F」
試薬名:2,2’−メチレンビス(6−tert−ブチル−4−エチルフェノール)
CAS No.88−24−4
・「金属不活性化剤G」
試薬名:N−(2H−1,2,4−トリアゾール−5−イル)サリチルアミド
CAS No.36411−52−6
・試薬名:2−エチル−4−メチルイミダゾール
CAS No.931−36−2
・試薬名:2−ウンデシルイミダゾール
CAS No.16731−68−3
・試薬名:トランス−2,3−ジブロモ−2−ブテン−1,4−ジオール
CAS No.3234−02−4
・試薬名:トリアリルイソシアヌレート6臭化物
CAS No.52434−90−9
・試薬名:ヘキシルジグリコール
CAS No.112−59−4
・試薬名:テトラエチレングリコールジメチルエーテル
CAS No.143−24−8
・試薬名:ヒマシ硬化油
CAS No.8001−78−3
(ソルダペーストの調製)
はんだ粉末と、フラックスとを質量比(はんだ粉末:フラックス)が89:11となるように混練し、ソルダペーストを調製した。
各実施例及び比較例のソルダペーストについて(1)増粘抑制評価を行い、各実施例及び比較例で用いたはんだ粉末について(2)信頼性評価を行った。各評価方法を以下に示し、評価結果を表1〜表10に示す。
(1)増粘抑制評価
得られたソルダペーストについて、JIS Z 3284−3の「4.2 粘度特性試験」に記載された方法に従って、回転粘度計(PCU−205、株式会社マルコム製)を用い、回転数:10rpm、測定温度:25℃にて、粘度を12時間測定し続けた。そして、初期粘度(撹拌30分後の粘度)と13時間後の粘度とを比較し、以下の基準に基づいて増粘抑制効果の評価を行った。
13時間後の粘度 ≦ 初期粘度×1.2 :経時での粘度上昇が小さく良好(○)
13時間後の粘度 > 初期粘度×1.2 :経時での粘度上昇が大きく不良(×)
(2)信頼性の評価
得られたはんだ粉末について、示差走査熱量計(EXSTAR DSC7020、エスアイアイ・ナノテクノロジー株式会社製)を用いて、昇温速度:5℃/分(180℃〜250℃)、降温速度:−3℃/分(250℃〜150℃)、キャリアガス:N2の測定条件でDSC測定を行い、液相線温度(TL)及び固相線温度(TS)を測定した。そして、液相線温度(TL)と固相線温度(TS)との差(ΔT=TL−TS)を算出し、以下の基準に基づいて評価を行った。
ΔTが10℃以内:信頼性に優れる(○)
ΔTが10℃超 :信頼性に劣る(×)
はんだ粉末の液相線温度(TL)と固相線温度(TS)との差(ΔT=TL−TS)が大きい場合、当該はんだ粉末を含むソルダペーストを電子機器の基板に塗布し、凝固させる際に、はんだ粉末の表面に融点の高い組織が析出しやすい。はんだ粉末の表面に融点の高い組織が析出すると、その後、はんだ粉末の内側に向かって融点の低い組織が逐次析出し、はんだ粉末の組織が不均一となりやすく、サイクル性等の信頼性を低下させる原因になる。
(3)濡れ性の評価 上記の「(1)増粘抑制評価」と同様にして、各実施例及び比較例のソルダペーストを、Cu板上に開口径6.5mm、開口数4個、マスク厚0.2mmのメタルマスクを用いて印刷し、リフロー炉において、N2雰囲気下、昇温速度1℃/secで25℃から260℃まで加熱した後、室温(25℃)まで空冷し、4個のはんだバンプを形成した。光学顕微鏡(倍率:100倍)を用いて、得られたはんだバンプの外観を観察し、以下の基準に基づいて評価を行った。
4個のはんだバンプの全てにおいて溶融しきれないはんだ粒子が観察されなかった。
:はんだ濡れ性が良好(○)
4個のはんだバンプのうちの1個以上において溶融しきれないはんだ粒子が観察された。
:はんだ濡れ性が不良(×)
Figure 2020015086
Figure 2020015086
Figure 2020015086
Figure 2020015086
Figure 2020015086
Figure 2020015086
Figure 2020015086
Figure 2020015086
Figure 2020015086
Figure 2020015086
Figure 2020015086
Figure 2020015086
本発明のはんだ材料は、増粘抑制効果やサイクル特性等の信頼性にも優れているため各種用途に利用できる。
また、はんだ材料が粒子状である場合、はんだ材料は、JIS Z 3284−1:204における粉末サイズの分類(表2)において記号1〜8に該当するサイズ(粒度分布)を有していることが好ましく、記号4〜8に該当するサイズ(粒度分布)を有していることがより好ましく、記号5〜8に該当するサイズ(粒度分布)を有していることが更に好ましい。これにより、微細な部品へのはんだ付けが可能となる。
(はんだ粉末の調整)
表1〜表10に示す各金属を表1〜表10に示す組成になるように、溶融混合し、Ar雰囲気中で遠心噴霧することにより粉末を調製した。各表中の数値は、はんだ粉末の合計が100質量%としたときの各金属の含有量(質量%)を表し、「Bal」は、残部を表す。また、各はんだ粉末の平均粒子径をJIS Z3284−1:204に準じて測定し、測定値からJIS Z3284−1:204の粉末サイズ分類の表2に従って分類した。各表中に示す数値は、JIS Z3284−1:204の表2における粉末サイズの記号を示す。
Figure 2020015086
Figure 2020015086
Figure 2020015086
Figure 2020015086

Claims (7)

  1. はんだ材料とフラックスとからなるソルダペーストであって、
    前記はんだ材料が、Sn又はSn系合金、20〜300質量ppmのAs、0〜3000質量ppmのSb、0〜10000質量ppmのBi及び0〜5100質量ppmのPb(ただし、Bi及びPbの含有量が同時に0質量ppmになることはない)を含有し、
    前記フラックスが、ヒンダードフェノール系化合物を含有するソルダペースト。
  2. As、Sb、Bi及びPbの含有量が、下記式(1)及び式(2)を満たす、請求項1に記載のソルダペースト。
    275≦2As+Sb+Bi+Pb (1)
    0.01≦(2As+Sb)/(Bi+Pb)≦10.00 (2)
    ただし、式(1)及び式(2)中、As、Sb、Bi及びPbは、各々のはんだ材料中の含有量(質量ppm)を表す。
  3. 前記ヒンダードフェノール系化合物の含有量が、前記フラックス全体に対して、0.5〜10質量%である請求項1又は2に記載のソルダペースト。
  4. 前記はんだ材料が粒子状の形態を有する請求項1〜3のいずれか1項に記載のソルダペースト。
  5. 前記Sn又はSn系合金が、0を超え、3.5質量%以下のAg及び/又は0を超え、1.0質量%以下のCuを含むSn系合金である、請求項1〜4のいずれか1項に記載のソルダペースト。
  6. 酸化ジルコニウム粉末をさらに含む、請求項1〜5のいずれか1項に記載のソルダペースト。
  7. ソルダペースト全体の質量に対する酸化ジルコニウム粉末の含有量が0.05〜20.0質量%である、請求項6に記載のソルダペースト。
JP2018141543A 2018-07-27 2018-07-27 ソルダペースト Active JP6643691B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018141543A JP6643691B2 (ja) 2018-07-27 2018-07-27 ソルダペースト

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018141543A JP6643691B2 (ja) 2018-07-27 2018-07-27 ソルダペースト

Publications (2)

Publication Number Publication Date
JP2020015086A true JP2020015086A (ja) 2020-01-30
JP6643691B2 JP6643691B2 (ja) 2020-02-12

Family

ID=69412109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018141543A Active JP6643691B2 (ja) 2018-07-27 2018-07-27 ソルダペースト

Country Status (1)

Country Link
JP (1) JP6643691B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224881A (ja) * 2001-02-05 2002-08-13 Hitachi Metals Ltd はんだボール
JP2002283097A (ja) * 2001-03-23 2002-10-02 Tamura Kaken Co Ltd ソルダペースト組成物及びリフローはんだ付方法
US20040129764A1 (en) * 2003-01-07 2004-07-08 Dong Chun Christine Reducing surface tension and oxidation potential of tin-based solders
JP2015020181A (ja) * 2013-07-17 2015-02-02 ハリマ化成株式会社 はんだ組成物、ソルダペーストおよび電子回路基板
JP2015098052A (ja) * 2013-10-16 2015-05-28 三井金属鉱業株式会社 半田合金及び半田粉
JP2015160233A (ja) * 2014-02-27 2015-09-07 株式会社タムラ製作所 フラックス組成物、はんだ組成物およびプリント配線基板
JP2016500578A (ja) * 2012-10-09 2016-01-14 アルファ・メタルズ・インコーポレイテッドAlpha Metals,Inc. 鉛フリーかつアンチモンフリーの高温信頼性錫はんだ
JP2016537206A (ja) * 2013-10-31 2016-12-01 アルファ・メタルズ・インコーポレイテッドAlpha Metals, Inc. 鉛フリーかつ銀フリーのはんだ合金

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224881A (ja) * 2001-02-05 2002-08-13 Hitachi Metals Ltd はんだボール
JP2002283097A (ja) * 2001-03-23 2002-10-02 Tamura Kaken Co Ltd ソルダペースト組成物及びリフローはんだ付方法
US20040129764A1 (en) * 2003-01-07 2004-07-08 Dong Chun Christine Reducing surface tension and oxidation potential of tin-based solders
JP2016500578A (ja) * 2012-10-09 2016-01-14 アルファ・メタルズ・インコーポレイテッドAlpha Metals,Inc. 鉛フリーかつアンチモンフリーの高温信頼性錫はんだ
JP2015020181A (ja) * 2013-07-17 2015-02-02 ハリマ化成株式会社 はんだ組成物、ソルダペーストおよび電子回路基板
JP2015098052A (ja) * 2013-10-16 2015-05-28 三井金属鉱業株式会社 半田合金及び半田粉
JP2016537206A (ja) * 2013-10-31 2016-12-01 アルファ・メタルズ・インコーポレイテッドAlpha Metals, Inc. 鉛フリーかつ銀フリーのはんだ合金
JP2015160233A (ja) * 2014-02-27 2015-09-07 株式会社タムラ製作所 フラックス組成物、はんだ組成物およびプリント配線基板

Also Published As

Publication number Publication date
JP6643691B2 (ja) 2020-02-12

Similar Documents

Publication Publication Date Title
KR102241026B1 (ko) 땜납 합금, 땜납 분말, 땜납 페이스트 및 이것들을 사용한 솔더 조인트
US10987764B2 (en) Flux and solder paste
JP6643745B1 (ja) はんだペースト及びはんだペースト用フラックス
CN110732806B (zh) 助焊剂和焊锡膏
US11590614B2 (en) Flux and solder paste
JP6555402B1 (ja) ソルダペースト
JP6575705B1 (ja) フラックス及びソルダペースト
JP6643691B2 (ja) ソルダペースト
JP6880438B2 (ja) ソルダペースト
JP6676242B1 (ja) ソルダペースト
JP6777873B1 (ja) フラックス及びソルダペースト
JP6849923B2 (ja) ソルダペースト
JP6734553B1 (ja) ソルダペースト
JP6721850B1 (ja) ソルダペースト
JP6777872B1 (ja) フラックス及びソルダペースト
JP6646242B1 (ja) はんだペースト及びはんだペースト用フラックス
JP6643746B1 (ja) はんだペースト及びはんだペースト用フラックス
JP2021041463A (ja) フラックス及びソルダペースト
JP6646241B1 (ja) はんだペースト及びはんだペースト用フラックス
TWI832936B (zh) 助焊劑
JP2020192564A (ja) はんだペースト及びはんだペースト用フラックス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180731

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180731

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191215

R150 Certificate of patent or registration of utility model

Ref document number: 6643691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250