JP2020014340A - Dc power feeding system - Google Patents

Dc power feeding system Download PDF

Info

Publication number
JP2020014340A
JP2020014340A JP2018135892A JP2018135892A JP2020014340A JP 2020014340 A JP2020014340 A JP 2020014340A JP 2018135892 A JP2018135892 A JP 2018135892A JP 2018135892 A JP2018135892 A JP 2018135892A JP 2020014340 A JP2020014340 A JP 2020014340A
Authority
JP
Japan
Prior art keywords
power
voltage
power conversion
power supply
conversion circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018135892A
Other languages
Japanese (ja)
Other versions
JP7152892B2 (en
Inventor
竜治 宮川
Ryuji Miyagawa
竜治 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2018135892A priority Critical patent/JP7152892B2/en
Priority to CN201921062464.XU priority patent/CN209948784U/en
Priority to CN201910610407.9A priority patent/CN110739765B/en
Publication of JP2020014340A publication Critical patent/JP2020014340A/en
Application granted granted Critical
Publication of JP7152892B2 publication Critical patent/JP7152892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Abstract

To provide a DC power feeding system capable of further certainly continuing supply of power to an external load in power interruption.SOLUTION: A DC power feeding system 1 is provided with storage batteries 4 and 5, and bidirectional power conversion devices 6 and 7 each one of which is provided between the storage batteries 4 and 5 and a feed line 3. The bidirectional power conversion devices 6 and 7 have: power conversion circuits 10 which operate in a charge mode for stepping down DC voltage Vfrom a rectifier 2 to be input from the feed line 3 to be supplied to the storage batteries 4 and 5 and a backup mode for boosting voltage of the storage batteries 4 and 5 to be output to the feed line 3; and control circuits 11 which control operations of the power conversion circuits 10. The control circuits 11 set a target value Vof voltage to be output from the power conversion circuits 10 to a value "V-I×R" obtained by subtracting the product of output current Iand virtual resistance Rof the power conversion circuits 10 from predetermined voltage Vwhen the power conversion circuits 10 are operated in the backup mode.SELECTED DRAWING: Figure 1

Description

本発明は、複数の蓄電池を用いて直流電圧を外部負荷へ出力する直流給電システムに関する。   The present invention relates to a DC power supply system that outputs a DC voltage to an external load using a plurality of storage batteries.

従来、停電時においても動作させるべき直流の外部負荷に電力を供給する直流給電システムとして、蓄電池を含んだものが種々検討されている。その一例として、特許文献1には、図6に示すように、交流電力系統Gから入力される交流電圧を直流電圧に変換して外部負荷Lへの給電路102へ出力する整流装置101と、蓄電池103と、給電路102と蓄電池103との間に設けられた双方向電力変換装置104とを備えた直流給電システム100が開示されている。この直流給電システム100は、停電により整流装置101が直流電圧を正常に出力することができなくなると、双方向電力変換装置104が蓄電池103の電圧を昇圧して給電路102へ出力し、これにより、外部負荷Lへの電力の供給が継続される。   2. Description of the Related Art Conventionally, various types of DC power supply systems that include a storage battery have been studied as a DC power supply system that supplies power to a DC external load to be operated even during a power failure. As an example, Patent Document 1 discloses a rectifier 101 that converts an AC voltage input from an AC power system G into a DC voltage and outputs the DC voltage to a power supply path 102 to an external load L, as illustrated in FIG. A DC power supply system 100 including a storage battery 103 and a bidirectional power converter 104 provided between the power supply path 102 and the storage battery 103 is disclosed. In the DC power supply system 100, when the rectifier 101 cannot output the DC voltage normally due to the power failure, the bidirectional power converter 104 boosts the voltage of the storage battery 103 and outputs the voltage to the power supply line 102, , The supply of power to the external load L is continued.

特開2012−120414号公報JP 2012-120414 A

しかしながら、上記従来の直流給電システム100は、蓄電池103および双方向電力変換装置104の少なくとも一方に何らかの異常が発生すると、停電時に外部負荷Lへ電力を供給することができなくなるという問題があった。   However, the conventional DC power supply system 100 has a problem in that if any abnormality occurs in at least one of the storage battery 103 and the bidirectional power converter 104, power cannot be supplied to the external load L during a power failure.

なお、特許文献1には、複数の双方向電力変換装置(蓄電池)を備えた構成も開示されている。しかしながら、この構成では、複数の外部負荷と複数の双方向電力変換装置(蓄電池)とが1対1に接続されているので、いずれかの双方向電力変換装置(蓄電池)に異常が発生すると、それに対応する外部負荷への電力の供給はやはり途絶えてしまう。   Note that Patent Document 1 also discloses a configuration including a plurality of bidirectional power converters (storage batteries). However, in this configuration, since a plurality of external loads and a plurality of bidirectional power converters (storage batteries) are connected on a one-to-one basis, if an abnormality occurs in any of the bidirectional power converters (storage batteries), The supply of power to the corresponding external load is also cut off.

本発明は上記事情に鑑みてなされたものであって、その課題とするところは、停電時に外部負荷への電力の供給をより確実に継続することができる直流給電システムを提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a DC power supply system that can more reliably continue to supply power to an external load during a power failure.

上記課題を解決するために鋭意検討した結果、本発明者は、複数の双方向電力変換装置(および蓄電池)を外部負荷に対して並列的に接続すれば、外部負荷への電力の供給が途切れる可能性が大幅に低減されることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventor has found that if a plurality of bidirectional power converters (and storage batteries) are connected in parallel to an external load, power supply to the external load is interrupted. The inventors have found that the possibility is greatly reduced, and have completed the present invention.

すなわち、本発明に係る直流給電システムは、直流電圧Vを外部負荷へ給電路を介して出力する直流電圧出力装置と、複数の蓄電池と、蓄電池のそれぞれと給電路との間に各1つ設けられた双方向電力変換装置とを備え、双方向電力変換装置は、給電路から入力される直流電圧Vを降圧して蓄電池へ供給する充電モードと、蓄電池の電圧を昇圧して給電路へ出力するバックアップモードとで動作する電力変換回路と、電力変換回路の動作を制御する制御回路とを有し、制御回路は、電力変換回路をバックアップモードで動作させるとき、電力変換回路から出力される電圧の目標値Vを予め定められた電圧Vから該電力変換回路の出力電流Iと仮想抵抗Rとの積を引いた値“V−I・R”に設定することを特徴としている。 That is, the DC power supply system according to the present invention includes a DC voltage output device for outputting the DC voltage V R through the feed line to the external load, and a plurality of storage batteries, each one between each of the storage battery and the power feeding path and a bidirectional power conversion device provided, two-way power converter, a charge mode for supplying to the battery by stepping down the DC voltage V R which is input from the power supply path, by boosting the voltage of the storage battery power feeding path A power conversion circuit that operates in a backup mode that outputs to the power conversion circuit, and a control circuit that controls the operation of the power conversion circuit.When the power conversion circuit is operated in the backup mode, the control circuit outputs the power conversion circuit. is set to a value "V 0 -I 0 · R V " minus the product of the output current I 0 of the power conversion circuit and the virtual resistance R V from the voltage V 0 to a predetermined target value V T of the voltage that Is characterized by There.

上記直流給電システムは、蓄電池と双方向電力変換装置とからなる独立した複数のバックアップ手段を備えている。したがって、上記直流給電システムによれば、いずれかのバックアップ手段に異常が生じたとしても、他のバックアップ手段により外部負荷への電力の供給を継続することができる。   The DC power supply system includes a plurality of independent backup units each including a storage battery and a bidirectional power converter. Therefore, according to the DC power supply system, even if an abnormality occurs in any of the backup units, the supply of power to the external load can be continued by another backup unit.

ここで、単に複数のバックアップ手段を並列的に備えただけでは、各バックアップ手段を構成する双方向電力変換装置の出力電圧に誤差が生じた場合に、出力電圧が最も高いバックアップ手段だけが外部負荷に電力を供給し、他のバックアップ手段は電力の供給に全く寄与しなくなることがあり得る。しかしながら、上記直流給電システムは、バックアップモードで動作する電力変換回路の目標値Vが予め定められた電圧Vから該電力変換回路の出力電流Iと仮想抵抗Rとの積を引いた値“V−I・R”に設定されている。したがって、上記直流給電システムによれば、上記のアンバランスを解消することができる。 Here, simply providing a plurality of backup units in parallel causes an error in the output voltage of the bidirectional power converter constituting each backup unit. And other backup means may not contribute at all to the power supply. However, the DC power supply system, minus the product of the output current I 0 and the virtual resistance R V of the power conversion circuit from the voltage V 0 to the target value V T is a predetermined power conversion circuit operating in the backup mode The value is set to “V 0 −I 0 · R V ”. Therefore, according to the DC power supply system, the imbalance can be eliminated.

上記直流給電システムの制御回路は、例えば、給電路の電圧が予め定められた閾値VTH(ただし、V>VTH>V)を上回っていれば、電力変換回路を充電モードで動作させるか停止させ、給電路の電圧が閾値VTHを下回っていれば、電力変換回路をバックアップモードで動作させる。 For example, the control circuit of the DC power supply system operates the power conversion circuit in the charging mode if the voltage of the power supply path exceeds a predetermined threshold value V TH (where V R > V TH > V 0 ). If the voltage of the power supply line is lower than the threshold value V TH , the power conversion circuit is operated in the backup mode.

上記直流給電システムの双方向電力変換装置は、電力変換回路と給電路との間に設けられた通電遮断手段を有していてもよい。この場合、制御回路は、電力変換回路の出力電流Iが予め定められた閾値ITHを上回ると、通電遮断手段を作動させることが好ましい。 The bidirectional power converter of the DC power supply system may include a power cutoff unit provided between the power conversion circuit and the power supply path. In this case, the control circuit exceeds the threshold I TH the output current I 0 of the power conversion circuit with a predetermined, it is preferable to operate the current cut-off means.

上記直流給電システムの双方向電力変換装置は、電力変換回路を診断する自己診断回路を有していてもよい。この場合、制御回路は、自己診断回路によって電力変換回路の異常が検知されると、該電力変換回路を停止させることが好ましい。   The bidirectional power converter of the DC power supply system may include a self-diagnosis circuit that diagnoses the power conversion circuit. In this case, it is preferable that the control circuit stop the power conversion circuit when the self-diagnosis circuit detects an abnormality of the power conversion circuit.

また、上記直流給電システムの制御回路は、通電遮断手段および自己診断回路の両方を有していてもよい。この場合、制御回路は、自己診断回路によって電力変換回路の異常が検知されると、該電力変換回路を停止させるとともに、通電遮断手段を作動させることがさらに好ましい。   Further, the control circuit of the DC power supply system may include both the power cutoff means and the self-diagnosis circuit. In this case, it is more preferable that the control circuit stops the power conversion circuit when the abnormality of the power conversion circuit is detected by the self-diagnosis circuit, and activates the power cutoff means.

本発明によれば、停電時に外部負荷への電力の供給をより確実に継続することができる直流給電システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the direct current | flow electric power supply system which can continue supply of electric power to an external load more reliably at the time of a power failure can be provided.

本発明に係る直流給電システムのブロック図である。FIG. 1 is a block diagram of a DC power supply system according to the present invention. 図1に示す直流給電システムの、交流電力系統が正常であるときの給電経路を示す図である。FIG. 2 is a diagram illustrating a power supply path of the DC power supply system illustrated in FIG. 1 when an AC power system is normal. 図1に示す直流給電システムの、交流電力系統が異常であり、かつ2つの双方向電力変換装置が正常であるときの給電経路を示す図である。FIG. 2 is a diagram illustrating a power supply path of the DC power supply system illustrated in FIG. 1 when an AC power system is abnormal and two bidirectional power converters are normal. 図1に示す直流給電システムの、交流電力系統が異常であり、かつ外部負荷が異常であるときの給電経路を示す図である。FIG. 2 is a diagram illustrating a power supply path of the DC power supply system illustrated in FIG. 1 when an AC power system is abnormal and an external load is abnormal. 図1に示す直流給電システムの、交流電力系統が異常であり、かつ2つの双方向電力変換装置のうちの1つが異常であるときの給電経路を示す図である。FIG. 2 is a diagram illustrating a power supply path of the DC power supply system illustrated in FIG. 1 when an AC power system is abnormal and one of two bidirectional power converters is abnormal. 従来の直流給電システムのブロック図である。It is a block diagram of the conventional DC power supply system.

以下、添付図面を参照しつつ、本発明に係る直流給電システムの実施例について説明する。   Hereinafter, embodiments of the DC power supply system according to the present invention will be described with reference to the accompanying drawings.

図1に、本発明の実施例に係る直流給電システム1を示す。同図に示すように、直流給電システム1は、交流電力系統Gから入力される交流電圧を直流電圧Vに変換して外部負荷Lへの給電路3に出力する整流装置2と、第1蓄電池4と、第2蓄電池5と、第1蓄電池4と給電路3との間に設けられた第1双方向電力変換装置6と、第2蓄電池5と給電路3との間に設けられた第2双方向電力変換装置7とを備えている。第1双方向電力変換装置6および第2双方向電力変換装置7は、同一の構成を有している。第1蓄電池4および第2蓄電池5も、同一の構成を有している。なお、図1では、外部負荷Lが複数の外部負荷の集合体として示されているが、外部負荷Lは単一の外部負荷であってもよい。また、本実施例では、整流装置2が、本発明の「直流電圧出力装置」に相当する。 FIG. 1 shows a DC power supply system 1 according to an embodiment of the present invention. As shown in the figure, the DC power supply system 1 includes a rectifier 2 for converting the AC voltage input from the AC power system G into a DC voltage V R to the feed path 3 to the external load L, the first Storage battery 4, second storage battery 5, first bidirectional power converter 6 provided between first storage battery 4 and power supply line 3, provided between second storage battery 5 and power supply line 3 And a second bidirectional power converter 7. The first bidirectional power converter 6 and the second bidirectional power converter 7 have the same configuration. The first storage battery 4 and the second storage battery 5 also have the same configuration. Although the external load L is shown in FIG. 1 as an aggregate of a plurality of external loads, the external load L may be a single external load. In the present embodiment, the rectifier 2 corresponds to the “DC voltage output device” of the present invention.

整流装置2は、複数のダイオード、コイルおよびキャパシタを組み合わせた回路で構成されている。ただし、本発明では、整流装置2の構成は特に限定されない。整流装置2が給電路3に出力する直流電圧Vは、交流電力系統Gから入力される交流電圧の振幅に対応している。例えば、停電により交流電力系統Gから入力される交流電圧の振幅がゼロになると、直流電圧Vはゼロになる。 The rectifier 2 is configured by a circuit in which a plurality of diodes, coils, and capacitors are combined. However, in the present invention, the configuration of the rectifier 2 is not particularly limited. DC voltage V R of the rectifier 2 outputs the feed line 3, and corresponds to the amplitude of the AC voltage input from the AC power system G. For example, when the amplitude of the AC voltage input from the AC power system G by the power failure is zero, the DC voltage V R becomes zero.

第1蓄電池4および第2蓄電池5は、リチウム電池からなっている。ただし、本発明では、第1蓄電池4および第2蓄電池5の種別は特に限定されない。   The first storage battery 4 and the second storage battery 5 are made of lithium batteries. However, in the present invention, the types of the first storage battery 4 and the second storage battery 5 are not particularly limited.

第1双方向電力変換装置6は、一方の入出力端子が第1蓄電池4に接続された電力変換回路10と、電力変換回路10の他方の入出力端子と給電路3との間に設けられた通電遮断手段12と、電力変換回路10および通電遮断手段12の動作を制御する制御回路11とを有している。   The first bidirectional power conversion device 6 is provided between the power conversion circuit 10 having one input / output terminal connected to the first storage battery 4 and the other input / output terminal of the power conversion circuit 10 and the power supply line 3. And a control circuit 11 for controlling the operations of the power conversion circuit 10 and the power supply interrupting means 12.

電力変換回路10は、制御回路11からの指令に基づいて双方向に動作するDC/DC変換回路からなっている。電力変換回路10は、給電路3および通電遮断手段12を介して入力される整流装置2からの直流電圧Vを降圧して第1蓄電池4へ供給する充電モードと、第1蓄電池4の電圧を昇圧して給電路3へ出力するバックアップモードとで動作することができる。なお、電力変換回路10は、制御回路11からの指令がない場合は、動作を停止する。この場合、電力の変換は行われない。 The power conversion circuit 10 includes a DC / DC conversion circuit that operates bidirectionally based on a command from the control circuit 11. Power conversion circuit 10, the feed path 3 and a charge mode for supplying a DC voltage V R to the first battery 4 by lowering from the rectifier 2 which is input through the current interruption means 12, the voltage of the first battery 4 And a backup mode in which the voltage is boosted and output to the power supply path 3. When there is no command from the control circuit 11, the power conversion circuit 10 stops operating. In this case, no power conversion is performed.

通電遮断手段12は、制御回路11からの指令に基づいて開状態または閉状態をとるスイッチからなっている。通電遮断手段12は、制御回路11からの指令があった場合に開状態となり、電力変換回路10を給電路3から切り離して、電力変換回路10と給電路3との間の通電を遮断する。なお、通電遮断手段12は、予め定められた過電流値を超える電流を検知したときに開状態となる機能を有していてもよい。   The energization cutoff means 12 comprises a switch that opens or closes based on a command from the control circuit 11. The power cutoff unit 12 is opened when a command is received from the control circuit 11, disconnects the power conversion circuit 10 from the power supply path 3, and cuts off power supply between the power conversion circuit 10 and the power supply path 3. Note that the power cutoff means 12 may have a function of opening when a current exceeding a predetermined overcurrent value is detected.

第1双方向電力変換装置6は、自己診断回路13をさらに有している。自己診断回路13は、電力変換回路10において過電流、過電圧等の各種異常が発生しているか否かを診断するとともに、診断した結果を制御回路11に通知する。自己診断回路13は、電力変換回路10に内包されていてもよい。   The first bidirectional power converter 6 further has a self-diagnosis circuit 13. The self-diagnosis circuit 13 diagnoses whether various abnormalities, such as overcurrent and overvoltage, have occurred in the power conversion circuit 10 and notifies the control circuit 11 of the diagnosis result. The self-diagnosis circuit 13 may be included in the power conversion circuit 10.

制御回路11は、マイクロプロセッサ(MPU,Micro-processing unit)等からなっている。制御回路11は、給電路3の電圧と、第1蓄電池4の電圧と、電力変換回路10から出力される電流と、自己診断回路13による診断の結果とに基づいて、電力変換回路10および通電遮断手段12を制御する。   The control circuit 11 includes a microprocessor (MPU, Micro-processing unit) and the like. The control circuit 11 controls the power conversion circuit 10 and the power supply based on the voltage of the power supply line 3, the voltage of the first storage battery 4, the current output from the power It controls the blocking means 12.

上記した通り、第1双方向電力変換装置6および第2双方向電力変換装置7は、同一の構成を有している。ただし、第2双方向電力変換装置7の制御回路11は、第1蓄電池4ではなく第2蓄電池5の電圧に基づいて、電力変換回路10および通電遮断手段12を制御する。   As described above, the first bidirectional power converter 6 and the second bidirectional power converter 7 have the same configuration. However, the control circuit 11 of the second bidirectional power converter 7 controls the power conversion circuit 10 and the power cutoff unit 12 based on the voltage of the second storage battery 5 instead of the first storage battery 4.

続いて、第1双方向電力変換装置6および第2双方向電力変換装置7の制御回路11による制御について、さらに詳しく説明する。   Subsequently, control by the control circuit 11 of the first bidirectional power converter 6 and the second bidirectional power converter 7 will be described in more detail.

(第1制御)
第1双方向電力変換装置6の制御回路11は、給電路3の電圧(直流電圧V)が予め定められた閾値VTHを上回っており、かつ、第1蓄電池4の電圧が予め定められた閾値VTHBを上回っていれば、第1双方向電力変換装置6の電力変換回路10の動作を停止させる。同様に、第2双方向電力変換装置7の制御回路11は、直流電圧Vが予め定められた閾値VTHを上回っており、かつ、第2蓄電池5の電圧が閾値VTHBを上回っていれば、第2双方向電力変換装置7の電力変換回路10の動作を停止させる。これらの場合、外部負荷Lには、交流電力系統Gに由来する直流電圧Vが供給される(図2中の実線で示された矢印参照)。
(First control)
The control circuit 11 of the first bidirectional power conversion device 6 determines that the voltage of the power supply line 3 (DC voltage V R ) exceeds a predetermined threshold value V TH and the voltage of the first storage battery 4 is predetermined. If the threshold value V THB is exceeded, the operation of the power conversion circuit 10 of the first bidirectional power conversion device 6 is stopped. Similarly, the control circuit 11 of the second bidirectional power converter 7 is above the threshold V TH of the DC voltage V R is predetermined, and the voltage of the second battery 5 is long exceeds the threshold value V THB For example, the operation of the power conversion circuit 10 of the second bidirectional power conversion device 7 is stopped. In these cases, the external load L, the DC voltage V R to be derived from the AC power system G is supplied (see arrows shown by solid lines in FIG. 2).

ここで、閾値VTHは、交流電力系統Gが正常であるときの直流電圧Vの下限値VRMINよりも僅かに小さい値に設定されている(VTH<VRMIN)。したがって、給電路3の電圧が予め定められた閾値VTHを上回っているということは、交流電力系統Gが正常であること(すなわち、停電が発生していないこと)を意味している。また、閾値VTHBは、満充電時の第1蓄電池4(第2蓄電池5)の電圧VBFULLよりも僅かに小さい値に設定されている(VTHB<VBFULL)。したがって、第1蓄電池4(第2蓄電池5)の電圧が予め定められた閾値VTHBを上回っているということは、第1蓄電池4(第2蓄電池5)の充電が不要であることを意味している。 Here, the threshold value V TH is the AC power system G is set to a value slightly smaller than the lower limit value V RMIN of the DC voltage V R when a normal (V TH <V RMIN). Therefore, the fact that the voltage of the power supply line 3 exceeds the predetermined threshold value V TH means that the AC power system G is normal (that is, no power failure has occurred). Further, the threshold value V THB is set to a value slightly smaller than the voltage V BFULL of the first storage battery 4 (second storage battery 5) at the time of full charge (V THB <V BFULL ). Therefore, the fact that the voltage of the first storage battery 4 (the second storage battery 5) is higher than the predetermined threshold value V THB means that the charging of the first storage battery 4 (the second storage battery 5) is unnecessary. ing.

(第2制御)
第1双方向電力変換装置6の制御回路11は、給電路3の電圧が閾値VTHを上回っており、かつ、第1蓄電池4の電圧が閾値VTHBを下回っていれば、第1双方向電力変換装置6の電力変換回路10を充電モードで動作させる。同様に、第2双方向電力変換装置7の制御回路11は、給電路3の電圧が閾値VTHを上回っており、かつ、第2蓄電池5の電圧が閾値VTHBを下回っていれば、第2双方向電力変換装置7の電力変換回路10を充電モードで動作させる。これらの場合も、外部負荷Lには、交流電力系統Gに由来する直流電圧Vが供給される。また、これらの場合、直流電圧Vは、第1蓄電池4および/または第2蓄電池5の充電にも利用される(図2中の破線で示された矢印参照)。
(Second control)
The control circuit 11 of the first bidirectional power converter 6 determines that if the voltage of the power supply line 3 is higher than the threshold value V TH and the voltage of the first storage battery 4 is lower than the threshold value V THB , The power conversion circuit 10 of the power conversion device 6 is operated in the charging mode. Similarly, the control circuit 11 of the second bidirectional power converter 7 determines that the voltage of the power supply line 3 is higher than the threshold value V TH and the voltage of the second storage battery 5 is lower than the threshold value V THB . (2) The power conversion circuit 10 of the bidirectional power conversion device 7 is operated in the charging mode. Also in these cases, the external load L, the DC voltage V R to be derived from the AC power system G is fed. Also, in these cases, the DC voltage V R is (see the arrow indicated by a broken line in FIG. 2) in which the first battery 4 and / or utilized by the charging of the second battery 5.

(第3制御)
第1双方向電力変換装置6の制御回路11は、給電路3の電圧が閾値VTHを下回っていれば、第1双方向電力変換装置6の電力変換回路10をバックアップモードで動作させる。同様に、第2双方向電力変換装置7の制御回路11は、給電路3の電圧が閾値VTHを下回っていれば、第2双方向電力変換装置7の電力変換回路10をバックアップモードで動作させる。これにより、第1蓄電池4および第2蓄電池5の電圧が昇圧されて給電路3に出力される。そして、外部負荷Lには、第1蓄電池4および第2蓄電池5に由来する直流電圧が供給される(図3参照)。
(Third control)
The control circuit 11 of the first bidirectional power conversion device 6 operates the power conversion circuit 10 of the first bidirectional power conversion device 6 in the backup mode when the voltage of the power supply line 3 is lower than the threshold VTH . Similarly, the control circuit 11 of the second bidirectional power converter 7 operates the power converter 10 of the second bidirectional power converter 7 in the backup mode if the voltage of the power supply line 3 is lower than the threshold VTH. Let it. Thereby, the voltages of the first storage battery 4 and the second storage battery 5 are boosted and output to the power supply path 3. Then, a DC voltage derived from the first storage battery 4 and the second storage battery 5 is supplied to the external load L (see FIG. 3).

ここで、第1双方向電力変換装置6の制御回路11は、第1双方向電力変換装置6の電力変換回路10から出力される電圧が目標値VT1となるように該電力変換回路10を制御する。目標値VT1は、予め定められた電圧V(ただし、V<VTH)から第1双方向電力変換装置6の電力変換回路10の出力電流I01と仮想抵抗Rとの積を引いた値“V−I01・R”である。同様に、第2双方向電力変換装置7の制御回路11は、第2双方向電力変換装置7の電力変換回路10から出力される電圧が目標値VT2(=V−第2双方向電力変換装置7の電力変換回路10の出力電流I02と仮想抵抗Rとの積I02・R)となるように該電力変換回路10を制御する。 Here, the control circuit 11 of the first bidirectional power converter 6 controls the power converter 10 so that the voltage output from the power converter 10 of the first bidirectional power converter 6 becomes the target value V T1. Control. The target value V T1 is obtained by calculating a product of the output current I 01 of the power conversion circuit 10 of the first bidirectional power conversion device 6 and the virtual resistance R V from a predetermined voltage V 0 (where V 0 <V TH ). The subtracted value is “V 0 −I 01 · R V ”. Similarly, the control circuit 11 of the second bidirectional power converter 7 determines that the voltage output from the power converter 10 of the second bidirectional power converter 7 is equal to the target value V T2 (= V 0 −second bidirectional power). The power conversion circuit 10 is controlled so that the output current I 02 of the power conversion circuit 10 of the conversion device 7 and the product I 02 · R V of the virtual resistance R V are obtained.

このような制御によれば、第1蓄電池4および第2蓄電池5をバランスよく放電させることができる。また、このような制御によれば、外部負荷Lの内部、または給電路3において短絡等の異常が発生して出力電流I01,I02が急増したとしても、目標値VT1,VT2が直ちに下げられるので、大電流が流れ続けることによる各部の損傷を防ぐことができる。 According to such control, the first storage battery 4 and the second storage battery 5 can be discharged in a well-balanced manner. Further, according to such control, even if an abnormality such as a short circuit occurs inside the external load L or the power supply line 3 and the output currents I 01 and I 02 increase rapidly, the target values V T1 and V T2 are maintained. Since it can be immediately lowered, it is possible to prevent damage to each part due to continuous flow of a large current.

なお、仮想抵抗Rは、外部負荷Lの内部、または給電路3において短絡等の異常が発生していないときに目標値VT1,VT2が電圧Vに対して極端に小さくなることがないように、数十[mΩ]〜数[Ω]の範囲の比較的小さな値に設定されていることが好ましい。 The virtual resistance R V is, that the target value V T1, V T2 is extremely small relative to the voltage V 0 when not inside of the external load L, or at abnormal such as a short circuit in the power supply path 3 occurs It is preferable that the value be set to a relatively small value in the range of several tens [mΩ] to several [Ω] so as not to cause the problem.

第1双方向電力変換装置6の制御回路11は、第3制御が行われている最中に急増した出力電流I01が予め定められた閾値ITHを上回ると、電力変換回路10の動作を停止させるとともに、通電遮断手段12を開状態とすることが好ましい(図4参照)。同様に、第2双方向電力変換装置7の制御回路11は、第3制御が行われている最中に急増した出力電流I02が閾値ITHを上回ると、電力変換回路10の動作を停止させるとともに、通電遮断手段12を開状態とすることが好ましい(図4参照)。これにより、大電流による各部の損傷をより確実に防ぐことができる。なお、第1双方向電力変換装置6のおよび第2双方向電力変換装置7の制御回路11は、電力変換回路10の動作を停止させるだけでもよいし、通電遮断手段12を開状態とするだけでもよい。 The control circuit 11 of the first bidirectional power conversion device 6 stops the operation of the power conversion circuit 10 when the output current I 01 that has increased rapidly during the third control is greater than a predetermined threshold value I TH. It is preferable to stop the power supply and open the power cutoff means 12 (see FIG. 4). Similarly, the control circuit 11 of the second bidirectional power conversion device 7 stops the operation of the power conversion circuit 10 when the output current I 02 that has increased rapidly during the third control is higher than the threshold value I TH. In addition, it is preferable that the power cutoff means 12 be in the open state (see FIG. 4). As a result, damage to each part due to a large current can be more reliably prevented. Note that the control circuit 11 of the first bidirectional power converter 6 and the control circuit 11 of the second bidirectional power converter 7 may simply stop the operation of the power converter 10 or may simply open the power cutoff unit 12. May be.

第3制御が行われている最中に交流電力系統Gが停電から復旧して直流電圧Vが閾値VTHを上回ると、第3制御は終了し、第1制御または第2制御が開始される。上記した通り、電圧Vおよび閾値VTHはV<VTHの関係を有しているので、第3制御が終了するためには、交流電力系統Gが停電から復旧することが必要である。 When the DC voltage V R AC power system G while the third control is performed is restored from the power failure exceeds the threshold value V TH, the third control is finished, the first control or the second control is started You. As described above, since the voltage V 0 and the threshold value V TH have a relationship of V 0 <V TH , it is necessary for the AC power system G to recover from a power failure in order to end the third control. .

(第4制御)
第3制御が行われている最中に第1双方向電力変換装置6の自己診断回路13が異常を検知すると、第1双方向電力変換装置6の制御回路11は、電力変換回路10の動作を停止させるとともに、通電遮断手段12を開状態とする。これにより、外部負荷Lには、第2蓄電池5に由来する直流電圧のみが供給される(図5参照)。また、第2双方向電力変換装置7側で異常が検知された場合は、第2蓄電池5に由来する直流電圧のみが外部負荷Lに供給される。
(4th control)
If the self-diagnosis circuit 13 of the first bidirectional power converter 6 detects an abnormality while the third control is being performed, the control circuit 11 of the first bidirectional power converter 6 operates the power conversion circuit 10. Is stopped, and the power cutoff means 12 is opened. As a result, only the DC voltage derived from the second storage battery 5 is supplied to the external load L (see FIG. 5). When an abnormality is detected on the second bidirectional power converter 7 side, only the DC voltage derived from the second storage battery 5 is supplied to the external load L.

以上のように、本発明に係る直流給電システム1は、独立した2つのバックアップ手段を備えている。したがって、本発明に係る直流給電システム1によれば、いずれかのバックアップ手段(例えば、第1蓄電池4および第1双方向電力変換装置6)に異常が生じたとしても、他方のバックアップ手段(例えば、第2蓄電池5および第2双方向電力変換装置7)により外部負荷Lへの電力の供給を継続することができる。   As described above, the DC power supply system 1 according to the present invention includes two independent backup units. Therefore, according to the DC power supply system 1 according to the present invention, even if an abnormality occurs in one of the backup units (for example, the first storage battery 4 and the first bidirectional power converter 6), the other backup unit (for example, The power supply to the external load L can be continued by the second storage battery 5 and the second bidirectional power converter 7).

また、本発明に係る直流給電システム1では、バックアップモードで動作する電力変換回路10の出力電圧の目標値VT1,VT2が出力電流I01,I02と仮想抵抗Rとを考慮して算出される。したがって、本発明に係る直流給電システム1によれば、これらを考慮しない場合に比べ、2つのバックアップ手段をバランスよく動作させることができる。 Further, in the DC power supply system 1 according to the present invention, the target values V T1 and V T2 of the output voltages of the power conversion circuit 10 operating in the backup mode are determined in consideration of the output currents I 01 and I 02 and the virtual resistance R V. Is calculated. Therefore, according to the DC power supply system 1 according to the present invention, the two backup units can be operated in a balanced manner as compared with a case where these are not considered.

なお、本発明に係る直流給電システムは、上記実施例で示した構成に限定されるものではない。   The DC power supply system according to the present invention is not limited to the configuration shown in the above embodiment.

例えば、本発明に係る直流給電システムは、3つ以上の蓄電池と、これに対応する3つ以上の双方向電力変換装置とを備えていてもよい。   For example, the DC power supply system according to the present invention may include three or more storage batteries and three or more corresponding bidirectional power converters.

また、本発明に係る直流給電システムの双方向電力変換装置は、通電遮断手段および自己診断回路を有していなくてもよい。   Further, the bidirectional power converter of the DC power supply system according to the present invention may not include the power cutoff unit and the self-diagnosis circuit.

また、第1双方向電力変換装置6および第2双方向電力変換装置7は、本発明において必要とされる機能を有する限りにおいて、互いに異なった構成を有していてもよい。同様に、第1蓄電池4および第2蓄電池5も、異なった構成を有していてもよい。   The first bidirectional power converter 6 and the second bidirectional power converter 7 may have different configurations as long as they have the functions required in the present invention. Similarly, the first storage battery 4 and the second storage battery 5 may have different configurations.

また、充電モードにおける第1双方向電力変換装置6(および第2双方向電力変換装置7)の動作は、給電路3の電圧と第1蓄電池4(および第2蓄電池5)の電圧との高低関係に応じた任意の電圧変換であってもよい。つまり、第1双方向電力変換装置6(および第2双方向電力変換装置7)は、充電モードにおいて給電路3の電圧に対して第1蓄電池4(および第2蓄電池5)の電圧が高ければ、直流電圧Vを昇圧して第1蓄電池4(および第2蓄電池5)へ供給してもよい。 Further, the operation of the first bidirectional power converter 6 (and the second bidirectional power converter 7) in the charging mode is based on the difference between the voltage of the power supply line 3 and the voltage of the first storage battery 4 (and the second storage battery 5). Any voltage conversion according to the relationship may be used. That is, the first bidirectional power conversion device 6 (and the second bidirectional power conversion device 7) is configured such that the voltage of the first storage battery 4 (and the second storage battery 5) is higher than the voltage of the power supply path 3 in the charging mode. it may be supplied to the first battery 4 by boosting the DC voltage V R (and the second battery 5).

同様に、バックアップモードにおける第1双方向電力変換装置6(および第2双方向電力変換装置7)の動作も、給電路3の電圧と第1蓄電池4(および第2蓄電池5)の電圧との高低関係に応じた任意の電圧変換であってもよい。つまり、第1双方向電力変換装置6(および第2双方向電力変換装置7)は、バックアップモードにおいて給電路3の電圧に対して第1蓄電池4(および第2蓄電池5)が高ければ、第1蓄電池4(および第2蓄電池5)の電圧を降圧して給電路3へ出力してもよい。   Similarly, the operation of the first bidirectional power converter 6 (and the second bidirectional power converter 7) in the backup mode also depends on the voltage of the power supply line 3 and the voltage of the first storage battery 4 (and the second storage battery 5). Any voltage conversion according to the level relationship may be used. That is, the first bidirectional power conversion device 6 (and the second bidirectional power conversion device 7) performs the second bidirectional power conversion device 7 if the first storage battery 4 (and the second storage battery 5) is higher than the voltage of the power supply path 3 in the backup mode. The voltage of the first storage battery 4 (and the second storage battery 5) may be reduced and output to the power supply line 3.

また、仮想抵抗Rは、状況に応じて変化する可変値であってもよい。上記実施例のように仮想抵抗Rを固定値としても複数の蓄電池(第1蓄電池4および第2蓄電池5)の放電をバランスさせる効果は得られるものの、各種センシング(例えば、出力電流I01,I02の検出)における誤差等から若干のアンバランスが生じてしまうことがあり得る。そこで、例えば、各蓄電池4,5の残量(電圧)が低下していくにしたがって仮想抵抗Rを微増させれば、このアンバランスを緩和することができる。 The virtual resistance R V may be a variable value that varies depending on the situation. Although the effect of balancing the discharge of the plurality of storage batteries (the first storage battery 4 and the second storage battery 5) can be obtained even when the virtual resistance RV is a fixed value as in the above-described embodiment, various types of sensing (for example, the output current I 01 , A slight imbalance may occur due to an error or the like in the detection of I 02 ). Therefore, for example, if the slight increase of the virtual resistor R V in accordance with the remaining amount of the battery 4 and 5 (voltage) is lowered, it is possible to alleviate this imbalance.

あるいは、仮想抵抗Rは、定常時には比較的小さな値に設定される一方、短絡発生等の異常時には比較的大きな値に設定されてもよい。これにより、定常時の電圧降下I01・R(I02・R)を最小限としつつ、異常時の過電流保護を強く機能させることができる。なお、この場合は、仮想抵抗Rを次式により設定することができるが、これは単なる一例である。

=R (I01<Ith
=R+(I01−Ith)A (I01≧Ith

=R (I02<Ith
=R+(I02−Ith)A (I02≧Ith

ここで、Aは、異常時の過電流保護の強さを決定するための係数であり、Ithは、定常時と異常時を区別するための閾値である。
Alternatively, the virtual resistance R V, while the steady state is set to a relatively small value may be set to a relatively large value at the time of abnormality of short circuit or the like. Thus, the overcurrent protection at the time of abnormality can be strongly functioned while minimizing the voltage drop I 01 · R V (I 02 · R V ) at the time of steady state. In this case, the virtual resistance R V can be set by the following equation, but this is only an example.

R V = R 0 (I 01 <I th )
R V = R 0 + (I 01 -I th) A (I 01 ≧ I th)

R V = R 0 (I 02 <I th )
R V = R 0 + (I 02 -I th) A (I 02 ≧ I th)

Here, A is a coefficient for determining the strength of the overcurrent protection abnormality, I th is a threshold value for distinguishing the time the abnormal steady.

また、本発明の直流電圧出力装置は、直流電圧Vを出力する任意の構成を有していてもよい。例えば、直流電圧出力装置は、直流電圧Vを出力する直流電源装置、一次電池または二次電池であってもよい。 Further, the DC voltage output apparatus of the present invention may have any configuration which outputs the DC voltage V R. For example, the DC voltage output apparatus, a DC power supply that outputs a DC voltage V R, may be a primary battery or a secondary battery.

1 直流給電システム
2 整流装置
3 給電路
4 第1蓄電池
5 第2蓄電池
6 第1双方向電力変換装置
7 第2双方向電力変換装置
10 電力変換回路
11 制御回路
12 通電遮断手段
13 自己診断回路
G 交流電力系統
L 外部負荷
REFERENCE SIGNS LIST 1 DC power supply system 2 rectifier 3 power supply path 4 first storage battery 5 second storage battery 6 first bidirectional power converter 7 second bidirectional power converter 10 power conversion circuit 11 control circuit 12 power cutoff means 13 self-diagnosis circuit G AC power system L External load

Claims (5)

直流電圧Vを外部負荷へ給電路を介して出力する直流電圧出力装置と、
複数の蓄電池と、
前記蓄電池のそれぞれと前記給電路との間に各1つ設けられた双方向電力変換装置と、
を備え、
前記双方向電力変換装置は、
前記給電路から入力される前記直流電圧Vを電圧変換して前記蓄電池へ供給する充電モードと、前記蓄電池の電圧を電圧変換して前記給電路へ出力するバックアップモードとで動作する電力変換回路と、
前記電力変換回路の動作を制御する制御回路と、
を有し、
前記制御回路は、前記電力変換回路を前記バックアップモードで動作させるとき、前記電力変換回路から出力される電圧の目標値Vを予め定められた電圧Vから該電力変換回路の出力電流Iと仮想抵抗Rとの積を引いた値“V−I・R”に設定する
ことを特徴とする直流給電システム。
A DC voltage output device for outputting the DC voltage V R through the feed line to the external load,
Multiple storage batteries,
A bidirectional power converter provided one between each of the storage batteries and the power supply path,
With
The bidirectional power converter,
A charging mode to be supplied to the storage battery the DC voltage V R supplied from the feed line to the voltage converter, the power converter circuit operating at a backup mode for outputting the voltage of the battery to voltage conversion to the feed line When,
A control circuit for controlling the operation of the power conversion circuit;
Has,
Said control circuit, when said operating a power conversion circuit in said backup mode, the output current I 0 of the power conversion circuit from the voltage V 0 to a predetermined target value V T of the voltage output from the power conversion circuit A DC power supply system characterized in that the value is set to “V 0 −I 0 · R V ” obtained by subtracting a product of the product and the virtual resistance R V.
前記制御回路は、前記給電路の電圧が予め定められた閾値VTHを上回っていれば、前記電力変換回路を前記充電モードで動作させるか停止させ、前記給電路の電圧が前記閾値VTHを下回っていれば、前記電力変換回路を前記バックアップモードで動作させ、
前記直流電圧V、前記電圧Vおよび前記閾値VTHは、V>VTH>Vの関係を有している
ことを特徴とする請求項1に記載の直流給電システム。
Wherein the control circuit, if above the threshold V TH voltage of the power supply path is predetermined, the power conversion circuit is stopped or operating in the charging mode, the voltage of the power supply path to the threshold V TH If it is lower, the power conversion circuit is operated in the backup mode,
The DC voltage V R, the voltage V 0 and the threshold value V TH, the DC power supply system according to claim 1, characterized in that it has a relation of V R> V TH> V 0 .
前記双方向電力変換装置は、前記電力変換回路と前記給電路との間に設けられた通電遮断手段をさらに有し、
前記制御回路は、前記電力変換回路の前記出力電流Iが予め定められた閾値ITHを上回ると、前記通電遮断手段を作動させる
ことを特徴とする請求項1または請求項2に記載の直流給電システム。
The bidirectional power converter further includes a power cutoff unit provided between the power conversion circuit and the power supply path,
3. The DC power supply according to claim 1, wherein the control circuit activates the power cutoff unit when the output current I 0 of the power conversion circuit exceeds a predetermined threshold I TH. 4. Power supply system.
前記双方向電力変換装置は、前記電力変換回路を診断する自己診断回路をさらに有し、
前記制御回路は、前記自己診断回路によって前記電力変換回路の異常が検知されると、該電力変換回路を停止させる
ことを特徴とする請求項3に記載の直流給電システム。
The bidirectional power conversion device further includes a self-diagnosis circuit that diagnoses the power conversion circuit,
The DC power supply system according to claim 3, wherein the control circuit stops the power conversion circuit when the abnormality of the power conversion circuit is detected by the self-diagnosis circuit.
前記制御回路は、前記自己診断回路によって前記電力変換回路の異常が検知されると、該電力変換回路を停止させるとともに、前記通電遮断手段を作動させる
ことを特徴とする請求項4に記載の直流給電システム。
The DC control device according to claim 4, wherein, when the self-diagnosis circuit detects an abnormality in the power conversion circuit, the control circuit stops the power conversion circuit and activates the power cutoff unit. Power supply system.
JP2018135892A 2018-07-19 2018-07-19 DC power supply system Active JP7152892B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018135892A JP7152892B2 (en) 2018-07-19 2018-07-19 DC power supply system
CN201921062464.XU CN209948784U (en) 2018-07-19 2019-07-08 DC power supply system
CN201910610407.9A CN110739765B (en) 2018-07-19 2019-07-08 DC power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018135892A JP7152892B2 (en) 2018-07-19 2018-07-19 DC power supply system

Publications (2)

Publication Number Publication Date
JP2020014340A true JP2020014340A (en) 2020-01-23
JP7152892B2 JP7152892B2 (en) 2022-10-13

Family

ID=69136491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018135892A Active JP7152892B2 (en) 2018-07-19 2018-07-19 DC power supply system

Country Status (2)

Country Link
JP (1) JP7152892B2 (en)
CN (2) CN110739765B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7152892B2 (en) * 2018-07-19 2022-10-13 ニチコン株式会社 DC power supply system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150739A (en) * 1990-10-15 1992-05-25 Nippon Telegr & Teleph Corp <Ntt> Uniterruptible dc power supply and unilateral dc-dc converter
WO2015015570A1 (en) * 2013-07-30 2015-02-05 富士電機株式会社 Power-supply system
JP2017158266A (en) * 2016-02-29 2017-09-07 パナソニックIpマネジメント株式会社 Power supply system, power supply device and control device
JP2017204977A (en) * 2016-05-13 2017-11-16 京セラドキュメントソリューションズ株式会社 Power supply protective device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5767873B2 (en) * 2011-06-28 2015-08-26 株式会社東芝 Power storage device and power storage system
JP2013141379A (en) * 2012-01-06 2013-07-18 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply device
CN106787040A (en) * 2016-12-05 2017-05-31 深圳市泰昂能源科技股份有限公司 DC power system
CN207426791U (en) * 2017-09-20 2018-05-29 深圳市泰昂能源科技股份有限公司 Continuous-current plant and power-supply system
JP7152892B2 (en) * 2018-07-19 2022-10-13 ニチコン株式会社 DC power supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150739A (en) * 1990-10-15 1992-05-25 Nippon Telegr & Teleph Corp <Ntt> Uniterruptible dc power supply and unilateral dc-dc converter
WO2015015570A1 (en) * 2013-07-30 2015-02-05 富士電機株式会社 Power-supply system
JP2017158266A (en) * 2016-02-29 2017-09-07 パナソニックIpマネジメント株式会社 Power supply system, power supply device and control device
JP2017204977A (en) * 2016-05-13 2017-11-16 京セラドキュメントソリューションズ株式会社 Power supply protective device

Also Published As

Publication number Publication date
JP7152892B2 (en) 2022-10-13
CN110739765B (en) 2023-08-25
CN209948784U (en) 2020-01-14
CN110739765A (en) 2020-01-31

Similar Documents

Publication Publication Date Title
JP6417043B2 (en) Power converter
US10811898B2 (en) Uninterruptible power supply device
EP3996239B1 (en) Troubleshooting method and apparatus for power supply device
US20200119659A1 (en) Power conversion device
JPWO2007096994A1 (en) Grid-connected inverter device
CN107370168B (en) Electrical energy storage device
JP4770795B2 (en) Uninterruptible power system
JP2007074884A (en) Converter apparatus (low voltage detecting method)
JP2019205309A (en) Power supply system
JP4859932B2 (en) Control device and control method for power conversion system having instantaneous voltage drop / power failure countermeasure function
JP6468593B2 (en) Power storage system
JP2020014340A (en) Dc power feeding system
JP2017011910A (en) Uninterruptible power supply device
JP6801788B2 (en) Reactive power suppression methods for power converters, power systems and power systems
JP5667915B2 (en) DC power supply
JP4940978B2 (en) Overvoltage protection device for DC parallel power supply
WO2021044653A1 (en) Power conversion apparatus and system interconnection system
JP5008465B2 (en) Uninterruptible power system
JP2014055902A (en) Dc power supply facility for nuclear power plant
JP6155854B2 (en) Battery system
JP2017041919A (en) Power conversion system
US11770009B2 (en) Power source apparatus and a system
US11626792B2 (en) Inverter with monitoring unit for intermediate circuit protection
JP7299095B2 (en) Uninterruptible power system
WO2023188140A1 (en) Electric vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220930

R150 Certificate of patent or registration of utility model

Ref document number: 7152892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150