JP2020013971A - Curved solar power generation unit and manufacturing method thereof - Google Patents

Curved solar power generation unit and manufacturing method thereof Download PDF

Info

Publication number
JP2020013971A
JP2020013971A JP2018200650A JP2018200650A JP2020013971A JP 2020013971 A JP2020013971 A JP 2020013971A JP 2018200650 A JP2018200650 A JP 2018200650A JP 2018200650 A JP2018200650 A JP 2018200650A JP 2020013971 A JP2020013971 A JP 2020013971A
Authority
JP
Japan
Prior art keywords
power generation
generation unit
curved
solar power
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018200650A
Other languages
Japanese (ja)
Inventor
▲艷▼寅 霍
yan yin Huo
▲艷▼寅 霍
▲鳳▼玉 代
Feng Yu Dai
▲鳳▼玉 代
▲運▼方 王
yun fang Wang
▲運▼方 王
志峰 曹
Zhifeng Cao
志峰 曹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Apollo Ding Rong Solar Technology Co Ltd
Original Assignee
Beijing Apollo Ding Rong Solar Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Apollo Ding Rong Solar Technology Co Ltd filed Critical Beijing Apollo Ding Rong Solar Technology Co Ltd
Publication of JP2020013971A publication Critical patent/JP2020013971A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0019Combinations of extrusion moulding with other shaping operations combined with shaping by flattening, folding or bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/02Bending or folding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/84Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/156Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is calendered and immediately laminated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

To obtain a desired curved surface obtained by directly molding each layer of a photovoltaic power generation unit, avoid a complicated procedure of performing of separate forming and then laminating, simplify the process, and reduce cost, and save the time.SOLUTION: There are provided a curved solar power generation unit and a manufacturing method thereof according to the present invention. The manufacturing method includes a step of providing a back plate layer, a flexible photovoltaic power generation chip, and a light-transmitting layer in a stacked manner to form a flat photovoltaic power generation unit, and a step of forming the flat photovoltaic power generation unit into a curved body by hot pressing to obtain the curved photovoltaic power generation unit.SELECTED DRAWING: Figure 4

Description

本発明は、太陽光発電ユニットに関し、特に曲面太陽光発電ユニット及びその製造方法に関する。   The present invention relates to a photovoltaic power generation unit, and more particularly to a curved photovoltaic power generation unit and a method for manufacturing the same.

現在、グリーン要素(太陽エネルギーなど)を建築に導入することは、建築発展の傾向となっている。グリーン建築は豊富な意味を有し、クリーンエネルギー、特に太陽エネルギーの合理的で効率的な使用は、グリーン建築の重要な内容である。太陽エネルギー薄膜発電の建築の発生は、建物設計分野においてエネルギー意識を超えた新しい設計意識であり、人間の生態環境において重要な役割を果たしている。太陽光発電連系及び建築一体化の発展は、太陽エネルギー薄膜発電の遠隔地から都市への移行、エネルギー補充からエネルギー代替への移行、人間社会の持続可能なエネルギーシステムへの移行を示している。   At present, the introduction of green elements (such as solar energy) into architecture is an architectural development trend. Green architecture has a great deal of significance, and the rational and efficient use of clean energy, especially solar energy, is an important part of green architecture. The emergence of solar energy thin film generation architecture is a new design consciousness that goes beyond energy consciousness in the building design field and plays an important role in the human ecological environment. The development of photovoltaic interconnection and integration of buildings shows the shift of solar thin-film power from remote areas to cities, from energy replenishment to energy alternatives, and human society to sustainable energy systems .

太陽エネルギー薄膜発電の曲面ガラスタイルの応用技術は、新型の技術として、建築学において実現可能な新しい選択肢である。太陽エネルギー薄膜発電の曲面ガラスタイルの応用技術は、太陽光のような巨大な再生可能エネルギー源を使用して発電するもので、その太陽エネルギー薄膜発電の曲面ガラスタイルは、建物に取り付けられてもよいが、多機能建築材料として実際の建築部材を構成してもよい。   The application technology of curved glass tiles for solar energy thin film power generation is a new option and a feasible new option in architecture. The application technology of curved glass tiles for solar energy thin-film power generation uses a huge renewable energy source such as sunlight, and the curved glass tiles for solar energy thin-film power generation can be mounted on buildings. Although good, actual building members may be configured as multifunctional building materials.

太陽エネルギー薄膜発電の曲面ガラスタイル製品及び取り付けシステムは、建物を介して、主に屋根と太陽エネルギー薄膜発電を一体化させて、建物自体にグリーン、エコの太陽エネルギー資源を使用して発電するようにさせる。   Solar energy thin film power generation curved glass tile products and mounting system, through the building, mainly integrate the roof and solar energy thin film power generation, the building itself to use green, eco solar energy resources to generate electricity Let

従来技術では、ユニット化曲面太陽光発電タイルが開示されており、フロントプレート及びバックプレートがいずれもガラス材質で、重量が重く、曲面の形成に比較的大きな破裂リスクが存在し、コストが高い。また、従来技術では、曲面フレキシブルベースの屋根太陽エネルギー薄膜発電の太陽光発電タイルの製造方法が開示されているが、太陽エネルギーチップ、バックプレートなどの各層をそれぞれ曲面状に製造してから、積層を行う必要があり、工程が比較的複雑であり、変形時にガラス破裂のリスクが存在し、歩留まりが低い。   The prior art discloses a unitized curved photovoltaic tile, in which both the front plate and the back plate are made of glass, are heavy, have a relatively large risk of rupture in forming the curved surface, and are expensive. Further, in the related art, a method of manufacturing a photovoltaic tile of a curved flexible base roof solar energy thin film power generation is disclosed.However, each layer such as a solar energy chip and a back plate is manufactured in a curved shape, and then laminated. Need to be performed, the process is relatively complicated, there is a risk of glass rupture during deformation, and the yield is low.

本発明の一つの主な目的は、曲面太陽光発電ユニットの製造方法を提供することにあり、前記方法は、バックプレート層、フレキシブル太陽光発電チップ及び透光層を積層して、平面型太陽光発電ユニットを形成するステップと、前記平面型太陽光発電ユニットをホットプレス(hot press)によって曲面体に形成し、曲面太陽光発電ユニットを得るステップと、を含む曲面太陽光発電ユニットの製造方法であって、前記透光層の材料は熱可塑性材料である。   One main object of the present invention is to provide a method for manufacturing a curved solar power generation unit, the method comprising stacking a back plate layer, a flexible photovoltaic chip and a light-transmitting layer to form a flat solar cell. Forming a photovoltaic power generation unit; and forming the flat photovoltaic power generation unit into a curved body by hot pressing to obtain a curved photovoltaic power generation unit. Wherein the material of the light transmitting layer is a thermoplastic material.

本発明の一実施形態によれば、前記平面型太陽光発電ユニットをホットプレス(hot press)によって曲面体に形成するステップは、前記透光層及び前記バックプレート層又は前記透光層若しくは前記バックプレート層のいずれか一方に押出金型を設けることで、前記平面型太陽光発電ユニットがホットプレス過程で前記曲面体になるよう押し出すようにする。   According to an embodiment of the present invention, the step of forming the flat photovoltaic power generation unit into a curved body by hot press includes forming the light transmitting layer and the back plate layer or the light transmitting layer or the back. By providing an extrusion die on one of the plate layers, the flat photovoltaic power generation unit is extruded so as to become the curved body in a hot pressing process.

本発明の一実施形態によれば、前記曲面体はアーチ状曲面体又は波状曲面体である。   According to one embodiment of the present invention, the curved body is an arched curved body or a wavy curved body.

本発明の一実施形態によれば、前記透光層及び前記バックプレート層又は前記透光層若しくは前記バックプレート層のいずれか一方に押出金型を設けるステップは、前記透光層及び前記バックプレート層に互いに平行な複数の押出金型を設け、前記透光層上の押出金型と前記バックプレート層上の押出金型とが前記平面型太陽光発電ユニットの長手方向に沿って交互に配置される。   According to one embodiment of the present invention, the step of providing an extrusion die in one of the light-transmitting layer and the backplate layer or the light-transmitting layer or the backplate layer includes the light-transmitting layer and the backplate. A plurality of extrusion dies parallel to each other are provided on the layer, and the extrusion dies on the light-transmitting layer and the extrusion dies on the back plate layer are alternately arranged along the longitudinal direction of the flat photovoltaic power generation unit. Is done.

本発明の一実施形態によれば、波状の曲面体は複数の円弧体からなり、第1円弧体の円心と第2円弧体の円心は、前記曲面体の両側にそれぞれ位置し、第1円弧体と第2円弧体は隣接する。   According to an embodiment of the present invention, the wavy curved body includes a plurality of arcs, and the center of the first arc and the center of the second arc are located on both sides of the curved body, respectively. The first arc and the second arc are adjacent.

本発明の一実施形態によれば、前記円弧体の円弧の角度は60〜120°である。   According to one embodiment of the present invention, the angle of the arc of the arc is 60 to 120 °.

本発明の一実施形態によれば、前記ホットプレスのステップは、真空度が100Pa未満の圧力下で行われる。   According to one embodiment of the present invention, the step of hot pressing is performed under a pressure with a degree of vacuum of less than 100 Pa.

本発明の一実施形態によれば、前記ホットプレスのステップは、可撓性密封袋内で行われる。   According to one embodiment of the present invention, the step of hot pressing is performed in a flexible sealed bag.

本発明の一実施形態によれば、前記ホットプレスのステップは、予熱工程を含み、前記予熱工程の加熱温度は、110〜130℃である。   According to an embodiment of the present invention, the hot pressing step includes a preheating step, and a heating temperature of the preheating step is 110 to 130 ° C.

本発明の一実施形態によれば、前記予熱工程は、前記平面型太陽光発電ユニットを110〜130℃の温度で5〜15分間維持するステップを含む。   According to an embodiment of the present invention, the preheating step includes a step of maintaining the flat photovoltaic unit at a temperature of 110 to 130 ° C. for 5 to 15 minutes.

本発明の一実施形態によれば、前記ホットプレスのステップは、前記予熱工程の後で行われる持続加熱工程、押出成形工程及び冷却工程を含む。   According to one embodiment of the present invention, the hot pressing includes a continuous heating process, an extrusion process, and a cooling process performed after the preheating process.

本発明の一実施形態によれば、前記持続加熱工程の温度は140〜160℃であり、時間は30〜50分である。   According to an embodiment of the present invention, the temperature of the continuous heating process is 140 to 160C, and the time is 30 to 50 minutes.

本発明の一実施形態によれば、前記押出成形工程の温度は140〜160℃である。   According to an embodiment of the present invention, the temperature of the extrusion process is 140 to 160C.

本発明の一実施形態によれば、前記冷却工程の温度は60〜80℃であり、時間は5〜10分である。   According to an embodiment of the present invention, the temperature of the cooling step is 60 to 80C, and the time is 5 to 10 minutes.

本発明の一実施形態によれば、前記熱可塑性材料は、PC、PET又はPENを含む。   According to one embodiment of the present invention, the thermoplastic material includes PC, PET or PEN.

本発明の一実施形態は、上述した方法のいずれかによって得られる曲面太陽光発電ユニットをさらに提供する。   One embodiment of the present invention further provides a curved photovoltaic power unit obtained by any of the methods described above.

本発明の一実施形態の曲面太陽光発電ユニットの製造方法によれば、直接的に太陽光発電ユニットの各層を一体に成形して、所望の曲面状を得ることができ、別々に成形してから積層を行う煩雑な手順を回避し、工程を簡略化し、コストを低減し、時間を節約する。   According to the method for manufacturing a curved photovoltaic power generation unit of one embodiment of the present invention, each layer of the photovoltaic power generation unit can be directly molded integrally to obtain a desired curved shape, and separately molded. It avoids the complicated procedure of lamination from the beginning, simplifies the process, reduces the cost and saves time.

図面を参照しながら本発明の好ましい実施例の詳細な説明を考慮することで、本発明の様々な目標、特徴及び利点がさらに明らかになる。図面は単なる本発明の例示であり、必ずしも縮尺通りではない。図面において、同様の参照符号は常に同じ又は類似している部品を示す。   Various objects, features and advantages of the present invention will become more apparent from consideration of the detailed description of the preferred embodiment of the invention with reference to the drawings. The drawings are merely illustrative of the invention and are not necessarily to scale. In the drawings, like reference numbers always indicate the same or similar parts.

本発明の一実施形態の平面型太陽光発電ユニットの構造模式図である。It is a structure schematic diagram of the flat type solar power generation unit of one embodiment of the present invention. 本発明の一実施形態の曲面太陽光発電ユニットの構造模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a structure schematic diagram of the curved surface solar power generation unit of one Embodiment of this invention. 本発明の別の実施形態の曲面太陽光発電ユニットの構造模式図である。It is a structure schematic diagram of the curved surface solar power generation unit of another embodiment of this invention. 本発明の一実施形態の曲面太陽光発電ユニットの製造フローの模式図である。It is a mimetic diagram of a manufacturing flow of a curved photovoltaic power generation unit of one embodiment of the present invention.

本発明の特徴及び利点を具現化する典型的な実施形態を、以下の説明において詳細に説明する。なお、本発明が異なる実施形態において様々な変更が可能であり、いずれも本発明の範囲を逸脱せず、ここの説明及び図示は、本質的に説明のために使用され、本発明を限定するものではないと理解すべきである。   Exemplary embodiments embodying features and advantages of the invention are described in detail in the following description. It should be noted that the present invention is capable of various modifications in different embodiments, all of which do not depart from the scope of the present invention, and the description and illustration herein are used essentially for explanation and limit the present invention. It should be understood that it is not a thing.

本発明の一実施形態は、曲面太陽光発電ユニットの製造方法を提供し、前記方法によれば、直接的に太陽光発電ユニットの各層を一体に成形して、所望の曲面状を得ることができ、別々に成形してから積層を行う煩雑な手順を回避し、工程を簡略化し、コストを低減し、時間を節約する。   One embodiment of the present invention provides a method for manufacturing a curved photovoltaic power generation unit. According to the method, each layer of the photovoltaic power generation unit can be directly molded integrally to obtain a desired curved shape. It avoids the complicated procedure of separately forming and then laminating, simplifies the process, reduces costs and saves time.

図1〜4を参照し、本発明の一実施形態の製造方法は、バックプレート層11、フレキシブル太陽光発電チップ13及び透光層15を下から上への順番で積層し、平面型太陽光発電ユニット10を形成するステップと、平面型太陽光発電ユニット10をホットプレスによって曲面体に形成し、曲面太陽光発電ユニットを得るステップと、を含む。   Referring to FIGS. 1 to 4, a manufacturing method according to an embodiment of the present invention includes a method of stacking a back plate layer 11, a flexible photovoltaic chip 13, and a light transmitting layer 15 in order from bottom to top, The method includes a step of forming the power generation unit 10 and a step of forming the planar solar power generation unit 10 into a curved body by hot pressing to obtain a curved solar power generation unit.

一実施形態では、バックプレート層11は第1のフィルム層12を介して太陽光発電チップ13の第1の面に接着され、透光層15は第2のフィルム層14を介して、太陽光発電チップ13の第1の面に対向して設けられる第2面に接着される。   In one embodiment, the back plate layer 11 is adhered to the first surface of the photovoltaic chip 13 via the first film layer 12, and the light transmitting layer 15 is The power generation chip 13 is bonded to a second surface provided opposite to the first surface.

一実施形態では、透光層15の材質は透明で耐摩耗の熱可塑性材料であり、例えば、熱可塑性プラスチックである。熱可塑性プラスチックは、具体的にPC(ポリカーボネート)、PET(ポリエチレンテレフタレート系プラスチック)、PEN(ポリエチレンナフタレート)などであってもよい。熱可塑性プラスチックはガラスより重量が軽いため、より成形が容易であり、ホットプレス工程において表面層が破裂されるリスクが低減し、太陽光発電ユニットの生産歩留まりを向上させ、それとともに、熱可塑性プラスチックは高透光性、耐候性、耐燃性に優れていることから、生産される太陽光発電ユニット製品の重量が軽く、耐候性が良好で、破損しにくく、寿命が長い。   In one embodiment, the material of the light transmitting layer 15 is a transparent and wear-resistant thermoplastic material, for example, a thermoplastic plastic. The thermoplastic plastic may specifically be PC (polycarbonate), PET (polyethylene terephthalate-based plastic), PEN (polyethylene naphthalate), or the like. Thermoplastics are lighter in weight than glass, so they are easier to mold, reduce the risk of surface layer rupture during the hot pressing process, increase the production yield of photovoltaic units, and increase the Is excellent in high translucency, weather resistance, and flame resistance, so that the weight of the produced solar power generation unit product is light, has good weather resistance, is hard to break, and has a long life.

一実施形態では、図2に示すように、曲面太陽光発電ユニットは、アーチ状の曲面体である。   In one embodiment, as shown in FIG. 2, the curved solar power generation unit is an arched curved body.

一実施形態では、図2に示すように、曲面太陽光発電ユニットは、波状の曲面体であってもよく、波状の曲面体は、方向が反対の複数の円弧体が交錯して配置されて形成されてもよく、例えば、各円弧体はいずれもバックプレート層11、第1のフィルム層12、太陽光発電チップ13、第2のフィルム層14、表面層15の積層構造を備え、隣接する2つの円弧体の円心はそれぞれ曲面体の上下両側に位置する。   In one embodiment, as shown in FIG. 2, the curved photovoltaic power generation unit may be a wavy curved body, and the wavy curved body is formed by intersecting a plurality of arcs having opposite directions. For example, each of the arcs has a laminated structure of a back plate layer 11, a first film layer 12, a photovoltaic chip 13, a second film layer 14, and a surface layer 15, and is adjacent to each other. The centers of the two arcs are respectively located on the upper and lower sides of the curved body.

一実施形態では、円弧体に対応する円弧の角度は60〜120°であり、例えば70°、80°、90°、100°などである。   In one embodiment, the angle of the arc corresponding to the arc is between 60 and 120 degrees, for example, 70 degrees, 80 degrees, 90 degrees, 100 degrees, and the like.

一実施形態では、図2に示すように、波状の太陽光発電ユニットは、順次に連結される円弧体31、円弧体32及び円弧体33を備え、円弧体31及び円弧体33の円弧の円心は、バックプレート層11の下方(図示の方向)に位置し、円弧体32の円弧の円心は、表面層15の上方に位置する。円弧体32は2つの端面(円弧の2つの端点の延長面)を介して円弧体31、円弧体33とそれぞれ連結される。   In one embodiment, as shown in FIG. 2, the corrugated photovoltaic power generation unit includes an arc body 31, an arc body 32, and an arc body 33 that are sequentially connected, and the arc circle of the arc body 31 and the arc body 33. The center is located below (in the direction shown) the back plate layer 11, and the center of the arc of the arc 32 is located above the surface layer 15. The arc body 32 is connected to the arc body 31 and the arc body 33 via two end surfaces (extended surfaces of two end points of the arc), respectively.

一実施形態では、表面層15及びバックプレート層11又は表面層15若しくはバックプレート層11のいずれか一方に押出金型を設けることで、平面型太陽光発電ユニットがホットプレス工程に曲面体になるよう押出されるようにする。   In one embodiment, by providing an extrusion die in the surface layer 15 and the back plate layer 11 or any one of the surface layer 15 or the back plate layer 11, the flat-type solar power generation unit becomes a curved body in the hot pressing process. To be extruded.

一実施形態では、例えば、表面層15上に押出金型を設けて押出処理を行うことで、平面型太陽光発電ユニット10が押出金型の押出作用下で表面層15を内面(上面)とし、バックプレート層11を外面(下面)とするアーチ状に形成することができる。   In one embodiment, for example, by providing an extrusion die on the surface layer 15 and performing an extrusion process, the flat photovoltaic power generation unit 10 makes the surface layer 15 an inner surface (upper surface) under the extrusion action of the extrusion die. The back plate layer 11 can be formed in an arch shape having the outer surface (lower surface).

一実施形態では、バックプレート層11上に押出金型を設けて押出処理を行うことで、平面型太陽光発電ユニット10がバックプレート層11を内面(下面)とし、表面層15を外面(上面)とするアーチ状に形成することができる。   In one embodiment, by providing an extrusion die on the back plate layer 11 and performing an extrusion process, the flat photovoltaic power generation unit 10 sets the back plate layer 11 to the inner surface (lower surface) and the surface layer 15 to the outer surface (upper surface). ) Can be formed in an arch shape.

一実施形態では、アーチ状の曲面体は円弧体であってもよく、円弧体の曲面の一部又は全部は円弧面であり、円弧体の円弧の円心は表面層15の側に位置してもよいが、バックプレート層11の側に位置してもよい(図2参照)。   In one embodiment, the arched curved body may be an arc, and a part or all of the curved surface of the arc is an arc, and the center of the arc of the arc is located on the side of the surface layer 15. Alternatively, it may be located on the side of the back plate layer 11 (see FIG. 2).

一実施形態では、表面層15上及びバックプレート層11下に互いに平行な複数の押出金型を設け、表面層15上の押出金型とバックプレート層11上の押出金型とは太陽光発電ユニットの長手方向に沿って交互に配置される。   In one embodiment, a plurality of extrusion dies parallel to each other are provided on the surface layer 15 and below the back plate layer 11, and the extrusion dies on the surface layer 15 and the extrusion dies on the back plate layer 11 The units are arranged alternately along the longitudinal direction.

一実施形態では、押出金型は円柱体であってもよく、例えば、ホットプレス処理を開始する前に、円柱体を直接表面層15上に置き、又はシリカゲル袋を介して表面層15上に置き、円柱体の円弧面は表面層15又はシリカゲル袋と互いに接するように保持され、ホットプレス工程が行われることに伴い、平面型太陽光発電ユニットの各層が軟化し、表面層15が円弧面と互いに接する状態から徐々に一部の円弧面を包み、したがって、平面型太陽光発電ユニットが円弧体になるよう押出される。   In one embodiment, the extrusion mold may be a cylinder, for example, placing the cylinder directly on the surface layer 15 before starting the hot pressing process, or on the surface layer 15 via a silica gel bag. Place, the arc surface of the cylindrical body is held so as to be in contact with the surface layer 15 or the silica gel bag, and each layer of the flat type solar power generation unit is softened by the hot pressing process, and the surface layer 15 becomes an arc surface. From the state of contact with each other, a part of the arc surface is gradually wrapped, so that the flat photovoltaic power generation unit is extruded into an arc shape.

一実施形態では、円柱体20は中実の円柱であってもよいが、中空の円筒であってもよく、好ましくはステンレス材質であり、例えば、ステンレス円柱、又は円柱状のステンレス金型であってもよい。   In one embodiment, the cylindrical body 20 may be a solid cylinder, but may be a hollow cylinder, and is preferably made of a stainless material, for example, a stainless steel cylinder or a cylindrical stainless steel mold. You may.

一実施形態では、透光層15及びバックプレート層11上に互いに平行な1つ又は複数の押出金型をそれぞれ設け、平面型太陽光発電ユニット10がホットプレス過程で波状になるよう押出されるようにすることができる。例えば、図4を参照して、表面層15上に1つの円柱体20を設け、バックプレート層11上に2つの円柱体を設けることができ、3つの円柱体は平行に設けられ、且つ太陽光発電ユニットの長手方向に沿って配置され、バックプレート層11上の2つの円柱体は表面層15上の円柱体20の両側にそれぞれ位置する。即ち、表面層15上の円柱体20の投影はバックプレート層11上の2つの円柱体の投影の間に位置する。したがって、押出処理後に得られる円弧体31、円弧体32、円弧体33が全体的に波状に分布する。   In one embodiment, one or more extrusion dies parallel to each other are provided on the translucent layer 15 and the back plate layer 11, respectively, and the flat-type solar power generation unit 10 is extruded into a wave shape in a hot pressing process. You can do so. For example, referring to FIG. 4, one cylinder 20 can be provided on the surface layer 15 and two cylinders can be provided on the back plate layer 11. The three cylinders are provided in parallel, and Arranged along the longitudinal direction of the photovoltaic unit, the two cylinders on the back plate layer 11 are located on both sides of the cylinder 20 on the surface layer 15. That is, the projection of the cylinder 20 on the surface layer 15 is located between the projections of the two cylinders on the backplate layer 11. Therefore, the arc-shaped body 31, the arc-shaped body 32, and the arc-shaped body 33 obtained after the extrusion processing are distributed in a wave shape as a whole.

一実施形態では、製造したい太陽光発電ユニットの形状に応じて、表面層15上、バックプレート層11上に太陽光発電ユニットの長手方向に沿って上下に交互に隣接して配置される複数の円柱体20を設けることができる。   In one embodiment, depending on the shape of the photovoltaic power generation unit to be manufactured, a plurality of the photovoltaic power generation units arranged on the surface layer 15 and the back plate layer 11 alternately vertically adjacent to each other along the longitudinal direction of the photovoltaic power generation unit. A cylindrical body 20 can be provided.

一実施形態では、ホットプレス工程は負圧状態、例えば真空度が100Pa未満の圧力下で行われる。   In one embodiment, the hot pressing step is performed in a negative pressure state, for example, under a pressure of less than 100 Pa.

一実施形態では、ホットプレスは、シリカゲル袋40、例えばシリカゲル密閉袋で行うことができる。シリカゲル袋40の上下2層のシリカゲルプレートは溝シール構造を有し、辺部に抽気弁が設けられ、外部管路と連結することでシリカゲル袋40に対して抽気を行うことができる。   In one embodiment, hot pressing can be performed on a silica gel bag 40, for example, a silica gel sealed bag. The upper and lower two layers of silica gel plate of the silica gel bag 40 have a groove sealing structure, and a bleed valve is provided at a side portion, and the silica gel bag 40 can be bleed by being connected to an external pipeline.

一実施形態では、平面型太陽光発電ユニット10を加熱押出する前に予熱脱気を行う。表面層材料、例えばPCプレート材自体が水蒸気を吸収するため、予熱脱気によってプレート材内部の水蒸気を効果的に除去できるが、加熱押出時に水蒸気を除去すると、成形後の製品に気泡及び霧状の細孔群が発生し、太陽光発電ユニットの外観に影響する。   In one embodiment, preheating deaeration is performed before the flat type solar power generation unit 10 is heated and extruded. Since the surface layer material, for example, the PC plate material itself absorbs water vapor, the water vapor inside the plate material can be effectively removed by preheating degassing. Of fine pores are generated, which affects the appearance of the solar power generation unit.

一実施形態では、予熱脱気段階の加熱温度は110〜130℃であり、時間は5〜15分であり、例えば10分である。   In one embodiment, the heating temperature of the preheating degassing stage is 110-130 ° C and the time is 5-15 minutes, for example, 10 minutes.

一実施形態では、ホットプレス工程は、予熱(脱気)段階、持続加熱段階、押出成形段階及び冷却段階を含む。   In one embodiment, the hot pressing process includes a preheating (degassing) stage, a continuous heating stage, an extrusion stage, and a cooling stage.

一実施形態では、持続加熱の加熱温度は140〜160℃であり、時間は30〜50分である。   In one embodiment, the heating temperature of the continuous heating is 140 to 160 ° C., and the time is 30 to 50 minutes.

一実施形態では、押出成形段階の温度は140〜160℃である。   In one embodiment, the temperature of the extrusion stage is 140-160C.

一実施形態では、冷却段階の温度は60〜80℃であり、時間は5〜10分である。   In one embodiment, the temperature of the cooling stage is 60-80 ° C and the time is 5-10 minutes.

一実施形態では、表面層15の厚みは1〜10mmであってもよく、例えば2mm、5mm、8mmである。   In one embodiment, the thickness of the surface layer 15 may be 1 to 10 mm, for example, 2 mm, 5 mm, 8 mm.

一実施形態では、バックプレート層11は、アルミニウムフィルムを有するPETプレートであってもよい。   In one embodiment, the backplate layer 11 may be a PET plate having an aluminum film.

一実施形態では、第1のフィルム層12、第2のフィルム層14は、耐紫外線POEフィルムであってもよく、厚みは0.2〜0.5mmであってもよい。   In one embodiment, the first film layer 12 and the second film layer 14 may be UV-resistant POE films, and may have a thickness of 0.2 to 0.5 mm.

一実施形態では、太陽光発電チップ13は、アモルファスシリカゲル薄膜チップを含むがこれに限定されず、例えば、CIGSチップ、テルル化カドミウムチップ、ガリウム砒素チップなどであってもよい。   In one embodiment, the solar power generation chip 13 includes, but is not limited to, an amorphous silica gel thin film chip, and may be, for example, a CIGS chip, a cadmium telluride chip, a gallium arsenide chip, or the like.

以下、具体的な実施例を通じて本発明の一実施形態の曲面太陽光発電ユニットの製造方法をさらに説明する。   Hereinafter, a method for manufacturing a curved solar power generation unit according to an embodiment of the present invention will be further described through specific examples.

(平面型太陽光発電ユニットの製造)
アルミニウムフィルムを有するPETプレートをバックプレート層11とし、POEフィルムを介してバックプレート層11がフレキシブル銅インジウムガリウムセレンチップの下面に接着される。耐紫外線コーティングを有する厚み2mmのPCプレートを透光層15とし、厚み0.2mmの耐紫外線POEフィルムを介して表面層15をフレキシブル銅インジウムガリウムセレンチップの上面に接着され、「バックプレート層11/第1のフィルム層12/太陽光発電チップ13/第2のフィルム層14/表面層15」を含む平面型太陽光発電ユニットを形成する。
(Manufacture of planar solar power generation units)
The PET plate having the aluminum film is used as the back plate layer 11, and the back plate layer 11 is bonded to the lower surface of the flexible copper indium gallium selenium chip via the POE film. A PC plate having a thickness of 2 mm having a UV-resistant coating is used as the light-transmitting layer 15, and the surface layer 15 is adhered to the upper surface of the flexible copper indium gallium selenium chip via a UV-resistant POE film having a thickness of 0.2 mm. / First film layer 12 / photovoltaic power chip 13 / second film layer 14 / surface layer 15 "to form a planar photovoltaic power generation unit.

ここで、PETプレート、フレキシブル銅インジウムガリウムセレンチップ及びPCプレートはいずれも平面プレートであり、したがって、形成される平面型太陽光発電ユニット10が略立方体状となる。   Here, the PET plate, the flexible copper indium gallium selenium chip, and the PC plate are all flat plates, and thus the formed flat photovoltaic power generation unit 10 has a substantially cubic shape.

(準備段階)
立方体状の平面型太陽光発電ユニット10を位置決めに従って上下2層のシリカゲルプレートにより密閉可能な1つのシリカゲル袋40内に置く。シリカゲル袋40は上下2層のシリカゲルプレートの四方に溝シール構造を有し、辺部に抽気弁が設けられ、外部管路と連結することで、シリカゲル袋40に対して抽気を行うことができる。
抽気弁によりシリカゲル袋40に対して抽気を行うことで、シリカゲル袋40内部が負圧状態になるようにし、シリカゲル袋40内部の真空度が100Pa未満になった後、抽気弁をオフにし、シリカゲル袋40をホットプレス機の内部に押し込み、ホットプレス機の内部の抽気管路と連結させる。その後の全体のホットプレス段階において、シリカゲル袋40に対して持続的に抽気処理を行う。
(Preparation stage)
The cubic planar solar power generation unit 10 is placed in one silica gel bag 40 that can be sealed with two upper and lower layers of silica gel plates according to the positioning. The silica gel bag 40 has groove seal structures on all sides of the upper and lower two-layer silica gel plates, and is provided with bleed valves on the sides, and can be bleed from the silica gel bag 40 by being connected to an external pipeline. .
By performing bleeding on the silica gel bag 40 by the bleed valve, the inside of the silica gel bag 40 is brought into a negative pressure state, and after the degree of vacuum inside the silica gel bag 40 becomes less than 100 Pa, the bleed valve is turned off, and the silica gel is turned off. The bag 40 is pushed into the inside of the hot press machine and connected to the bleeding line inside the hot press machine. In the subsequent overall hot pressing stage, the silica gel bag 40 is continuously subjected to the bleeding process.

ここで、ホットプレス機は電気加熱及び送風を制御する方式で、シリカゲル袋40内の平面型太陽光発電ユニットに対する加熱処理を実現する。   Here, the hot press implements a heating process for the flat photovoltaic power generation unit in the silica gel bag 40 by a method of controlling electric heating and blowing.

(ホットプレス段階)
1)予熱脱気段階
ホットプレス機の内部温度を110〜120℃の範囲内に維持し、持続時間は10分である。
(Hot press stage)
1) Preheating deaeration stage The internal temperature of the hot press is maintained within a range of 110 to 120 ° C, and the duration is 10 minutes.

2)持続加熱段階
ホットプレス機の内部温度を140〜150℃の範囲内に上昇させ、30〜50分間維持する。この間、第1のフィルム層12、第2のフィルム層14に熱融着が発生し、表面層15が軟化し、したがって、平面型太陽光発電ユニット10の各層が効果的に接着される。
2) Continuous heating stage The internal temperature of the hot press is raised within a range of 140 to 150 ° C. and maintained for 30 to 50 minutes. During this time, heat fusion occurs between the first film layer 12 and the second film layer 14, and the surface layer 15 is softened, so that the respective layers of the flat photovoltaic power generation unit 10 are effectively bonded.

3)波形成形段階
温度を140〜150℃の範囲内に維持し、平面型太陽光発電ユニット10の平面状の表面層15上に平滑面のステンレス円柱を1本置き、平面状のバックプレート層11下に平滑面のステンレス円柱を2本設けて正確な位置決めを行う。上記ステンレス円柱はいずれもシリカゲル袋40の外部に設けられる。液圧又はモーターの駆動下で平面型太陽光発電ユニット10に対して押出処理を行い、太陽光発電ユニットが所定の波形通りに成形される。
3) Wave forming step The temperature is maintained in the range of 140 to 150 ° C., and one stainless steel cylinder having a smooth surface is placed on the flat surface layer 15 of the flat solar power generation unit 10, and the flat back plate layer is formed. Two stainless steel cylinders having a smooth surface are provided below 11 for accurate positioning. Each of the stainless steel columns is provided outside the silica gel bag 40. Extrusion processing is performed on the planar photovoltaic power generation unit 10 under hydraulic pressure or driving of a motor, and the photovoltaic power generation unit is formed into a predetermined waveform.

又は、ホットプレス機内に上下2列のステンレス金型を設け、正確な位置決め後に、液圧又はモーターの駆動下で平面型太陽光発電ユニットに対して押出処理を行うことができ、太陽光発電ユニットが所定の波形通りに成形される。   Alternatively, two rows of stainless steel molds are provided in the hot press machine, and after accurate positioning, extrusion processing can be performed on the flat type solar power generation unit under hydraulic pressure or driving of a motor. Are shaped according to a predetermined waveform.

また、上述した2つの方式を組み合わせることもでき、平面型太陽光発電ユニット10は所定の波形通りに成形される。   In addition, the above-described two methods can be combined, and the flat-type solar power generation unit 10 is formed according to a predetermined waveform.

4)冷却送出段階
ホットプレス機の内部温度を60〜70℃の範囲まで下げ、5〜10分間維持する。温度が60℃未満になった後、シリカゲル袋40の抽気弁をオフにし、シリカゲル袋40をホットプレス機から押し出し、室温まで冷却した後、シリカゲル袋40を開け、波形太陽光発電ユニットのホットプレス処理が完了し、3つの円弧体からなる波状の太陽光発電ユニットが得られる。ここで、各円弧体の角度はいずれも60°である。
4) Cooling delivery stage The internal temperature of the hot press is reduced to the range of 60-70 ° C and maintained for 5-10 minutes. After the temperature falls below 60 ° C., the bleed valve of the silica gel bag 40 is turned off, the silica gel bag 40 is extruded from a hot press machine, and after cooling to room temperature, the silica gel bag 40 is opened, and the hot pressing of the corrugated solar power generation unit is performed. The processing is completed, and a corrugated solar power generation unit including three arcs is obtained. Here, the angle of each arc is 60 °.

(接続箱の取り付け、電力試験)
ホットプレス終了後の波形太陽光発電ユニットに対して外観検査を行ってから接続箱を取り付け、電力試験、絶縁試験後に包装して保存する。
(Mounting of connection box, power test)
After performing a visual inspection on the corrugated photovoltaic power generation unit after completion of hot pressing, a connection box is attached, and after a power test and an insulation test, packaging and storage are performed.

本実施例の具体的な製造フローは、予熱脱気段階の温度が120〜130℃であり、1つの円柱体を押出金型として使用してアーチ状の太陽光発電ユニットを得る。ここで、アーチ状が円弧状となり、円弧の角度がいずれも120°であることを除いて、実施例1と同様である。   In the specific production flow of the present embodiment, the temperature in the preheating deaeration stage is 120 to 130 ° C., and an arc-shaped photovoltaic power generation unit is obtained by using one cylinder as an extrusion die. Here, it is the same as the first embodiment except that the arch shape becomes an arc shape and the angle of each arc is 120 °.

本実施例の具体的な製造フローは、予熱脱気段階の温度が90〜100℃であることを除いて、実施例1と同様である。   The specific manufacturing flow of the present embodiment is the same as that of Embodiment 1 except that the temperature in the preheating deaeration stage is 90 to 100 ° C.

本実施例の具体的な製造フローは、予熱脱気を行わないで直接的に持続加熱段階へ進むことを除いて、実施例1と同様である。   The specific manufacturing flow of the present embodiment is the same as that of Embodiment 1 except that the process directly proceeds to the continuous heating stage without performing preheating degassing.

本実施例の具体的な製造フローは、持続加熱段階、波形成形段階の温度が150〜160℃であることを除いて、実施例1と同様である。   The specific manufacturing flow of this example is the same as that of Example 1 except that the temperature in the continuous heating step and the waveform forming step is 150 to 160 ° C.

本実施例の具体的な製造フローは、持続加熱段階、波形成形段階の温度が180〜190℃であることを除いて、実施例1と同様である。   The specific manufacturing flow of this example is the same as that of Example 1 except that the temperature in the continuous heating step and the waveform forming step is 180 to 190 ° C.

本実施例の具体的な製造フローは、冷却押出段階の温度が70〜80℃であることを除いて、実施例1と同様である。   The specific manufacturing flow of this example is the same as that of Example 1 except that the temperature of the cooling extrusion step is 70 to 80 ° C.

本実施例の具体的な製造フローは、冷却を行わないで、成形後のユニットが直接的に送出されることを除いて、実施例1と同様である。   The specific manufacturing flow of this embodiment is the same as that of the first embodiment except that the unit after molding is directly sent out without cooling.

本実施例の具体的な製造フローは、冷却送出段階の温度が40〜50℃であることを除いて、実施例1と同様である。   The specific manufacturing flow of this embodiment is the same as that of Embodiment 1 except that the temperature in the cooling and sending stage is 40 to 50 ° C.

実施例1〜9において得られた曲面太陽光発電ユニットをAM1.5、1000W/m2、25℃のSTCで光電変換効率の試験を行うと、具体的な結果は表1に示すようである。   When a test of photoelectric conversion efficiency was performed on the curved solar power generation units obtained in Examples 1 to 9 at STC of AM 1.5, 1000 W / m 2, and 25 ° C., specific results are shown in Table 1.

表1の結果から分かるように、実施例1、2、5、7の光電変換効率は実施例3、4、6、8、9より優れている。これは、実施例3は、予熱脱気段階の温度が比較的低いため、効果的に脱気を行うことができず、したがって、得られる太陽光発電ユニットに肉眼で見える細孔が存在し、太陽光発電ユニットの透光率に影響し、さらに太陽光発電ユニットの光電変換効率に影響するからである。   As can be seen from the results in Table 1, the photoelectric conversion efficiencies of Examples 1, 2, 5, and 7 are superior to Examples 3, 4, 6, 8, and 9. This is because Example 3 cannot perform degassing effectively because the temperature of the preheating degassing stage is relatively low, and therefore, the resulting solar power generation unit has macroscopic pores, This is because it affects the transmittance of the solar power generation unit and further affects the photoelectric conversion efficiency of the solar power generation unit.

実施例4は、予熱脱気を行っていないため、実施例3の太陽光発電ユニットよりさらに多くの細孔が存在し、これに応じて光電変換効率がさらに低い。   In Example 4, since preheating and degassing were not performed, more pores were present than in the solar power generation unit of Example 3, and the photoelectric conversion efficiency was correspondingly lower.

実施例6は、持続加熱段階、波形成形段階の温度が高すぎるため、透光層、フィルム層に歪みが発生しやすく、フィルムが他の層から剥離しやすく、したがって、太陽光発電ユニット全体の信頼性が悪くなり、それとともに、歪みは太陽光発電ユニットの透光率にも影響し、さらに光電変換効率に影響する。   In Example 6, the temperature of the continuous heating step and the waveform forming step were too high, so that the light-transmitting layer and the film layer were easily distorted, and the film was easily peeled off from other layers. The reliability is deteriorated, and at the same time, the distortion affects the light transmittance of the solar power generation unit and further affects the photoelectric conversion efficiency.

実施例8の太陽光発電ユニットは、冷却を行わず、成形後のユニットが直接的に送出されるため、外部のガスが吹き返してユニットのエッジに気泡が形成されやすく、各層のエッジが剥離されやすい。したがって、太陽光発電ユニット全体の信頼性が悪くなり、一方、ユニットの透光率にも影響し、さらに光電変換効率に影響する。   In the photovoltaic power generation unit of Example 8, since the unit after molding is directly sent without cooling, the external gas is blown back and bubbles are easily formed at the edge of the unit, and the edge of each layer is peeled off. Cheap. Therefore, the reliability of the entire photovoltaic power generation unit deteriorates, and on the other hand, it also affects the light transmittance of the unit and further affects the photoelectric conversion efficiency.

実施例9は、冷却送出段階の温度が比較的低いため、太陽光発電ユニットの降温が比較的速く、フィルムの変形を引き起こしやすく、さらに太陽光発電ユニットの光電変換効率に影響する。   In the ninth embodiment, since the temperature in the cooling and sending stage is relatively low, the temperature of the photovoltaic power generation unit falls relatively quickly, the film is easily deformed, and the photoelectric conversion efficiency of the photovoltaic power generation unit is affected.

本発明により提供された曲面太陽光発電ユニットの製造方法によれば、直接的に太陽光発電ユニットの各層を一体に成形して曲面状を得ることができ、別々に成形してから積層を行う煩雑な手順を回避し、工程を簡略化し、コストを低減し、時間を節約するとともに、得られる太陽光発電ユニットの光電変換効率を効果的に向上させる。   According to the method for manufacturing a curved photovoltaic power generation unit provided by the present invention, each layer of the photovoltaic power generation unit can be directly molded integrally to obtain a curved surface shape, and separately molded and then laminated. A complicated procedure is avoided, a process is simplified, costs are reduced, time is saved, and the photoelectric conversion efficiency of the obtained solar power generation unit is effectively improved.

本発明で使用される用語は、特に限定しない限り、いずれも当業者に一般的に理解される意味である。   All terms used in the present invention have meanings generally understood by those skilled in the art, unless otherwise limited.

本発明に記載の実施形態は単なる例示的なものであり、本発明の範囲を限定するものではなく、当業者であれば、本発明の範囲内で様々な他の置換、変更及び改良を行うことができ、したがって、本発明は上記の実施形態に限定されず、特許請求の範囲によってのみ限定される。   The embodiments described in the present invention are merely illustrative and do not limit the scope of the present invention, and those skilled in the art can make various other substitutions, changes and improvements within the scope of the present invention. Thus, the invention is not limited to the embodiments described above, but only by the claims.

10 平面型太陽光発電ユニット
11 バックプレート層
12 第1のフィルム層
13 太陽光発電チップ
13 フレキシブル太陽光発電チップ
14 第2のフィルム層
14 光電変換効率
15 透光層
15 表面層
20 円柱体
31 円弧体
32 円弧体
33 円弧体
40 シリカゲル袋
REFERENCE SIGNS LIST 10 flat photovoltaic power generation unit 11 back plate layer 12 first film layer 13 photovoltaic power generation chip 13 flexible photovoltaic power generation chip 14 second film layer 14 photoelectric conversion efficiency 15 translucent layer 15 surface layer 20 cylinder 31 circular arc Body 32 Arc body 33 Arc body 40 Silica gel bag

Claims (16)

バックプレート層、フレキシブル太陽光発電チップ及び透光層を積層して、平面型太陽光発電ユニットを形成するステップと、
前記平面型太陽光発電ユニットをホットプレス(hot press)によって曲面体に形成し、曲面太陽光発電ユニットを得るステップと、を含む曲面太陽光発電ユニットの製造方法であって、前記透光層の材料は熱可塑性材料である、
曲面太陽光発電ユニットの製造方法。
Laminating the back plate layer, the flexible photovoltaic chip and the light transmitting layer to form a planar photovoltaic unit,
Forming the flat-type photovoltaic unit into a curved body by hot pressing to obtain a curved-type photovoltaic power generation unit, the method comprising: The material is a thermoplastic material,
Manufacturing method of curved solar power generation unit.
前記平面型太陽光発電ユニットをホットプレス(hot press)によって曲面体に形成するステップは、前記透光層及び前記バックプレート層、又は前記透光層若しくは前記バックプレート層のいずれか一方に押出金型を設け、前記平面型太陽光発電ユニットがホットプレス過程で前記曲面体になるよう押し出すようにする、
請求項1に記載の曲面太陽光発電ユニットの製造方法。
The step of forming the flat-type solar power generation unit into a curved body by hot pressing may include extruding a metal to the light-transmitting layer and the back plate layer, or one of the light-transmitting layer and the back plate layer. Provide a mold, so that the flat-type photovoltaic unit is extruded into the curved body in a hot pressing process,
A method for manufacturing a curved solar power generation unit according to claim 1.
前記曲面体はアーチ状曲面体又は波状曲面体である、
請求項2に記載の曲面太陽光発電ユニットの製造方法。
The curved body is an arched curved body or a wavy curved body,
A method for manufacturing a curved solar power generation unit according to claim 2.
前記透光層及び前記バックプレート層、又は前記透光層若しくは前記バックプレート層のいずれか一方に押出金型を設けるステップは、前記透光層及び前記バックプレート層に互いに平行な複数の押出金型を設け、前記透光層上の押出金型と前記バックプレート層上の押出金型とが前記平面型太陽光発電ユニットの長手方向に沿って交互に配置される、
請求項3に記載の曲面太陽光発電ユニットの製造方法。
The step of providing an extrusion die in one of the light-transmitting layer and the backplate layer, or any one of the light-transmitting layer or the backplate layer, comprises: A mold is provided, and an extrusion die on the light-transmitting layer and an extrusion die on the back plate layer are alternately arranged along the longitudinal direction of the planar solar power generation unit,
A method for manufacturing a curved solar power generation unit according to claim 3.
波状の曲面体は複数の円弧体からなり、第1円弧体の円心と第2円弧体の円心は、前記曲面体の両側にそれぞれ位置し、第1円弧体と第2円弧体は隣接する、
請求項4に記載の曲面太陽光発電ユニットの製造方法。
The wavy curved body is composed of a plurality of arcs, the center of the first arc and the center of the second arc are respectively located on both sides of the curved body, and the first arc and the second arc are adjacent to each other. Do
A method for manufacturing a curved solar power generation unit according to claim 4.
前記円弧体の円弧の角度は60〜120°である、
請求項5に記載の曲面太陽光発電ユニットの製造方法。
The angle of the arc of the arc is 60 to 120 °,
A method for manufacturing a curved solar power generation unit according to claim 5.
前記ホットプレスのステップは、真空度が100Pa未満の圧力下で行われる、
請求項1に記載の曲面太陽光発電ユニットの製造方法。
The hot pressing step is performed under a pressure in which the degree of vacuum is less than 100 Pa.
A method for manufacturing a curved solar power generation unit according to claim 1.
前記ホットプレス処理は、可撓性密封袋内で行われる、
請求項7に記載の曲面太陽光発電ユニットの製造方法。
The hot pressing is performed in a flexible sealed bag,
A method for manufacturing a curved solar power generation unit according to claim 7.
前記ホットプレスのステップは、予熱工程を含み、前記予熱工程の加熱温度は、110〜130℃である、
請求項1に記載の曲面太陽光発電ユニットの製造方法。
The hot pressing step includes a preheating step, and a heating temperature of the preheating step is 110 to 130 ° C.
A method for manufacturing a curved solar power generation unit according to claim 1.
前記予熱工程は、前記平面型太陽光発電ユニットを110〜130℃の温度で5〜15分間維持するステップを含む、
請求項9に記載の曲面太陽光発電ユニットの製造方法。
The preheating step includes a step of maintaining the flat type solar power generation unit at a temperature of 110 to 130 ° C. for 5 to 15 minutes,
A method for manufacturing a curved solar power generation unit according to claim 9.
前記ホットプレスのステップは、前記予熱工程の後で行われる持続加熱工程、押出成形工程及び冷却工程を含む、
請求項9に記載の曲面太陽光発電ユニットの製造方法。
The hot pressing step includes a continuous heating step performed after the preheating step, an extrusion molding step and a cooling step,
A method for manufacturing a curved solar power generation unit according to claim 9.
前記持続加熱工程の温度は140〜160℃であり、時間は30〜50分である、
請求項11に記載の曲面太陽光発電ユニットの製造方法。
The temperature of the continuous heating step is 140 to 160 ° C., and the time is 30 to 50 minutes.
A method for manufacturing a curved solar power generation unit according to claim 11.
前記押出成形工程の温度は140〜160℃である、
請求項11に記載の曲面太陽光発電ユニットの製造方法。
The temperature of the extrusion process is 140 to 160 ° C.
A method for manufacturing a curved solar power generation unit according to claim 11.
前記冷却工程の温度は60〜80℃であり、時間は5〜10分である、
請求項11に記載の曲面太陽光発電ユニットの製造方法。
The temperature of the cooling step is 60 to 80 ° C., and the time is 5 to 10 minutes.
A method for manufacturing a curved solar power generation unit according to claim 11.
前記熱可塑性材料は、PC、PET又はPENを含む、
請求項1に記載の曲面太陽光発電ユニットの製造方法。
The thermoplastic material includes PC, PET or PEN,
A method for manufacturing a curved solar power generation unit according to claim 1.
請求項1〜15のいずれか1項に記載の方法によって得られる、曲面太陽光発電ユニット。   A curved solar power unit obtained by the method according to claim 1.
JP2018200650A 2018-07-12 2018-10-25 Curved solar power generation unit and manufacturing method thereof Pending JP2020013971A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810763084.2 2018-07-12
CN201810763084.2A CN110783419A (en) 2018-07-12 2018-07-12 Curved surface photovoltaic module and preparation method thereof

Publications (1)

Publication Number Publication Date
JP2020013971A true JP2020013971A (en) 2020-01-23

Family

ID=69143073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018200650A Pending JP2020013971A (en) 2018-07-12 2018-10-25 Curved solar power generation unit and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP2020013971A (en)
KR (1) KR20200008101A (en)
CN (1) CN110783419A (en)
WO (1) WO2020010706A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113130701B (en) * 2021-03-04 2023-03-17 重庆神华薄膜太阳能科技有限公司 Thin-film solar cell forming equipment and preparation method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160613A (en) * 1986-01-09 1987-07-16 株式会社東芝 Manufacture of waveform insulator
JPH08156087A (en) * 1994-12-09 1996-06-18 Showa Aircraft Ind Co Ltd Corrugate molding machine, panel molding machine and honeycomb core of fiber-reinforced plastic
JPH10341031A (en) * 1997-04-11 1998-12-22 Canon Inc Solar cell module, installation method thereof, building material, installation method thereof and power generator
JP2007201315A (en) * 2006-01-30 2007-08-09 Kyocera Corp Manufacturing method for solar cell module, and manufacturing device therefor
JP2007529889A (en) * 2004-03-16 2007-10-25 ヴイエイチエフ・テクノロジーズ・エスエー Electrical energy generation module having a two-dimensional profile and method of making the same
JP2012033609A (en) * 2010-07-29 2012-02-16 Kyocera Corp Apparatus and method for manufacturing solar cell module
US20130118556A1 (en) * 2011-11-15 2013-05-16 Hyundai Motor Company Solar sunroof for vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102441924A (en) * 2011-10-25 2012-05-09 江苏快乐木业集团有限公司 Laminated single board with mountain texture, processing method and application thereof
CN102856410B (en) * 2012-09-21 2015-03-11 张正泉 Arc solar panel and processing technology
CN106450479A (en) * 2016-12-01 2017-02-22 佛山市实达科技有限公司 Flexible lithium ion battery and making method thereof
CN206976368U (en) * 2017-07-13 2018-02-06 北京汉能光伏投资有限公司 A kind of printing opacity flexible photovoltaic component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160613A (en) * 1986-01-09 1987-07-16 株式会社東芝 Manufacture of waveform insulator
JPH08156087A (en) * 1994-12-09 1996-06-18 Showa Aircraft Ind Co Ltd Corrugate molding machine, panel molding machine and honeycomb core of fiber-reinforced plastic
JPH10341031A (en) * 1997-04-11 1998-12-22 Canon Inc Solar cell module, installation method thereof, building material, installation method thereof and power generator
JP2007529889A (en) * 2004-03-16 2007-10-25 ヴイエイチエフ・テクノロジーズ・エスエー Electrical energy generation module having a two-dimensional profile and method of making the same
JP2007201315A (en) * 2006-01-30 2007-08-09 Kyocera Corp Manufacturing method for solar cell module, and manufacturing device therefor
JP2012033609A (en) * 2010-07-29 2012-02-16 Kyocera Corp Apparatus and method for manufacturing solar cell module
US20130118556A1 (en) * 2011-11-15 2013-05-16 Hyundai Motor Company Solar sunroof for vehicle

Also Published As

Publication number Publication date
CN110783419A (en) 2020-02-11
WO2020010706A1 (en) 2020-01-16
KR20200008101A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
US20030005954A1 (en) Solar cell module and method of manufacturing the same
JP3754208B2 (en) Solar cell module and manufacturing method thereof
CN101192630B (en) Solar cell louver and method of manufacture
EP2559070B1 (en) Method for manufacturing a photovoltaic cell for integrated building applications
WO2014180281A1 (en) Thin-film solar cell panel and manufacturing method therefor
JP2004288677A (en) Solar battery module subassembly and double glass solar battery module
WO2019196332A1 (en) Curved photovoltaic tile and preparation method therefor
KR101451142B1 (en) Solar Cells Module for Sunroof and It's manufacturing Method
CN101245686A (en) Vacuum insulation photovoltaic window
CN101447519A (en) Laminated solar battery pack and manufacture method thereof
CN112039433A (en) Solar heat and light hybrid module and manufacturing method thereof
JP2020013971A (en) Curved solar power generation unit and manufacturing method thereof
WO2018236330A1 (en) Method for manufacturing a hollow building panel with integrated photovoltaic elements
CN102569463A (en) Back film for back contact type solar cell and production process thereof
JP2003110127A (en) Lighting solar cell module
TWI599059B (en) Arc-bending translucent assembly, use and method for manufacturing thereof
CN211953291U (en) Flat plate type photovoltaic hot water assembly
CN110970517A (en) Solar power generation assembly
CN209282213U (en) Curved surface photovoltaic module
CN105470335A (en) Photovoltaic vacuum glass and preparation method
CN203032345U (en) Solar skylight for automobiles
CN103035767A (en) Solar skylight for vehicle and manufacture method thereof
JP7067154B2 (en) Backside protective sheet for solar cell module and solar cell module with integrated building materials
CN114068745B (en) Light solar power generation panel and preparation method thereof
CN212431370U (en) Device for improving surface shape quality of heliostat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200601