JP2020012706A - Method for estimating deterioration of raw coal for manufacturing coke and method for manufacturing coke - Google Patents

Method for estimating deterioration of raw coal for manufacturing coke and method for manufacturing coke Download PDF

Info

Publication number
JP2020012706A
JP2020012706A JP2018134434A JP2018134434A JP2020012706A JP 2020012706 A JP2020012706 A JP 2020012706A JP 2018134434 A JP2018134434 A JP 2018134434A JP 2018134434 A JP2018134434 A JP 2018134434A JP 2020012706 A JP2020012706 A JP 2020012706A
Authority
JP
Japan
Prior art keywords
deterioration
coking coal
coal
rate
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018134434A
Other languages
Japanese (ja)
Other versions
JP7091902B2 (en
Inventor
宗宏 内田
Munehiro Uchida
宗宏 内田
上坊 和弥
Kazuya Uebo
和弥 上坊
野村 誠治
Seiji Nomura
誠治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018134434A priority Critical patent/JP7091902B2/en
Publication of JP2020012706A publication Critical patent/JP2020012706A/en
Application granted granted Critical
Publication of JP7091902B2 publication Critical patent/JP7091902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coke Industry (AREA)

Abstract

To estimate total expansion coefficient TDof coking coal to be used when a predetermined time lapses from a reference time, even without performing complicated calculation.SOLUTION: The method for estimating the deterioration of coking coal for manufacturing coke comprises: calculating the change over time of the amount ΔP of pressure drop by leaving a closed vessel enclosing the coking coal and an oxygen containing gas at a reference time to measure pressure in the closed vessel at a predetermined atmospheric temperature; calculating the maximum pressure reduction speed Vp on the basis of the change over time of the amount ΔP of pressure drop; calculating a deterioration speed Vd from a correlation between the maximum pressure reduction speed Vp and the deterioration speed Vd and the calculated maximum pressure reduction speed Vp; and measuring the total expansion rate of the coking coal at the reference time to calculate the total expansion rate of a coking coal to be used on the basis of the total expansion rate and the calculated deterioration speed when a predetermined time elapses from the reference time. The deterioration speed Vd is the variation of deterioration ratio DR per unit time; and the deterioration ratio DR is a ratio of the total expansion rate TDof the coking coal corresponding to an elapsed time t from the reference time to the total expansion rate TDof the coking coal at the reference time.SELECTED DRAWING: Figure 6

Description

本発明は、コークス製造用の原料炭の劣化を推定する方法と、この推定方法に基づいて選定された原料炭を用いてコークスを製造する方法に関する。   The present invention relates to a method for estimating deterioration of coking coal for producing coke, and a method for producing coke using coking coal selected based on the estimation method.

原料炭をヤードに貯留し続けると、原料炭の酸化によって原料炭の粘結性が低下することが知られている。そこで、特許文献1では、ヤードに貯留された石炭の酸化による粘結性劣化を推定している。具体的には、粘結性劣化の指標として最高流動度(MF:Maximum Fluidity)を規定しており、貯留開始時の石炭の最高流動度と、石炭の比表面積と、石炭の貯留期間と、石炭層の温度及び酸素濃度とに基づいて、貯留中の石炭の最高流動度を算出(推定)している。   It is known that if coking coal is continuously stored in the yard, the coking properties of coking coal decrease due to oxidation of coking coal. Then, in patent document 1, the caking property deterioration by oxidation of the coal stored in the yard is estimated. Specifically, maximum fluidity (MF: Maximum Fluidity) is defined as an index of caking deterioration, and the maximum fluidity of coal at the start of storage, the specific surface area of coal, the storage period of coal, The maximum fluidity of the stored coal is calculated (estimated) based on the temperature and oxygen concentration of the coal seam.

特開昭58−142981号公報JP-A-58-142981

特許文献1では、貯留中の石炭の最高流動度を算出するために、熱収支式に基づいて石炭層の温度の推移を把握するとともに、酸素収支式に基づいて石炭層の酸素濃度の推移を把握しなければならない。熱収支式及び酸素収支式では、石炭の種類毎に初期条件及び境界条件を設定しておかなければならないため、温度及び酸素濃度の推移を把握すること、ひいては貯留中の石炭の最高流動度を推定することが煩雑である。   In Patent Document 1, in order to calculate the maximum fluidity of coal during storage, the transition of the temperature of the coal seam is grasped based on the heat balance equation, and the transition of the oxygen concentration of the coal seam is calculated based on the oxygen balance equation. You have to figure out. In the heat balance equation and the oxygen balance equation, it is necessary to set initial conditions and boundary conditions for each type of coal, so it is necessary to grasp changes in temperature and oxygen concentration, and to determine the maximum flow rate of coal during storage. The estimation is complicated.

本願発明者等は、原料炭を酸素含有ガスと共に密閉容器内に入れたときの密閉容器内の圧力低下量に着目したところ、原料炭の種類にかかわらず、圧力低下速度と原料炭の劣化速度との間に相関関係があることを見出し、本発明を完成するに至った。劣化速度の定義については後述する。   The inventors of the present application focused on the amount of pressure drop in the closed container when coking coal was placed in a closed container together with the oxygen-containing gas, and regardless of the type of coking coal, the pressure drop rate and the deterioration rate of coking coal Have been found to have a correlation, and the present invention has been completed. The definition of the deterioration rate will be described later.

本願発明は、コークスの製造に用いられる原料炭の劣化を推定する方法である。まず、基準時の原料炭及び所定の酸素濃度の酸素含有ガスが封入された密閉容器を所定の雰囲気温度で静置して、密閉容器内の圧力を測定することにより、初期圧力に対する圧力低下量の経時変化を求める。そして、圧力低下量の経時変化に基づいて、単位時間あたりの圧力低下量の変化量が最大となる最大圧力低下速度を算出する。   The present invention is a method for estimating deterioration of coking coal used for producing coke. First, the sealed container in which the standard coal and the oxygen-containing gas having the predetermined oxygen concentration are sealed is allowed to stand still at a predetermined atmospheric temperature, and the pressure in the closed container is measured. Is determined over time. Then, based on the change with time of the pressure drop amount, the maximum pressure drop rate at which the change amount of the pressure drop amount per unit time is maximum is calculated.

基準時における原料炭の全膨張率に対する、基準時からの経過時間に応じた原料炭の全膨張率の割合を劣化割合とする。単位時間あたりの劣化割合の変化量を劣化速度とする。なお、基準時とは、原料炭の劣化(いいかえれば、後述するように所定時間が経過したときの原料炭の全膨張率)を推定するときの基準となる時間であり、例えば、原料炭をヤードに入荷したときを基準時とすることができる。   The ratio of the total expansion coefficient of the raw coal according to the elapsed time from the reference time to the total expansion coefficient of the raw coal at the reference time is defined as a deterioration rate. The amount of change in the deterioration rate per unit time is defined as the deterioration speed. The reference time is a reference time for estimating the degradation of the coking coal (in other words, the total expansion rate of the coking coal when a predetermined time has elapsed as described later). The time when the yard arrives can be set as the reference time.

ここで、最大圧力低下速度と劣化速度との相関関係を予め求めておき、この相関関係に基づいて、使用を予定している原料炭の最大圧力低下速度に対応する劣化速度を算出する。   Here, a correlation between the maximum pressure reduction rate and the deterioration rate is obtained in advance, and a deterioration rate corresponding to the maximum pressure reduction rate of the raw coal to be used is calculated based on the correlation.

上述した相関関係は、下記式(I)で表される。   The above-described correlation is represented by the following equation (I).

上記式(I)において、Vdは劣化速度、Vpは最大圧力低下速度、k1及びk2は係数である。上述した基準時が、原料炭をヤードに入荷したときである場合、係数k1を−0.1277とし、係数k2を0.2708とすることが典型的な値として例示される。   In the above formula (I), Vd is a deterioration speed, Vp is a maximum pressure reduction speed, and k1 and k2 are coefficients. When the above-described reference time is when the coking coal is received in the yard, a typical example is that the coefficient k1 is -0.1277 and the coefficient k2 is 0.2708.

使用を予定している原料炭の基準時での全膨張率を測定しておけば、この全膨張率及び算出した劣化速度に基づいて、使用を予定している原料炭について、基準時から所定時間(コークス製造への使用を検討または予定している時期までの時間)が経過したときの全膨張率を算出できる。   If the total expansion coefficient of the coking coal to be used is measured at the reference time, the coking coal to be used is determined based on the total expansion rate and the calculated deterioration rate from the reference time. It is possible to calculate the total expansion rate when the time (time until the time when the use for coke production is considered or scheduled) is elapsed.

そして、使用を予定している複数種類の原料炭のそれぞれで算出した全膨張率の値に基づき、複数種類の原料炭を使用する優先順位を判断してコークスを製造する。   Then, based on the value of the total expansion coefficient calculated for each of the plurality of types of coking coal to be used, a priority order for using the plurality of types of coking coal is determined to produce coke.

本願発明によれば、使用を予定している原料炭の最大圧力低下速度を求めれば、この原料炭の劣化速度を推定することができ、この劣化速度に基づいて、基準時から所定時間が経過したときの原料炭の全膨張率を推定することができる。したがって、特許文献1のように複雑な計算を行わなくても、使用を予定している原料炭の劣化速度を推定することで、使用を予定している原料炭について、基準時から所定時間が経過したときの全膨張率を推定することができる。   According to the present invention, if the maximum pressure drop rate of the coking coal to be used is obtained, the degradation rate of the coking coal can be estimated, and a predetermined time elapses from the reference time based on the degradation rate. It is possible to estimate the total coefficient of expansion of the raw coal at this time. Therefore, even if complicated calculations are not performed as in Patent Literature 1, by estimating the deterioration rate of the coking coal to be used, the predetermined time from the reference time for the coking coal to be used is estimated. It is possible to estimate the total expansion rate at the lapse of time.

このため、コークスを製造するときに、優先順位を付けて原料炭を使用することができ、劣化が進行しすぎた原料炭が在庫として残ったままとなることを抑制できる。劣化が進行しすぎた原料炭を用いてコークスを製造するときには、コークスの強度(例えば、ドラム強度指数DI)を確保するために、良質な原料炭の使用量が増加してしまう。原料炭の劣化が進行しすぎる前に、コークスを製造すれば、良質な原料炭の使用量を低減することができる。   Therefore, when producing coke, coking coal can be used with priorities, and coking coal that has deteriorated excessively can be prevented from remaining in stock. When coke is manufactured using coking coal that has deteriorated excessively, the amount of high-quality coking coal increases in order to secure coke strength (for example, drum strength index DI). If coke is produced before the degradation of the coking coal excessively, the amount of high-quality coking coal used can be reduced.

原料炭の酸素消費による圧力変化を測定するための圧力測定装置の構成を示す概略図である。It is a schematic diagram showing composition of a pressure measuring device for measuring pressure change by oxygen consumption of coking coal. 3種類の原料炭(A炭〜C炭)について、圧力低下量及び経過時間の関係を示す図である。It is a figure which shows the relationship between the pressure drop amount and elapsed time about three types of raw coals (A coal-C coal). A炭について、劣化割合及び経過月数の関係を示す図である。It is a figure which shows the relationship between deterioration rate and elapsed months about coal A. B炭について、劣化割合及び経過月数の関係を示す図である。It is a figure which shows the relationship of the deterioration ratio and elapsed months about B coal. C炭について、劣化割合及び経過月数の関係を示す図である。It is a figure which shows the relationship of the deterioration rate and elapsed months about C coal. 原料炭について、最大圧力低下速度及び劣化速度の関係を示す図である。It is a figure which shows the relationship between a maximum pressure reduction rate and a degradation rate about coking coal.

本実施形態は、コークス製造の際に使用を予定している原料炭について、基準時から所定時間が経過したときの全膨張率を推定するものである。具体的には、まず、基準時の原料炭の劣化速度Vdを推定する。この原料炭は、コークスの製造に用いられ、一般的には、原料炭をコークス炉に装入して乾留することにより、コークスが得られる。   In this embodiment, the total expansion coefficient of a raw coal which is to be used at the time of coke production when a predetermined time has elapsed from the reference time is estimated. Specifically, first, the deterioration rate Vd of the coking coal at the reference time is estimated. This raw coal is used for the production of coke, and in general, coke is obtained by charging the raw coal into a coke oven and carbonizing.

上述した劣化速度Vdは、単位時間あたりにおける原料炭の劣化割合DRの変化量ΔDRである。劣化割合DRは、基準時における原料炭の全膨張率TDrefに対する、基準時からの経過時間tに応じた原料炭の全膨張率TDの割合である。全膨張率TDは、JIS M8801の膨張性試験方法によって測定される値である。 The above-mentioned deterioration speed Vd is a change amount ΔDR of the deterioration ratio DR of the coking coal per unit time. Degradation rate DR is to total expansion coefficient TD ref coking coal at the reference time, the proportion of the total expansion ratio TD t coking coal in accordance with the elapsed time t from the reference time. The total expansion coefficient TD is a value measured by the expansion test method of JIS M8801.

すなわち、劣化割合DRは下記式(1)で表され、劣化速度Vdは下記式(2)で表される。   That is, the deterioration rate DR is expressed by the following equation (1), and the deterioration speed Vd is expressed by the following equation (2).

上記式(1)及び上記式(2)によれば、基準時における原料炭の全膨張率TDrefを測定しておけば、劣化速度Vdを推定することにより、基準時から所定時間tが経過したときの原料炭の全膨張率TDを推定することができる。具体的には、劣化速度Vdを推定することにより、上記式(2)に示す劣化速度Vd及び時間間隔Δt(すなわち、所定時間t)を特定できるため、上記式(2)に基づいて劣化割合DRの変化量ΔDRを算出できる。ここで、基準時の原料炭の劣化割合DR(DR=1)と、基準時から所定時間tが経過したときの原料炭の劣化割合DRとの差を変化量ΔDRとすれば、基準時の原料炭の全膨張率TDrefを測定しておくことにより、上記式(1)に基づいて、基準時から所定時間tが経過したときの原料炭の全膨張率TDを求めることができる。 According to the above formula (1) and the formula (2), if by measuring the total expansion ratio TD ref coking coal at the reference time, by estimating the degradation rate Vd, the predetermined time t from the reference time is elapsed All expansion TD t coking coal upon can be estimated. Specifically, by estimating the deterioration rate Vd, the deterioration rate Vd and the time interval Δt (that is, the predetermined time t) shown in the above equation (2) can be specified, so that the deterioration rate is calculated based on the above equation (2). The change amount ΔDR of DR can be calculated. Here, assuming that the difference between the degradation rate DR of the raw coal at the reference time (DR = 1) and the degradation rate DR of the raw coal at the lapse of the predetermined time t from the reference time is the change amount ΔDR, By measuring the total expansion coefficient TD ref of the raw coal, the total expansion coefficient TD t of the raw coal when a predetermined time t has elapsed from the reference time can be obtained based on the above equation (1).

以下、原料炭の劣化速度Vdを推定する方法について説明する。   Hereinafter, a method of estimating the degradation rate Vd of the raw coal will be described.

劣化速度Vdと、後述する最大圧力低下速度Vpとの間には所定の相関関係があり、この相関関係は、原料炭の種類にかかわらず成り立つことが分かった。このため、劣化速度Vdと最大圧力低下速度Vpとの相関関係を予め求めておき、劣化速度Vdを推定しようとする原料炭について、最大圧力低下速度Vpを求めれば、劣化速度Vdを推定することができる。   There is a predetermined correlation between the deterioration rate Vd and a maximum pressure reduction rate Vp described later, and it has been found that this correlation holds regardless of the type of the raw coal. For this reason, the correlation between the deterioration rate Vd and the maximum pressure reduction rate Vp is obtained in advance, and if the maximum pressure reduction rate Vp is obtained for the raw coal whose deterioration rate Vd is to be estimated, the deterioration rate Vd can be estimated. Can be.

最大圧力低下速度Vpとは、密閉容器内で原料炭が密閉容器内の酸素ガスを消費することに伴って密閉容器内の圧力が低下するときにおいて、この圧力が低下する速度の最大値である。基準時の原料炭及び所定の酸素濃度に調整された酸素含有ガスが封入された密閉容器を所定の雰囲気温度で静置して、密閉容器内の圧力を測定し続ければ、圧力の経時変化を把握することができる。この経時変化に基づいて、最大圧力低下速度Vpを算出することができる。ここで、密閉容器内の初期の圧力は、所定の圧力(例えば、大気圧)とする。   The maximum pressure reduction rate Vp is the maximum value of the rate at which the pressure decreases when the coking coal consumes oxygen gas in the closed vessel in the closed vessel and the pressure in the closed vessel decreases. . If the sealed container filled with the standard coking coal and the oxygen-containing gas adjusted to the predetermined oxygen concentration is allowed to stand still at the predetermined atmospheric temperature, and the pressure inside the closed container is continuously measured, the pressure changes over time. You can figure out. Based on this change with time, the maximum pressure reduction speed Vp can be calculated. Here, the initial pressure in the closed container is a predetermined pressure (for example, atmospheric pressure).

密閉容器内の圧力を測定する方法としては、公知の測定方法を適宜採用することができ、例えば、微生物の酸素消費量を測定する方法であるBOD(Biochemical Oxygen Demand;生物化学的酸素要求量) OxiTop法を利用して圧力測定を行うことができる。   As a method for measuring the pressure in the closed container, a known measuring method can be appropriately adopted, and for example, BOD (Biochemical Oxygen Demand; biochemical oxygen demand) which is a method for measuring the oxygen consumption of microorganisms. Pressure measurement can be performed using the OxiTop method.

以下、最大圧力低下速度Vpを算出する方法について、具体的に説明する。以下に説明する圧力の測定条件は一例である。   Hereinafter, a method of calculating the maximum pressure reduction rate Vp will be specifically described. The pressure measurement conditions described below are examples.

まず、劣化速度Vdを推定しようとする原料炭(所定質量)を、図1に示す圧力測定装置1の容器10に入れる。この原料炭は、基準時の原料炭を用いる。詳細には、原料炭をヤードに入荷したとき(基準時)に、全膨張率を測定するためにサンプリングした原料炭と同じタイミングでサンプリングした原料炭を使用するのが好ましい。   First, raw coal (predetermined mass) whose deterioration rate Vd is to be estimated is put into the container 10 of the pressure measuring device 1 shown in FIG. As the raw coal, the standard raw coal is used. Specifically, it is preferable to use coking coal sampled at the same timing as coking coal sampled in order to measure the total expansion coefficient when coking coal is received in the yard (reference time).

なお、最大圧力低下速度Vpを算出するタイミングが、前記の原料炭をヤードに入荷したときと相違する場合は、最大圧力低下速度Vpを算出するタイミングを基準時として、これに合わせて、原料炭の全膨張率をTDrefとして測定することで、原料炭の全膨張率TDを推定しても良い。 If the timing for calculating the maximum pressure drop rate Vp is different from the timing when the above-described coking coal is received in the yard, the timing for calculating the maximum pressure drop rate Vp is set as a reference time, and the By measuring the total expansion coefficient of the raw coal as TD ref , the total expansion coefficient TD t of the raw coal may be estimated.

また、原料炭は、ヤードに貯留されたままの状態であること、言い換えれば、粒子径分布がほぼ同一であることが好ましい。密閉容器内の圧力の経時変化を把握する上では、原料炭を乾燥させておくことが好ましい。   Further, it is preferable that the raw coal is kept stored in the yard, in other words, the particle size distribution is preferably substantially the same. It is preferable to dry the raw coal in order to grasp the change over time in the pressure in the closed container.

図1において、容器10は、2つの分枝部分11,12を有しており、2つの分枝部分11,12はセプタム13,14によってそれぞれ封止されている。また、容器10は、原料炭を容器10の内部に入れるための投入部15を有する。投入部15には、容器10内の圧力を検出するための圧力記録ヘッド16が取り付けられており、投入部15は、圧力記録ヘッド16によって封止されている。容器10にセプタム13,14及び圧力記録ヘッド16を取り付けることにより、容器10の内部を密閉状態とすることができる。   In FIG. 1, the container 10 has two branch portions 11 and 12, and the two branch portions 11 and 12 are sealed by septa 13 and 14, respectively. Further, the container 10 has a charging section 15 for charging the raw coal into the container 10. A pressure recording head 16 for detecting the pressure in the container 10 is attached to the charging section 15, and the charging section 15 is sealed by the pressure recording head 16. By attaching the septa 13 and 14 and the pressure recording head 16 to the container 10, the inside of the container 10 can be sealed.

次に、原料炭が入れられた容器10内を、非酸化性ガス(例えば、窒素ガス)で満たした状態としておき、後ほど容器10に注入する酸素ガスと同体積分の非酸化性ガスを、セプタム13または14からシリンジ等で吸引する。その後、吸引した非酸化性ガスと同体積分の酸素ガスをセプタム13または14から容器10内にシリンジ等で注入した後、所定の雰囲気温度において、圧力測定装置1を静置する。酸素ガスが充填されたシリンジを用意しておき、シリンジ針をセプタム13(又はセプタム14)に刺すことにより、シリンジから容器10の内部に酸素ガスを注入することができるため、容器10内の酸素濃度は任意に調整できる。本実施形態では、原料炭による密閉容器10中の酸素ガスの消費に伴う圧力低下を測定する。容器10内に注入される酸素ガスは、純酸素ガスであってもよいし、酸素濃度が100%未満の酸素ガスであってもよい。また、酸素ガスを容器10に注入した直後における容器10内の圧力は、所定の圧力(例えば、大気圧)とする。   Next, the interior of the container 10 containing the raw coal is filled with a non-oxidizing gas (for example, nitrogen gas), and the same volume of the non-oxidizing gas as the oxygen gas to be injected into the container 10 is supplied to the septum later. Aspirate from 13 or 14 with a syringe or the like. After that, an oxygen gas of the same volume as the sucked non-oxidizing gas is injected into the container 10 from the septum 13 or 14 with a syringe or the like, and the pressure measuring device 1 is allowed to stand still at a predetermined ambient temperature. By preparing a syringe filled with oxygen gas and piercing a syringe needle into the septum 13 (or septum 14), oxygen gas can be injected into the container 10 from the syringe. The concentration can be adjusted arbitrarily. In the present embodiment, a pressure drop due to consumption of oxygen gas in the closed container 10 by the raw coal is measured. The oxygen gas injected into the container 10 may be a pure oxygen gas or an oxygen gas having an oxygen concentration of less than 100%. The pressure in the container 10 immediately after injecting the oxygen gas into the container 10 is a predetermined pressure (for example, the atmospheric pressure).

圧力測定装置1を所定の雰囲気温度で静置する理由は、原料炭が貯留されたヤードの環境を模擬するためである。このため、所定の雰囲気温度は、ヤードの環境温度を考慮して適宜決められる。例えば、原料炭の所定の貯留期間内におけるヤードの環境温度の平均値を所定の雰囲気温度とすることができる。また、ヤードの環境温度が季節に応じて変化することを考慮したときには、季節に応じて複数の貯留期間を設定し、各貯留期間における環境温度の平均値を所定の雰囲気温度とすることができる。この場合には、複数の雰囲気温度が設定されることになるが、劣化速度Vdを推定しようとする原料炭が実際に貯留される期間を考慮して1つの雰囲気温度を決めればよい。   The reason why the pressure measuring device 1 is allowed to stand still at a predetermined atmospheric temperature is to simulate the environment of the yard where the raw coal is stored. For this reason, the predetermined ambient temperature is appropriately determined in consideration of the environmental temperature of the yard. For example, the average value of the environmental temperature of the yard within a predetermined storage period of coking coal can be set as a predetermined atmospheric temperature. Further, when considering that the environmental temperature of the yard changes according to the season, a plurality of storage periods can be set according to the season, and the average value of the environmental temperature in each storage period can be set to a predetermined atmospheric temperature. . In this case, a plurality of atmosphere temperatures are set, but one atmosphere temperature may be determined in consideration of the period in which the raw coal for which the degradation rate Vd is to be estimated is actually stored.

所定の雰囲気温度において圧力測定装置1を静置すると、原料炭による密閉容器10中の酸素ガスの消費(すなわち、原料炭の酸化)によって、密閉された容器10内の圧力が低下する。圧力記録ヘッド16は、容器10内の圧力を測定できるため、この測定結果に基づいて、容器10内の圧力低下量ΔPを求めることができる。圧力低下量ΔPは、容器10内の酸素ガスが消費されていないときの圧力を基準としており、この基準圧力と、任意の時間が経過したときの容器10内の圧力との差で表される。具体的には、圧力低下量ΔPは、酸素ガスを容器10に注入して任意の時間が経過したときの容器10内の圧力[hPa]から、酸素ガスを容器10に注入した直後の圧力[hPa]を減算した値である。原料炭によって密閉容器10中の酸素ガスが消費されると、圧力低下量ΔPは負の値となる。   When the pressure measuring device 1 is allowed to stand still at a predetermined atmospheric temperature, the pressure in the sealed container 10 decreases due to consumption of oxygen gas in the closed container 10 by the raw coal (that is, oxidation of the raw coal). Since the pressure recording head 16 can measure the pressure in the container 10, the pressure drop amount ΔP in the container 10 can be obtained based on the measurement result. The pressure drop amount ΔP is based on the pressure when the oxygen gas in the container 10 is not consumed, and is represented by a difference between this reference pressure and the pressure in the container 10 when an arbitrary time has elapsed. . Specifically, the pressure drop amount ΔP is calculated from the pressure [hPa] in the container 10 when an arbitrary time has elapsed after the oxygen gas was injected into the container 10, from the pressure [hPa] immediately after the oxygen gas was injected into the container 10 [ hPa]. When the oxygen gas in the closed container 10 is consumed by the raw coal, the pressure decrease amount ΔP becomes a negative value.

容器10内に酸素ガスを注入してからの経過時間t毎に圧力低下量ΔPを求めることにより、経過時間tに対する圧力低下量ΔPの推移曲線が得られる。この推移曲線に基づいて、最大圧力低下速度Vpを算出することができる。具体的には、推移曲線における複数の接線の傾きのうち、最も大きい傾きが最大圧力低下速度Vpとなる。   The transition curve of the pressure drop ΔP with respect to the elapsed time t is obtained by obtaining the pressure drop ΔP for each elapsed time t from the injection of the oxygen gas into the container 10. Based on this transition curve, the maximum pressure reduction speed Vp can be calculated. Specifically, the largest slope among the slopes of the plurality of tangents in the transition curve is the maximum pressure drop rate Vp.

同一温度条件下では、容器10内に酸素ガスを注入した直後において、原料炭による酸素ガスの消費が最大となり、圧力低下量ΔPが最も大きくなる。したがって、圧力低下量ΔP及び経過時間tの座標系において、原点における推移曲線の接線の傾きΔP/Δtが最大圧力低下速度Vpとなる。ここでいう原点とは、圧力低下量ΔPが0[hPa]であるとともに、経過時間tが0[hr]である。   Under the same temperature condition, immediately after the oxygen gas is injected into the container 10, the consumption of the oxygen gas by the raw coal becomes the maximum and the pressure drop ΔP becomes the maximum. Therefore, in the coordinate system of the pressure drop amount ΔP and the elapsed time t, the slope ΔP / Δt of the tangent to the transition curve at the origin is the maximum pressure drop rate Vp. The origin here means that the pressure drop amount ΔP is 0 [hPa] and the elapsed time t is 0 [hr].

次に、劣化速度Vdと最大圧力低下速度Vpとの相関関係について説明する。   Next, the correlation between the deterioration speed Vd and the maximum pressure reduction speed Vp will be described.

劣化速度Vdと最大圧力低下速度Vpとの相関関係は、下記式(3)によって表される。   The correlation between the deterioration speed Vd and the maximum pressure reduction speed Vp is represented by the following equation (3).

上記式(3)において、k1,k2は係数である。後述する実施例の条件では、係数k1は−0.1277であり、係数k2は0.2708である。   In the above equation (3), k1 and k2 are coefficients. Under the conditions of the embodiment described later, the coefficient k1 is -0.1277, and the coefficient k2 is 0.2708.

劣化速度Vdと最大圧力低下速度Vpとの相関関係は、複数種類の原料炭を用いて予め求めておくことができる。ここで、複数種類の原料炭については、粒子径分布を揃えておくことが好ましい。例えば、各原料炭の粒子径が3mm以下である粒子の累積比率を70〜80%の範囲内に設定することができる。   The correlation between the deterioration rate Vd and the maximum pressure drop rate Vp can be obtained in advance using a plurality of types of raw coal. Here, it is preferable that a plurality of types of raw coal have a uniform particle size distribution. For example, the cumulative ratio of particles having a particle diameter of 3 mm or less for each raw coal can be set within a range of 70 to 80%.

劣化速度Vdと最大圧力低下速度Vpとの相関関係を求めるときには、複数種類の原料炭のそれぞれについて、上述した圧力低下量ΔPの測定に基づいて最大圧力低下速度Vpを求める。   When obtaining the correlation between the deterioration rate Vd and the maximum pressure drop rate Vp, the maximum pressure drop rate Vp is obtained for each of the plural types of coking coal based on the measurement of the above-described pressure drop amount ΔP.

また、複数種類の原料炭のそれぞれについて、基準時の全膨張率TDrefを測定するとともに、基準時からの経過時間t毎に全膨張率TDを測定して劣化割合DRを求めることにより、劣化割合DRの経時変化を把握する。ここで、原料炭の種類にかかわらず、経過時間tの増加に応じて劣化割合DRが低下し、劣化割合DR及び経過時間tの関係は一次関数(負の相関)で表される。上述したように、劣化速度Vdは、単位時間あたりの劣化割合DRの変化量であるため、一次関数の傾きが劣化速度Vdとなる。一次関数は負の相関を有するため、一次関数の傾きは負の値になるが、本実施形態では、劣化速度Vdを一次関数の傾きの絶対値とする。 In addition, for each of a plurality of types of coking coal, by measuring the total expansion coefficient TD ref at the reference time and measuring the total expansion coefficient TD t for each elapsed time t from the reference time to determine the deterioration rate DR, The change with time of the deterioration ratio DR is grasped. Here, regardless of the type of raw coal, the deterioration rate DR decreases as the elapsed time t increases, and the relationship between the deterioration rate DR and the elapsed time t is represented by a linear function (negative correlation). As described above, since the deterioration speed Vd is the amount of change in the deterioration ratio DR per unit time, the slope of the linear function becomes the deterioration speed Vd. Since the linear function has a negative correlation, the slope of the linear function has a negative value. However, in the present embodiment, the deterioration rate Vd is the absolute value of the slope of the linear function.

最大圧力低下速度Vp及び劣化速度Vdの座標系において、各原料炭の最大圧力低下速度Vp及び劣化速度Vdの関係をプロットして回帰曲線を求めれば、この回帰曲線が上記式(3)によって表される。ここで、最大圧力低下速度Vpが0であるとき、劣化速度Vdが0となるため、回帰曲線は、最大圧力低下速度Vp及び劣化速度Vdの座標系の原点を通過する曲線となる。   In the coordinate system of the maximum pressure drop rate Vp and the degradation rate Vd, if the relationship between the maximum pressure drop rate Vp and the degradation rate Vd of each raw coal is plotted to obtain a regression curve, the regression curve is expressed by the above equation (3). Is done. Here, when the maximum pressure drop rate Vp is 0, the deterioration rate Vd becomes 0, so that the regression curve is a curve passing through the origin of the coordinate system of the maximum pressure drop rate Vp and the deterioration rate Vd.

次に、基準時から所定時間tが経過したときの原料炭の全膨張率TDを推定する方法について説明する。 Next, a method for estimating describing all expansion TD t coking coal when a predetermined time t from the reference time has elapsed.

上述したように原料炭の最大圧力低下速度Vpを求めれば、劣化速度Vdを推定することができる。上記式(1)及び上記式(2)によれば、劣化速度Vdを推定し、基準時の全膨張率TDrefを測定しておけば、基準時から所定時間tが経過したときの原料炭の全膨張率TDを算出することができる。 As described above, if the maximum pressure reduction speed Vp of the raw coal is obtained, the deterioration speed Vd can be estimated. According to the above formulas (1) and (2), if the deterioration rate Vd is estimated and the total expansion rate TD ref at the reference time is measured, the raw coal obtained when a predetermined time t has elapsed from the reference time is obtained. it is possible to calculate the total expansion rate TD t of.

本実施形態によれば、基準時の原料炭の最大圧力低下速度Vpを求めれば、劣化速度Vdと最大圧力低下速度Vpとの相関関係に基づいて、劣化速度Vdを推定することができる。したがって、特許文献1のように複雑な計算を行わなくても、原料炭の劣化速度Vdを推定することができる。   According to the present embodiment, if the maximum pressure reduction speed Vp of the coking coal at the reference time is obtained, the deterioration speed Vd can be estimated based on the correlation between the deterioration speed Vd and the maximum pressure reduction speed Vp. Therefore, the degradation rate Vd of the raw coal can be estimated without performing complicated calculations as in Patent Document 1.

さらに、基準時の原料炭の全膨張率TDrefを測定しておくことで、推定した原料炭の劣化速度Vdに基づいて、基準時から所定時間tが経過したときの原料炭の全膨張率TDを推定することができる。これにより、特許文献1のように複雑な計算を行わなくても、ヤードに貯留されている原料炭について、将来の全膨張率TDを推定することができる。 Furthermore, by measuring the total expansion coefficient TD ref of the coking coal at the reference time, the total expansion coefficient of the coking coal at the time when the predetermined time t has elapsed from the reference time is determined based on the estimated degradation rate Vd of the coking coal. it is possible to estimate the TD t. Thus, even without complicated calculations as in Patent Document 1, the original coal is stored in the yard, it is possible to estimate the future total expansion TD t.

また、ヤードに貯留される複数種類の原料炭のそれぞれについて、全膨張率TDを推定することにより、コークスを製造するときに、全膨張率TDの低い原料炭を優先的に使用することができる。このように、複数種類の原料炭のそれぞれで推定した全膨張率TDに基づいて、複数種類の原料炭の使用順序に優先順位を付けることにより、劣化が進行した原料炭(言い換えれば、全膨張率TDが低下した原料炭)が在庫として残ったままとなることを抑制できる。劣化が進行した原料炭を用いてコークスを製造するときには、コークスの強度(例えば、ドラム強度指数DI)を確保するために、良質な原料炭の使用量が増加してしまう。しかし、原料炭の劣化が進行しすぎる前に、コークスを製造すれば、良質な原料炭の使用量を低減することができる。 In addition, by estimating the total expansion coefficient TD t for each of a plurality of types of coking coal stored in the yard, it is possible to preferentially use coking coal having a low total expansion coefficient TD t when producing coke. Can be. In this way, by prioritizing the order of use of a plurality of types of coking coal based on the total expansion coefficient TD t estimated for each of the plurality of types of coking coal, the coking coal having undergone deterioration (in other words, all It is possible to prevent the raw coal whose expansion coefficient TD has decreased) from remaining as inventory. When coke is manufactured using degraded coking coal, the amount of high-quality coking coal used increases in order to secure coke strength (for example, drum strength index DI). However, if coke is produced before the degradation of the raw coal is excessively advanced, the amount of high-quality raw coal used can be reduced.

下記表1に示す3種類の原料炭(A炭〜C炭)を用意し、劣化速度Vdと最大圧力低下速度Vpとの相関関係を求めた。原料炭(A炭〜C炭)としては、ヤードに入荷したときの原料炭を用いた。   Three types of raw coal (charcoal A to coal C) shown in Table 1 below were prepared, and the correlation between the degradation rate Vd and the maximum pressure reduction rate Vp was determined. As the raw coal (char A to coal C), the raw coal at the time of arrival in the yard was used.

上記表1において、水分(IM)、灰分(Ash)及び揮発分(VM)は、JIS M8812に規定されている工業分析法によって測定した。炭素(C)、水素(H)、硫黄(S)及び窒素(N)の質量%は、JIS M8819に規定されている元素分析法によって測定した。酸素(O)の質量%は、炭素(C)、水素(H)、硫黄(S)及び窒素(N)の質量%の合計値を、100質量%から差し引いた残分とした。全膨張率TDは、JIS M8801の膨張性試験方法によって測定した。   In Table 1 above, the moisture (IM), ash (Ash), and volatile (VM) were measured by an industrial analysis method specified in JIS M8812. The mass% of carbon (C), hydrogen (H), sulfur (S) and nitrogen (N) was measured by an elemental analysis method specified in JIS M8819. The mass% of oxygen (O) was a residue obtained by subtracting the total value of mass% of carbon (C), hydrogen (H), sulfur (S) and nitrogen (N) from 100 mass%. The total expansion coefficient TD was measured according to the swellability test method of JIS M8801.

以下に説明する処理によって、乾燥した試料(A炭〜C炭)を準備した。試料の準備は、乾燥した窒素ガス(濃度100体積%)が流通するグローブボックス内で行った。   Dried samples (charcoal A to charcoal C) were prepared by the processing described below. The sample was prepared in a glove box through which dried nitrogen gas (concentration: 100% by volume) flows.

まず、試料(A炭〜C炭)が入れられた磁性坩堝(外径39mm、高さ29mm、内容積15mL)を電気炉に設置した後、電気炉内の雰囲気温度を130℃まで上昇させることにより、試料を乾燥させた。この乾燥作業では、試料の乾燥むらが発生しないように磁性坩堝内で試料を撹拌した。乾燥作業は、試料の温度が100℃以上の温度に維持され、水分の蒸発に伴う試料の質量変化が収束するまで行った。試料を乾燥させておくことにより、後述する圧力低下量ΔPを求めるときに、試料に含まれる水分の違いによる圧力低下量ΔPのばらつきの影響を抑制することができる。   First, after installing a magnetic crucible (outer diameter 39 mm, height 29 mm, inner volume 15 mL) containing a sample (charcoal A to charcoal) in an electric furnace, the ambient temperature in the electric furnace is raised to 130 ° C. The sample was dried. In this drying operation, the sample was stirred in the magnetic crucible so that uneven drying of the sample did not occur. The drying operation was performed until the temperature of the sample was maintained at 100 ° C. or higher, and the change in mass of the sample due to the evaporation of water converged. By drying the sample, it is possible to suppress the influence of the variation in the pressure drop ΔP due to the difference in moisture contained in the sample when obtaining the pressure drop ΔP described later.

乾燥作業が終了した後、10.0gの試料を図1に示す圧力測定装置1の容器10内に入れた。容器10はガラス製であり、容器10の内容積は320mLである。グローブボックス内では窒素ガスが流通しているため、容器10の内部は窒素ガスで満たされる。   After the drying operation was completed, 10.0 g of the sample was placed in the container 10 of the pressure measuring device 1 shown in FIG. The container 10 is made of glass, and the inner volume of the container 10 is 320 mL. Since nitrogen gas flows in the glove box, the inside of the container 10 is filled with nitrogen gas.

試料が入れられた圧力測定装置1をグローブボックスから取り出し、シリンジを用いて、酸素ガスを容器10内に注入した。酸素ガスの注入作業は、以下の手順により行った。   The pressure measuring device 1 containing the sample was taken out of the glove box, and oxygen gas was injected into the container 10 using a syringe. The operation of injecting oxygen gas was performed according to the following procedure.

まず、セプタム13にマノメーターを刺すとともに、セプタム14にシリンジ針を刺した。マノメーターによって検出される容器10内の圧力値を監視しながら、シリンジを用いて、容器10から20体積%の窒素ガスを吸引した。次に、窒素ガスを吸引したシリンジを取り外した後、酸素ガスが充填されたシリンジのシリンジ針をセプタム14に刺すことにより、20体積%の酸素ガスを容器10内に注入した。ここでは、大気中の酸素濃度を模擬した条件として、20体積%の窒素ガスを20体積%酸素ガスで置換した。   First, a septum 13 was stabbed with a manometer, and a septum 14 was stabbed with a syringe needle. While monitoring the pressure value in the container 10 detected by the manometer, 20% by volume of nitrogen gas was sucked from the container 10 using a syringe. Next, after removing the syringe that sucked the nitrogen gas, the syringe needle of the syringe filled with oxygen gas was pierced into the septum 14 to inject 20% by volume of oxygen gas into the container 10. Here, as a condition simulating the oxygen concentration in the atmosphere, 20% by volume of nitrogen gas was replaced by 20% by volume of oxygen gas.

また、容器10内に20体積%の酸素ガスを注入した直後のタイミングを、圧力測定を開始するタイミングとした。容器10内に酸素ガスを注入した直後、雰囲気温度が40℃に設定された送風型恒温器内に圧力測定装置1を静置した。本実施例では、原料炭が貯留されているヤードの環境温度の平均値に近い条件となる様に、送風型恒温器内の雰囲気温度を40℃に設定した。また、容器10内に酸素ガスを注入した直後から、圧力記録ヘッド16を用いて容器10内の圧力を測定し続けた。   The timing immediately after the injection of 20% by volume of oxygen gas into the container 10 was defined as the timing for starting the pressure measurement. Immediately after the oxygen gas was injected into the container 10, the pressure measuring device 1 was allowed to stand still in a blower-type constant temperature oven in which the ambient temperature was set at 40 ° C. In the present embodiment, the ambient temperature in the blower-type constant temperature oven was set to 40 ° C. so as to be close to the average value of the environmental temperature of the yard where the raw coal was stored. Immediately after the oxygen gas was injected into the container 10, the pressure in the container 10 was continuously measured using the pressure recording head 16.

図2は、各試料(A炭〜C炭)における圧力測定の結果を示す。図2では、経過時間[hr]及び圧力低下量ΔP[hPa]の関係を示す。上述したように圧力低下量ΔPは負の値となる。図2から分かるように、すべての試料について、圧力測定を開始した直後から、試料による酸素ガスの消費によって、容器10内の圧力が低下しつづけた。圧力低下の推移(圧力低下曲線L11〜L13)は、試料(A炭〜C炭)に応じて異なった。   FIG. 2 shows the results of pressure measurement on each sample (charcoal A to coal C). FIG. 2 shows the relationship between the elapsed time [hr] and the pressure drop amount ΔP [hPa]. As described above, the pressure decrease amount ΔP has a negative value. As can be seen from FIG. 2, for all the samples, the pressure in the container 10 continued to decrease due to consumption of oxygen gas by the samples immediately after the pressure measurement was started. The transition of the pressure drop (pressure drop curves L11 to L13) was different depending on the sample (charcoal A to charcoal C).

各試料の圧力低下曲線L11〜L13に基づいて、最大圧力低下速度Vpを算出した。図2から分かるように、圧力測定を開始した直後において、最も圧力が低下したため、図2の原点における各圧力低下曲線L11〜L13の接線の傾きが、最大圧力低下速度Vpとなる。図2の原点では、経過時間tが0[hr]であり、圧力低下量ΔPが0である。A炭の最大圧力低下速度Vpは0.5577[hPa/hr]であり、B炭の最大圧力低下速度Vpは0.4623[hPa/hr]であり、C炭の最大圧力低下速度Vpは1.1143[hPa/hr]であった。   The maximum pressure drop rate Vp was calculated based on the pressure drop curves L11 to L13 of each sample. As can be seen from FIG. 2, immediately after the start of the pressure measurement, the pressure has dropped the most, so the slope of the tangent of each of the pressure drop curves L11 to L13 at the origin in FIG. 2 is the maximum pressure drop rate Vp. At the origin of FIG. 2, the elapsed time t is 0 [hr], and the pressure drop ΔP is 0. The maximum pressure drop rate Vp of coal A is 0.5577 [hPa / hr], the maximum pressure drop rate Vp of coal B is 0.4623 [hPa / hr], and the maximum pressure drop rate Vp of coal C is 1 .1143 [hPa / hr].

一方、原料炭(A炭〜C炭)をヤードに入荷したときからの経過月数毎に、各原料炭(A炭〜C炭)の全膨張率TDを測定した。本実施例では、上述した基準時として、原料炭をヤードに入荷したときとした。そして、各原料炭について、原料炭の劣化割合DR及び経過月数の関係を調べた。図3は、A炭における劣化割合DR及び経過月数の関係を示す。図4は、B炭における劣化割合DR及び経過月数の関係を示す。図5は、C炭における劣化割合DR及び経過月数の関係を示す。   On the other hand, the total expansion coefficient TD of each coking coal (coal A to C) was measured every months after the coking coal (coal A to C) was received in the yard. In this embodiment, the above-described reference time is when the raw coal is received in the yard. Then, for each coking coal, the relationship between the degradation rate DR of the coking coal and the number of elapsed months was examined. FIG. 3 shows the relationship between the deterioration ratio DR and the number of elapsed months in the coal A. FIG. 4 shows the relationship between the deterioration ratio DR and the number of elapsed months in coal B. FIG. 5 shows the relationship between the deterioration ratio DR and the number of elapsed months in the C coal.

図3〜図5から分かるように、すべての原料炭(A炭〜C炭)について、劣化割合DRが直線的に変化している。図3に示すように、回帰直線L21を求めれば、この回帰直線L21の傾き(絶対値)がA炭の劣化速度Vdとなる。本実施例では、A炭の劣化速度Vdが0.1159[−/月]であった。なお、図3では、相関係数Rが0.9531であった。 As can be seen from FIGS. 3 to 5, the deterioration ratio DR changes linearly for all the raw coals (coal A to coal C). As shown in FIG. 3, when the regression line L21 is obtained, the slope (absolute value) of the regression line L21 becomes the deterioration speed Vd of the coal A. In this embodiment, the deterioration rate Vd of the coal A was 0.1159 [-/ month]. In FIG. 3, the correlation coefficient R 2 was 0.9531.

図4に示すように、回帰直線L22を求めれば、この回帰直線L22の傾き(絶対値)がB炭の劣化速度Vdとなる。本実施例では、B炭の劣化速度Vdが0.0931[−/月]であった。図5に示すように、回帰直線L23を求めれば、この回帰直線L23の傾き(絶対値)がC炭の劣化速度Vdとなる。本実施例では、C炭の劣化速度Vdが0.1428[−/月]であった。なお、図4では、相関係数Rが0.9918であり、図5では、相関係数Rが0.9815であった。 As shown in FIG. 4, when the regression line L22 is obtained, the slope (absolute value) of the regression line L22 becomes the degradation speed Vd of the coal B. In the present embodiment, the deterioration rate Vd of the coal B was 0.0931 [-/ month]. As shown in FIG. 5, when the regression line L23 is obtained, the slope (absolute value) of the regression line L23 becomes the deterioration speed Vd of the C coal. In the present embodiment, the deterioration rate Vd of the C coal was 0.1428 [-/ month]. In FIG. 4, the correlation coefficient R 2 is 0.9918, in FIG. 5, the correlation coefficient R 2 was 0.9815.

上述したように、各原料炭(A炭〜C炭)について、最大圧力低下速度Vp及び劣化速度Vdを求めることにより、原料炭毎に、最大圧力低下速度Vp及び劣化速度Vdの関係が一義的に定まる。図6は、原料炭(A炭〜C炭)について、最大圧力低下速度Vp及び劣化速度Vdの関係を示す。ここで、最大圧力低下速度Vpが0であるとき、劣化速度Vdが0となる。この点と、各原料炭における最大圧力低下速度Vp及び劣化速度Vdの関係を考慮して、回帰曲線L3を求めた。このときの相関係数Rは0.9646であった。 As described above, the relation between the maximum pressure reduction rate Vp and the deterioration rate Vd is uniquely determined for each raw coal by obtaining the maximum pressure reduction rate Vp and the deterioration rate Vd for each of the raw coals (coal A to coal C). Is determined. FIG. 6 shows the relationship between the maximum pressure reduction rate Vp and the deterioration rate Vd for the raw coal (coal A to coal C). Here, when the maximum pressure reduction speed Vp is 0, the deterioration speed Vd becomes 0. The regression curve L3 was determined in consideration of this point and the relationship between the maximum pressure reduction rate Vp and the degradation rate Vd of each raw coal. The correlation coefficient R 2 at this time was 0.9646.

本実施例において、回帰曲線L3は、下記式(4)で表される。   In this embodiment, the regression curve L3 is represented by the following equation (4).

図6によれば、すべての原料炭(A炭〜C炭)について、最大圧力低下速度Vp及び劣化速度Vdの関係が回帰曲線L3上に位置しており、最大圧力低下速度Vpと劣化速度Vdとの間に相関関係があることが確認された。   According to FIG. 6, the relationship between the maximum pressure reduction rate Vp and the deterioration rate Vd is located on the regression curve L3 for all the coking coals (coal A to C), and the maximum pressure reduction rate Vp and the deterioration rate Vd. Has been confirmed to have a correlation.

したがって、回帰曲線L3(上記式(4))を予め求めておき、ヤードに入荷したときの原料炭の最大圧力低下速度Vpを測定すれば、この原料炭の劣化速度Vdを推定することができる。そして、ヤードに入荷したときの原料炭の全膨張率TDrefを測定しておけば、上述したように劣化速度Vdを推定することにより、入荷時からの経過時間tに応じた原料炭の全膨張率TDを推定することができる。 Therefore, if the regression curve L3 (formula (4) above) is obtained in advance, and the maximum pressure reduction rate Vp of the coking coal at the time of arrival in the yard is measured, the deterioration rate Vd of this coking coal can be estimated. . If the total expansion coefficient TD ref of the coking coal at the time of arrival at the yard is measured, the deterioration rate Vd is estimated as described above, and the total coking rate of the coking coal according to the elapsed time t from the arrival is calculated. it is possible to estimate the expansion rate TD t.

1:圧力測定装置、10:容器、11,12:分枝部分、13,14:セプタム、
15:投入部、16:圧力記録ヘッド
1: pressure measuring device, 10: container, 11 and 12: branch part, 13 and 14: septum,
15: input section, 16: pressure recording head

Claims (4)

コークスの製造に用いられる原料炭の劣化を推定する方法であって、
基準時の原料炭及び所定の酸素濃度の酸素含有ガスが封入された密閉容器を所定の雰囲気温度で静置して、前記密閉容器内の圧力を測定することにより、初期圧力に対する圧力低下量の経時変化を求め、
前記圧力低下量の経時変化に基づいて、単位時間あたりの前記圧力低下量の変化量が最大となる最大圧力低下速度を算出し、
前記基準時における原料炭の全膨張率に対する、前記基準時からの経過時間に応じた原料炭の全膨張率の割合を劣化割合とし、単位時間あたりの前記劣化割合の変化量を劣化速度としたとき、前記最大圧力低下速度と前記劣化速度との相関関係を予め求めておき、この相関関係に基づいて、使用を予定している原料炭の前記最大圧力低下速度に対応する前記劣化速度を算出し、
前記使用を予定している原料炭の前記基準時での全膨張率を測定し、
この全膨張率及び算出した前記劣化速度に基づいて、前記使用を予定している原料炭について、前記基準時から所定時間が経過したときの全膨張率を算出することを特徴とするコークス製造用の原料炭の劣化推定方法。
A method for estimating the degradation of coking coal used in the production of coke,
The sealed container in which the standard coal and the oxygen-containing gas having the predetermined oxygen concentration are sealed is allowed to stand at a predetermined atmospheric temperature, and the pressure in the closed container is measured. Find the change over time,
Based on the change over time of the pressure drop amount, calculate the maximum pressure drop rate at which the change amount of the pressure drop amount per unit time is the maximum,
With respect to the total expansion rate of the coking coal at the reference time, the ratio of the total expansion rate of the coking coal according to the elapsed time from the reference time was defined as the deterioration rate, and the change amount of the deterioration rate per unit time was defined as the deterioration rate. At this time, a correlation between the maximum pressure drop rate and the deterioration rate is obtained in advance, and the deterioration rate corresponding to the maximum pressure drop rate of the raw coal to be used is calculated based on the correlation. And
Measure the total expansion coefficient of the coking coal scheduled for use at the reference time,
For the coke production, based on the total expansion coefficient and the calculated deterioration rate, for the coking coal to be used, calculating a total expansion coefficient when a predetermined time has elapsed from the reference time. Method for estimating deterioration of coking coal.
前記相関関係は、下記式(I)で表される、
ここで、Vdは劣化速度、Vpは最大圧力低下速度、k1及びk2は係数である、
ことを特徴とする請求項1に記載のコークス製造用の原料炭の劣化推定方法。
The correlation is represented by the following formula (I):
Here, Vd is a deterioration rate, Vp is a maximum pressure drop rate, and k1 and k2 are coefficients.
The method for estimating deterioration of coking coal for coke production according to claim 1, characterized in that:
前記基準時は、前記原料炭をヤードに入荷したときであり、
前記係数k1が−0.1277であり、前記係数k2が0.2708であることを特徴とする請求項2に記載のコークス製造用の原料炭の劣化推定方法。
The reference time is when the coking coal is received in the yard,
The method according to claim 2, wherein the coefficient k1 is -0.1277, and the coefficient k2 is 0.2708.
請求項1〜3のいずれかに記載の劣化推定方法に基づいて、前記使用を予定している複数種類の原料炭のそれぞれについて、前記基準時から所定時間が経過したときの全膨張率を算出し、
算出した全膨張率の値に基づき、前記複数種類の原料炭を使用する優先順位を判断してコークスを製造することを特徴とするコークス製造方法。
Based on the deterioration estimation method according to any one of claims 1 to 3, for each of the plurality of types of coking coal to be used, calculate a total expansion coefficient when a predetermined time has elapsed from the reference time. And
A method for producing coke, comprising determining a priority of using the plurality of types of coking coal based on the calculated value of the total expansion coefficient to produce coke.
JP2018134434A 2018-07-17 2018-07-17 Deterioration estimation method of coking coal for coke production and coke production method Active JP7091902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018134434A JP7091902B2 (en) 2018-07-17 2018-07-17 Deterioration estimation method of coking coal for coke production and coke production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018134434A JP7091902B2 (en) 2018-07-17 2018-07-17 Deterioration estimation method of coking coal for coke production and coke production method

Publications (2)

Publication Number Publication Date
JP2020012706A true JP2020012706A (en) 2020-01-23
JP7091902B2 JP7091902B2 (en) 2022-06-28

Family

ID=69170898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018134434A Active JP7091902B2 (en) 2018-07-17 2018-07-17 Deterioration estimation method of coking coal for coke production and coke production method

Country Status (1)

Country Link
JP (1) JP7091902B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112525685A (en) * 2020-11-23 2021-03-19 西安科技大学 Coal face propulsion speed optimization method based on coal rock stress loading experiment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142981A (en) * 1982-02-19 1983-08-25 Sumitomo Metal Ind Ltd Control of coal stored in yard
JPS59120691A (en) * 1982-12-27 1984-07-12 Sumikin Coke Co Ltd Assessment of degradation of noncaking coal
JPH10232227A (en) * 1997-02-20 1998-09-02 Kawasaki Steel Corp Method for estimating expansibility of coal blend
JP2002062236A (en) * 2000-08-22 2002-02-28 Toyo Seikan Kaisha Ltd Measuring method and device for gas absorbing performance
KR20110087987A (en) * 2010-01-28 2011-08-03 현대제철 주식회사 Free-swelling index measuring apparatus
JP2012219235A (en) * 2011-04-13 2012-11-12 Nippon Steel Corp Method of estimating strength of formed coke
JP2018044185A (en) * 2016-09-12 2018-03-22 新日鐵住金株式会社 Evaluation method of anthracite coal for sintering and manufacturing method of sintered ore

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142981A (en) * 1982-02-19 1983-08-25 Sumitomo Metal Ind Ltd Control of coal stored in yard
JPS59120691A (en) * 1982-12-27 1984-07-12 Sumikin Coke Co Ltd Assessment of degradation of noncaking coal
JPH10232227A (en) * 1997-02-20 1998-09-02 Kawasaki Steel Corp Method for estimating expansibility of coal blend
JP2002062236A (en) * 2000-08-22 2002-02-28 Toyo Seikan Kaisha Ltd Measuring method and device for gas absorbing performance
KR20110087987A (en) * 2010-01-28 2011-08-03 현대제철 주식회사 Free-swelling index measuring apparatus
JP2012219235A (en) * 2011-04-13 2012-11-12 Nippon Steel Corp Method of estimating strength of formed coke
JP2018044185A (en) * 2016-09-12 2018-03-22 新日鐵住金株式会社 Evaluation method of anthracite coal for sintering and manufacturing method of sintered ore

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112525685A (en) * 2020-11-23 2021-03-19 西安科技大学 Coal face propulsion speed optimization method based on coal rock stress loading experiment
CN112525685B (en) * 2020-11-23 2023-06-09 西安科技大学 Coal face propulsion speed optimization method based on coal rock stress loading experiment

Also Published As

Publication number Publication date
JP7091902B2 (en) 2022-06-28

Similar Documents

Publication Publication Date Title
US9102892B2 (en) Method for preparing coal for coke making
RU2570875C1 (en) Coke production process
CA2962032C (en) Method for evaluating thermal plasticity of coals and caking additives, and method for producing coke
JP7091902B2 (en) Deterioration estimation method of coking coal for coke production and coke production method
Nomura et al. Effect of coke contraction on mean coke size
US9845439B2 (en) Method for blending coals for cokemaking and method for producing coke
Nyathi et al. Nature and origin of coke quality variation in heat-recovery coke making technology
JP2020520248A5 (en)
Merzlikin et al. Ultra high vacuum high precision low background setup with temperature control for thermal desorption mass spectroscopy (TDA-MS) of hydrogen in metals
JP6680163B2 (en) Coke particle size estimation method
CN104678075B (en) The Forecasting Methodology of coal-blending coking coke scuff resistance
JPH03273091A (en) Method for forecasting shrinkage of blended coal for coke
JP5775280B2 (en) Carbon adhesion amount evaluation apparatus and carbon adhesion amount evaluation method
Bone et al. CV.—The slow oxidation of methane at low temperatures. Part II
CN105842272B (en) A kind of coking coal coal quality critical-temperature test method
Gregory et al. An improved apparatus for the determination of gaseous elements in metals by vacuum fusion on a micro scale
CN103207128A (en) Determination method for ablation residue ratio of heat-insulating material
JPH06201681A (en) Method for estimating calorific value and volume of coal gas
JPH048797A (en) Estimation of time for carbonization only in coke oven
Zublev et al. Determining the air excess in the heating of coke furnaces. 2. Sampling and analysis
JP4050989B2 (en) Coke oven gas generation amount and heat amount prediction method, information processing method, and information processing apparatus
JP2020012762A (en) Estimation method of vitrinite reflectance ro
Lü et al. Digital characterization and mathematic model of sodium penetration into cathode material for aluminum electrolysis
JP2002173683A (en) Method for estimating thickness of carbon deposited on inner wall of ascension pipe of coke oven and method for operating coke oven
JPS61223640A (en) Method for predicting oxidation and heat generation of coal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220530

R151 Written notification of patent or utility model registration

Ref document number: 7091902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151