JP2020008202A - Vapor chamber and electronic apparatus - Google Patents
Vapor chamber and electronic apparatus Download PDFInfo
- Publication number
- JP2020008202A JP2020008202A JP2018128246A JP2018128246A JP2020008202A JP 2020008202 A JP2020008202 A JP 2020008202A JP 2018128246 A JP2018128246 A JP 2018128246A JP 2018128246 A JP2018128246 A JP 2018128246A JP 2020008202 A JP2020008202 A JP 2020008202A
- Authority
- JP
- Japan
- Prior art keywords
- flow path
- sheet
- vapor chamber
- vapor
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
本発明は、密閉空間に封入された作動流体が相変化を伴って自励振動しつつ熱輸送を行うベーパーチャンバーに関する。 The present invention relates to a vapor chamber in which a working fluid sealed in a closed space performs heat transfer while self-excitedly vibrating with a phase change.
パソコン並びに携帯電話及びタブレット端末等の携帯型端末に代表される電子機器には、CPU(中央演算処理装置)等の電子部品が用いられている。このような電子部品からの発熱量は、情報処理能力の向上により増加する傾向にあるため、これを冷却する技術が重要となっている。
冷却のための手段としてヒートパイプがよく知られている。これはパイプ内に封入された作動流体により、その相変化を利用して熱源における熱を他の部位に輸送することで拡散させ、熱源を冷却するものである。
2. Description of the Related Art Electronic components such as personal computers and mobile terminals such as mobile phones and tablet terminals use electronic components such as a central processing unit (CPU). Since the amount of heat generated from such electronic components tends to increase due to the improvement in information processing capability, a technique for cooling the heat is important.
Heat pipes are well known as a means for cooling. In this method, the working fluid enclosed in the pipe uses the phase change to transport the heat in the heat source to another portion to diffuse the heat, thereby cooling the heat source.
一方、近年においてこれら電子機器の薄型化が顕著であり、従来のヒートパイプよりも薄型の冷却手段が必要となってきた。これに対してベーパーチャンバーが提案されている。ベーパーチャンバーは、シート型ヒートパイプと呼ばれることもあり、ヒートパイプによる熱輸送の考え方を平板状の部材に展開した機器である。すなわち、ベーパーチャンバーでは、対向する平板の間に作動流体が封入されており、この作動流体の相変化を利用して熱源における熱を輸送及び拡散して熱源を冷却する。 On the other hand, in recent years, the thickness of these electronic devices has been remarkably reduced, and a cooling means thinner than a conventional heat pipe has been required. On the other hand, a vapor chamber has been proposed. The vapor chamber is also called a sheet-type heat pipe, and is a device in which the concept of heat transport by the heat pipe is developed to a flat member. That is, in the vapor chamber, the working fluid is sealed between the opposed flat plates, and the heat in the heat source is transported and diffused by utilizing the phase change of the working fluid to cool the heat source.
このようなヒートパイプやベーパーチャンバーとして、作動流体の移動の原動力により、特許文献1のような毛細管力型、特許文献2のような自励振動型、特許文献3のような両者の複合型が提案されている。
As such a heat pipe or a vapor chamber, a capillary force type as in
ヒートパイプやベーパーチャンバーにおいて、熱輸送の能力を発揮することができない不具合の1つとして蒸発部におけるドライアウトがある。これは、熱を受けて作動流体が液から蒸気に相変化することで熱源を冷却すべき部位に対して適切に液が供給されないため、相変化を起こすことができず、熱源の冷却ができない状態になることである。
上記のように近年において電子機器の薄型化が顕著であり、ヒートパイプやベーパーチャンバーに対しても薄型化、小型化が求められることでドライアウトが起こり易くなっている。そして上記した従来のヒートパイプやベーパーチャンバーでもこのドライアウトを十分に回避することはできなかった。
One of the drawbacks of the heat pipe and the vapor chamber in which the heat transport ability cannot be exhibited is a dryout in the evaporating section. This is because the working fluid undergoes a phase change from liquid to vapor due to the heat, so that the liquid is not appropriately supplied to the portion where the heat source is to be cooled, so that the phase change cannot occur and the heat source cannot be cooled. Is to be in a state.
As described above, in recent years, the thickness of electronic devices has been remarkably reduced, and dry-out is likely to occur due to the demand for thinner and smaller heat pipes and vapor chambers. And even with the conventional heat pipes and vapor chambers described above, this dry-out could not be sufficiently avoided.
また、ヒートパイプ、ベーパーチャンバーを備えた電子機器は、様々な環境で使用されることが想定されており、その中には氷点下の環境も含まれる。そして作動流体を用いるベーパーチャンバーでは、氷点下の環境において作動流体が凍ることもある。作動流体が凍ると体積が増えるため、これにより凍った作動流体がベーパーチャンバーを構成する2枚の平板を離す方向に押して力を加えるため、2枚の平板を連結する壁が破壊される問題がある。このような破壊は、作動流体の一度の凍結により起こることはまれであるが、作動流体の凍結と溶融との繰り返しにより、塑性変形が蓄積して最終的に壁の破断による破壊となる。破断は作動流体の漏れの原因となり、これにより周辺の電子部品がショートし、電子機器が故障する虞もある。このような破壊を防止するために、例えば作動流体を封入した空間内に体積膨張のためのバッファとなる空間を設けることが挙げられる。しかしながら、このような空間は、ベーパーチャンバーの薄型化や高性能化(熱輸送能力の向上)の観点からは好ましいものではなく、むしろ高性能化を阻害する虞があった。 In addition, electronic devices including a heat pipe and a vapor chamber are assumed to be used in various environments, including an environment below freezing. In a vapor chamber using a working fluid, the working fluid may freeze in an environment below the freezing point. When the working fluid freezes, the volume increases. As a result, the frozen working fluid pushes the two flat plates constituting the vapor chamber in a direction in which the two flat plates are separated from each other to apply a force, so that the wall connecting the two flat plates is broken. is there. Such destruction is rarely caused by a single freezing of the working fluid, but due to repetition of freezing and melting of the working fluid, plastic deformation accumulates and finally breaks due to the breakage of the wall. The rupture causes a leakage of the working fluid, which may cause a short circuit of the surrounding electronic components and may cause a failure of the electronic device. In order to prevent such destruction, for example, a space serving as a buffer for volume expansion is provided in a space in which the working fluid is sealed. However, such a space is not preferable from the viewpoint of reducing the thickness and improving the performance of the vapor chamber (improving the heat transport capability), and may rather impair the performance.
そこで本発明は、上記問題を鑑み、薄型化しても高い熱輸送能力を得ることができるとともに、破壊を抑制することが可能なベーパーチャンバーを提供することを課題とする。またこのベーパーチャンバーを備える電子機器を提供する。 In view of the above problems, an object of the present invention is to provide a vapor chamber capable of obtaining high heat transfer capability even when the thickness is reduced and suppressing destruction. Further, an electronic device provided with the vapor chamber is provided.
本発明の1つの態様は、複数のシートの間に密閉空間が形成されており、該密閉空間に作動流体が封入されたベーパーチャンバーであって、密閉空間には、作動流体が凝縮液の状態で移動する流路である凝縮液流路と、凝縮液流路より流路断面積が大きく、作動流体が蒸気及び凝縮液の状態で自励振動する蒸気流路と、が備えられており、凝縮液流路は、2つの蒸気流路間に複数の一直線状の凝縮液流路が配置されてなり、複数の蒸気流路は連通しており、蒸気流路及び凝縮液流路が配置された領域内の構造が、一直線状に配置された凝縮液流路に平行な線を軸として、対称形となるように構成されている、ベーパーチャンバーである。 One embodiment of the present invention is a vapor chamber in which a closed space is formed between a plurality of sheets, and a working fluid is sealed in the closed space, wherein the working fluid is in a condensed liquid state in the closed space. A condensate flow path, which is a flow path that moves in, and a steam flow path that has a larger flow path cross-sectional area than the condensate flow path and the working fluid self-oscillates in a state of steam and condensate, The condensate flow path has a plurality of linear condensate flow paths disposed between two vapor flow paths, the plurality of vapor flow paths are in communication, and the vapor flow path and the condensate flow path are disposed. The vapor chamber is configured such that the structure in the region is symmetrical about a line parallel to the condensate flow path arranged in a straight line.
複数の蒸気流路が全て連通しているように形成してもよい。 The plurality of steam channels may be formed so as to communicate with each other.
蒸気流路及び凝縮液流路が配置された領域内の構造が、さらに、一直線状に配置された凝縮液流路に直交する線を軸として、対称形となるように構成してもよい。 The structure in the region where the vapor flow path and the condensate flow path are arranged may be further configured to be symmetrical with respect to a line orthogonal to the condensate flow path arranged linearly.
また、密閉された空間の縁に沿って環状の凝縮液流路が設けられもよい。 Further, an annular condensate flow path may be provided along the edge of the closed space.
上記ベーパーチャンバーはその厚さを0.4mm以下とすることができる。 The vapor chamber may have a thickness of 0.4 mm or less.
本発明の他の態様は、筐体と、筐体の内側に配置された電子部品と、電子部品に対して直接又は他の部材を介して接触して配置された上記ベーパーチャンバーと、を備える、電子機器である。その際には、電子部品は、ベーパーチャンバーを平面視したときにベーパーチャンバーの一直線状に配置された凝縮液流路に平行な線による軸に重なる位置に配置されてもよい。 Another embodiment of the present invention includes a housing, an electronic component disposed inside the housing, and the vapor chamber disposed in contact with the electronic component directly or via another member. , Electronic equipment. In this case, the electronic component may be disposed at a position overlapping an axis defined by a line parallel to the condensate flow path arranged in a straight line in the vapor chamber when the vapor chamber is viewed in plan.
本発明によれば、蒸気流路においては自励振動により作動流体が移動して効率よく熱の移動及び拡散が行われるとともに、当該蒸気流路とは分離して設けられた凝縮液流路により毛管力で凝縮液が効率よく移動して還流させることができるため、ドライアウトの発生を抑制することが可能となる。
また、蒸気流路及び凝縮液流路が対称となるように配置されているため、ベーパーチャンバーの作動時には自励振動のバランスが保たれ振動が安定するため高い熱輸送能力を安定して発揮できる。一方、ベーパーチャンバーの非作動時には凝縮液がベーパーチャンバーの全体に亘って分散し、一箇所に集中することが防止されるので、作動流体が凍結して膨張してもベーパーチャンバーが破壊されることを防止することが可能となる。
従って、作動流体が凍結するような環境で使用されたとしても薄型化、熱輸送能力、及び耐久性のいずれもが満たされるものとなる。
According to the present invention, in the steam flow path, the working fluid moves by self-excited vibration, heat is efficiently moved and diffused, and the condensed liquid flow path is provided separately from the steam flow path. Since the condensed liquid can be efficiently moved and refluxed by the capillary force, it is possible to suppress the occurrence of dryout.
In addition, since the vapor flow path and the condensate flow path are arranged symmetrically, the self-excited vibration is balanced and the vibration is stabilized during operation of the vapor chamber, so that high heat transport capability can be stably exhibited. . On the other hand, when the vapor chamber is not operating, the condensate is dispersed throughout the vapor chamber and is prevented from concentrating at one location, so that even if the working fluid freezes and expands, the vapor chamber is destroyed. Can be prevented.
Therefore, even if the working fluid is used in an environment where the working fluid freezes, the thickness, the heat transport ability, and the durability are all satisfied.
以下、本発明を図面に示す形態に基づき説明する。ただし、本発明はこれら形態に限定されるものではない。なお、以下に示す図面では分かりやすさのため部材の大きさや比率を変更または誇張して記載することがある。また、見やすさのため説明上不要な部分の図示や繰り返しとなる符号は省略することがある。 Hereinafter, the present invention will be described based on embodiments shown in the drawings. However, the present invention is not limited to these modes. In the drawings described below, the size and ratio of members may be changed or exaggerated for simplicity. In addition, for the sake of simplicity, parts that are not necessary for the description may be omitted from the drawings or symbols.
図1(a)には第一の形態にかかるベーパーチャンバー1の外観斜視図、図1(b)にはベーパーチャンバー1の分解斜視図を表した。これら図及び以下に示す各図には必要に応じて便宜のため、互いに直交する方向を表す矢印(x、y、z)も表した。ここでxy面内方向は平板状であるベーパーチャンバー1の板面に沿った方向であり、z方向は厚さ方向である。
FIG. 1A is an external perspective view of the
ベーパーチャンバー1は、図1(a)、図1(b)からわかるように第一シート10及び第二シート20を有している。そして、後で説明するように、この第一シート10と第二シート20とが重ねられて接合(拡散接合、ろう付け等)されていることにより第一シート10と第二シート20との間に密閉空間2が形成され(例えば図12参照)、この密閉空間2に作動流体が封入されている。
The
本形態で第一シート10は全体としてシート状の部材である。図2(a)には第一シート10を内面10a側から見た斜視図、図2(b)には第一シート10を内面10a側から見た平面図をそれぞれ表した。また、図3には図2(b)のIII−IIIで切断したときの第一シート10の切断面を示した。
第一シート10は、内面10a、該内面10aとは反対側となる外面10b及び内面10aと外面10bとを渡して厚さを形成する側面10cを備え、内面10a側に作動流体が移動する流路のためのパターンが形成されている。後述するようにこの第一シート10の内面10aと第二シート20の内面20aとが対向するようにして重ね合わされることで密閉空間2が形成される。
In the present embodiment, the
The
このような第一シート10は本体11及び注入部12を備えている。本体11は作動流体が移動する部位を形成するシート状であり、本形態では平面視で角が円弧(いわゆるR)にされた長方形である。
注入部12は第一シート10と第二シート20により形成された密閉空間2(例えば図12参照)に対して作動流体を注入する部位であり、本形態では本体11の平面視長方形である一辺から突出する平面視四角形のシート状である。本形態では第一シート10の注入部12は内面10a側も外面10b側も平坦面とされている。
Such a
The
このような第一シート10の厚さは特に限定されることはないが、0.1mm以上1.0mm以下が好ましい。これにより薄型のベーパーチャンバーとして適用できる場面を多くすることができる。
また、第一シート10を構成する材料も特に限定されることはないが、熱伝導率が高い金属であることが好ましい。これには例えば銅、銅合金を挙げることができる。特に銅、及び、銅合金を用いることにより、熱輸送能力の向上を図りつつ、後述するようなエッチング及び拡散接合によるベーパーチャンバーの作製がしやすいものとなる。
The thickness of the
Further, the material forming the
本体11の内面10a側には、作動流体が移動するための構造が形成されている。具体的には、本体11の内面10a側には、外周接合部13、外周液流路部14、内側液流路部15、蒸気流路溝16、及び、蒸気流路連通溝17が具備されて構成されている。
On the
外周接合部13は、本体11の内面10a側に、該本体11の外周に沿って形成された面である。この外周接合部13が第二シート20の外周接合部23に重なって接合(拡散接合、ろう付け等)されることにより、第一シート10と第二シート20との間に密閉空間2が形成され、ここに作動流体が封入される。
図2(b)、図3にA10で示した外周接合部13の幅は必要に応じて適宜設定することができるが、0.8mm以上3.0mm以下であることが好ましい。この幅が0.8mmより小さくなると第一シートと第二シートとの接合時における位置ずれが生じた際に接合面積が不足する虞がある。また、この幅が3.0mmより大きくなると、密閉空間の内容積が小さくなり蒸気流路や凝縮液流路が十分確保できなくなる虞がある。
The outer peripheral
FIG. 2 (b), the can be set appropriately as required width of the outer peripheral joint 13 shown in A 10 in FIG. 3, is preferably 0.8mm or more 3.0mm or less. If the width is smaller than 0.8 mm, there is a possibility that the joining area becomes insufficient when the first sheet and the second sheet are displaced during joining. On the other hand, if the width is larger than 3.0 mm, the internal volume of the closed space becomes small, and there is a possibility that the steam flow path and the condensate flow path cannot be sufficiently secured.
また外周接合部13のうち、本体11の四隅には厚さ方向(z方向)に貫通する穴13aが設けられている。この穴は第二シート20との重ね合せの際の位置決め手段として機能する。
In the outer peripheral
外周液流路部14は、液流路部として機能し、作動流体が凝縮して液化した際に通る流路である凝縮液流路3(例えば図13参照)の一部を構成する部位である。図4(a)には図3のうち矢印IVaで示した部分、図4(b)には図2(b)にIVb−IVbによる切断面を示した。いずれの図にも外周液流路部14の断面形状が表れている。また、図5には図4(a)に矢印Vで示した方向から見た外周液流路部14を平面視した拡大図を表した。
The outer peripheral liquid
これら図からわかるように、外周液流路部14は本体11の内面10aのうち、外周接合部13の内側に沿って形成され、密閉空間2の外周に沿って環状となるように設けられている。また、外周液流路部14には、本体11の外周方向に平行に延びる複数の溝である液流路溝14aが形成され、複数の液流路溝14aが、該液流路溝14aが延びる方向とは異なる方向に間隔を有して配置されている。従って、図4(a)、図4(b)からわかるように外周液流路部14ではその断面において凹部である液流路溝14aと液流路溝14aの間である凸部である壁14bとが凹凸を繰り返して形成されている。
ここで液流路溝14aは溝であることから、その断面形状において、底部と、該底部に向かい合う反対側に形成される開口と、を備えている。
As can be seen from these figures, the outer peripheral liquid
Here, since the
また、このように複数の液流路溝14aを備えることで、1つ当たりの液流路溝14aの深さ及び幅を小さくし、凝縮液流路3(例えば図13参照)の流路断面積を小さくして大きな毛管力を利用することができる。一方、液流路溝14aを複数とすることにより合計した全体としての凝縮液流路3の内容積は適する大きさが確保され、必要な流量の凝縮液を流すことができる。
Further, by providing the plurality of
さらに、外周液流路部14では、図5からわかるように隣り合う液流路溝14aは、壁14bに間隔を有して設けられた液連通開口部14cにより連通している。これにより複数の液流路溝14a間で凝縮液量の均等化が促進され、効率よく凝縮液を流すことができる。また、蒸気流路4を形成する蒸気流路溝16に隣接する壁14bに設けられた液連通開口部14cは、蒸気流路4と凝縮液流路3とを連通させる。従って、液連通開口部14cを構成することにより蒸気流路4で生じた凝縮液を円滑に凝縮液流路3に移動させることができるとともに、凝縮液流路3で生じた蒸気を円滑に蒸気流路4に移動させることもでき、これによっても作動流体の自励振動を妨げることなく、作動流体の円滑な流れを促進することが可能となる。
Further, in the outer peripheral liquid
図6(a)〜図6(c)には、図5と同じ視点で、1つの凝縮液流路14aとこれを挟む2つの壁14b、及び各壁14bに設けられた1つの液連通開口部14cを示した図を表した。これらはいずれも、当該視点(平面視)で壁14bの形状が図5の例とは異なる。
すなわち、図5に示した壁14bでは、液連通開口部14cが形成される端部においてもその幅(C2)が他の部位と同じであり一定である。これに対して図6(a)〜図6(c)に示した形状の壁14bでは、液連通開口部14cが形成される端部においてその幅が、壁14bの最大幅(C2)よりも小さくなるように形成されている。より具体的には、図6(a)の例では当該端部において角が円弧状となり角にRが形成されることにより端部の幅が小さくなる例、図6(b)は端部が半円状とされることにより端部の幅が小さくなる例、図6(c)は端部が尖るように先細りとなる例である。
FIGS. 6A to 6C show one
That is, the width (C 2 ) of the
図6(a)〜図6(c)に示したように、壁14bにおいて液連通開口部14cが形成される端部でその幅が、壁14bの最大幅(C2)よりも小さくなるように形成されていることで、液連通開口部14cを作動流体が移動しやすくなり、隣り合う凝縮液流路3への作動流体の移動が容易となる。
As shown in FIGS. 6A to 6C, the width of the
本形態では図5で示したように1つの液流路溝14aの該溝を挟んで液流路溝14aが延びる方向において同じ位置に対向するように液連通開口部14cが配置されている。ただしこれに限定されることはなく、例えば図7に示したように、1つの液流路溝14aの該溝を挟んで液流路溝14aが延びる方向において異なる位置に液連通開口部14cが配置されてもよい。すなわち、この場合はオフセットして液連通開口部14cが配置されている。
このようにオフセットして液連通開口部14cを設けることで、凝縮液流路3を進行する作動流体からみたときに、液連通開口部14cが両側に同時に表れることがなく、液連通開口部14cが表れても少なくとも一方の側面は常に壁14bが存在する。そのため、毛管力を連続的に得ることができる。かかる観点からオフセットして液連通開口部14cを形成することで作動流体に働く毛管力を高く維持することができるため、より円滑な還流が可能となる。
また、このように液連通開口部14cをオフセットして配列にした場合にも、図6(a)〜図6(c)の例に倣って壁14bにおける端部形状を構成することもできる。
In the present embodiment, as shown in FIG. 5, the
By providing the
Also, in the case where the
以上のような構成を備える外周液流路部14は、さらに次のような構成を備えていることが好ましい。
図2(b)、図3、図4(a)、図4(b)にB10で示した外周液流路部14の幅は、ベーパーチャンバー全体の大きさ等から適宜設定することができるが、0.3mm以上2mm以下であることが好ましい。この幅が0.3mmより小さいと外側を流れる液の量が十分得られない虞がある。またこの幅が2mmを超えると内側の凝縮液流路や蒸気流路のための空間が十分にとれなくなる虞がある。
It is preferable that the outer peripheral liquid
Width in FIG. 2 (b), FIG. 3, FIG. 4 (a), the outer peripheral
液流路溝14aについて、図4(a)、図5、図6(a)〜図6(c)にC1で示した溝幅は10μm以上300μm以下であることが好ましい。
また、図4(a)、図4(b)にDで示した溝の深さは5μm以上200μm以下であることが好ましい。これにより液が流れるために必要な凝縮液流路の毛管力を十分に発揮することができる。ここで、溝の深さDは、第一シート10の厚さから当該溝の深さDを引いた残りのシート厚さよりも小さいことが好ましい。これにより作動流体の凍結時においてシートが破れてしまうことをより確実に防止することができる。
流路の毛管力をより強く発揮する観点から、C1/Dで表される流路断面におけるアスペクト比(縦横比)は、1.0よりも大きい、又は1.0よりも小さいことが好ましい。その中でも製造の観点からC1>Dであることが好ましく、アスペクト比は1.3より大きいことが好ましい。
For liquid
Also, the depth of the groove indicated by D in FIGS. 4A and 4B is preferably 5 μm or more and 200 μm or less. Thereby, the capillary force of the condensed liquid flow path necessary for flowing the liquid can be sufficiently exhibited. Here, the depth D of the groove is preferably smaller than the remaining sheet thickness obtained by subtracting the depth D of the groove from the thickness of the
From the viewpoint of more strongly exerting the capillary force of the flow path, the aspect ratio (aspect ratio) in the flow path cross section represented by C 1 / D is preferably larger than 1.0 or smaller than 1.0. . Among them, C 1 > D is preferable from the viewpoint of production, and the aspect ratio is preferably higher than 1.3.
また、壁14bについて、図4(a)、図5、図6(a)〜図6(c)にC2で示した幅は20μm以上300μm以下であることが好ましい。この幅が20μmより小さいと作動流体の凍結と溶融との繰り返しにより破断し易くなり、この幅が300μmより大きくなると液連通開口部14cの幅が大きくなりすぎ、隣り合う凝縮液流路3との作動流体の円滑な連通が阻害される虞がある。
Also, the
液連通開口部14cについて、図5にC3で示した液流路溝14aが延びる方向に沿った開口部の大きさは20μm以上180μm以下であることが好ましい。
また、図5にC4で示した液流路溝14aが延びる方向における隣り合う液連通開口部14cのピッチは300μm以上2700μm以下であることが好ましい。
For Ekiren
Further, it is preferable that the pitch of Ekiren
本形態では液流路溝14aの断面形状は半楕円形であるがこれに限定されることなく、正方形、長方形、台形等の四角形、三角形、半円形、底部が半円形、底部が半楕円形等であってもよい。
In this embodiment, the cross-sectional shape of the
また、液流路溝14aは、密閉空間内の縁に沿って連続して形成されていることが好ましい。すなわち、液流路溝14aは他の構成要素によって寸断されることなく1周に亘って環状に延びていることが好ましい。これにより凝縮液の移動を阻害する要因が減るため、円滑に凝縮液を移動させることができる。
Further, it is preferable that the
図2、図3に戻って内側液流路部15について説明する。内側液流路部15も液流路部として機能し、作動流体が凝縮して液化した際に通る凝縮液流路3の一部を構成する部位である。図8(a)には図3のうちVIIIaで示した部分を表した。この図にも内側液流路部15の断面形状が表れている。また、図8(b)には図8(a)に矢印VIIIbで示した方向から見た内側液流路部15を平面視した拡大図を示した。
Returning to FIG. 2 and FIG. 3, the inner
これら図からわかるように、内側液流路部15は本体11の内面10aのうち、環状である外周液流路部14の環の内側に形成されている。本形態の内側液流路部15は、図2(a)、図2(b)からわかるように、本体11の平面視長方形で長辺に平行な方向(x方向)に延びる一直線の凸条であり、複数(本形態では3つ)の内側液流路部15が同短辺に平行な方向(y方向)に間隔を有して配列され、蒸気流路溝16の間に配置されている。
各内側液流路部15には、内側液流路部15が延びる方向に平行な一直線状の溝である液流路溝15aが形成され、複数の液流路溝15aが、該液流路溝15aが延びる方向とは異なる方向に所定の間隔で配置されている。従って、図3、図8(a)からわかるように内側液流路部15ではその断面において凹部である液流路溝15aと液流路溝15aの間の凸部である壁15bとが凹凸を繰り返して形成されている。
ここで液流路溝15aは溝であることから、その断面形状において、底部と、該底部に対して向かい合う反対側に形成される開口と、を備えている。
As can be seen from these figures, the inner
Each inner liquid
Here, since the
このように複数の液流路溝15aを備えることで、1つ当たりの液流路溝15aの深さ及び幅を小さくし、凝縮液流路3(図13参照)の流路断面積を小さくして大きな毛管力を利用することができる。一方、液流路溝15aを複数とすることにより合計した全体としての凝縮液流路3の内容積は適する大きさが確保され、必要な流量の凝縮液を流すことができる。
By providing the plurality of
さらに、内側液流路部15でも、図8(b)からわかるように、外周液流路部14の例に倣って図5と同じようにして隣り合う液流路溝15aは、壁15bに間隔を有して設けられた液連通開口部15cにより連通している。これにより複数の液流路溝15a間で凝縮液量の均等化が促進され、効率よく凝縮液を流すことができる。また、蒸気流路4を形成する蒸気流路溝16に隣接する壁15bに設けられた液連通開口部15cは、蒸気流路4と凝縮液流路3とを連通させる。従って、後で説明するように液連通開口部15cを構成することにより蒸気流路4で生じた凝縮液を円滑に凝縮液流路3に移動させることができるとともに、凝縮液流路で発生した蒸気を円滑に蒸気流路4に移動させることもでき、これによっても作動流体の自励振動を妨げることなく、作動流体の円滑な流れを促進することが可能となる。
8B, the adjacent
内側液流路部15についても図6(a)〜図6(c)の例に倣って壁15bに対して、液連通開口部15cが形成される端部においてその幅が、壁15bの最大幅よりも小さくなるように形成されるようにしてもよい。
これにより、液連通開口部15cを作動流体が移動しやすくなる。
6A to 6C, the width of the inner liquid
This facilitates the movement of the working fluid through the
また、内側液流路部15についても、図7の例に倣って、1つの液流路溝15aの該溝を挟んで液流路溝15aが延びる方向において異なる位置に液連通開口部15cが配置されてもよい。
このようにオフセットして液連通開口部15cを設けることで、凝縮液流路3を進行する作動流体からみたときに、液連通開口部15cが両側に同時に表れることがなく、液連通開口部15cが表れても少なくとも一方の側面は常に壁15bが存在する。そのため、毛管力を連続的に得ることができる。かかる観点からオフセットして液連通開口部15cを形成することで作動流体に働く毛管力を高く維持することができるため、作動流体のより円滑な移動が可能となる。
また、このように液連通開口部15cをオフセットして配列にした場合にも、図6(a)〜図6(c)の例に倣って壁15bにおける端部形状を構成することもできる。
7, the
By providing the
Also, in the case where the
以上のような構成を備える内側液流路部15は、さらに次のような構成を備えていることが好ましい。
図2(b)、図3、図8にE10で示した内側液流路部15の幅は、100μm以上2000μm以下であることが好ましい。また、複数の内側液流路部15のピッチは200μm以上4000μm以下であることが好ましい。これにより蒸気流路の流路抵抗を十分に下げ、蒸気流路における作動流体の自励振動と、凝縮液流路における毛管力の作用による作動流体の移動とをバランスよく行うことができる。
It is preferable that the inner liquid
FIG. 2 (b), the width of 3, the inner
液流路溝15aについて、図8(a)、図8(b)にF1で示した溝幅は10μm以上300μm以下であることが好ましい。
また、図8(a)にGで示した溝の深さは5μm以上200μm以下であることが好ましい。これにより凝縮液の移動に必要な凝縮液流路の毛管力を十分に発揮することができる。ここで、溝の深さGは、第一シート10の厚さから当該溝の深さGを引いた残りのシート厚さよりも小さいことが好ましい。これにより作動流体の凍結時においてシートが破れてしまうことをより確実に防止することができる。
流路の毛管力をより強く発揮する観点から、F1/Gで表される流路断面におけるアスペクト比(縦横比)は、1.0よりも大きい、又は1.0よりも小さいことが好ましい。その中でも製造の観点からF1>Gであることが好ましく、アスペクト比は1.3より大きいことが好ましい。
For liquid
The depth of the groove indicated by G in FIG. 8A is preferably 5 μm or more and 200 μm or less. Thereby, the capillary force of the condensate flow path necessary for the movement of the condensate can be sufficiently exerted. Here, the groove depth G is preferably smaller than the remaining sheet thickness obtained by subtracting the groove depth G from the thickness of the
From the viewpoint of more strongly exerting the capillary force of the flow channel, the aspect ratio (aspect ratio) in the flow channel cross section represented by F 1 / G is preferably larger than 1.0 or smaller than 1.0. . Among them, it is preferable that F 1 > G from the viewpoint of manufacturing, and the aspect ratio is preferably larger than 1.3.
また、壁15bについて、図8(a)、図8(b)にF2で示した幅は20μm以上300μm以下であることが好ましい。この幅が20μmより小さいと作動流体の凍結と溶融の繰り返しにより破断し易くなり、この幅が300μmより大きくなると液連通開口部14cの幅が大きくなりすぎ、凝縮液流路3間の円滑な連通が阻害される虞がある。
Also, the
液連通開口部15cについて、図8(b)にF3で示した液流路溝15aが延びる方向に沿った開口部の大きさは20μm以上180μm以下であることが好ましい。
また、図8(b)にF4で示した液流路溝15aが延びる方向における隣り合う液連通開口部15cのピッチは300μm以上2700μm以下であることが好ましい。
For
Further, it is preferable that the pitch of Ekiren
また、本形態で液流路溝15aの断面形状は半楕円形であるが、これに限らず、正方形、長方形、台形等の四角形、三角形、半円形、底部が半円形、底部が半楕円形等であってもよい。
In the present embodiment, the cross-sectional shape of the
次に蒸気流路溝16について説明する。蒸気流路溝16は、蒸気状及び凝縮液状の作動流体が自励振動する部位で、蒸気流路4の一部を構成する。図2(b)には平面視した蒸気流路溝16の形状、図3には蒸気流路溝16の断面形状がそれぞれ表れている。
Next, the
これら図からもわかるように、蒸気流路溝16は本体11の内面10aのうち、環状である外周液流路部14の環の内側に形成された一直線状の溝により構成されている。詳しくは本形態の蒸気流路溝16は、隣り合う内側液流路部15の間、及び、外周液流路部14と内側液流路部15との間に形成され、本体11の平面視長方形で長辺に平行な方向(x方向)に延びた溝である。そして、複数(本形態では4つ)の蒸気流路溝16が同短辺に平行な方向(y方向)に配列されている。従って、図3からわかるように第一シート10は、y方向において、外周液流路部14及び内側液流路部15を凸条とし、蒸気流路溝16を凹条とした凹凸が繰り返された形状を備えている。
ここで蒸気流路溝16は溝であることから、その断面形状において、底部と、該底部に対して向かい合う反対側に形成される開口と、を備えている。
As can be seen from these drawings, the
Here, since the
蒸気流路溝16は、第二シート20の蒸気流路溝26と組み合わされて蒸気流路4が形成されたとき、当該蒸気流路4で作動流体の自励振動が起こるように構成されていればよい。そのため、蒸気流路溝16は、さらに次のような構成を備えていることが好ましい。
図2(b)、図3にH10で示した蒸気流路溝16の幅は、少なくとも上記した液流路溝14aの幅C1、液流路溝15aの幅F1より大きく形成され、100μm以上2000μm以下であることが好ましい。
一方、図3にI10で示した蒸気流路溝16の深さは、少なくとも上記した液流路溝14aの深さD、液流路溝15aの深さGより大きく形成され、10μm以上300μm以下であることが好ましい。
これにより、蒸気流路が形成されたときに作動流体の安定した自励振動が得られるとともに、蒸気流路溝の流路断面積を液流路溝よりも大きくすることで、作動流体の性質上、凝縮液よりも体積が大きくなる蒸気を円滑に移動させることができる。
The
FIG. 2 (b), the width of the
On the other hand, the depth of the
As a result, a stable self-excited vibration of the working fluid is obtained when the steam flow path is formed, and the flow path cross-sectional area of the steam flow path groove is made larger than that of the liquid flow path groove. In addition, the vapor having a larger volume than the condensate can be smoothly moved.
ここで蒸気流路溝16は、後で説明するように第二シート20と組み合わされて蒸気流路4が形成されたときに、蒸気流路4の幅が高さ(厚さ方向大きさ)よりも大きい扁平形状となるように構成されていることが好ましい。そのため、H10/I10で示されるアスペクト比は好ましくは4.0以上、より好ましくは8.0以上である。
Here, when the
本形態では蒸気流路溝16の断面形状は半楕円形であるが、これに限らず正方形、長方形、台形等の四角形、三角形、半円形、底部が半円形、底部が半楕円形等であってもよい。
In the present embodiment, the cross-sectional shape of the
蒸気流路連通溝17は、複数の蒸気流路溝16を連通させ、第二シート20の蒸気流路連通溝27と組み合わされて蒸気流路溝16による複数の蒸気流路4をその端部で連通する流路を形成する溝である。これにより、内側液流路部15が延びる方向における蒸気流路4で生じる作動流体の自励振動のバランスを取ることができる。
また、これにより蒸気流路4にある作動流体の均等化が図られたり、蒸気がより広い範囲に運ばれ、多くの液流路溝14a、液流路溝15aによる凝縮液流路3を効率よく利用できるようになったりもする。
The steam
In addition, this makes it possible to equalize the working fluid in the
本形態の蒸気流路連通溝17は、図2(a)、図2(b)からわかるように、内側液流路部15が延びる方向の両端部及び蒸気流路溝16が延びる方向の両端部と、外周液流路部14との間に形成されている。図4(b)には蒸気流路連通溝17の連通方向に直交する断面が表れている。なお、蒸気流路連通溝17と蒸気流路16との境界は必ずしも形状による境界が形成されるわけではないので、図2(a)、図2(b)にはわかりやすさのため、当該境界を点線で表した。
As can be seen from FIGS. 2A and 2B, the steam
蒸気流路連通溝17は、隣り合う蒸気流路溝16を連通させることができればよく、その形状は特に限定されることはないが、例えば次のような構成を備えることができる。
図2(b)、図4(b)にJ10で示した蒸気流路連通溝17の幅は、100μm以上1000μm以下であることが好ましい。
また、図4(b)にK10で示した蒸気流路連通溝17の深さは、10μm以上300μm以下であることが好ましく、その中でも蒸気流路溝16の深さI10と同じであることが好ましい。これにより製造が容易になる。
The shape of the steam
FIG. 2 (b), the width of the steam
Further, the depth of the steam flow
本形態で蒸気流路連通溝17の断面形状は半楕円形であるが、これに限らず、正方形、長方形、台形等の四角形、三角形、半円形、底部が半円形、底部が半楕円形等であってもよい。
In the present embodiment, the cross-sectional shape of the steam flow
また、後で説明するように、ベーパーチャンバー1は、接合された部位により囲まれた密閉空間2内、すなわち、凝縮液流路3及び蒸気流路4が具備された領域を考えたときに、具備される形状は、内側液流路部15、内側液流路部25が形成する凝縮液流路3が延びる方向に平行な軸を対称軸とした対称形とされている。
従って、そのために第一シート10についても、外周液流路部14及びその内側に具備される形状が、液流路溝15aが延びる方向に平行な軸を対称軸(図2(b)のIIb−IIb)として対称とされている。
As will be described later, when the
Accordingly, for the
次に第二シート20について説明する。本形態で第二シート20も全体としてシート状の部材である。図9(a)には第二シート20を内面20a側から見た斜視図、図9(b)には第二シート20を内面20a側から見た平面図をそれぞれ表した。また、図10には図9(b)にX−Xで切断したときの第二シート20の切断面を示した。また、図11には図9(b)にXI−XIで切断したときの第二シート20の切断面を示した。
第二シート20は、内面20a、該内面20aとは反対側となる外面20b及び内面20aと外面20bとを渡して厚さを形成する側面20cを備え、内面20a側に作動流体が移動するパターンが形成されている。後述するようにこの第二シート20の内面20aと上記した第一シート10の内面10aとが対向するようにして重ね合わされて接合されることで密閉空間2が形成される。
Next, the
The
このような第二シート20は本体21及び注入部22を備えている。本体21は作動流体が移動する部位を形成するシート状の部位であり、本形態では平面視で角が円弧(いわゆるR)とされた長方形である。
注入部22は第一シート10と第二シート20とにより形成された密閉空間2(図12参照)に対して作動流体を注入する部位であり、本形態では本体21の平面視長方形である一辺から突出する平面視四角形のシート状である。本形態では第二シート20の注入部22には内面20a側に注入溝22aが形成されており、第二シート20の側面20cから本体21の内側(密閉空間2となるべき部位)に連通している。
このような第二シート20の厚さ及び構成する材料は第一シート10と同様に考えることができる。
Such a
The
The thickness of such a
本体21の内面20a側には、作動流体が移動するための構造が形成されている。具体的には、本体21の内面20a側には、外周接合部23、外周液流路部24、内側液流路部25、蒸気流路溝26、及び、蒸気流路連通溝27が具備されている。
On the
外周接合部23は、本体21の内面20a側に、該本体21の外周に沿って形成された面である。この外周接合部23が第一シート10の外周接合部13に重なって接合(拡散接合やろう付け等)されることにより、第一シート10と第二シート20との間に密閉空間2を形成し、ここに作動流体が封入される。
図9(b)、図10、図11にA20で示した外周接合部23の幅は上記した本体11の外周接合部13の幅A10と同じであることが好ましい。
The outer peripheral joint 23 is a surface formed on the
FIG. 9 (b), the 10, it is preferable that the width of the outer peripheral joint 23 shown in A 20 in FIG. 11 is the same as the width A 10 of the outer
また外周接合部23のうち、本体21の四隅には厚さ方向(z方向)に貫通する穴23aが設けられている。この穴23aは第一シート10との重ね合せの際の位置決め手段として機能する。
In the outer peripheral joint 23,
外周液流路部24は、液流路部として機能し、作動流体が凝縮して液化した際に通る流路である凝縮液流路3(例えば図13参照)の一部を構成する部位である。
The outer peripheral liquid
外周液流路部24は本体21の内面20aのうち、外周接合部23の内側に沿って形成され、密閉空間2の外周に沿って環状を成すように形成されている。本形態において第二シート20の外周液流路部24は、図10、図11からわかるように第一シート10との接合前において平坦面であり外周接合部23と面一である。これにより上記した第一シート10の複数の液流路溝14aのうち少なくとも一部の液流路溝14aの開口を閉鎖して凝縮液流路3を形成する。第一シート10と第二シート20との組み合わせに関する詳しい態様は後で説明する。
なお、このように第二シート20では外周接合部23と外周液流路部24とが面一であるため、構造的には両者を区別する境界線は存在しない。しかし、わかり易さのため、図9(a)、図9(b)では点線により両者の境界を表している。
The outer
Since the outer peripheral
外周液流路部24は、次のような構成を備えていることが好ましい。
図9(b)、図10、図11に示した外周液流路部24の幅B20は特に限定されることはなく、第一シート10の外周液流路部14の幅B10と同じでもよいし、異なってもよい。本形態では幅B10と幅B20とは同じである。
幅B20を幅B10より小さくした場合、外周液流路部14のうち少なくとも一部において、液流路溝14aの開口が外周液流路部24により閉鎖されずに開口し、ここから凝縮液が入りやすく、また、蒸気が出やすいため、より円滑な作動流体の移動をさせることができる。
It is preferable that the outer
FIG. 9 (b), the 10, the width B 20 of the outer
If the width B 20 less than the width B 10, at least part of the outer circumferential fluid
次に内側液流路部25について説明する。内側液流路部25も液流路部であり、凝縮液流路3を構成する1つの部位である。
Next, the
内側液流路部25は、図9(a)、図9(b)、図10、図11からわかるように、本体21の内面20aのうち、外周液流路部24の環状である環の内側に形成されている。本形態の内側液流路部25は、本体21の平面視長方形で長辺に平行な方向(x方向)に延びる一直線状の凸条であり、複数(本形態では3つ)の内側液流路部25が同短辺に平行な方向(y方向)に所定の間隔で、蒸気流路溝26の間に配列されている。
本形態で各内側液流路部25は、その内面20a側の表面が第一シート10との接合前において平坦面となるように形成されている。これにより上記した第一シート10の複数の液流路溝15aのうち少なくとも一部の液流路溝15aの開口を閉鎖して凝縮液流路3を形成する。
なお、本形態のように内側液流路部25に凝縮液流路3を形成するための溝が形成されていない場合、第二シート20の厚さは、第一シート10の液流路溝15aの深さG(図8(a)参照)以上であることが好ましい。これにより、ベーパーチャンバーにおける第二シート側における破断(破れ)を防止することができる。
As can be seen from FIGS. 9A, 9B, 10 and 11, the inner liquid
In the present embodiment, each inner
In the case where the groove for forming the condensed
図9(b)、図10に示した内側液流路部25の幅E20は特に限定されることはなく、第一シート10の内側液流路部15の幅E10と同じでもよいし、異なっていてもよい。本形態では幅E10と幅E20とは同じである。
幅E20と幅E10とが異なっていると接合時の位置ズレの影響を小さくすることができる。なお、幅E20を幅E10より小さくした場合には、内側液流路部15のうち少なくとも一部において、液流路溝15aの開口が内側液流路部25により閉鎖されずに開口し、ここから凝縮液が入りやすく、また、発生した蒸気が出やすいため、より円滑に作動流体を移動させることができる。
FIG. 9 (b), the width E 20 of the inner
It is possible to reduce the influence of positional deviation at the time of bonding and the width E 20 and width E 10 are different. In the case where the width E 20 smaller than the width E 10, at least a portion of the
次に蒸気流路溝26について説明する。蒸気流路溝26は、蒸気状及び凝縮液状の作動流体が自励振動する部位であり、蒸気流路4の一部を構成する。図9(b)には平面視した蒸気流路溝26の形状、図10には蒸気流路溝26の断面形状がそれぞれ表れている。
Next, the
これら図からもわかるように、蒸気流路溝26は本体21の内面20aのうち、環状である外周液流路部24の環の内側に形成された一直線状の溝により構成されている。詳しくは本形態の蒸気流路溝26は、隣り合う内側液流路部25の間、及び、外周液流路部24と内側液流路部25との間に形成され、本体21の平面視長方形で長辺に平行な方向(x方向)に延びた溝である。そして、複数(本形態では4つ)の蒸気流路溝26が同短辺に平行な方向(y方向)に配列されている。従って、図10からわかるように第二シート20は、y方向において、外周液流路部24及び内側液流路部25を凸とする凸条が形成され、蒸気流路溝26を凹とする凹条が形成されて、これらの凹凸が繰り返された形状を備えている。
ここで蒸気流路溝26は溝であることから、その断面形状において、底部と、該底部に対して向かい合う反対側に形成される開口と、を備えている。
As can be seen from these drawings, the
Here, since the
蒸気流路溝26は、第一シート10と組み合わされた際に該第一シート10の蒸気流路溝16と厚さ方向に重なる位置に配置されていることが好ましい。これにより蒸気流路溝16と蒸気流路溝26とで蒸気流路4を形成することができる。
図9(b)、図10にH20で示した蒸気流路溝26の幅は特に限定されることはなく、第一シート10の蒸気流路溝16の幅H10と同じでもよいし、異なっていてもよい。本形態では幅H10と幅H20とは同じである。
幅H20と幅H10とが異なっていると、接合時の位置ズレの影響を小さくすることができる。なお、幅H20を幅H10より大きくした場合には、内側液流路部15のうち少なくとも一部において、液流路溝15aの開口が内側液流路部25により閉鎖されずに開口し、ここから凝縮液が入りやすく、蒸気が出やすいため、より円滑な作動流体の移動をさせることができる。
一方、図10にI20で示した蒸気流路溝26の深さは、10μm以上300μm以下であることが好ましい。
The
FIG. 9 (b), the width of the steam flow path groove 26 shown in
When the width H 20 and width H 10 are different, it is possible to reduce the influence of positional deviation at the time of bonding. Note that when increasing the width H 20 than the width H 10, at least a portion of the
On the other hand, the depth of the steam flow path groove 26 shown in I 20 in FIG. 10 is preferably 10μm or more 300μm or less.
ここで蒸気流路溝26は、後で説明するように第一シート10と組み合わされて蒸気流路4が形成されたときに、蒸気流路4の幅が高さ(厚さ方向大きさ)よりも大きい扁平形状となるように構成されていることが好ましい。そのため、H20/I20で示されるアスペクト比は好ましくは4.0以上、より好ましくは8.0以上である。
Here, when the
本形態で蒸気流路溝26の断面形状は半楕円形であるが、正方形、長方形、台形等の四角形、三角形、半円形、底部が半円形、底部が半楕円形等であってもよい。
In this embodiment, the cross-sectional shape of the steam
蒸気流路連通溝27は、第一シート10の蒸気流路連通溝17と組み合わされて、蒸気流路溝26による複数の蒸気流路4の端部を連通する流路を形成する溝である。これにより、内側液流路部25が延びる方向における蒸気流路4で生じる作動流体の自励振動のバランスを取ることができる。また、蒸気流路4の作動流体の均等化が図られたり、蒸気がより広い範囲に運ばれ、多くの凝縮液流路3を効率よく利用できるようになったりするため、作動流体の移動をより円滑にすることが可能となる。
The steam flow
本形態の蒸気流路連通溝27は、図9(b)、図11からわかるように、内側液流路部25が延びる方向の両端部及び蒸気流路溝26が延びる方向の両端部と、外周液流路部24との間に形成されている。また、図11には蒸気流路連通溝27の連通方向に直交する断面が表れている。
As can be seen from FIG. 9B and FIG. 11, the steam flow
図9(b)、図11にJ20で示した蒸気流路連通溝27の幅は特に限定されることはなく、第一シート10の蒸気流路連通溝17の幅J10と同じであってもよいし、幅J10と異なっていてもよい。なお、幅J20を幅J10よりも大きくしたときには、第一シート10の外周液流路部14のうち少なくとも一部において、液流路溝14aの開口が蒸気流路4の一部を形成するように配置されるため凝縮液が入りやすくなるとともに発生した蒸気が出やすくなり、より円滑に作動流体を移動させることができる。
FIG. 9 (b), the width of the steam
幅J20の大きさは、100μm以上1000μm以下の範囲であることが好ましく、図11にK20で示した蒸気流路連通溝27の深さは、10μm以上300μm以下であることが好ましい。
The size of the width J 20 is preferably 1000μm or less the range of 100 [mu] m, the depth of the steam flow
本形態で蒸気流路連通溝27の断面形状は半楕円形であるが、これに限らず正方形、長方形、台形等の四角形、三角形、半円形、底部が半円形、底部が半楕円形等であってもよい。
In the present embodiment, the cross-sectional shape of the steam flow
また、後で説明するように、ベーパーチャンバー1は、接合された部位により囲まれた密閉空間2内、すなわち、凝縮液流路3及び蒸気流路4が具備された領域を考えたときに、具備される形状は、内側液流路部15、内側液流路部25が形成する凝縮液流路3が延びる方向に平行な軸を対称軸とした対称形とされている。
従って、そのために第二シート20についても、外周液流路部24及びその内側について、具備される形状が、内側液流路部25が延びる方向に平行な軸を対称軸(図9(b)のIXb−IXb)として対称とされている。
As will be described later, when the
Therefore, for the
次に、第一シート10と第二シート20とが組み合わされてベーパーチャンバー1とされたときの構造について説明する。この説明により、第一シート10及び第二シート20が有する各構成の配置、大きさ、形状等がさらに理解される。
図12には、図1(a)にXII−XIIで示したy方向に沿ってベーパーチャンバー1を厚さ方向に切断した切断面を表した。この図は第一シート10における図3に表した図と、第二シート20における図10に表した図とが組み合わされてこの部位におけるベーパーチャンバー1の切断面が表されたものである。
図13には図12にXIIIで示した部位を拡大した図を表した。
図14には、図1(a)にXIV−XIVで示したx方向に沿ってベーパーチャンバー1の厚さ方向に切断した切断面を表した。この図は、第一シート10における図4(b)に表した図と、第二シート20における図11に表した図とが組み合わされてこの部位におけるベーパーチャンバー1の切断面が表されたものである。
Next, the structure when the
FIG. 12 illustrates a cut surface obtained by cutting the
FIG. 13 is an enlarged view of the portion indicated by XIII in FIG.
FIG. 14 illustrates a cut surface cut in the thickness direction of the
図1(a)、図1(b)、及び図12〜図14よりわかるように、第一シート10と第二シート20とが重ねられるように配置され接合されることでベーパーチャンバー1とされている。このとき第一シート10の内面10aと第二シート20の内面20aとが向かい合うように配置されており、第一シート10の本体11と第二シートの本体21とが重なり、第一シート10の注入部12と第二シート20の注入部22とが重なっている。本形態では、第一シート10と第二シート20との相対的な位置関係は、第一シート10の穴13aと第二シート20の穴23aと位置を合わせることで適切になるように構成されている。
As can be seen from FIGS. 1A, 1B, and 12 to 14, the
このような第一シート10と第二シート20との積層体により、本体11及び本体21に具備される各構成が図12〜図14に表れるように配置される。具体的には次の通りである。
With such a laminated body of the
第一シート10の外周接合部13と第二シート20の外周接合部23とが重なるように配置されており、拡散接合やろう付け等の接合手段により両者が接合されている。これにより、第一シート10と第二シート20との間に密閉空間2が形成されている。
The outer peripheral
本形態のベーパーチャンバー1は、薄型である場合に特にその効果が大きい。かかる観点から図1、図12にL0で示したベーパーチャンバー1の厚さは1mm以下、より好ましくは0.4mm以下、さらに好ましくは0.2mm以下である。0.4mm以下とすることにより、ベーパーチャンバー1を設置する電子機器において、ベーパーチャンバーを配置するスペースを形成するための加工(例えば溝形成等)をすることなく電子機器内部にベーパーチャンバーを設置できることが多くなる。そして本形態によれば、このような薄いベーパーチャンバーであっても作動流体の円滑な移動が可能となる。
The effect of the
第一シート10の外周液流路部14と第二シート20の外周液流路部24とが重なるように配置されている。これにより外周液流路部14の液流路溝14a及び外周液流路部24により作動流体が凝縮して液化した状態である凝縮液が流れる凝縮液流路3が形成される。
同様に、第一シート10の凸条である内側液流路部15と第二シート20の凸条である内側液流路部25とが重なるように配置されている。これにより内側液流路部15の液流路溝15a及び内側液流路部25により凝縮液が流れる凝縮液流路3が形成される。
The outer
Similarly, the inner liquid
ここで、凝縮液流路3はベーパーチャンバー1の薄型化に伴い、その断面形状が扁平形状とされていることが好ましい。これにより毛管力を高めることができ、凝縮液の移動をさらに円滑に行うことができるため、熱輸送能力を高い水準に維持することが可能となる。より具体的には凝縮液流路3の幅/高さで表される比が1.0より大きく4.0以下であることが好ましい。
このとき、凝縮液流路3の幅は、本形態では液流路溝15aの幅F1に準じるが、10μm以上300μm以下であることが好ましい。幅が10μmより小さくなると流路抵抗が大きくなり輸送能力が低下する虞がある。一方、幅が300μmより大きくなると毛管力が小さくなるため輸送能力が低下する虞がある。
また、凝縮液流路3の高さは、本形態において液流路溝15aの深さGに準じるが5μm以上200μm以下であることが好ましい。これにより移動に必要な凝縮液流路の毛管力を十分に発揮することができる。なお、この高さは、凝縮液流路3を挟んで厚さ方向(z方向)一方側及び他方側における第一シート10及び第二シート20の厚さ(肉厚)以下であることが好ましい。これにより凝縮液流路3に起因するベーパーチャンバーの破断(破れ)をさらに防止することができる。
Here, it is preferable that the
The width of the
In this embodiment, the height of the condensed
なお、本形態では液流路溝14a、液流路溝15aは第一シート10にのみ設けられているため、凝縮液流路の高さは液流路溝14a、液流路溝15aの深さに基づくものとなるが、これに限らず第二シート20にも液流路溝が設けられてもよい。この場合には第一シートの液流路溝と第二シートの液流路溝とが重なることで凝縮液流路が形成され、両方の液流路溝の深さの合計に準じた凝縮液流路の高さとなる。
In this embodiment, since the
また、上記したように凝縮液流路3に対して液連通開口部14c、及び液連通開口部15cが形成されている。これにより複数の凝縮液流路3が連通し、凝縮液の均等化が図られて効率よく凝縮液の移動が行われる。また、蒸気流路4に隣接し、蒸気流路4と凝縮液流路3を連通する液連通開口部14c、液連通開口部15cについては、蒸気流路4で生じた凝縮液を円滑に凝縮液流路3に移動させ、及び、凝縮液流路3で発生した蒸気を円滑に蒸気流路4に移動させ、作動流体の移動を速やかに行わせることができる。
Further, as described above, the
また、外周液流路部14、外周液流路部24により形成される凝縮液流路3は、密閉空間2内の縁に沿って連続して環状に形成されていることが好ましい。すなわち、外周液流路部14、外周液流路部24により形成される凝縮液流路3は、他の構成要素によって寸断されることなく1周に亘って環状となって延びていることが好ましい。これにより凝縮液の移動を阻害する要因を減らせることができ、円滑に凝縮液を移動させることができる。
In addition, it is preferable that the condensed
第一シート10の蒸気流路溝16の開口と第二シート20の蒸気流路溝26の開口とが向かい合うように重なって流路を形成し、これが作動流体が自励振動する蒸気流路4となる。
ここで、蒸気流路4はベーパーチャンバー1の薄型化に伴い、その断面形状が扁平形状とされていることが好ましい。これにより薄型化されても流路内の表面積を確保することが可能とされ、熱輸送能力を高い水準に維持することが可能となる。より具体的には、図13に表した蒸気流路4の幅WB、高さHBにおいて、WB/HBで表される比が2.0以上であることが好ましい。さらに高い熱輸送能力を確保する観点から、当該比は4.0以上がさらに好ましい。
The opening of the
Here, it is preferable that the cross-sectional shape of the
図14からわかるように、第一シート10の蒸気流路連通溝17の開口と第二シート20の蒸気流路連通溝27の開口とが向かい合うように重なり流路を形成して、蒸気流路溝16、及び、蒸気流路溝26により形成される複数の蒸気流路4をその端部を連通させ、作動流体の自励振動のバランスをとる流路となる。
As can be seen from FIG. 14, an overlapping flow path is formed so that the opening of the steam flow
以上のような凝縮液流路3及び蒸気流路4により、ベーパーチャンバー1は、2つの蒸気流路4の間に、一直線状の複数の凝縮液流路3が配置されてなる形状を具備する。これにより凝縮液が主要に流れるべき凝縮液流路3と、蒸気が主要に自励振動する蒸気流路4とが分離して交互に並ぶような形態となり、作動流体の円滑な移動が助けられる。
Due to the above-described
密閉空間2内における蒸気流路4及び凝縮液流路3により、蒸気流路4では自励振動により作動流体が振動して効率よく熱の移動及び拡散が行われる。一方、当該蒸気流路4とは分離して設けられた凝縮液流路3により毛管力で凝縮液が効率よく移動するため、ドライアウトの発生を抑制することが可能となる。
Due to the
注入部12、注入部22についても図1に表れているように、その内面10a、内面20a同士が向かい合うように重なり、第二シート20の注入溝22aの底部とは反対側の開口が第一シート10の注入部12の内面10aより塞がれ、外部と本体11、21間の密閉空間2(凝縮液流路3及び蒸気流路4)とを連通する注入流路5が形成されている。
ただし、注入流路5から密閉空間2に対して作動流体を注入した後は、注入流路5は閉鎖されるので、最終的な形態のベーパーチャンバー1では外部と密閉空間2とは連通していない。
As also shown in FIG. 1, the
However, after the working fluid is injected from the
そしてベーパーチャンバー1の密閉空間2には、作動流体が封入されている。作動流体の種類は特に限定されることはないが、純水、エタノール、メタノール、アセトン等、通常のベーパーチャンバーに用いられる作動流体を用いることができる。
A working fluid is sealed in the
以上のようなベーパーチャンバー1は、さらに次のような構成を備えていることが好ましい。図15に説明のための図を示した。図15はベーパーチャンバー1の内側を透視して表し、その密閉空間2(すなわち蒸気流路及び凝縮液流路が形成された領域内)を実線で示した図である。
ベーパーチャンバー1は、接合された部位により囲まれた密閉空間2内、すなわち、凝縮液流路3及び蒸気流路4が具備された領域囲内を考えたときに、具備される形状は、内側液流路部15、内側液流路部25が形成する凝縮液流路3が延びる方向に平行な軸を対称軸(図15のXV−XV)とした対称形とされている。
It is preferable that the above-described
When considering the inside of the sealed
これにより、ベーパーチャンバーの作動時には自励振動のバランスが保たれ、振動が安定して発生するため高い熱輸送能力を信頼性高く発揮できる。一方、ベーパーチャンバーの非作動時には凝縮液がベーパーチャンバーの全体に亘って分散し、一箇所に集中することが防止されるため、作動流体が凍結して膨張してもベーパーチャンバーが破壊されることを防止することが可能となる。
従って、作動流体が凍結するような環境で使用されたとしても薄型化、熱輸送能力、及び耐久性のいずれもが満たされるものとなる。
Thereby, the balance of the self-excited vibration is maintained during the operation of the vapor chamber, and the vibration is stably generated, so that the high heat transfer capability can be exhibited with high reliability. On the other hand, when the vapor chamber is not operating, the condensate is dispersed throughout the vapor chamber and is prevented from concentrating at one location, so that even if the working fluid freezes and expands, the vapor chamber is destroyed. Can be prevented.
Therefore, even if the working fluid is used in an environment where the working fluid freezes, the thickness, the heat transport ability, and the durability are all satisfied.
以上のようなベーパーチャンバーは例えば次のように作製することができる。
第一シート10及び第二シート20の外周形状を有する金属シートに対して、液流路溝14a、液流路溝15a、蒸気流路溝16、蒸気流路溝26、蒸気流路連通溝17、蒸気流路連通溝27をハーフエッチングにより形成する。ここでハーフエッチングとは、エッチングにより厚さ方向を貫通させることなく厚さ方向の途中までエッチングによる材料の除去を行い、溝や窪みを形成することである。
The above vapor chamber can be manufactured, for example, as follows.
The
次いで、第一シート10及び第二シート20の内面10a、内面20aを向かい合わせるように重ね、位置決め手段としての穴13a、穴23aを用いて位置決めし、仮止めを行う。仮止めの方法は特に限定されることはないが、抵抗溶接、超音波溶接、及び接着剤による接着等を挙げることができる。
そして仮止め後に拡散接合を行い恒久的に第一シート10と第二シート20とを接合する。なお、拡散接合の代わりにろう付けにより接合してもよい。
Next, the
Then, diffusion bonding is performed after the temporary fixing, and the
接合の後、形成された注入流路5から真空引きを行い、密閉空間2を減圧する。その後、減圧された密閉空間2に対して注入流路5から作動流体を注入して密閉空間2に作動流体が入れられる。そして注入部12、注入部22に対してレーザーによる溶融を利用したり、かしめたりして注入流路5を閉鎖する。これにより密閉空間2の内側に作動流体が安定的に保持される。
After the joining, a vacuum is drawn from the
次にベーパーチャンバー1が作動したときの作用について説明する。図16には電子機器の一形態である携帯型端末40の内側にベーパーチャンバー1が配置された状態を模式的に表した。ここではベーパーチャンバー1は携帯型端末40の筐体41の内側に配置されているため点線で表している。このような携帯型端末40は、各種電子部品を内包する筐体41、及び、筐体41の開口部を通して外部に画像が見えるように露出したディスプレイユニット42を備えて構成されている。そしてこれら電子部品の1つとしてのベーパーチャンバー1により冷却すべき電子部品30が、筐体41内に配置されている。
Next, the operation when the
ベーパーチャンバー1は携帯型端末等の筐体内に設置され、CPU等の冷却すべき対象物である電子部品30に取り付けられる。電子部品30はベーパーチャンバー1の外面10b又は外面20bに直接、又は、熱伝導性の高い粘着剤、シート、テープ等を介して取り付けられる。
ここで、ベーパーチャンバー1は、その外面10b、外面20bのうち、ベーパーチャンバー1を平面視したときに、図15に示した対称軸であるXV−XV上のいずれかに重なるように電子部品30が配置されるように取り付けられることが好ましい。より好ましくは、このときに電子部品30に関してもXV−XVが対称軸になるように配置することである(図17参照)。これにより、熱源の位置に対して蒸気流路4が対称となり、ベーパーチャンバーの作動時には自励振動のバランスが保たれ、振動が安定するため高い熱輸送能力を発揮できる。
The
Here, when the
図17には作動流体の挙動を説明する図を表した。説明のし易さのため、この図では第二シート20は省略し、第一シート10の内面10aが見えるように表示している。
電子部品30が発熱すると、その熱が第一シート10内を熱伝導により伝わり、密閉空間2内における電子部品30に近い位置に存在する凝縮液が熱を受ける。この熱を受けた凝縮液は熱を吸収し蒸発し気化する。これにより電子部品30が冷却される。
FIG. 17 is a diagram illustrating the behavior of the working fluid. For ease of explanation, the
When the
気化した作動流体は蒸気となって、蒸気流路4で自励振動を起こし、図17に実線の直線矢印で示したように蒸気流路4内を振動するように移動する。より詳しくは内側液流路部15、内側流路部25が延びる方向に平行である蒸気流路溝16、蒸気流路溝26により形成された蒸気流路4で作動流体が振動するように移動する。当該移動の際に順次第一シート10及び第二シート20に熱を奪われながら冷却される。蒸気から熱を奪った第一シート10及び第二シート20はその外面10b、外面20bに接触した携帯型端末装置の筐体等に熱を伝え、最終的に熱は外気に放出される。そして、蒸気流路4を移動しつつ熱を奪われた作動流体は凝縮して液化する。従って蒸気流路4では凝縮液も存在し、蒸気流路4では蒸気と凝縮液とが交互に存在する状態で自励振動が行われる。
The vaporized working fluid turns into steam, generates self-excited vibration in the
蒸気流路4に生じた凝縮液の一部は、液連通開口部等から凝縮液流路3に移動する。本形態の凝縮液流路3は液連通開口部14c、液連通開口部15cを備えているので、凝縮液はこの液連通開口部14c、液連通開口部15cを通って複数の凝縮液流路3に分配される。
Part of the condensate generated in the
凝縮液流路3に入った凝縮液は、凝縮液流路による毛管力により、図17に点線の直線矢印で表したように熱源である電子部品30に近づくように移動する。そして再度熱源である電子部品30からの熱により気化して上記を繰り返す。
The condensed liquid that has entered the condensed
以上のように、ベーパーチャンバー1によれば、蒸気流路において自励振動により、及び、凝縮液流路において高い毛管力で、作動流体の移動が円滑で良好になり、熱輸送量を高めることができる。このとき、各流路が対称軸であるXV−XVに対して対称な構造とされているため、ベーパーチャンバーの作動時には自励振動のバランスが保たれ、自励振動が安定するため、高い熱輸送能力をより確実に発揮できる。
As described above, according to the
図18には、第二の形態のベーパーチャンバー101を説明する図を示した。図18(a)は、第二シート120を内面20a側から見た図を表した。図18(b)は、図15と同様、第一シート10と第二シート120とが組み合わされたベーパーチャンバー101の内側を透視して表し、その密閉空間102(すなわち蒸気流路及び凝縮液流路が形成された領域)を実線で示した図である。
FIG. 18 is a diagram illustrating a
ベーパーチャンバー101では、その第二シート120の外周液流路部24のうち、注入溝22aが設けられた部位のちょうど反対側の位置に溝122aが形成されている。この溝122aは、注入溝22aが外周液流路部24に交差している部分における形状と同じとされている。
In the
これにより、ベーパーチャンバー101は、上記ベーパーチャンバー1と同様、接合された部位により囲まれた密閉空間102内、すなわち、凝縮液流路3及び蒸気流路4が具備された領域の範囲内を考えたときに、具備される形状が、内側液流路部15、内側液流路部25が形成する凝縮液流路3が延びる方向に平行である軸を対称軸(図18(b)のXV−XV)とした対称形とされている。
これに加えて、ベーパーチャンバー101は、接合された部位により囲まれた密閉空間102内、すなわち、凝縮液流路3及び蒸気流路4が具備された領域の範囲内を考えたときに、具備される形状が、内側液流路部15、内側液流路部25が形成する凝縮液流路3が延びる方向に直交する軸を対称軸(図18(b)のXVIII−XVIII)とした対称形ともされている。
Thus, like the
In addition to this, the
これにより、上記ベーパーチャンバー1で説明した効果に加えて、ベーパーチャンバー101の密閉空間102に具備される流路の構造における対称性がさらに高まり、ベーパーチャンバーの非作動時の凝縮液の分散性が高くなり、一箇所に集中することが防止されるので、作動流体が凍結して膨張してもベーパーチャンバーの破壊がより確実に防止される。
従って、作動流体が凍結するような環境で使用されたとしても薄型化、熱輸送能力、及び耐久性のいずれもが満たされるものとなる。
Thereby, in addition to the effect described in the
Therefore, even if the working fluid is used in an environment where the working fluid freezes, the thickness, the heat transport ability, and the durability are all satisfied.
図19には、第二の形態のベーパーチャンバー101の変形例101’を説明する図を示した。図19(a)は、第二シート120’を内面20a側から見た図を表した。図19(b)は、図18(b)と同様、第一シート110と第二シート120’とが組み合わされたベーパーチャンバー101’の内側を透視して表し、その密閉空間102’(すなわち蒸気流路及び凝縮液流路が形成された領域)を実線で示した図である。
FIG. 19 is a diagram illustrating a modified example 101 ′ of the
ベーパーチャンバー101’では、注入流路5を形成する第一シート110の注入部12及び第二シート120’の注入部22が2か所に設けられている。具体的には、このような注入部12、注入部22がちょうど反対の位置になるように(本形態ではx方向の両端側のそれぞれに)設けられている。
In the vapor chamber 101 ', an
これにより、ベーパーチャンバー101’でも、上記ベーパーチャンバー101と同様に、その密閉空間内の構造が対称軸XV−XV、XVIII−XVIIIに対して対称形となるため対称性が高められ、ベーパーチャンバー101と同様の効果を有するものとなる。ただし、この例では、作動流体が密閉空間2に封入されたあと、両方の注入流路5が閉塞する必要がある。
As a result, in the
図20には第三の形態のベーパーチャンバー201を説明するための図を示した。図20(a)は、第一シート210と第二シート220とが組み合わされたベーパーチャンバー201の内側を透視して表し、その密閉空間202(すなわち蒸気流路及び凝縮液流路が形成された領域)を実線で示した図である。図20(b)は、図20(a)に示したXXb−XXbによる切断面の一部を拡大して示した図である。
FIG. 20 shows a diagram for explaining the
ベーパーチャンバー201では、第一シート210の蒸気流路溝16の底部に柱用突起218、及び、第二シート220の蒸気流路溝26の底部に柱用突起228が配置されている。柱用突起218、228は、蒸気流路溝16、26が延びる方向に間隔を有して複数配置され、本形態ではその平面視形状(図20(a)の視点からの形状)は楕円形である。
このような柱用突起218、228を有する第一シート210及び第二シート220を重ね合せて接合することでベーパーチャンバー201としたときに、図20(b)からわかるように柱用突起218と柱用突起228も接合されて1つの柱となる。これによりこの柱が蒸気流路4を高さ方向に支持する柱として機能し、製造時、使用時、凍結時等におけるベーパーチャンバーの破壊や変形を防止することが可能となる。
In the
When the first sheet 210 and the
本形態で柱用突起218、228の平面視形状は楕円形状であるが、これに限定されることはなく、円形、三角形、四角形、その他の多角形、翼形状等など他の形状とすることもできる。かかる形状は、流路抵抗が小さいこと及び作製しやすさの観点から設計することが可能である。
また、本形態では上下の柱用突起の大きさを同一としているが、異なっていても良い。大きさが異なっている場合、接合時の位置ズレの影響を小さくすることが可能となる。
さらに、本形態では1つの蒸気流路用溝に対して間隔有して複数の柱用突起を配置したが、1つの連続した柱用の突条であってもよい。
In the present embodiment, the
In the present embodiment, the sizes of the upper and lower pillar projections are the same, but may be different. When the sizes are different, it is possible to reduce the influence of positional deviation at the time of joining.
Further, in the present embodiment, a plurality of pillar projections are arranged at an interval with respect to one steam flow channel groove, but may be one continuous pillar ridge.
図21は、第四の形態のベーパーチャンバー301を説明する図である。図21は、第一シート310と第二シート320とが組み合わされたベーパーチャンバー301の内側を透視して表し、その密閉空間302(すなわち蒸気流路及び凝縮液流路が形成された領域)を実線で示した図である。
FIG. 21 is a diagram illustrating a
本形態のベーパーチャンバー301では、中央に具備される内側液流路部15’、内側液流路部25’が、他の内側液流路部15、内側液流路部25よりも長手方向に延び、その両端部が外周液流路部14、外周液流路部24にまで達している。これにより、図21からわかるように、ベーパーチャンバー301は蒸気流路4において、太い点線で示した両端が連通した2つの流路4L1が形成される。このような形態によっても、蒸気流路4において作動流体が自励振動して熱輸送能力を高めることができる。
In the
図22〜図29は、第五の形態のベーパーチャンバー401を説明する図である。図22はベーパーチャンバー401の外観斜視図、図23はベーパーチャンバー401の分解斜視図である。
FIGS. 22 to 29 are diagrams illustrating a
ベーパーチャンバー401は、図22、図23からわかるように第一シート410、第二シート420、及び、第三シート430を有している。そして、この第一シート410、第二シート420、及び、第三シート430が重ねられて接合(拡散接合、ろう付け等)されていることにより、第一シート410と第二シート420との間で、第一シート410、第二シート420、及び第三シート430に囲まれる密閉空間402が形成され(図27参照)、この密閉空間402に作動流体が封入されている。
The
本形態で第一シート410は全体としてシート状の部材である。第一シート410は表裏とも平坦な面により構成されており、内面410a、該内面410aとは反対側となる外面410b、及び、内面410aと外面410bとを渡して厚さを形成する側面410cを備える。
In the present embodiment, the
また第一シート410は本体411及び注入部412を備えている。本体411は作動流体が移動する密閉空間を形成するシート状の部位であり、本形態では平面視で角が円弧(いわゆるR)にされた長方形である。
注入部412は第一シート410、第二シート420、及び、第三シート430により形成された密閉空間に対して作動流体を注入する部位であり、本形態では本体411の平面視長方形である一辺から突出する平面視四角形のシート状である。本形態では第一シート410の注入部412は内面410a側も外面410b側も平坦面とされている。
The
The
第一シート410を構成する材料は特に限定されることはないが、単一の材料であってもよく、複数の異種の材料が積層されてなる複合材料(「クラッド材」と呼ばれる圧延接合材料や、めっきで積層した材料)であってもよい。
単一の材料である場合には熱伝導率が高い金属であることが好ましい。これには例えば銅、銅合金を挙げることができる。特に銅、及び、銅合金を用いることにより、熱輸送能力の向上を図りつつ、エッチング及び拡散接合によるベーパーチャンバーの作製がしやすいものとなる。
また、複合材料の場合には、例えば内面410a側に熱電導率が高く、作動流体に反応しない材料、外面410b側に強度が高い材料のものを適用することができる。これには例えば内面側が銅、外面側がステンレス鋼である複合材料、又は、内面側が銅、外面側が銅合金である複合材料を挙げることができる。これによれば熱性能の高く維持しつつ、変形や破壊等の強度を確保することが可能となる。
The material forming the
In the case of a single material, it is preferable that the metal be a metal having a high thermal conductivity. This includes, for example, copper and copper alloy. In particular, by using copper and a copper alloy, it becomes easy to produce a vapor chamber by etching and diffusion bonding while improving the heat transport ability.
In the case of a composite material, for example, a material having a high thermal conductivity on the
本形態で第二シート420は全体としてシート状の部材である。第二シート420は表裏とも平坦な面により構成されており、内面420a、該内面420aとは反対側となる外面420b、及び、内面420aと外面420bとを渡して厚さを形成する側面420cを備える。そして第二シート420も本体421及び注入部422を有している。
第二シート420は第一シート410と同様に考えることができる。ただし、第一シート410と第二シート420とは必ずしも同じ材料、同じ形態である必要はなく、異なるように構成してもよい。
In the present embodiment, the
The
本形態で第三シート430は、第一シート410と第二シート420との間に挟まれて重ねられるシートであり、本体431に作動流体が移動するための構造が形成されている。図24には第三シート430を平面視した図を表した。図24(a)は第二シート420に重ねられる面の図、図24(b)は第一シート410に重ねられる面の図である。また図25には図24(a)にXXV−XXVで示した線に沿った切断面、図26には図24(a)にXXVI−XXVIで示した線に沿った切断面をそれぞれ示した。
In the present embodiment, the
第三シート430は本体431及び注入部432を備えている。本体431は作動流体が移動する密閉空間を形成するシート状の部位であり、本形態では平面視で角が円弧(いわゆるR)にされた長方形である。
注入部432は第一シート410、第二シート420、及び、第三シート430により形成された密閉空間に対して作動流体を注入する部位であり、本形態では本体431の平面視長方形である一辺から突出する平面視四角形のシート状である。注入部432には、第一シート410に重なる面側に注入溝432aが形成されている。注入溝432aは上記した注入溝22aと同様に考えることができる。
The
The
本体431は、外周接合部433、外周液流路部434、内側液流路部435、蒸気流路スリット436、及び、蒸気流路連通溝437が具備されている。
The
外周接合部433は、本体431の外周に沿って形成された部位である。そして外周接合部433のうち一方の面が第一シート410の面に重なって接合(拡散接合、ろう付け等)され、他方の面が第二シート420の面に重なって接合(拡散接合、ろう付け等)される。これにより、第一シート410、第二シート420、及び、第三シート430に囲まれた密閉空間402が形成され、ここに作動流体が封入される。
外周接合部433は上記した外周接合部13と同様に考えることができる。
The outer peripheral joint 433 is a portion formed along the outer periphery of the
The outer peripheral joint 433 can be considered in the same manner as the outer peripheral joint 13 described above.
また、本体431の外周接合部433のうち、本体431の四隅には厚さ方向(z方向)に貫通する穴433aが設けられている。この穴433aは第一シート410、及び、第二シート420との重ね合せの際の位置決め手段として機能する。
外周液流路部434は、液流路部として機能し、作動流体が凝縮して液化した際に通る流路である凝縮液流路3の一部を構成する部位である。外周液流路部434は本体431のうち外周接合部433の内側に沿って形成され、密閉空間402の外周に沿って環状となるように設けられている。そして外周液流路部434のうち、第二シート420に対向する側の面には液流路溝434aが形成されている。
外周液流路部434、及び、ここに具備される液流路溝434aは上記した外周液流路部14、及び、液流路溝14aと同様に考えることができる。
The outer peripheral
The outer
内側液流路部435も液流路部として機能し、作動流体が凝縮して液化した際に通る凝縮液流路3の一部を構成する部位である。内側液流路部435は本体431のうち、環状である外周液流路部434の環の内側に形成されている。本形態の内側液流路部435は、本体431の平面視長方形で長辺に平行な方向(x方向)に一直線に延びる棒状の部位であり、複数(本形態では3つ)の内側液流路部435が同短辺に平行な方向(y方向)に間隔を有して配列され、蒸気流路スリット436の間に配置されている。
The
内側液流路部435のうち、第二シート420に対向する側の面には、内側液流路部435が延びる方向に平行な一直線状の溝である液流路溝435aが形成されている。内側液流路部435及び液流路溝435aは、上記した内側液流路部15及び液流路溝15aと同様に考えることができる。
A
蒸気流路スリット436は、蒸気状及び凝縮液状の作動流体が自励振動する部位で、蒸気流路4を構成するスリットである。蒸気流路スリット436は本体431のうち、環状である外周液流路部434の環の内側に形成された一直線状のスリットにより構成されている。詳しくは本形態の蒸気流路スリット436は、隣り合う内側液流路部435の間、及び、外周液流路部434と内側液流路部435との間に形成され、本体431の平面視長方形で長辺に平行な方向(x方向)に延びたスリットである。従って蒸気流路スリット436は第三シート430の厚さ方向(z方向)に貫通している。
そして、複数(本形態では4つ)の蒸気流路スリット436が同短辺に平行な方向(y方向)に配列されている。従って、図25からわかるように第三シート430は、y方向において、外周液流路部434及び内側液流路部435と蒸気流路スリット436とが交互に繰り返された形状を備えている。
The steam flow path slit 436 is a part of the
A plurality of (four in this embodiment) steam flow channel slits 436 are arranged in a direction (y direction) parallel to the short side. Therefore, as can be seen from FIG. 25, the
このような蒸気流路スリット436は、上記した蒸気流路溝16と蒸気流路溝26とが組み合わされて形成される蒸気流路4の態様と同様に考えることができる。
Such a steam passage slit 436 can be considered in the same manner as the above-described embodiment of the
本形態では蒸気流路スリット436の断面形状は楕円の弧の一部同士が重なるようにして形成された形状で、厚さ方向中央が突出する形であるが、これに限らず正方形、長方形、台形等の四角形、三角形、半円形等のように他の形態であってもよい。 In the present embodiment, the cross-sectional shape of the steam passage slit 436 is a shape formed by overlapping part of the elliptical arcs, and the center in the thickness direction protrudes. Other forms such as a quadrangle such as a trapezoid, a triangle, a semicircle, and the like may be used.
蒸気流路連通溝437は、複数の蒸気流路スリット436を連通させる流路を形成する溝である。これにより、内側液流路部435が延びる方向における蒸気流路で生じる作動流体の自励振動のバランスを取ることができる。
また、これにより蒸気流路にある作動流体の均等化が図られたり、蒸気がより広い範囲に運ばれ、多くの液流路溝434a、435aによる凝縮液流路を効率よく利用できるようになったりもする。
The steam flow
In addition, this makes it possible to equalize the working fluid in the steam flow path, to carry the steam to a wider range, and to efficiently use the condensed liquid flow path by the many
また、本形態では蒸気流路連通溝437により複数の内側液流路部435を連結するとともに、これを外周液流路部434に接続している。これにより第三シート430が一体のものとなる。ただし、このように第三シート430を一体にする手段はこれに限らず、他の手段であってもよい。例えば、蒸気流路スリット436を横切るように配置され、内側液流路部435を連結するとともにこれを外周液流路部434に接続する片が別途設けられてもよい。
In the present embodiment, the plurality of inner
本形態の蒸気流路連通溝437は、内側液流路部435が延びる方向の両端部及び蒸気流路スリット436が延びる方向の両端部と、外周液流路部434との間に形成されている。蒸気流路連通溝437は、隣り合う蒸気流路スリット436を連通させることができればよく、その形状は特に限定されることはないが、上記した蒸気流路連通溝17と蒸気流路連通溝27とを重ねて形成された流路と同様に考えることができる。
なお、本形態では注入溝432aを塞がないように蒸気流路連通溝437の一部に穴437aが設けられている。
The vapor
In this embodiment, a
以上説明した第三シート430が具備する構成による、ベーパーチャンバー401の密閉空間402に形成される形状の対称性の特徴は、上記した各ベーパーチャンバーの態様と同様に考えることができる。
The feature of the symmetry of the shape formed in the
このような第三シート430は、両面ごとに個別になされるエッチング、両面から同時のエッチング、プレス加工、又は、切削加工などにより作製することが可能である。
Such a
図27〜図29には、第一シート410、第二シート420、及び、第三シート430が組み合わされてベーパーチャンバー401とされたときの構造について説明する図を表した。図27には図22にXXVII−XXVIIで示した線に沿った切断面、図28には図27の一部を拡大した図を表した。また図29には図22にXXIX−XXIXで示した線に沿った切断面を表した。
FIGS. 27 to 29 show diagrams describing the structure when the
図22、及び、図27〜図29よりわかるように、第一シート410、第二シート420、及び、第三シート430が重ねられるように配置され接合されることでベーパーチャンバー401とされている。このとき第一シート410の内面410aと第三シート430の一方の面(液流路溝434a、液流路溝435aが配置されていない側の面)とが向かい合うように配置され、第二シート420の内面420aと第三シート430の他方の面(液流路溝434a、液流路溝435aが配置された側の面)とが向かい合うように重ねられる。同様にして各シートの注入部412、422、432も重ねられる。
As can be seen from FIG. 22 and FIGS. 27 to 29, the
これにより、第一シート410と第二シート420との間には、第一シート410、第二シート420、及び、第三シート430で囲まれる密閉空間402が形成される。そしてここには凝縮液流路3、及び、蒸気流路4が形成される。これら密閉空間402内における凝縮液流路3及び蒸気流路4の形態については、上記したベーパーチャンバーと同様の考え方を適用することができる。
Thereby, a
1、101、201、301、401 ベーパーチャンバー
2、102、202、302、402 密閉空間
3 凝縮液流路
4 蒸気流路
10、110、210、310、410 第一シート
10a 内面
10b 外面
10c 側面
11、 本体
12 注入部
13 外周接合部
14 外周液流路部
14a 液流路溝
14c 液連通開口部
15 内側液流路部
15a 液流路溝
15c 液連通開口部
16 蒸気流路溝
17 蒸気流路連通溝
20、120、220、320、420 第二シート
20a 内面
20b 外面
20c 側面
21 本体
22 注入部
23 外周接合部
24 外周液流路部
25 内側液流路部
26 蒸気流路溝
27 蒸気流路連通溝
430 第三シート
436 蒸気流路スリット
1, 101, 201, 301, 401
Claims (7)
前記密閉空間には、前記作動流体が凝縮液の状態で移動する流路である凝縮液流路と、前記凝縮液流路より流路断面積が大きく、前記作動流体が蒸気及び凝縮液の状態で自励振動する蒸気流路と、が備えられており、
前記凝縮液流路は、2つの前記蒸気流路間に複数の一直線状の前記凝縮液流路が配置されてなり、
複数の前記蒸気流路は連通しており、
前記蒸気流路及び前記凝縮液流路が配置された領域内の構造が、前記一直線状に配置された凝縮液流路に平行な線を軸として、対称形となるように構成されている、ベーパーチャンバー。 A sealed chamber is formed between the plurality of sheets, and a vapor chamber in which a working fluid is sealed in the sealed space,
In the closed space, a condensed liquid flow path, which is a flow path in which the working fluid moves in a condensed liquid state, and a flow path cross-sectional area larger than the condensed liquid flow path, and the working fluid is in a state of vapor and condensed liquid. And a steam flow path that self-oscillates at
The condensate flow path has a plurality of linear condensate flow paths arranged between two vapor flow paths,
The plurality of steam channels are in communication,
The structure in the region where the vapor flow path and the condensate flow path are arranged is configured to be symmetrical with respect to an axis parallel to the condensate flow path arranged in a straight line, Vapor chamber.
前記筐体の内側に配置された電子部品と、
前記電子部品に対して直接又は他の部材を介して接触して配置された請求項1乃至5のいずれかに記載されたベーパーチャンバーと、を備える、電子機器。 A housing;
Electronic components arranged inside the housing,
An electronic apparatus comprising: the vapor chamber according to claim 1, which is disposed in contact with the electronic component directly or via another member.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018128246A JP7099094B2 (en) | 2018-07-05 | 2018-07-05 | Vapor chamber and electronic equipment |
JP2022104433A JP7459897B2 (en) | 2018-07-05 | 2022-06-29 | Vapor chamber and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018128246A JP7099094B2 (en) | 2018-07-05 | 2018-07-05 | Vapor chamber and electronic equipment |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022104433A Division JP7459897B2 (en) | 2018-07-05 | 2022-06-29 | Vapor chamber and electronic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020008202A true JP2020008202A (en) | 2020-01-16 |
JP7099094B2 JP7099094B2 (en) | 2022-07-12 |
Family
ID=69151057
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018128246A Active JP7099094B2 (en) | 2018-07-05 | 2018-07-05 | Vapor chamber and electronic equipment |
JP2022104433A Active JP7459897B2 (en) | 2018-07-05 | 2022-06-29 | Vapor chamber and electronic equipment |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022104433A Active JP7459897B2 (en) | 2018-07-05 | 2022-06-29 | Vapor chamber and electronic equipment |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7099094B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220279678A1 (en) * | 2019-09-06 | 2022-09-01 | Dai Nippon Printing Co., Ltd. | Vapor chamber, electronic device, sheet for vapor chamber, sheet where multiple intermediates for vapor chamber are imposed, roll of wound sheet where multiple intermediates for vapor chamber are imposed, and intermediate for vapor chamber |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53145471U (en) * | 1977-04-19 | 1978-11-16 | ||
JP2002081874A (en) * | 2000-09-11 | 2002-03-22 | Canon Inc | Plate type heat pipe and its manufacturing method |
JP2011226686A (en) * | 2010-04-17 | 2011-11-10 | Molex Inc | Heat transporting unit, electronic circuit board, and electronic device |
JP2015121355A (en) * | 2013-12-24 | 2015-07-02 | 東芝ホームテクノ株式会社 | Sheet-type heat pipe |
JP2016188734A (en) * | 2015-03-30 | 2016-11-04 | 株式会社フジクラ | Vapor chamber |
US20170023307A1 (en) * | 2015-07-21 | 2017-01-26 | Chaun-Choung Technology Corp. | Vapor chamber having no gas discharging protrusion and manufacturing method thereof |
WO2017137760A1 (en) * | 2016-02-12 | 2017-08-17 | University Of Bath | Apparatus and method for generating electrical energy |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5652189U (en) * | 1979-09-27 | 1981-05-08 | ||
JPH11183067A (en) * | 1997-12-18 | 1999-07-06 | Fujikura Ltd | Plate-shaped heat pipe |
JP6057952B2 (en) * | 2014-07-09 | 2017-01-11 | 東芝ホームテクノ株式会社 | Sheet type heat pipe |
-
2018
- 2018-07-05 JP JP2018128246A patent/JP7099094B2/en active Active
-
2022
- 2022-06-29 JP JP2022104433A patent/JP7459897B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53145471U (en) * | 1977-04-19 | 1978-11-16 | ||
JP2002081874A (en) * | 2000-09-11 | 2002-03-22 | Canon Inc | Plate type heat pipe and its manufacturing method |
JP2011226686A (en) * | 2010-04-17 | 2011-11-10 | Molex Inc | Heat transporting unit, electronic circuit board, and electronic device |
JP2015121355A (en) * | 2013-12-24 | 2015-07-02 | 東芝ホームテクノ株式会社 | Sheet-type heat pipe |
JP2016188734A (en) * | 2015-03-30 | 2016-11-04 | 株式会社フジクラ | Vapor chamber |
US20170023307A1 (en) * | 2015-07-21 | 2017-01-26 | Chaun-Choung Technology Corp. | Vapor chamber having no gas discharging protrusion and manufacturing method thereof |
WO2017137760A1 (en) * | 2016-02-12 | 2017-08-17 | University Of Bath | Apparatus and method for generating electrical energy |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220279678A1 (en) * | 2019-09-06 | 2022-09-01 | Dai Nippon Printing Co., Ltd. | Vapor chamber, electronic device, sheet for vapor chamber, sheet where multiple intermediates for vapor chamber are imposed, roll of wound sheet where multiple intermediates for vapor chamber are imposed, and intermediate for vapor chamber |
Also Published As
Publication number | Publication date |
---|---|
JP7459897B2 (en) | 2024-04-02 |
JP7099094B2 (en) | 2022-07-12 |
JP2022136093A (en) | 2022-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7464097B2 (en) | Vapor chamber, electronic device, and method for manufacturing vapor chamber | |
WO2019230911A1 (en) | Vapor chamber and electronic device | |
JP2020038051A (en) | Vapor chamber and electronic apparatus | |
JP7155585B2 (en) | Vapor chamber and electronics | |
JP7563514B2 (en) | Vapor chamber, electronic device, and sheet for vapor chamber | |
WO2019088301A1 (en) | Vapor chamber, electronic device, vapor chamber sheet, and methods for manufacturing vapor chamber sheet and vapor chamber | |
JP7069678B2 (en) | Vapor chamber | |
JP7459897B2 (en) | Vapor chamber and electronic equipment | |
JP2024036641A (en) | Vapor chamber and electronic apparatus | |
JP7102718B2 (en) | Vapor chamber | |
JP2019196875A (en) | Vapor chamber and electronic device | |
JP2019124446A (en) | Vapor chamber, electronic apparatus, sheet for vapor chamber, vapor chamber sheet and method for manufacturing vapor chamber | |
JP7567796B2 (en) | Vapor chamber and electronic device | |
JP7200607B2 (en) | Vapor chambers, electronics, and sheets for vapor chambers | |
JP2024063216A (en) | Vapor chamber, electronic device, and sheets for vapor chamber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210525 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220525 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220531 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220613 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7099094 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |