JP2020007291A - Method of producing silodosin synthesis intermediate and method of producing silodosin using the same - Google Patents

Method of producing silodosin synthesis intermediate and method of producing silodosin using the same Download PDF

Info

Publication number
JP2020007291A
JP2020007291A JP2018215238A JP2018215238A JP2020007291A JP 2020007291 A JP2020007291 A JP 2020007291A JP 2018215238 A JP2018215238 A JP 2018215238A JP 2018215238 A JP2018215238 A JP 2018215238A JP 2020007291 A JP2020007291 A JP 2020007291A
Authority
JP
Japan
Prior art keywords
compound represented
formula
preparing
silodosin
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018215238A
Other languages
Japanese (ja)
Other versions
JP7382713B2 (en
JP2020007291A5 (en
Inventor
チュン フンスク
Hun Suk Chung
チュン フンスク
ジン ルングォ
Long Guo Jin
ジン ルングォ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gabi Bio Co Ltd
Original Assignee
Gabi Bio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gabi Bio Co Ltd filed Critical Gabi Bio Co Ltd
Publication of JP2020007291A publication Critical patent/JP2020007291A/en
Publication of JP2020007291A5 publication Critical patent/JP2020007291A5/ja
Application granted granted Critical
Publication of JP7382713B2 publication Critical patent/JP7382713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/24Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with an alkyl or cycloalkyl radical attached to the ring nitrogen atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Epidemiology (AREA)
  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

To provide a method of producing a silodosin synthesis intermediate and a method of producing silodosin using the same, which increase the price competitive power, reduce hazardous materials in production processes, facilitate efficient mass production, and can provide optically pure silodosin with high purity.SOLUTION: The methods of producing the silodosin synthesis intermediate and silodosin include synthesizing 3-(5-(2-((tert-butoxycarbonyl)amino)propyl)-7-cyanoindolin-1-yl)propyl benzoate as an intermediate, mixing it with an organic acid having optical activity, and performing optical resolution.SELECTED DRAWING: None

Description

本発明は、シロドシン合成用中間体の製造方法及びこれを用いたシロドシンの製造方法に関し、より詳しくは、シロドシン合成用中間体の製造方法、及び製造された新規の中間体を使って単純な製造工程で光学的に純粋な高純度のシロドシンを収得することができるシロドシンの製造方法に関する。   TECHNICAL FIELD The present invention relates to a method for producing an intermediate for silodosin synthesis and a method for producing silodosin using the same, and more particularly, to a method for producing an intermediate for silodosin synthesis, and a simple production method using the produced novel intermediate. The present invention relates to a method for producing silodosin capable of obtaining optically pure high-purity silodosin in the process.

シロドシン(Silodosin)は、下記化学式1で表示されるインドリン系化合物であり、化合物名は、1−(3−ヒドロキシプロピル)−5−[(2R)−2−({2−[2−(2,2,2−トリフルオロエトキシ)フェノキシ]エチル}アミノ)プロピル]−7−インドリンカルボキサミドである。   Silodosin is an indoline compound represented by the following chemical formula 1, and the compound name is 1- (3-hydroxypropyl) -5-[(2R) -2-(− 22- [2- (2 , 2,2-trifluoroethoxy) phenoxy] ethyl {amino) propyl] -7-indolinecarboxamide.

Figure 2020007291
Figure 2020007291

シロドシン(Silodosin)は、選択的な尿道平滑筋収縮抑制作用を有しているため、血圧に大きく影響を及ぼさずに尿道内圧を低下させ、α−アドレナリン受容体に選択的に抑制活性を示す。これにより、前立腺肥大症に隋伴する排尿障害治療剤として使われている。   Since silodosin has a selective urethral smooth muscle contraction inhibitory action, it lowers intraurethral pressure without significantly affecting blood pressure, and exhibits an inhibitory activity selectively on α-adrenergic receptors. Thus, it is used as a therapeutic agent for dysuria associated with benign prostatic hyperplasia.

シロドシンの多様な製造方法が知られている。例えば、特許第2944402号明細書には、下記メカニズム1によってシロドシンを製造する工程が開示されている。   Various methods for producing silodosin are known. For example, Japanese Patent No. 2944402 discloses a process for producing silodosin by the following mechanism 1.

Figure 2020007291
Figure 2020007291

前記メカニズム1において、Bocは、tert−ブトキシカルボニル基を示す。   In the above mechanism 1, Boc represents a tert-butoxycarbonyl group.

前記メカニズム1による製造方法は、収率低下及び原価上昇に影響を及ぼす二つの段階を含む。まず、光学分割を進行する段階であり、化合物(2)及び他の重要中間体である2−(2−(2,2,2−トリフルオロエトキシ)フェノキシ)エチルメタンスルホネートをNアルキル化反応した後、(S)−(+)−マンデル酸を使って光学分割を進行するため、高価な2−(2−(2,2,2−トリフルオロエトキシ)フェノキシ)エチルメタンスルホネートの50%以上が、光学分割段階でそのまま捨てられることになる。他の段階は、インドリンのN1位置に3−ヒドロキシプロピル基を導入する段階であり、tert−ブチルジメチルシリル(TBDMS)で保護された3−ヒドロキシプロピルp−ニトロベンゼンスルホネートを使っている。TBDMSは、高価でありながらも反応性が低く、収率低下の原因となる。また、カラムクロマトグラフィーによって精製を進行するため、工業的に用いるのには限界がある。   The manufacturing method according to the mechanism 1 includes two steps that affect the yield reduction and the cost increase. First, in the stage of optical resolution, compound (2) and another important intermediate, 2- (2- (2,2,2-trifluoroethoxy) phenoxy) ethyl methanesulfonate, were subjected to N-alkylation reaction. After that, since optical resolution proceeds using (S)-(+)-mandelic acid, 50% or more of expensive 2- (2- (2,2,2-trifluoroethoxy) phenoxy) ethyl methanesulfonate is used. Is discarded as it is in the optical division stage. Another step is to introduce a 3-hydroxypropyl group at the N1 position of the indoline, using tert-butyldimethylsilyl (TBDMS) protected 3-hydroxypropyl p-nitrobenzenesulfonate. TBDMS is expensive but has low reactivity, which causes a decrease in yield. In addition, since purification proceeds by column chromatography, there is a limit to industrial use.

特開2001−199956号公報には、シロドシンの重要な中間体である化合物7(a)を、下記のメカニズム2で合成する工程が開示されている。   JP-A-2001-199956 discloses a process of synthesizing compound 7 (a), which is an important intermediate of silodosin, by the following mechanism 2.

Figure 2020007291
Figure 2020007291

前記メカニズム2において、RはH又は保護基を示す。   In the above mechanism 2, R represents H or a protecting group.

前記メカニズム2による製造方法は、ニトロ基にケトン基を導入する段階で過酸化水素を使うが、これを大量に使用するとき、温度が急速に上昇して爆発が発生することがある。よって、温度を徹底的に管理しなければならず、ともすれば重大な事故が発生することになるため、特別に気を付けなければならない。また、カラムクロマトグラフィーによってのみ精製が可能であるため、大量生産時に困難がある。また、次の段階で、連続的に、酸化白金触媒及び水素の存在下で(R)−2−フェニルグリシノールを用いて非対称還元反応を進行し、パラジウム/カーボン触媒の存在下で水素化反応を行って、化合物(7a)を合成する。この段階では、高価な酸化白金触媒とパラジウム/カーボン触媒を使うが、文献によると、収率が32.5%と非常に低く、また、高圧の水素気体を使うため爆発の危険があり、一般的な反応器を使うことができないなどの欠点がある。   In the production method using the mechanism 2, hydrogen peroxide is used at the stage of introducing a ketone group to a nitro group. However, when a large amount of hydrogen peroxide is used, the temperature may rise rapidly and an explosion may occur. Therefore, the temperature must be controlled thoroughly, and serious accidents may occur, so special care must be taken. Further, since purification can be performed only by column chromatography, there is a difficulty in mass production. Further, in the next stage, the asymmetric reduction reaction proceeds continuously using (R) -2-phenylglycinol in the presence of a platinum oxide catalyst and hydrogen, and the hydrogenation reaction proceeds in the presence of a palladium / carbon catalyst. To synthesize the compound (7a). At this stage, an expensive platinum oxide catalyst and a palladium / carbon catalyst are used, but according to the literature, the yield is extremely low at 32.5%, and there is a danger of explosion due to the use of high-pressure hydrogen gas. Disadvantages include the inability to use a conventional reactor.

特許第5049013号明細書には、前記メカニズム2で合成した化合物(7a)を使って、下記メカニズム3で示した製造過程によって、シロドシンを合成する工程が開示されている。   Japanese Patent No. 5049013 discloses a process for synthesizing silodosin by using the compound (7a) synthesized by the above mechanism 2 and by the production process shown by the following mechanism 3.

Figure 2020007291
Figure 2020007291

前記メカニズム3による製造方法は、化合物(7a)を2−(2−(2,2,2−トリフルオロエトキシ)フェノキシ)エチルメタンスルホネートと反応させることによって生成する下記化学式Aで表示されるジアルキル副生成物を除去するために、シュウ酸で塩化させて精製し、これを脱保護及び加水分解してシロドシンを製造する方法である。   The production method according to the above-mentioned mechanism 3 is a method for producing a dialkyl secondary compound represented by the following chemical formula A, which is produced by reacting compound (7a) with 2- (2- (2,2,2-trifluoroethoxy) phenoxy) ethylmethanesulfonate. In this method, the product is purified by salification with oxalic acid to remove the product, and then deprotection and hydrolysis to produce silodosin.

Figure 2020007291
Figure 2020007291

しかし、この方法は、上記化学式Aで表示されるジアルキル副生成物を除去するためにシュウ酸を使って精製しているが、シュウ酸は光学活性がなく、光学分割する作用がないため、鏡像体過剰率の高い中間体である化合物(7a)を必ず使わなければならない。また、加水分解段階で過酸化水素を使うが、過酸化水素は、大量使用時、温度が急速に上昇して爆発が発生することがあるため、温度を徹底的に管理しなければならず、ともすれば重大な事故が発生することになるため、特別に気を付けなければならないなどの問題点がある。   However, in this method, oxalic acid is used for purification to remove the dialkyl by-product represented by the above formula A. However, oxalic acid has no optical activity and has no effect of optical resolution, and therefore, is not a mirror image. The compound (7a), which is an intermediate having a high body excess, must be used. In addition, hydrogen peroxide is used in the hydrolysis stage, but when hydrogen peroxide is used in large quantities, the temperature may rise rapidly and an explosion may occur, so the temperature must be thoroughly controlled, In such a case, a serious accident may occur, so there is a problem that special care must be taken.

したがって、価格競争力を高め、光学的に純粋なシロドシンを製造し、さらに製造過程で穏やかな反応条件で危険要素を減らすことによって大量生産が可能な、改善されたシロドシンの製造方法の開発が要求されている。   Therefore, there is a need for the development of improved methods for producing silodosin that can be mass-produced by increasing price competitiveness, producing optically pure silodosin, and reducing hazards under mild reaction conditions during the production process. Have been.

特許第2944402号明細書Japanese Patent No. 2944402 特開2001−199956号公報JP 2001-199956 A 特許第5049013号明細書Patent No. 5049013

本発明の目的は、価格競争力を高め、製造過程の危険要素を減らし、効率的な大量生産を容易にし、光学的に純粋な高純度のシロドシンを得ることができるシロドシンの製造方法に使用できるシロドシン合成用中間体の製造方法を提供することである。   An object of the present invention can be used in a method for producing silodosin, which can increase price competitiveness, reduce risk factors in the production process, facilitate efficient mass production, and obtain optically pure high-purity silodosin. An object of the present invention is to provide a method for producing an intermediate for silodosin synthesis.

本発明の目的は、価格競争力を高め、製造過程の危険要素を減らし、効率的な大量生産を容易にし、光学的に純粋な高純度のシロドシンを得ることができるシロドシンの製造方法を提供することである。   An object of the present invention is to provide a method for producing silodosin, which can enhance price competitiveness, reduce risk factors in the production process, facilitate efficient mass production, and obtain optically pure silodosin with high purity. That is.

本発明の一実施例によるシロドシンの合成用中間体の製造方法は、下記化学式2で表示される化合物のN2位置に、tert−ブトキシカルボニル保護基を導入して、下記化学式3で表示される化合物を製造する段階と、下記化学式3で表示される化合物を、強塩基の存在下で加水分解して、下記化学式4で表示される化合物を製造する段階と、下記化学式4で表示される化合物及び下記化学式5で表示される化合物を、塩基及び触媒の存在下でN−アルキル化反応させて、下記化学式6で表示される化合物を製造する段階と、下記化学式6で表示される化合物を脱保護反応させて、下記化学式7で表示される化合物を製造する段階と、下記化学式7で表示される化合物を、光学活性のある有機酸と混合して、光学的に純粋な下記化学式7aで表示される化合物を製造する段階とを含む。   The method for preparing an intermediate for synthesizing silodosin according to an embodiment of the present invention comprises introducing a tert-butoxycarbonyl protecting group at the N2 position of a compound represented by the following Chemical Formula 2 to obtain a compound represented by the following Chemical Formula 3. And hydrolyzing the compound represented by the following formula 3 in the presence of a strong base to produce a compound represented by the following formula 4, and a compound represented by the following formula 4 Reacting the compound represented by the following formula 5 with N-alkylation in the presence of a base and a catalyst to prepare a compound represented by the following formula 6, and deprotecting the compound represented by the following formula 6 Reacting to prepare a compound represented by the following formula 7; and mixing the compound represented by the following formula 7 with an organic acid having optical activity to form an optically pure compound represented by the following formula 7a: And a step of producing a compound represented.

Figure 2020007291
Figure 2020007291

Figure 2020007291
Figure 2020007291

前記化学式5〜7aのそれぞれにおいて、RはH又は保護基であり、前記化学式5において、LGは脱離基(Leaving Group)を示す。 In each of Chemical Formulas 5 to 7a, R 1 is H or a protecting group, and in Chemical Formula 5, LG represents a leaving group.

前記化学式3で表示される化合物を製造する段階において、前記化学式2で表示される化合物を、ジ−tert−ブチルジカーボネートと反応させることができる。   In preparing the compound represented by Formula 3, the compound represented by Formula 2 may be reacted with di-tert-butyl dicarbonate.

前記化学式4で表示される化合物を製造する段階において、前記強塩基は、アルカリ金属水酸化物であってもよい。   In the step of preparing the compound represented by Formula 4, the strong base may be an alkali metal hydroxide.

前記化学式3で表示される化合物を製造する段階、及び前記化学式4で表示される化合物を製造する段階は、単一の容器での連続工程(In−Situ;その場工程)で進行して、前記化学式4で表示される化合物を製造することができる。   The step of preparing the compound represented by Formula 3 and the step of preparing the compound represented by Formula 4 proceed in a continuous process (In-Situ; in-situ process) in a single container. The compound represented by Formula 4 can be prepared.

前記化学式5で表示される化合物を製造する段階で、前記塩基は、アルカリ金属炭酸塩又は有機塩基であってもよい。   In preparing the compound represented by Formula 5, the base may be an alkali metal carbonate or an organic base.

前記化学式5で表示される化合物を製造する段階で、前記触媒は、相転移触媒であってもよい。   In preparing the compound represented by Formula 5, the catalyst may be a phase transfer catalyst.

前記化学式7で表示される化合物を製造する段階は、酸の条件下で脱保護反応することによって行うことができる。   The step of preparing the compound represented by Formula 7 may be performed by performing a deprotection reaction under an acid condition.

前記化学式7aで表示される化合物を製造する段階において、前記有機酸は、酒石酸、マンデル酸、10−カンファースルホン酸及びリンゴ酸からなる群から選択された1種以上であってもよく、上述した鏡像体過剰率(enantiomeric excess:ee)は95%以上かつ99.7%以下であり得る。   In the step of preparing the compound represented by Formula 7a, the organic acid may be at least one selected from the group consisting of tartaric acid, mandelic acid, 10-camphorsulfonic acid, and malic acid. The enantiomeric excess (ee) can be greater than or equal to 95% and less than or equal to 99.7%.

前記化学式6で表示される化合物を製造する段階、前記化学式7で表示される化合物を製造する段階及び前記化学式7aで表示される化合物を製造する段階は、単一の容器での連続工程(In−Situ;その場工程)で進行して、前記化学式7aで表示される化合物を製造することができる。   The step of preparing the compound represented by the formula (6), the step of preparing the compound represented by the formula (7), and the step of preparing the compound represented by the formula (7a) include a continuous process (In) in a single container. -Situ; an in-situ process) to produce the compound represented by Formula 7a.

本発明の一実施例によるシロドシンの製造方法は、鏡像体過剰率(ee)が95〜99.7%である化学式7aで表示される化合物を、化学式8で表示される化合物及び無機塩基の存在下でN−アルキル化反応させ、光学活性のある有機酸と混合して、下記化学式9で表示される化合物を製造する段階と、下記化学式9で表示される化合物を強塩基及び酸化剤の存在下で加水分解して、下記化学式1で表示される化合物を製造する段階とを含む。   The method for preparing silodosin according to an embodiment of the present invention includes the steps of: converting the compound represented by Formula 7a having an enantiomeric excess (ee) of 95 to 99.7% from the compound represented by Formula 8 and the presence of an inorganic base; Preparing a compound represented by the following formula 9 by mixing with an optically active organic acid under an N-alkylation reaction under the following conditions; and reacting the compound represented by the following formula 9 with a strong base and an oxidizing agent. Hydrolyzing to produce a compound represented by Formula 1 below.

Figure 2020007291
Figure 2020007291

前記化学式7a及び9のそれぞれにおいて、RはH又は保護基であり、前記化学式8において、LGは脱離基(Leaving Group)を示す。 In each of Formulas 7a and 9, R 1 is H or a protecting group, and in Formula 8, LG represents a leaving group.

前記化学式9で表示される化合物を製造する段階で、前記無機塩基は、アルカリ金属炭酸塩であってもよい。   In the step of preparing the compound represented by Formula 9, the inorganic base may be an alkali metal carbonate.

前記化学式9で表示される化合物を製造する段階において、前記有機酸は、酒石酸、マンデル酸、10−カンファースルホン酸及びリンゴ酸からなる群から選択された1種以上であってもよく、前記製造された化学式9で表示される化合物の鏡像体過剰率(ee)は99.7%以上であり得る。   In the step of preparing the compound represented by Formula 9, the organic acid may be at least one selected from the group consisting of tartaric acid, mandelic acid, 10-camphorsulfonic acid and malic acid. The enantiomeric excess (ee) of the compound represented by Formula 9 may be 99.7% or more.

前記化学式1で表示される化合物を製造する段階で、前記強塩基はアルカリ金属水酸化物であってもよく、前記酸化剤は過炭酸ナトリウムであってもよい。   In preparing the compound represented by Formula 1, the strong base may be an alkali metal hydroxide, and the oxidizing agent may be sodium percarbonate.

本発明の一実施例によるシロドシン合成用中間体の製造方法によると、シロドシン合成用中間体の分離及び精製が容易であり、高圧の水素ガス、高価な酸化白金、パラジウム/カーボンを使うことなく、安全性、効率及び価格競争力を高めることができる。   According to the method for producing an intermediate for silodosin synthesis according to one embodiment of the present invention, separation and purification of the intermediate for silodosin synthesis are easy, without using high-pressure hydrogen gas, expensive platinum oxide, and palladium / carbon, It can increase safety, efficiency and price competitiveness.

本発明の一実施例によるシロドシンの製造方法によると、価格競争力を高め、製造過程の危険要素を減らし、効率的な大量生産を容易にし、光学的に純粋な高純度のシロドシンを得ることができる。   According to the method for producing silodosin according to one embodiment of the present invention, it is possible to increase price competitiveness, reduce risk factors in the production process, facilitate efficient mass production, and obtain optically pure high-purity silodosin. it can.

本発明の一実施例によるシロドシン合成用中間体の製造方法の概略的なフローチャートである。1 is a schematic flowchart of a method for producing an intermediate for synodosin synthesis according to an embodiment of the present invention. 本発明の一実施例によるシロドシンの製造方法の概略的なフローチャートである。1 is a schematic flowchart of a method for producing silodosin according to an embodiment of the present invention.

以上のような本発明の目的、他の目的、特徴及び利点は、添付図面を参照する以下の好適な実施例から容易に理解可能であろう。しかし、本発明は、ここで説明する実施例に限定されず、他の形態に具体化されることもできる。むしろ、ここで紹介する実施例は開示の内容が徹底的で完全になるように、かつ通常の技術者に本発明の思想が充分に伝達されるようにするために提供するものである。   The above and other objects, features, and advantages of the present invention will be easily understood from the following preferred embodiments with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein, but can be embodied in other forms. Rather, the embodiments described are provided so that this disclosure will be thorough and complete, and will allow the ordinary person of ordinary skill to be fully familiar with the teachings of the present invention.

以下では、本発明の一実施例によるシロドシン合成用中間体の製造方法について説明する。   Hereinafter, a method for producing an intermediate for synodosin synthesis according to an embodiment of the present invention will be described.

図1は本発明の一実施例によるシロドシン合成用中間体の製造方法の概略的なフローチャートである。   FIG. 1 is a schematic flowchart of a method for producing an intermediate for synodosin synthesis according to one embodiment of the present invention.

図1を参照すると、本発明の一実施例によるシロドシンの合成用中間体の製造方法は、下記化学式2で表示される化合物のN2位置にtert−ブトキシカルボニル保護基を導入して、下記化学式3で表示される化合物を製造する段階(S100)、下記化学式3で表示される化合物を強塩基の存在下で加水分解して下記化学式4で表示される化合物を製造する段階(S200)、下記化学式4で表示される化合物及び下記化学式5で表示される化合物を、塩基及び触媒の存在下でN−アルキル化反応させて、下記化学式6で表示される化合物を製造する段階(S300)、下記化学式6で表示される化合物を脱保護反応させて、下記化学式7で表示される化合物を製造する段階(S400)、及び下記化学式7で表示される化合物を光学活性のある有機酸と混合して、光学的に純粋な下記化学式7aで表示される化合物を製造する段階(S500)を含む。   Referring to FIG. 1, a method for preparing an intermediate for synthesizing silodosin according to one embodiment of the present invention comprises introducing a tert-butoxycarbonyl protecting group at the N2 position of a compound represented by the following chemical formula 2, and formulating the compound by the following chemical formula 3. Preparing a compound represented by the following formula (S100); hydrolyzing a compound represented by the following formula 3 in the presence of a strong base to produce a compound represented by the following formula 4 (S200); Reacting the compound represented by Formula 4 and the compound represented by Formula 5 with N-alkylation in the presence of a base and a catalyst to produce a compound represented by Formula 6 (S300); Deprotecting the compound of Formula 6 to produce a compound of Formula 7 (S400); Mixed with an organic acid with, including the step of producing a compound represented by optically pure chemical formula 7a (S500).

Figure 2020007291
Figure 2020007291

Figure 2020007291
Figure 2020007291

前記化学式5〜7aのそれぞれにおいて、RはH又は保護基であり、前記化学式5において、LGは脱離基(Leaving Group)を示す。保護基は、アセチル基、ベンゾイル基、ベンジル基、トリメチルシリル基、トリエチルシリル基、又はtert−ブトキシカルボニル基である。脱離基は、ヨード基、臭素基、塩素基、メタンスルホネート基、又はベンゼンスルホネート基である。 In each of Chemical Formulas 5 to 7a, R 1 is H or a protecting group, and in Chemical Formula 5, LG represents a leaving group. The protecting group is an acetyl group, a benzoyl group, a benzyl group, a trimethylsilyl group, a triethylsilyl group, or a tert-butoxycarbonyl group. The leaving group is an iodine group, a bromine group, a chlorine group, a methanesulfonate group, or a benzenesulfonate group.

化学式2で表示される化合物のN2位置にtert−ブトキシカルボニル保護基を導入して、化学式3で表示される化合物を製造する(S100)。化学式3で表示される化合物を製造する段階(S100)は、化学式2で表示される化合物のN2位置にtert−ブトキシカルボニル保護基を導入して、化学式3で表示される化合物を製造する段階であり得る。化学式3で表示される化合物を製造する段階は、化学式2で表示される化合物をジ−tert−ブチルジカーボネートと反応させることができる。例えば、化学式3で表示される化合物を製造する段階は、化学式2で表示される化合物を、ジ−tert−ブチルジカーボネートと反応させて、N2位置にtert−ブトキシカルボニル保護基を導入する段階であり得る。   A compound represented by Formula 3 is prepared by introducing a tert-butoxycarbonyl protecting group at the N2 position of the compound represented by Formula 2 (S100). The step (S100) of preparing the compound represented by Formula 3 is a step of preparing a compound represented by Formula 3 by introducing a tert-butoxycarbonyl protecting group at the N2 position of the compound represented by Formula 2. possible. The step of preparing the compound represented by Formula 3 may include reacting the compound represented by Formula 2 with di-tert-butyl dicarbonate. For example, the step of preparing the compound represented by Formula 3 is a step of reacting the compound represented by Formula 2 with di-tert-butyl dicarbonate to introduce a tert-butoxycarbonyl protecting group at the N2 position. possible.

化学式3で表示される化合物を製造する段階(S100)は、通常の有機溶媒の存在下で遂行することができる。有機溶媒は、例えばクロロホルム、ジクロロメタン、及びエチルアセテートイソプロピルアセテートから選択される単一溶媒又はこれらの混合溶媒を使うことができる。より具体的に、有機溶媒は、ジクロロメタンを使うことができる。   The step (S100) of preparing the compound represented by Formula 3 may be performed in the presence of a general organic solvent. As the organic solvent, for example, a single solvent selected from chloroform, dichloromethane, and ethyl acetate isopropyl acetate, or a mixed solvent thereof can be used. More specifically, dichloromethane can be used as the organic solvent.

化学式3で表示される化合物を強塩基の存在下で加水分解して、化学式4で表示される化合物を製造する(S200)。化学式4で表示される化合物を製造する段階(S200)は、化学式3で表示される化合物を、強塩基の存在下で加水分解して化学式4で表示される化合物を製造する段階であり得る。化学式4で表示される化合物を製造する段階において、強塩基はアルカリ金属水酸化物であってもよい。例えば、化学式4で表示される化合物を製造する段階は、アルカリ金属水酸化物の存在下において化学式3で表示される化合物を加水分解して、アセチル基を除去することによって、化学式4で表示される化合物を製造する段階であり得る。   The compound represented by Formula 3 is hydrolyzed in the presence of a strong base to produce a compound represented by Formula 4 (S200). The step of preparing the compound represented by Formula 4 (S200) may be a step of preparing the compound represented by Formula 4 by hydrolyzing the compound represented by Formula 3 in the presence of a strong base. In preparing the compound represented by Formula 4, the strong base may be an alkali metal hydroxide. For example, the step of preparing the compound represented by Formula 4 is performed by hydrolyzing the compound represented by Formula 3 in the presence of an alkali metal hydroxide to remove an acetyl group. To produce a compound.

アルカリ金属水酸化物は、例えば水酸化ナトリウム、水酸化カリウム、又はこれらの混合物であり得る。ここで、反応溶媒としては、水、水溶性有機溶媒、又はこれらの混合溶媒を使うことができる。水溶性有機溶媒は、例えばメタノール、エタノール、プロパノール、イソブタノールなどの炭素数1〜3のアルコール類、アセトン、ジメチルスルホキシド、及びアセットニトリルなどからなる群から選択される1種以上であり得る。例えば、水溶性有機溶媒としては、メタノール及び水の混合溶媒、又はエタノール及び水の混合溶媒を使うことができる。   The alkali metal hydroxide can be, for example, sodium hydroxide, potassium hydroxide, or a mixture thereof. Here, as the reaction solvent, water, a water-soluble organic solvent, or a mixed solvent thereof can be used. The water-soluble organic solvent may be at least one selected from the group consisting of alcohols having 1 to 3 carbon atoms such as methanol, ethanol, propanol, and isobutanol, acetone, dimethyl sulfoxide, and asset nitrile. For example, a mixed solvent of methanol and water or a mixed solvent of ethanol and water can be used as the water-soluble organic solvent.

化学式3で表示される化合物を製造する段階(S100)及び化学式4で表示される化合物を製造する段階(S200)は、単一の容器での連続工程(In−Situ;その場工程)で進行して、化学式4で表示される化合物を製造する段階であり得る。   The step of preparing the compound represented by Formula 3 (S100) and the step of preparing the compound represented by Formula 4 (S200) are performed in a continuous process (In-Situ; in-situ process) in a single container. And preparing a compound represented by Formula 4.

化学式4で表示される化合物及び化学式5で表示される化合物を、塩基及び触媒の存在下でN−アルキル化反応させて、化学式6で表示される化合物を製造する(S300)。   The compound represented by Formula 4 and the compound represented by Formula 5 are N-alkylated in the presence of a base and a catalyst to prepare a compound represented by Formula 6 (S300).

化学式6で表示される化合物を製造する段階(S300)において、塩基は、例えばアルカリ金属炭酸塩又は有機塩基であり得る。アルカリ金属炭酸塩は、例えば炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム及び炭酸水素カリウムの少なくとも1種を含むことができる。有機塩基は、例えばトリエチルアミン、ピリジン、メチルアミン、及びエチルアミンの少なくとも1種を含むことができる。   In the step (S300) of preparing the compound represented by Formula 6, the base may be, for example, an alkali metal carbonate or an organic base. The alkali metal carbonate can include, for example, at least one of sodium carbonate, potassium carbonate, sodium bicarbonate, and potassium bicarbonate. The organic base can include, for example, at least one of triethylamine, pyridine, methylamine, and ethylamine.

化学式6で表示される化合物を製造する段階(S300)において、触媒は、例えば相転移触媒であり得る。相転移触媒は、例えばテトラブチルアンモニウム臭化物、18−クラウン−6、テトラブチルアンモニウムヨウ化物、ベンジルトリエチルアンモニウムクロリド、及びテトラメチルアンモニウムクロリドの少なくとも1種を含むことができる。   In the step (S300) of preparing the compound represented by Formula 6, the catalyst may be, for example, a phase transfer catalyst. The phase transfer catalyst can include, for example, at least one of tetrabutylammonium bromide, 18-crown-6, tetrabutylammonium iodide, benzyltriethylammonium chloride, and tetramethylammonium chloride.

化学式6で表示される化合物を製造する段階(S300)では、反応溶媒を使うことができる。反応溶媒としては、例えばメタノール、エタノール、プロパノール、イソブタノール、ブタノールなどの炭素数1〜4のアルコール類、ジメチルホルムアルデヒド(DMF)、メチルピロリドン(NMP)、ジメチルアセトアミド(DMAC)、ジメチルスルホキシド(DMSO)、アセトニトリル、及び水から選択される単一溶媒又はこれらの混合溶媒を使うことができる。   In the step (S300) of preparing the compound represented by Formula 6, a reaction solvent may be used. Examples of the reaction solvent include alcohols having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isobutanol, butanol, dimethylformaldehyde (DMF), methylpyrrolidone (NMP), dimethylacetamide (DMAC), and dimethylsulfoxide (DMSO). , Acetonitrile, and water, or a mixed solvent thereof.

化学式6で表示される化合物を脱保護反応させて、化学式7で表示される化合物を製造する(S400)。化学式7で表示される化合物を製造する段階(S400)は、酸の条件下で脱保護反応して遂行することができる。   The compound represented by Formula 6 is deprotected to produce a compound represented by Formula 7 (S400). The step of preparing the compound represented by Formula 7 (S400) may be performed by performing a deprotection reaction under an acid condition.

化学式7で表示される化合物を製造する段階(S400)は、化学式6で表示される化合物を脱保護反応させて、tert−ブトキシカルボニル保護基を除去することによって、化学式7で表示される化合物を製造する段階であり得る。酸は、例えば塩酸、臭化水素酸、硫酸、硝酸、トリフルオロ酢酸及び塩化トリメチルシリルの少なくとも1種であり得る。   The step of preparing the compound represented by Formula 7 (S400) comprises deprotecting the compound represented by Formula 6 to remove the tert-butoxycarbonyl protecting group, thereby converting the compound represented by Formula 7 It can be a manufacturing stage. The acid can be, for example, at least one of hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, trifluoroacetic acid and trimethylsilyl chloride.

化学式7で表示される化合物を製造する段階(S400)では、反応溶媒を使うことができる。反応溶媒としては、例えば水、メタノール、エタノール、イソブタノール、エチルアセテート、クロロホルム、ジクロロメタン、アセトン、及び1,4−ジオキサンから選択された単一溶媒又はこれらの混合溶媒を使うことができる。   In the step (S400) of preparing the compound represented by Formula 7, a reaction solvent may be used. As the reaction solvent, for example, a single solvent selected from water, methanol, ethanol, isobutanol, ethyl acetate, chloroform, dichloromethane, acetone, and 1,4-dioxane, or a mixed solvent thereof can be used.

化学式7で表示される化合物を製造する段階(S400)において、例えば、酸として塩酸を使い、反応溶媒は、クロロホルム又はジクロロメタンを使うことができる。   In the step (S400) of preparing the compound represented by Formula 7, for example, hydrochloric acid may be used as an acid, and chloroform or dichloromethane may be used as a reaction solvent.

化学式7で表示される化合物を、光学活性のある有機酸と混合して、光学的に純粋な化学式7aで表示される化合物を製造する(S500)。化学式7aで表示される化合物を製造する段階(S500)において、有機酸は、例えば酒石酸、マンデル酸、10−カンファースルホン酸、及びリンゴ酸の少なくとも1種を含むことができる。より具体的に、有機酸は(L)−(+)−酒石酸であり得る。   The compound represented by Formula 7 is mixed with an optically active organic acid to prepare an optically pure compound represented by Formula 7a (S500). In the step (S500) of preparing the compound represented by Formula 7a, the organic acid may include, for example, at least one of tartaric acid, mandelic acid, 10-camphorsulfonic acid, and malic acid. More specifically, the organic acid can be (L)-(+)-tartaric acid.

化学式7aで表示される化合物を製造する段階(S500)では、反応溶媒を使うことができる。反応溶媒としては、例えば水、メタノール、エタノール、イソブタノール、アセトン、及びテトラヒドロフランから選択された単一溶媒又はこれらの混合溶媒を使うことができる。例えば、反応溶媒としては、アセトンと水の混合溶媒を使うことができる。   In the step (S500) of preparing the compound represented by Formula 7a, a reaction solvent may be used. As the reaction solvent, for example, a single solvent selected from water, methanol, ethanol, isobutanol, acetone, and tetrahydrofuran, or a mixed solvent thereof can be used. For example, a mixed solvent of acetone and water can be used as a reaction solvent.

化学式7aで表示される化合物を製造する段階(S500)において、化学式7aで表示される化合物の鏡像体過剰率(ee)は95%以上かつ99.7%以下であり得る。鏡像体過剰率が95%未満であれば、鏡像体過剰率が99.7%以上の化学式9で表示される化合物を製造しにくいことがある。   In the step (S500) of preparing the compound represented by Formula 7a, the enantiomeric excess (ee) of the compound represented by Formula 7a may be 95% or more and 99.7% or less. If the enantiomeric excess is less than 95%, it may be difficult to produce a compound represented by the chemical formula 9 having an enantiomeric excess of 99.7% or more.

化学式6で表示される化合物を製造する段階(S300)、化学式7で表示される化合物を製造する段階(S400)、及び化学式7aで表示される化合物を製造する段階(S500)は、単一の容器での連続工程(In−Situ;その場工程)で進行して、化学式7aで表示される化合物を製造する段階であり得る。   The step of preparing the compound represented by Formula 6 (S300), the step of preparing the compound represented by Formula 7 (S400), and the step of preparing the compound represented by Formula 7a (S500) are a single step. The process may be performed in a continuous process (In-Situ; in-situ process) in a container to produce a compound represented by Formula 7a.

本発明の一実施例によるシロドシン合成用中間体の製造方法によると、シロドシン合成用中間体の分離及び精製が容易であり、高圧の水素ガス、高価な酸化白金、パラジウム/カーボンを使わずに、安全性、効率及び価格競争力を高めることができる。さらに、シロドシン合成用中間体の鏡像体過剰率を高めることができる。   According to the method for preparing an intermediate for silodosin synthesis according to an embodiment of the present invention, the intermediate for silodosin synthesis can be easily separated and purified, without using high-pressure hydrogen gas, expensive platinum oxide, or palladium / carbon. It can increase safety, efficiency and price competitiveness. Furthermore, the enantiomeric excess of the intermediate for silodosin synthesis can be increased.

以下に、本発明の一実施例によるシロドシンの製造方法について説明する。   Hereinafter, a method for producing silodosin according to an embodiment of the present invention will be described.

図2は本発明の一実施例によるシロドシンの製造方法の概略的なフローチャートである。   FIG. 2 is a schematic flowchart of a method for producing silodosin according to an embodiment of the present invention.

図2を参照すると、本発明の一実施例によるシロドシンの製造方法は、鏡像体過剰率(ee)が95〜99.7%である化学式7aで表示される化合物又はその有機塩基を、化学式8で表示される化合物、及び無機塩基の存在下で、N−アルキル化反応させ、光学活性のある有機酸と混合して、下記化学式9で表示される化合物を製造する段階(S600)、及び下記化学式9で表示される化合物を強塩基、及び酸化剤の存在下で加水分解して、下記化学式1で表示される化合物を製造する段階(S700)を含む。   Referring to FIG. 2, a method for preparing silodosin according to an embodiment of the present invention comprises converting a compound represented by Formula 7a having an enantiomeric excess (ee) of 95 to 99.7% or an organic base thereof into a compound represented by Formula 8: And N-alkylation reaction in the presence of a compound represented by the following formula and an inorganic base, and mixing with an optically active organic acid to produce a compound represented by the following formula 9 (S600); The method includes hydrolyzing the compound represented by Formula 9 in the presence of a strong base and an oxidizing agent to produce a compound represented by Formula 1 (S700).

Figure 2020007291
Figure 2020007291

前記化学式7a及び9のそれぞれにおいて、RはH又は保護基であり、前記化学式8において、LGは脱離基(Leaving Group)を示す。保護基は、アセチル基、ベンゾイル基、ベンジル基、トリメチルシリル基、トリエチルシリル基、又はtert−ブトキシカルボニル基である。脱離基は、ヨード基、臭素基、塩素基、メタンスルホネート基、又はベンゼンスルホネート基である。 In each of Formulas 7a and 9, R 1 is H or a protecting group, and in Formula 8, LG represents a leaving group. The protecting group is an acetyl group, a benzoyl group, a benzyl group, a trimethylsilyl group, a triethylsilyl group, or a tert-butoxycarbonyl group. The leaving group is an iodine group, a bromine group, a chlorine group, a methanesulfonate group, or a benzenesulfonate group.

鏡像体過剰率(ee)が95〜99.7%である化学式7aで表示される化合物、化学式8で表示される化合物、及び無機塩基の存在下で、N−アルキル化反応をさせ、光学活性のある有機酸と混合して、化学式9で表示される化合物を製造する(S600)。化学式7aで表示される化合物の鏡像体過剰率が95%未満であれば、鏡像体過剰率が99.7%以上である化学式9で表示される化合物を製造しにくいことがある。   An N-alkylation reaction is carried out in the presence of a compound represented by the formula 7a, a compound represented by the formula 8, and an inorganic base having an enantiomeric excess (ee) of 95 to 99.7%, and an optical activity The compound represented by Formula 9 is prepared by mixing the organic compound with an organic acid having the compound (S600). If the enantiomeric excess of the compound represented by Chemical Formula 7a is less than 95%, it may be difficult to produce the compound represented by Chemical Formula 9 in which the enantiomeric excess is 99.7% or more.

化学式9で表示される化合物を製造する段階(S600)において、化学式7aで表示される化合物及び化学式8で表示される化合物を、アルカリ金属炭酸塩の存在下で、N−アルキル化反応させる。光学活性のある有機酸を用いて精製及び光学分割を進行して、ジアルキル化した不純物の含量が1%以下で、鏡像体過剰率が99.7%以上である化学式9で表示される化合物を製造する。化学式9で表示される化合物の鏡像体過剰率が99.7%未満であれば、最終的に得られる化学式1で表示される化合物の鏡像体過剰率が99.7%未満となるから、高純度のシロドシンを得にくいことがある。   In the step (S600) of preparing the compound represented by Formula 9, the compound represented by Formula 7a and the compound represented by Formula 8 are N-alkylated in the presence of an alkali metal carbonate. Purification and optical resolution are carried out using an organic acid having optical activity, and a compound represented by the formula 9 having a dialkylated impurity content of 1% or less and an enantiomeric excess of 99.7% or more is obtained. To manufacture. If the enantiomeric excess of the compound represented by the chemical formula 9 is less than 99.7%, the enantiomer excess of the compound represented by the chemical formula 1 which is finally obtained is less than 99.7%. It may be difficult to obtain silodosin of purity.

化学式9で表示される化合物を製造する段階(S600)で、無機塩基は、アルカリ金属炭酸塩である。アルカリ金属炭酸塩は、例えば炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、及び炭酸水素カリウムの少なくとも1種を含むことができる。   In the step (S600) of preparing the compound represented by Formula 9, the inorganic base is an alkali metal carbonate. The alkali metal carbonate can include, for example, at least one of sodium carbonate, potassium carbonate, sodium bicarbonate, and potassium bicarbonate.

化学式9で表示される化合物を製造する段階(S600)において、有機酸は、酒石酸、マンデル酸、10−カンファースルホン酸及びリンゴ酸からなる群から選択された1以上であり、製造される化学式9で表示される化合物の鏡像体過剰率(ee)は99.7%以上である。   In the step (S600) of preparing the compound represented by Formula 9, the organic acid is at least one selected from the group consisting of tartaric acid, mandelic acid, 10-camphorsulfonic acid, and malic acid. The enantiomeric excess (ee) of the compound represented by is 99.7% or more.

反応溶媒としては、メタノール、エタノール、プロパノール、イソブタノール、ブタノールなどの炭素数1〜4のアルコール類、ジメチルホルムアルデヒド(DMF)、メチルピロリドン(NMP)ジメチルアセトアミド(DMAC)、ジメチルスルホキシド(DMSO)、テトラヒドロフラン、アセトニトリル、及び水から選択される単一溶媒又はこれらの混合溶媒を使うことができる。光学活性のある有機酸は、酒石酸、マンデル酸、10−カンファースルホン酸、及びリンゴ酸の少なくとも1種を含むことができる。より具体的に、有機酸は(L)−(+)−酒石酸であり得る。有機酸として(L)−(+)−酒石酸を使うとき、反応溶媒はエタノールを使うことができる。   Examples of the reaction solvent include alcohols having 1 to 4 carbon atoms, such as methanol, ethanol, propanol, isobutanol, and butanol; dimethylformaldehyde (DMF); , Acetonitrile, and water, or a mixed solvent thereof. Optically active organic acids can include at least one of tartaric acid, mandelic acid, 10-camphorsulfonic acid, and malic acid. More specifically, the organic acid can be (L)-(+)-tartaric acid. When (L)-(+)-tartaric acid is used as an organic acid, ethanol can be used as a reaction solvent.

化学式9で表示される化合物を強塩基及び酸化剤の存在下で加水分解して、化学式1で表示される化合物を製造する(S700)。化学式1で表示される化合物を製造する段階(S700)は、脱塩化反応、脱保護反応、及び加水分解が同時に進行される段階である。化学式1で表示される化合物を製造する段階(S700)では、化学式9で表示される化合物、アルカリ金属水酸化物、及び酸化物の存在下で、脱塩化反応、脱保護反応、及び加水分解が遂行される。   The compound represented by Formula 9 is hydrolyzed in the presence of a strong base and an oxidizing agent to prepare a compound represented by Formula 1 (S700). The step of preparing the compound represented by Formula 1 (S700) is a step in which a dechlorination reaction, a deprotection reaction, and a hydrolysis are simultaneously performed. In the step (S700) of preparing the compound represented by Formula 1, a dechlorination reaction, a deprotection reaction, and a hydrolysis reaction are performed in the presence of the compound represented by Formula 9, an alkali metal hydroxide, and an oxide. Will be performed.

化学式1で表示される化合物を製造する段階(S700)において、アルカリ金属水酸化物は、例えば水酸化ナトリウム及び水酸化カリウムの少なくとも1種を含むことができる。   In the step (S700) of preparing the compound represented by Formula 1, the alkali metal hydroxide may include, for example, at least one of sodium hydroxide and potassium hydroxide.

化学式1で表示される化合物を製造する段階(S700)において、酸化剤は、例えば過炭酸ナトリウムであり得る。   In the step (S700) of preparing the compound represented by Formula 1, the oxidizing agent may be, for example, sodium percarbonate.

本発明の一実施例によるシロドシンの製造方法は、既存のシロドシンの製造に使われてきた、温度が急速に上昇すると爆発が発生する可能性がある過酸化水素の代わりに、家庭でも漂白剤として使用されている、環境に優しい過炭酸ナトリウムを使うことにより、既存の合成方法に比べ、反応過程での危険要素を減らして産業的に大量生産に相応しい。   The method for producing silodosin according to one embodiment of the present invention is used as a bleach even at home instead of hydrogen peroxide, which has been used for producing existing silodosin and may explode when the temperature is rapidly increased. By using the used environmentally friendly sodium percarbonate, the risk factor in the reaction process is reduced compared to the existing synthesis method, and it is industrially suitable for mass production.

化学式1で表示される化合物を製造する段階(S700)において、反応溶媒を使うことができる。反応溶媒は、例えば水、水溶性有機溶媒又はこれらの混合溶媒であり得る。水溶性溶媒は、例えばメタノール、エタノール、プロパノール、イソブタノールなどの炭素数1〜3のアルコール、アセトン、ジメチルスルホキシド、DMF、DMAC、及びNMPからなる群から選択された1種以上であり得る。例えば、化学式1で表示される化合物を製造する段階で、反応溶媒としてメタノール及びジメチルスルホキシド(DMSO)の混合溶媒を使うことができる。   In the step (S700) of preparing the compound represented by Formula 1, a reaction solvent may be used. The reaction solvent can be, for example, water, a water-soluble organic solvent, or a mixed solvent thereof. The water-soluble solvent may be at least one selected from the group consisting of alcohols having 1 to 3 carbon atoms such as methanol, ethanol, propanol, and isobutanol, acetone, dimethyl sulfoxide, DMF, DMAC, and NMP. For example, a mixed solvent of methanol and dimethylsulfoxide (DMSO) may be used as a reaction solvent when preparing the compound represented by Formula 1.

本発明の一実施例によるシロドシンの製造方法によると、価格競争力を高め、製造過程の危険要素を減らし、効率的な大量生産を容易にし、光学的に純粋な高純度のシロドシンを得ることができる。   According to the method for producing silodosin according to one embodiment of the present invention, it is possible to increase price competitiveness, reduce risk factors in the production process, facilitate efficient mass production, and obtain optically pure high-purity silodosin. it can.

以下、具体的な実施例に基づいて本発明をより具体的に説明する。下記の実施例は本発明の理解を助けるための例示に過ぎなく、本発明の範囲がこれに限定されるものではない。   Hereinafter, the present invention will be described more specifically based on specific examples. The following examples are merely examples to help the understanding of the present invention, and the scope of the present invention is not limited thereto.

化学式3の製造:tert−ブチル(1−(1−アセチル−7−シアノインドリン−5−イル)プロパン−2−イル)カルバメート   Preparation of Chemical Formula 3: tert-butyl (1- (1-acetyl-7-cyanoindolin-5-yl) propan-2-yl) carbamate

反応器に、アセチル−5−(2−アミノプロピル)−2,3−ジヒドロ−1H−インドール−7−カルボニトリル100g、ジクロロメタン800ml、ジ−tert−ブチルジカーボネート94.2gを投入し、25〜30℃で8時間撹拌した。反応完了後、精製水500mlを投入し、撹拌後に層分離して得た有機層に無水硫酸ナトリウムを投入し、30分間撹拌してから濾過し、減圧濃縮してtert−ブチル(1−(1−アセチル−7−シアノインドリン−5−イル)プロパン−2−イル)カルバメート140.9g(99.8%)を得た。   100 g of acetyl-5- (2-aminopropyl) -2,3-dihydro-1H-indole-7-carbonitrile, 800 ml of dichloromethane and 94.2 g of di-tert-butyl dicarbonate were charged into the reactor, and 25 Stirred at 30 ° C. for 8 hours. After completion of the reaction, 500 ml of purified water was added, and anhydrous sodium sulfate was added to the organic layer obtained by stirring and separating the layers, and the mixture was stirred for 30 minutes, filtered, concentrated under reduced pressure, and concentrated under reduced pressure to tert-butyl (1- (1) -Acetyl-7-cyanoindolin-5-yl) propan-2-yl) carbamate 140.9 g (99.8%) was obtained.

1H NMR (DMSO) δ: 0.987(d, J = 6.8Hz, 3H), 1.203(s, 9H), 2.185(s,3H), 2.586(d, J = 7.2Hz, 2H), 3.046(t, J = 7.6Hz, 2H), 3.563〜3.599(m, 1H), 4.089(t, J = 8.4Hz, 2H), 6.765(d, J = 8.4Hz, 1H), 7.257(s, 1H), 7.331(s, 1H)   1H NMR (DMSO) δ: 0.987 (d, J = 6.8Hz, 3H), 1.203 (s, 9H), 2.185 (s, 3H), 2.586 (d, J = 7.2Hz, 2H), 3.046 (t, J = 7.6Hz, 2H), 3.563 ~ 3.599 (m, 1H), 4.089 (t, J = 8.4Hz, 2H), 6.765 (d, J = 8.4Hz, 1H), 7.257 (s, 1H), 7.331 (s , 1H)

化学式4の製造:tert−ブチル(1−(7−シアノインドリン−5−イル)プロパン−2−イル)カルバメート   Preparation of Formula 4: tert-butyl (1- (7-cyanoindoline-5-yl) propan-2-yl) carbamate

反応器に、製造されたtert−ブチル(1−(1−アセチル−7−シアノインドリン−5−イル)プロパン−2−イル)カルバメート140gとメタノール700mlを加え、5〜10℃に冷却した後、5N水酸化ナトリウム407.7mlを滴加し、25〜30℃で5時間撹拌した。反応液に精製水1120mlを加え、0〜5℃で3時間撹拌してから濾過し、乾燥してtert−ブチル(1−(7−シアノインドリン−5−イル)プロパン−2−イル)カルバメート118.3g(96.3%)を得た。   140 g of the prepared tert-butyl (1- (1-acetyl-7-cyanoindoline-5-yl) propan-2-yl) carbamate and 700 ml of methanol were added to the reactor, and the mixture was cooled to 5 to 10 ° C. 407.7 ml of 5N sodium hydroxide was added dropwise, and the mixture was stirred at 25 to 30 ° C for 5 hours. 1120 ml of purified water was added to the reaction solution, stirred at 0 to 5 ° C. for 3 hours, filtered, dried and tert-butyl (1- (7-cyanoindoline-5-yl) propan-2-yl) carbamate 118 0.3 g (96.3%) were obtained.

1H NMR (DMSO) δ: 0.945(d, J = 6.0Hz, 3H), 1.296(s, 9H), 2.456〜2.369(m, 2H), 2.914(t, J = 8.4Hz, 2H), 3.445〜3.505(m, 3H), 6.482(s, 1H), 6.684(d, J = 8.8Hz, 1H), 6.876(s, 1H), 7.019(s, 1H)   1H NMR (DMSO) δ: 0.945 (d, J = 6.0 Hz, 3H), 1.296 (s, 9H), 2.456-2.369 (m, 2H), 2.914 (t, J = 8.4 Hz, 2H), 3.445-3.505 (m, 3H), 6.482 (s, 1H), 6.684 (d, J = 8.8Hz, 1H), 6.876 (s, 1H), 7.019 (s, 1H)

化学式6の製造:3−(5−(2−((tert−ブトキシカルボニル)アミノ)プロピル)−7−シアノインドリン−1−イル)プロピルベンゾエート   Preparation of Chemical Formula 6: 3- (5- (2-((tert-butoxycarbonyl) amino) propyl) -7-cyanoindolin-1-yl) propylbenzoate

反応器に、製造されたtert−ブチル(1−(7−シアノインドリン−5−イル)プロパン−2−イル)カルバメート115g、3−ヨードプロピルベンゾエート132.8g、炭酸ナトリウム48.5g、18−クラウン−610gとDMF 575mlを投入し、95〜100℃で24時間撹拌した。反応液を濾過して減圧濃縮した後、エチルアセテート920mlと精製水575mlを投入し、撹拌後に層分離して得た有機層を減圧濃縮して3−(5−(2−((tert−ブトキシカルボニル)アミノ)プロピル)−7−シアノインドリン−1−イル)プロピルベンゾエート163.3g(92.3%)を得た。   In a reactor, 115 g of the prepared tert-butyl (1- (7-cyanoindoline-5-yl) propan-2-yl) carbamate, 132.8 g of 3-iodopropylbenzoate, 48.5 g of sodium carbonate, 18-crown −610 g and 575 ml of DMF were charged, and the mixture was stirred at 95 to 100 ° C. for 24 hours. After the reaction solution was filtered and concentrated under reduced pressure, 920 ml of ethyl acetate and 575 ml of purified water were added, and the organic layer obtained by stirring and separating the layers was concentrated under reduced pressure to give 3- (5- (2-((tert-butoxy). 163.3 g (92.3%) of carbonyl) amino) propyl) -7-cyanoindoline-1-yl) propylbenzoate were obtained.

1H NMR (DMSO) δ: 0.949(d, J = 6.0Hz, 3H), 1.281(s, 9H), 1.951〜2.044(m, 2H), 2.393〜2.425(m, 2H), 2.878(t, J = 8.8 Hz, 2H), 3.479〜3.542(m, 3H), 3.634(t, J = 7.6 Hz, 2H), 4.331(t, J = 6.0 Hz, 2H), 6.686(d, J = 8.0Hz, 1H), 6.911(s, 1H), 7.008(s, 1H), 7.445〜7.487 m, 2H), 7.590〜7.634(m, 1H), 7.946〜7.976(m, 2H);   1H NMR (DMSO) δ: 0.949 (d, J = 6.0 Hz, 3H), 1.281 (s, 9H), 1.951 to 2.044 (m, 2H), 2.393 to 2.425 (m, 2H), 2.878 (t, J = 8.8 Hz, 2H), 3.479 to 3.542 (m, 3H), 3.634 (t, J = 7.6 Hz, 2H), 4.331 (t, J = 6.0 Hz, 2H), 6.686 (d, J = 8.0 Hz, 1H) , 6.911 (s, 1H), 7.008 (s, 1H), 7.445-7.487 m, 2H), 7.590-7.634 (m, 1H), 7.946-7.976 (m, 2H);

実施例1:化学式7aの製造(3−5−[(2R)−2−アミノプロピル]−7−シアノ−2,3−ジヒドロ−1H−インドール−1−イルプロピルベンゾエート(2R,3R)−酒石酸塩)   Example 1 Preparation of Chemical Formula 7a (3-5-[(2R) -2-aminopropyl] -7-cyano-2,3-dihydro-1H-indol-1-ylpropylbenzoate (2R, 3R) -tartaric acid salt)

反応器に、製造された3−(5−(2−((tert−ブトキシカルボニル)アミノ)プロピル)−7−シアノインドリン−1−イル)プロピルベンゾエート160gとクロロホルム800mlを投入し、35%塩酸125.8gを徐々に滴加し、25〜30℃で5時間撹拌した。反応完了後、反応液に精製水480mlを投入し、炭酸ナトリウムで中和し、層分離した。得られた有機層を無水硫酸ナトリウムとカーボンで処理した後、濾過し、減圧濃縮した。   160 g of the produced 3- (5- (2-((tert-butoxycarbonyl) amino) propyl) -7-cyanoindoline-1-yl) propyl benzoate and 800 ml of chloroform were put into a reactor, and 35% hydrochloric acid 125 0.8 g was slowly added dropwise, and the mixture was stirred at 25 to 30 ° C for 5 hours. After completion of the reaction, 480 ml of purified water was added to the reaction solution, neutralized with sodium carbonate, and the layers were separated. The obtained organic layer was treated with anhydrous sodium sulfate and carbon, filtered, and concentrated under reduced pressure.

濃縮液にアセトン480mlとHO 480mlを投入して溶解させた後、L−(+)−酒石酸(31.1g)を投入し、20〜25℃で12時間撹拌してから濾過した。得られた結晶にアセトン480mlとHO 480mlを投入し、加温して溶解させた後、20〜25℃で12時間撹拌してから濾過した。得られた結晶にアセトン800mlとHO 800mlを投入し、加温して溶解させた後、20〜25℃で12時間撹拌してから濾過し、乾燥して3−5−[(2R)−2−アミノプロピル]−7−シアノ−2,3−ジヒドロ−1H−インドール−1−イルプロピルベンゾエート(2R,3R)−酒石酸塩41.6gを得た(23.5%、ee値=95%以上)。 After 480 ml of acetone and 480 ml of H 2 O were added to and dissolved in the concentrated solution, L-(+)-tartaric acid (31.1 g) was added, and the mixture was stirred at 20 to 25 ° C. for 12 hours and then filtered. To the obtained crystals, 480 ml of acetone and 480 ml of H 2 O were added, and dissolved by heating. After stirring at 20 to 25 ° C. for 12 hours, the mixture was filtered. 800 ml of acetone and 800 ml of H 2 O are added to the obtained crystals, and the mixture is heated and dissolved. After stirring at 20 to 25 ° C. for 12 hours, the mixture is filtered, dried and dried to give 3-5-[(2R). -2-Aminopropyl] -7-cyano-2,3-dihydro-1H-indol-1-ylpropylbenzoate (2R, 3R) -tartrate 41.6 g (23.5%, ee value = 95). %that's all).

1H NMR (DMSO) δ: 1.048(d, J = 6.4Hz, 3H), 2.008〜2.059(m, 2H), 2.456〜2.508(m, 1H), 2.749〜2.794(m, 1H), 2.901(t, J = 8.8Hz, 2H), 3.262〜3.280(m, 1H), 3.552(t, J = 8.8Hz, 2H), 3.656(t, J = 8.0Hz, 2H), 4.337(t, J = 6.0Hz, 2H), 7.000(s, 1H), 7.057(s, 1H), 7.444〜7.487(m, 2H), 7.586〜7.630(m, 1H), 7.941〜7.969(m, 2H);   1H NMR (DMSO) δ: 1.048 (d, J = 6.4 Hz, 3H), 2.008 to 2.059 (m, 2H), 2.456 to 2.508 (m, 1H), 2.749 to 2.794 (m, 1H), 2.901 (t, J = 8.8Hz, 2H), 3.262 to 3.280 (m, 1H), 3.552 (t, J = 8.8Hz, 2H), 3.656 (t, J = 8.0Hz, 2H), 4.337 (t, J = 6.0Hz, 2H), 7.000 (s, 1H), 7.057 (s, 1H), 7.444 to 7.487 (m, 2H), 7.586 to 7.630 (m, 1H), 7.941 to 7.969 (m, 2H);

化学式9の製造(3−7−シアノ−5−[(2R)−2−(2−[2−(2,2,2−トリフルオロエトキシ)フェノキシ]エチルアミノ)プロピル]−2,3−ジヒドロ−1H−インドール−1−イルプロピルベンゾエート(2R,3R)−酒石酸塩)   Preparation of Chemical Formula 9 (3-7-cyano-5-[(2R) -2- (2- [2- (2,2,2-trifluoroethoxy) phenoxy] ethylamino) propyl] -2,3-dihydro -1H-indol-1-ylpropylbenzoate (2R, 3R) -tartrate)

3−5−[(2R)−2−アミノプロピル]−7−シアノ−2,3−ジヒドロ−1H−インドール−1−イルプロピルベンゾエート(2R,3R)−酒石酸塩40g、アセトニトリル320ml、無水炭酸ナトリウム20.6g、2−[2−(2,2,2−トリフルオロエトキシ)フェノキシ]エチルメタンスルホネート26.9gを投入し、24時間還流撹拌した。反応液を冷却し、濾過した後、減圧濃縮し、濃縮液に酢酸エチル400mlと精製水320mlを加え、撹拌後に層分離し、有機層を減圧濃縮した。濃縮液にエタノール240mlとL−(+)−酒石酸10.5gを加え、室温で5時間撹拌した後、濾過し、減圧乾燥して3−7−シアノ−5−[(2R)−2−(2−[2−(2,2,2−トリフルオロエトキシ)フェノキシ]エチルアミノ)プロピル]−2,3−ジヒドロ−1H−インドール−1−イルプロピルベンゾエート(2R,3R)−酒石酸塩45.1gを得た(収率79.3%、ee値=99.97%以上)。   3-5-[(2R) -2-aminopropyl] -7-cyano-2,3-dihydro-1H-indol-1-ylpropylbenzoate (2R, 3R) -tartrate 40 g, acetonitrile 320 ml, anhydrous sodium carbonate 20.6 g and 26.9 g of 2- [2- (2,2,2-trifluoroethoxy) phenoxy] ethyl methanesulfonate were added, and the mixture was stirred under reflux for 24 hours. The reaction solution was cooled, filtered, and concentrated under reduced pressure. 400 ml of ethyl acetate and 320 ml of purified water were added to the concentrated solution. After stirring, the layers were separated, and the organic layer was concentrated under reduced pressure. 240 ml of ethanol and 10.5 g of L-(+)-tartaric acid were added to the concentrated solution, and the mixture was stirred at room temperature for 5 hours, filtered, dried under reduced pressure, and dried under reduced pressure to obtain 3-7-cyano-5-[(2R) -2- ( 2- [2- (2,2,2-trifluoroethoxy) phenoxy] ethylamino) propyl] -2,3-dihydro-1H-indol-1-ylpropylbenzoate (2R, 3R) -tartrate 45.1 g Was obtained (yield: 79.3%, ee value = 99.97% or more).

1H NMR (DMSO) δ: 1.10(d, J = 6.4Hz, 3H), 1.992〜2.059(m, 2H), 2.456〜2.529(m, 3H), 2.886(t, J = 8.8Hz, 2H), 2.994〜3.036(m, 1H), 3.352〜3.458(m, 3H), 3.55(t, J = 8.4Hz, 2H), 3.658(t, J = 7.6Hz, 2H), 4.276(t, J = 5.6Hz, 2H), 4.338(t, J = 5.6Hz, 2H), 4.641〜4.708(m, 2H), 6.916〜7.102(m, 6H), 7.459(t, J = 7.8, 2H), 7.604(t, J = 8.8Hz, 1H), 7.958(t, J = 11.6, 2H);   1H NMR (DMSO) δ: 1.10 (d, J = 6.4 Hz, 3H), 1.992 to 2.059 (m, 2H), 2.456 to 2.529 (m, 3H), 2.886 (t, J = 8.8 Hz, 2H), 2.994 ~ 3.036 (m, 1H), 3.352 ~ 3.458 (m, 3H), 3.55 (t, J = 8.4Hz, 2H), 3.658 (t, J = 7.6Hz, 2H), 4.276 (t, J = 5.6Hz, 2H), 4.338 (t, J = 5.6Hz, 2H), 4.641 ~ 4.708 (m, 2H), 6.916 ~ 7.102 (m, 6H), 7.459 (t, J = 7.8, 2H), 7.604 (t, J = 8.8Hz, 1H), 7.958 (t, J = 11.6, 2H);

実施例2:シロドシンの製造(1−(3−ヒドロキシプロピル)−5−[(2R)−2−(2−[2−(2,2,2−トリフルオロエトキシ)フェノキシ]エチルアミノ)プロピル]−2,3−ジヒドロ−1H−インドール−7−カルボキサミド)   Example 2: Preparation of silodosin (1- (3-hydroxypropyl) -5-[(2R) -2- (2- [2- (2,2,2-trifluoroethoxy) phenoxy] ethylamino) propyl] -2,3-dihydro-1H-indole-7-carboxamide)

反応器に、3−7−シアノ−5−[(2R)−2−(2−[2−(2,2,2−トリフルオロエトキシ)フェノキシ]エチルアミノ)プロピル]−2,3−ジヒドロ−1H−インドール−1−イルプロピルベンゾエート(2R,3R)−酒石酸塩45g、メタノール225ml、DMSO 135mlを投入して溶解させた後、5N NaOH 61.5mlを滴加し、25〜30℃で3時間撹拌した後、過炭酸ナトリウム57.9gを投入し、25〜30℃で12時間撹拌した。反応液に精製水225mlを投入し、酢酸エチル450mlで2回抽出して得た有機層を精製水225ml、飽和塩化ナトリウム水溶液225mlで洗浄した後、減圧濃縮した。濃縮液に酢酸エチル315mlを加え、60℃まで加温して溶解させた後、冷却し、20〜25℃で5時間撹拌後に濾過してシロドシン25.4gを得た(収率83.5%、ee値=99.7%以上)。   In the reactor, 3-7-cyano-5-[(2R) -2- (2- [2- (2,2,2-trifluoroethoxy) phenoxy] ethylamino) propyl] -2,3-dihydro- 45 g of 1H-indol-1-ylpropylbenzoate (2R, 3R) -tartrate, 225 ml of methanol and 135 ml of DMSO were added and dissolved, and then 61.5 ml of 5N NaOH was added dropwise, and the mixture was added at 25 to 30 ° C. for 3 hours. After stirring, 57.9 g of sodium percarbonate was added, and the mixture was stirred at 25 to 30 ° C for 12 hours. 225 ml of purified water was added to the reaction solution, and the organic layer obtained by extracting twice with 450 ml of ethyl acetate was washed with 225 ml of purified water and 225 ml of a saturated aqueous sodium chloride solution, and then concentrated under reduced pressure. 315 ml of ethyl acetate was added to the concentrated solution, which was dissolved by heating to 60 ° C., cooled, stirred at 20 to 25 ° C. for 5 hours, and then filtered to obtain 25.4 g of silodosin (83.5% yield). Ee value = 99.7% or more).

1H NMR (CDCl3) δ: 1.04(d, J = 6.0Hz, 3H), 1.748〜1.779(m, 2H), 2.483(dd, J = 13.2, 6.8Hz, 1H), 2.647(dd, J = 13.6, 6.8Hz, 1H), 2.891〜3.017(m, 5H), 3.150(t, J = 6.8Hz, 2H), 3.370(t, J = 8.4Hz, 2H), 3.700(t, J = 5.6Hz, 2H) 4.037〜4.080(m, 2H), 4.244〜4.307(m, 2H), 6.427(bs, 1H), 6.766(bs, 1H), 6.877(t, J = 8.0Hz, 2H), 6.941〜7.020(m, 3H), 7.142(s, 1H);   1H NMR (CDCl3) δ: 1.04 (d, J = 6.0 Hz, 3H), 1.748-1.779 (m, 2H), 2.483 (dd, J = 13.2, 6.8 Hz, 1H), 2.647 (dd, J = 13.6, 6.8Hz, 1H), 2.891 ~ 3.017 (m, 5H), 3.150 (t, J = 6.8Hz, 2H), 3.370 (t, J = 8.4Hz, 2H), 3.700 (t, J = 5.6Hz, 2H) 4.037 ~ 4.080 (m, 2H), 4.244 ~ 4.307 (m, 2H), 6.427 (bs, 1H), 6.766 (bs, 1H), 6.877 (t, J = 8.0Hz, 2H), 6.941 ~ 7.020 (m, 3H), 7.142 (s, 1H);

化学式4の製造:tert−ブチル(1−(7−シアノインドリン−5−イル)プロパン−2−イル)カルバメート(In−situ反応)   Preparation of Formula 4: tert-butyl (1- (7-cyanoindoline-5-yl) propan-2-yl) carbamate (In-situ reaction)

反応器に、アセチル−5−(2−アミノプロピル)−2,3−ジヒドロ−1H−インドール−7−カルボニトリル100g、ジクロロメタン800ml、ジ−tert−ブチルジカーボネート94.2gを投入し、25〜30℃で8時間撹拌した後、減圧濃縮した。   100 g of acetyl-5- (2-aminopropyl) -2,3-dihydro-1H-indole-7-carbonitrile, 800 ml of dichloromethane and 94.2 g of di-tert-butyl dicarbonate were charged into the reactor, and 25 After stirring at 30 ° C. for 8 hours, the mixture was concentrated under reduced pressure.

濃縮液にメタノール700mlを加え、5〜10℃に冷却した後、5N水酸化ナトリウム407.7mlを滴加し、25〜30℃で5時間撹拌した。反応液に精製水1120mlを加え、0〜5℃で3時間撹拌した後、濾過し、乾燥してtert−ブチル(1−(7−シアノインドリン−5−イル)プロパン−2−イル)カルバメート118.7g(95.8%)を得た。   700 ml of methanol was added to the concentrated solution, and after cooling to 5 to 10 ° C, 407.7 ml of 5N sodium hydroxide was added dropwise, followed by stirring at 25 to 30 ° C for 5 hours. 1120 ml of purified water was added to the reaction solution, and the mixture was stirred at 0 to 5 ° C. for 3 hours, filtered, dried and tert-butyl (1- (7-cyanoindoline-5-yl) propan-2-yl) carbamate 118 0.7 g (95.8%) were obtained.

1H NMR (DMSO) δ: 0.945(d, J = 6.0Hz, 3H), 1.296(s, 9H), 2.456〜2.369(m, 2H), 2.914(t, J = 8.4Hz, 2H), 3.445〜3.505(m, 3H), 6.482(s, 1H), 6.684(d, J = 8.8Hz, 1H), 6.876(s, 1H), 7.019(s, 1H);   1H NMR (DMSO) δ: 0.945 (d, J = 6.0 Hz, 3H), 1.296 (s, 9H), 2.456-2.369 (m, 2H), 2.914 (t, J = 8.4 Hz, 2H), 3.445-3.505 (m, 3H), 6.482 (s, 1H), 6.684 (d, J = 8.8Hz, 1H), 6.876 (s, 1H), 7.019 (s, 1H);

実施例3:化学式7aの製造(3−5−[(2R)−2−アミノプロピル]−7−シアノ−2,3−ジヒドロ−1H−インドール−1−イルプロピルベンゾエート(2R,3R)−酒石酸塩)(In−situ反応)   Example 3: Preparation of Chemical Formula 7a (3-5-[(2R) -2-aminopropyl] -7-cyano-2,3-dihydro-1H-indol-1-ylpropylbenzoate (2R, 3R) -tartaric acid Salt) (In-situ reaction)

反応器に、tert−ブチル(1−(7−シアノインドリン−5−イル)プロパン−2−イル)カルバメート115g、3−ヨードプロピルベンゾエート132.8g、炭酸ナトリウム48.5g、18−クラウン−6 10gとDMF 575mlを投入し、95〜100℃で24時間撹拌した。反応液を濾過し、減圧濃縮した後、エチルアセテート920mlと精製水575mlを投入し、撹拌後に層分離して得た有機層を減圧した。   In a reactor, 115 g of tert-butyl (1- (7-cyanoindoline-5-yl) propan-2-yl) carbamate, 132.8 g of 3-iodopropylbenzoate, 48.5 g of sodium carbonate, and 10 g of 18-crown-6 And DMF (575 ml) were added, and the mixture was stirred at 95 to 100 ° C. for 24 hours. After the reaction solution was filtered and concentrated under reduced pressure, 920 ml of ethyl acetate and 575 ml of purified water were added, and after stirring, the organic layer obtained by layer separation was depressurized.

濃縮液にクロロホルム800mlを投入し、35%塩酸125.8gを徐々に滴加し、25〜30℃で5時間撹拌した。反応完了後、反応液に精製水480mlを投入し、炭酸ナトリウムで中和した後、層分離して減圧濃縮した。   800 ml of chloroform was added to the concentrated solution, 125.8 g of 35% hydrochloric acid was gradually added dropwise, and the mixture was stirred at 25 to 30 ° C for 5 hours. After completion of the reaction, 480 ml of purified water was added to the reaction solution, neutralized with sodium carbonate, separated into layers, and concentrated under reduced pressure.

濃縮液にアセトン480mlとHO 480mlを投入して溶解させた後、L−(+)−酒石酸(31.1g)を投入し、20〜25℃で12時間撹拌してから濾過した。得られた結晶にアセトン480mlとHO 480mlを投入し、加温して溶解させた後、20〜25℃で12時間撹拌してから濾過した。得られた結晶にアセトン800mlとHO 800mlを投入し、加温して溶解させた後、20〜25℃で12時間撹拌してから濾過し、乾燥して3−5−[(2R)−2−アミノプロピル]−7−シアノ−2,3−ジヒドロ−1H−インドール−1−イルプロピルベンゾエート(2R,3R)−酒石酸塩44.7gを得た(22.8%、ee値=95%以上)。 After 480 ml of acetone and 480 ml of H 2 O were added to and dissolved in the concentrated solution, L-(+)-tartaric acid (31.1 g) was added, and the mixture was stirred at 20 to 25 ° C. for 12 hours and then filtered. To the obtained crystals, 480 ml of acetone and 480 ml of H 2 O were added, and dissolved by heating. After stirring at 20 to 25 ° C. for 12 hours, the mixture was filtered. 800 ml of acetone and 800 ml of H 2 O are added to the obtained crystals, and the mixture is heated and dissolved. After stirring at 20 to 25 ° C. for 12 hours, the mixture is filtered, dried and dried to give 3-5-[(2R). -2-Aminopropyl] -7-cyano-2,3-dihydro-1H-indol-1-ylpropylbenzoate (2R, 3R) -tartrate 44.7 g (22.8%, ee value = 95). %that's all).

1H NMR (DMSO) δ: 1.048(d, J = 6.4Hz, 3H), 2.008〜2.059(m, 2H), 2.456〜2.508(m, 1H), 2.749〜2.794(m, 1H), 2.901(t, J = 8.8Hz, 2H), 3.262〜3.280(m, 1H), 3.552(t, J = 8.8Hz, 2H), 3.656(t, J = 8.0Hz, 2H), 4.337(t, J = 6.0Hz, 2H), 7.000(s, 1H), 7.057(s, 1H), 7.444〜7.487(m, 2H), 7.586〜7.630(m, 1H), 7.941〜7.969(m, 2H);   1H NMR (DMSO) δ: 1.048 (d, J = 6.4 Hz, 3H), 2.008 to 2.059 (m, 2H), 2.456 to 2.508 (m, 1H), 2.749 to 2.794 (m, 1H), 2.901 (t, J = 8.8Hz, 2H), 3.262 to 3.280 (m, 1H), 3.552 (t, J = 8.8Hz, 2H), 3.656 (t, J = 8.0Hz, 2H), 4.337 (t, J = 6.0Hz, 2H), 7.000 (s, 1H), 7.057 (s, 1H), 7.444 to 7.487 (m, 2H), 7.586 to 7.630 (m, 1H), 7.941 to 7.969 (m, 2H);

以上に説明したように、本発明は高価な酸化白金、パラジウム/カーボンを使わず、価格競争力が高い。また、大量生産に、爆発などの事故危険性がある高圧の水素ガスと過酸化水素を使わない。さらに、合成過程で生成される中間体の分離及び精製が容易であるため、99.7%以上の高い鏡像体過剰率のシロドシンをより容易に得ることができる。   As described above, the present invention does not use expensive platinum oxide and palladium / carbon, and has high price competitiveness. In addition, high-pressure hydrogen gas and hydrogen peroxide, which may cause an accident such as an explosion, are not used for mass production. Further, since the intermediate produced in the synthesis process can be easily separated and purified, silodosin having a high enantiomeric excess of 99.7% or more can be more easily obtained.

以上、添付図面に基づいて本発明の実施例を説明したが、本発明が属する技術分野で通常の知識を有する者であれば、本発明の技術的思想又は必須の特徴を変更することなく他の具体的な形態を実施可能であることが理解可能であろう。したがって、以上で記述した実施例は全ての面で例示的なもので、限定的ではないものと理解しなければならない。
As described above, the embodiments of the present invention have been described based on the accompanying drawings. However, those having ordinary knowledge in the technical field to which the present invention pertains without changing the technical idea or essential features of the present invention. It can be understood that the specific embodiment of the present invention can be implemented. Accordingly, it should be understood that the above-described embodiments are illustrative in all aspects and are not limiting.

Claims (14)

下記化学式2で表示される化合物のN2位置に、tert−ブトキシカルボニル保護基を導入して、下記化学式3で表示される化合物を製造する段階と、
下記化学式3で表示される化合物を、強塩基の存在下で加水分解して、下記化学式4で表示される化合物を製造する段階と、
下記化学式4で表示される化合物及び下記化学式5で表示される化合物を、塩基及び触媒の存在下でN−アルキル化反応させて、下記化学式6で表示される化合物を製造する段階と、
下記化学式6で表示される化合物を脱保護反応させて、下記化学式7で表示される化合物を製造する段階と、
下記化学式7で表示される化合物を、光学活性のある有機酸と混合して、光学的に純粋な下記化学式7aで表示される化合物を製造する段階とを含む、シロドシン合成用中間体の製造方法。
Figure 2020007291
Figure 2020007291
(前記化学式5〜7aのそれぞれにおいて、RはH又は保護基であり、
前記化学式5において、LGは脱離基(Leaving Group)を示す。)
Introducing a tert-butoxycarbonyl protecting group at the N2 position of the compound represented by Formula 2 to produce a compound represented by Formula 3;
Hydrolyzing a compound represented by the following Formula 3 in the presence of a strong base to produce a compound represented by the following Formula 4;
Reacting the compound represented by Formula 4 and the compound represented by Formula 5 with N-alkylation in the presence of a base and a catalyst to produce a compound represented by Formula 6;
Deprotecting the compound represented by Formula 6 below to produce a compound represented by Formula 7;
Mixing the compound represented by the following formula 7 with an optically active organic acid to produce an optically pure compound represented by the following formula 7a. .
Figure 2020007291
Figure 2020007291
(In each of the above Chemical Formulas 5 to 7a, R 1 is H or a protecting group,
In Formula 5, LG represents a leaving group. )
前記化学式3で表示される化合物を製造する段階において、
前記化学式2で表示される化合物を、ジ−tert−ブチルジカーボネートと反応させる、請求項1に記載のシロドシン合成用中間体の製造方法。
In preparing the compound represented by Formula 3,
The method of claim 1, wherein the compound represented by Formula 2 is reacted with di-tert-butyl dicarbonate.
前記化学式4で表示される化合物を製造する段階において、
前記強塩基はアルカリ金属水酸化物である、請求項1に記載のシロドシン合成用中間体の製造方法。
In preparing the compound represented by Formula 4,
The method for producing an intermediate for silodosin synthesis according to claim 1, wherein the strong base is an alkali metal hydroxide.
前記化学式3で表示される化合物を製造する段階及び前記化学式4で表示される化合物を製造する段階は、単一の容器での連続工程(In−Situ;その場工程)で進行して、前記化学式4で表示される化合物を製造する、請求項1に記載のシロドシン合成用中間体の製造方法。   The step of preparing the compound represented by Formula 3 and the step of preparing the compound represented by Formula 4 are performed in a single container in a continuous process (In-Situ; in-situ process). The method for producing an intermediate for synodosin synthesis according to claim 1, wherein the compound represented by Chemical Formula 4 is produced. 前記化学式5で表示される化合物を製造する段階において、
前記塩基はアルカリ金属炭酸塩又は有機塩基である、請求項1に記載のシロドシン合成用中間体の製造方法。
In preparing the compound represented by Formula 5,
The method for producing an intermediate for silodosin synthesis according to claim 1, wherein the base is an alkali metal carbonate or an organic base.
前記化学式5で表示される化合物を製造する段階において、
前記触媒は相転移触媒である、請求項1に記載のシロドシン合成用中間体の製造方法。
In preparing the compound represented by Formula 5,
The method for producing an intermediate for synodosin synthesis according to claim 1, wherein the catalyst is a phase transfer catalyst.
前記化学式7で表示される化合物を製造する段階は、酸の条件下で脱保護反応することによって行う、請求項1に記載のシロドシン合成用中間体の製造方法。   The method of claim 1, wherein the step of preparing the compound represented by Formula 7 is performed by performing a deprotection reaction under an acid condition. 前記化学式7aで表示される化合物を製造する段階において、
前記有機酸は、酒石酸、マンデル酸、10−カンファースルホン酸及びリンゴ酸からなる群から選択された1種以上であり、
鏡像体過剰率(enantiomeric excess:ee)は95%以上かつ99.7%以下である、請求項1に記載のシロドシン合成用中間体の製造方法。
In preparing the compound represented by Formula 7a,
The organic acid is at least one selected from the group consisting of tartaric acid, mandelic acid, 10-camphorsulfonic acid, and malic acid;
2. The method for producing an intermediate for silodosin synthesis according to claim 1, wherein the enantiomeric excess (ee) is 95% or more and 99.7% or less.
前記化学式6で表示される化合物を製造する段階、前記化学式7で表示される化合物を製造する段階及び前記化学式7aで表示される化合物を製造する段階は、単一の容器での連続工程(In−Situ;その場工程)で進行して、前記化学式7aで表示される化合物を製造する、請求項1に記載のシロドシン合成用中間体の製造方法。   The step of preparing the compound represented by the formula (6), the step of preparing the compound represented by the formula (7), and the step of preparing the compound represented by the formula (7a) include a continuous process (In) in a single container. The method for producing an intermediate for silodosin synthesis according to claim 1, wherein the compound represented by the chemical formula 7a is produced by proceeding in (Situ; in-situ step). 下記化学式4で表示される、シロドシン合成用中間体。
Figure 2020007291
An intermediate for silodosin synthesis represented by the following chemical formula 4.
Figure 2020007291
鏡像体過剰率(ee)が95〜99.7%である下記化学式7aで表示される化合物を、下記化学式8で表示される化合物及び無機塩基の存在下でN−アルキル化反応させ、光学活性のある有機酸と混合して、下記化学式9で表示される化合物を製造する段階と、
下記化学式9で表示される化合物を、強塩基及び酸化剤の存在下で加水分解して、下記化学式1で表示される化合物を製造する段階とを含む、シロドシンの製造方法。
Figure 2020007291
(前記化学式7a及び9のそれぞれにおいて、RはH又は保護基であり、
前記化学式8において、LGは脱離基(Leaving Group)を示す。)
A compound represented by the following chemical formula 7a having an enantiomeric excess (ee) of 95 to 99.7% is subjected to an N-alkylation reaction in the presence of a compound represented by the following chemical formula 8 and an inorganic base, to thereby obtain optical activity Preparing a compound represented by the following Chemical Formula 9 by mixing with an organic acid having:
Hydrolyzing a compound represented by the following chemical formula 9 in the presence of a strong base and an oxidizing agent to produce a compound represented by the following chemical formula 1.
Figure 2020007291
(In each of the above formulas 7a and 9, R 1 is H or a protecting group,
In Formula 8, LG represents a leaving group. )
前記化学式9で表示される化合物を製造する段階において、
前記無機塩基はアルカリ金属炭酸塩である、請求項11に記載のシロドシンの製造方法。
In preparing the compound represented by Formula 9,
The method for producing silodosin according to claim 11, wherein the inorganic base is an alkali metal carbonate.
前記化学式9で表示される化合物を製造する段階において、
前記有機酸は、酒石酸、マンデル酸、10−カンファースルホン酸及びリンゴ酸からなる群から選択された1種以上であり、
前記製造された化学式9で表示される化合物の鏡像体過剰率(ee)が99.7%以上である、請求項11に記載のシロドシンの製造方法。
In preparing the compound represented by Formula 9,
The organic acid is at least one selected from the group consisting of tartaric acid, mandelic acid, 10-camphorsulfonic acid, and malic acid;
The method for producing silodosin according to claim 11, wherein the enantiomer excess (ee) of the compound represented by Formula 9 is 99.7% or more.
前記化学式1で表示される化合物を製造する段階において、
前記強塩基はアルカリ金属水酸化物であり、
前記酸化剤は過炭酸ナトリウムである、請求項11に記載のシロドシンの製造方法。
In preparing the compound represented by Formula 1,
The strong base is an alkali metal hydroxide,
The method for producing silodosin according to claim 11, wherein the oxidizing agent is sodium percarbonate.
JP2018215238A 2018-07-04 2018-11-16 Method for producing an intermediate for silodosin synthesis and method for producing silodosin using the same Active JP7382713B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0077379 2018-07-04
KR1020180077379A KR102163068B1 (en) 2018-07-04 2018-07-04 The manufacturing method of intermediate for synthesis of silodosin and the manufacturing method of silodosin

Publications (3)

Publication Number Publication Date
JP2020007291A true JP2020007291A (en) 2020-01-16
JP2020007291A5 JP2020007291A5 (en) 2021-07-26
JP7382713B2 JP7382713B2 (en) 2023-11-17

Family

ID=69150734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018215238A Active JP7382713B2 (en) 2018-07-04 2018-11-16 Method for producing an intermediate for silodosin synthesis and method for producing silodosin using the same

Country Status (2)

Country Link
JP (1) JP7382713B2 (en)
KR (1) KR102163068B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220015A (en) * 1992-12-02 1994-08-09 Kissei Pharmaceut Co Ltd Indoline derivative
CN104974072A (en) * 2014-04-10 2015-10-14 江苏和成新材料有限公司 Preparation method of silodosin intermediate
CN107056675A (en) * 2017-05-10 2017-08-18 浙江天宇药业股份有限公司 A kind of synthetic method of silodosin and its intermediate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2944402A (en) 1957-08-29 1960-07-12 Eaton Mfg Co Variable reactor hydraulic torque converter
US5049013A (en) 1990-11-19 1991-09-17 General Signal Corporation Mixer apparatus
JP4634560B2 (en) 2000-01-14 2011-02-16 キッセイ薬品工業株式会社 Process for producing optically active indoline derivative and production intermediate thereof
ES2362788T3 (en) * 2004-10-27 2011-07-13 Kissei Pharmaceutical Co., Ltd. INDOLIN COMPOUND AND PROCESS FOR THE PRODUCTION OF THE SAME.
WO2011124704A1 (en) 2010-04-09 2011-10-13 Ratiopharm Gmbh Process for preparing an intermediate for silodosin
WO2012131710A2 (en) 2011-03-30 2012-10-04 Panacea Biotec Ltd Novel process for the synthesis of indoline derivatives
KR101744046B1 (en) * 2014-09-01 2017-06-08 (주)다산메디켐 Process for preparing an intermediate useful for the synthesis of silodosin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220015A (en) * 1992-12-02 1994-08-09 Kissei Pharmaceut Co Ltd Indoline derivative
CN104974072A (en) * 2014-04-10 2015-10-14 江苏和成新材料有限公司 Preparation method of silodosin intermediate
CN107056675A (en) * 2017-05-10 2017-08-18 浙江天宇药业股份有限公司 A kind of synthetic method of silodosin and its intermediate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
鈴木 啓介, 天然有機化合物の合成戦略, JPN7023000579, 2007, pages 250 - 257, ISSN: 0004988009 *

Also Published As

Publication number Publication date
KR102163068B1 (en) 2020-10-07
JP7382713B2 (en) 2023-11-17
KR20200004492A (en) 2020-01-14

Similar Documents

Publication Publication Date Title
JP5049013B2 (en) Indoline compound and method for producing the same
CA2152089C (en) Asymmetric process for preparing florfenicol, thiamphenicol, chloramphenicol, and oxazoline intermediates
WO2020147861A1 (en) Electrochemical preparation method for β-trifluoromethylamide compound
JP6068569B2 (en) Silodosin production method and intermediate
JP4170990B2 (en) Process for producing optically active serine derivatives
WO2016189552A2 (en) Novel recovery and recycling process of unwanted enantiomers of 2-aminopropyl indoline derivatives
WO2019036441A1 (en) Processes for the preparation of niraparib and intermediates thereof
JP3863230B2 (en) Process for producing β-amino-α-hydroxy acid derivative
TWI343909B (en) Process for making galantamine
JP2010090031A (en) Method of producing bicyclic proline compound
JP7382713B2 (en) Method for producing an intermediate for silodosin synthesis and method for producing silodosin using the same
KR20150066782A (en) Method of preparing 1-(indolin-5-yl)propan-2-ol derivatives
HUE028730T2 (en) A process for the preparation of etoricoxib
TW200837057A (en) Processes for the preparation of 3-(4-(2, 4-difluorobenzyloxy)-3-bromo-6-methyl-2-oxopyridin-1(2H)-yl)-N, 4-dimethylbenzamide
JP5843846B2 (en) Mixtures of polyfluoroalkylsulfonamidoalkylamines
JP3797887B2 (en) Process for producing sulfamoyl-substituted phenethylamine derivatives
CN111989316B (en) Process for the production of (6S, 15S) -3,8,13,18-tetraazaeicosane-6, 15-diol
WO2022014414A1 (en) Method for producing optically active compound
WO2012165607A1 (en) Method for producing proline compound
JP5856140B2 (en) Polyfluoroalkylsulfonamido alkyl halide intermediate
JPH0354930B2 (en)
JP7320113B2 (en) Method for producing heterocyclideneacetamide derivative
JP2007055958A (en) Method for producing nitrogen-containing compound
TWI844663B (en) Process for the production of substituted 2-[2-(phenyl)ethylamino]alkaneamide derivatives
JP2004231521A (en) Method for synthesizing 3-chloro-5-nitrotoluene

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210412

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220629

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230515

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231107

R150 Certificate of patent or registration of utility model

Ref document number: 7382713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150