JP2020004673A - Terminal - Google Patents

Terminal Download PDF

Info

Publication number
JP2020004673A
JP2020004673A JP2018125762A JP2018125762A JP2020004673A JP 2020004673 A JP2020004673 A JP 2020004673A JP 2018125762 A JP2018125762 A JP 2018125762A JP 2018125762 A JP2018125762 A JP 2018125762A JP 2020004673 A JP2020004673 A JP 2020004673A
Authority
JP
Japan
Prior art keywords
heat
terminal
affected zone
neck
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018125762A
Other languages
Japanese (ja)
Other versions
JP7295617B2 (en
Inventor
祥 吉田
Sho Yoshida
祥 吉田
賢悟 水戸瀬
Kengo Mitose
賢悟 水戸瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Original Assignee
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Automotive Systems Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2018125762A priority Critical patent/JP7295617B2/en
Publication of JP2020004673A publication Critical patent/JP2020004673A/en
Application granted granted Critical
Publication of JP7295617B2 publication Critical patent/JP7295617B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Abstract

To provide a terminal excellent in mechanical strength, durability and water cut-off performance of a neck part by preventing occurrence of surface defects and internal defects during welding and occurrence of cracks due to non-uniformity of internal stress and bending at the neck part.SOLUTION: A terminal 1 includes a cylindrical crimping part 30 where a wire is connected by crimping, a connector part 20 connected to a connection destination, and a neck part 40, the neck part 40 having a heat affected zone 70 formed by welding. The terminal is formed of a metal member which contains Cr: 0.00 mass% or more and 0.35 mass% or less, P: 0.00 mass% or more and 0.15 mass% or less, and Mg: 0.05 mass% or more and 0.8 mass% or less, with the balance consisting of Cu and unavoidable impurities, the metal member having an average thickness of 0.38 mm or more and 0.80 mm or less and a conductivity of 60%IACS or more and 85%IACS or less. The ratio of the average hardness of a non-heat affected zone 71 to the average hardness of the heat affected zone 70 at the neck part 40 is 1.1 or more and 1.8 or less.SELECTED DRAWING: Figure 1

Description

本発明は、溶接時における表面欠陥及び内部欠陥の発生や曲げ加工時におけるクラックの発生を防止して、機械的強度と止水性に優れた、径の大きい電線を圧着接続できる端子に関するものである。   The present invention relates to a terminal capable of preventing the occurrence of surface defects and internal defects at the time of welding and the occurrence of cracks at the time of bending, and having excellent mechanical strength and waterproofness, and capable of crimping and connecting a large-diameter electric wire. .

従来、自動車用ワイヤハーネスなどにおける電線と端子との接続は、オープンバレル型と呼ばれる端子で電線をかしめて圧着する圧着接続が一般的である。しかし、オープンバレル型端子では、電線と端子の接続部分(接点)に水分等が付着してしまうと、電線や端子に用いられる金属表面の酸化や腐食が進み、接続部分における電気抵抗が上昇してしまう。電線と端子の接続部分における金属の酸化や腐食の進行は、接続部分の割れや接触不良の原因となり、製品寿命と接続信頼性に影響する。   2. Description of the Related Art Conventionally, connection between an electric wire and a terminal in an automobile wire harness or the like is generally performed by crimping by crimping an electric wire with a terminal called an open barrel type. However, in the case of an open barrel type terminal, if moisture or the like adheres to the connection portion (contact point) between the electric wire and the terminal, oxidation or corrosion of the metal surface used for the electric wire or the terminal proceeds, and the electric resistance at the connection portion increases. Would. The progress of oxidation and corrosion of the metal at the connection portion between the electric wire and the terminal causes cracks and poor contact at the connection portion, which affects the product life and connection reliability.

また、電線と端子の圧着接続時に加工割れが生じ、この加工割れの部分に水分等が付着してしまうと、やはり、電線や端子に用いられる金属表面の酸化や腐食が進んでしまう。そこで、電線と端子の圧着接続時の加工割れ及び圧着接続後の止水性に優れた端子が求められている。   In addition, when processing cracks occur during crimping connection between the electric wire and the terminal, and if moisture or the like adheres to the portion of the processing crack, oxidation or corrosion of the metal surface used for the electric wire or the terminal also proceeds. Therefore, there is a demand for a terminal that is excellent in processing cracks at the time of crimping connection between an electric wire and a terminal and that has excellent waterproofness after crimping connection.

圧着接続時の加工割れ及び圧着接続後の止水性を備えた端子として、筒状圧着部の非溶接部における金属部材に、通常部と焼きなまし部を形成することが提案されている(特許文献1)。特許文献1では、電線と端子基材の接点に外部からの水分の付着を防止できるので、電線や端子を構成する金属の酸化や腐食を低減することが可能となり、また、端子が焼きなまし部を有することにより、筒状圧着部の圧着時の加工割れを防止するものである。   It has been proposed to form a normal portion and an annealed portion on a metal member in a non-welded portion of a cylindrical crimping portion as a terminal having processing cracks at the time of crimping connection and waterproofness after the crimping connection (Patent Document 1). ). In Patent Literature 1, since the attachment of moisture from the outside to the contact between the electric wire and the terminal base material can be prevented, it is possible to reduce the oxidation and corrosion of the metal constituting the electric wire and the terminal, and the terminal has an annealed portion. By having this, it is possible to prevent processing cracks during crimping of the cylindrical crimping portion.

一方で、自動車用ワイヤハーネスなどには、大電流を通電させるために、径の太いアルミニウム電線が使用されることがある。大電流が通電される径の太いアルミニウム電線では、端子の電気抵抗を小さくする必要があるので、体積抵抗率の小さな金属部材を用いることが必要となる。体積抵抗率が小さい金属部材では、熱伝導率が高いためにレーザ溶接時に導入した熱エネルギーが放出されやすくなるため、レーザの高出力化が必要となる。レーザを高出力化すると、金属部材の添加元素やめっき材料が蒸発しやすくなるため、レーザ溶接部にスパッタ、ボイド、クラックといった表面欠陥と内部欠陥が発生しやすくなる。また、熱伝導率が高い金属部材は、冷却速度が速いことからも、ボイドやクラックなどの表面欠陥と内部欠陥が発生しやすくなる。   On the other hand, an aluminum wire having a large diameter may be used for a wire harness for an automobile or the like in order to supply a large current. In a large-diameter aluminum electric wire through which a large current flows, it is necessary to reduce the electric resistance of the terminal, so that it is necessary to use a metal member having a small volume resistivity. Since a metal member having a small volume resistivity has a high thermal conductivity, the thermal energy introduced at the time of laser welding is easily released, so that a high output of the laser is required. When the output of the laser is increased, the additional element and the plating material of the metal member are liable to evaporate, so that surface defects such as spatter, voids and cracks and internal defects are easily generated in the laser welded portion. In addition, a metal member having a high thermal conductivity has a high cooling rate, so that surface defects such as voids and cracks and internal defects are easily generated.

また、レーザ溶接時における熱膨張収縮や板状の金属部材から端子へ曲げ加工する際の加工残存応力等から内部応力の不均一性が生じて、特に、端子の首部にクラックが発生しやすくなる。また、径の太いアルミニウム電線を圧着接続するためには、肉厚の厚い端子とすることが必要となる。金属部材の肉厚が厚くなると、特に、首部を形成している曲げ加工部にクラックが入りやすくなるという問題もある。   In addition, non-uniformity of internal stress occurs due to thermal expansion and contraction during laser welding and residual processing stress when bending a plate-shaped metal member to a terminal, and cracks are particularly likely to occur at the neck of the terminal. . Also, in order to crimp and connect a large diameter aluminum electric wire, it is necessary to use a thick terminal. When the thickness of the metal member is increased, there is also a problem that cracks tend to occur particularly in the bent portion forming the neck.

従って、径の太い電線が端子に圧着接続される場合であっても、溶接部の表面欠陥及び内部欠陥と首部のクラックの発生を防止して、機械的強度と止水性を備えることが要求されている。しかし、特許文献1では、径の太い電線が圧着接続される場合に、首部のクラックの発生を防止して機械的強度、耐久性及び止水性を向上させることに改善の余地があった。   Therefore, even when a large-diameter electric wire is crimp-connected to a terminal, it is required to prevent the occurrence of surface defects and internal defects of the welded portion and the occurrence of cracks in the neck portion, and to provide mechanical strength and waterproofness. ing. However, in Patent Literature 1, there is room for improvement in preventing the occurrence of cracks in the neck and improving mechanical strength, durability, and waterproofness when a large-diameter electric wire is crimped and connected.

国際公開第2014/017660号International Publication No. WO 2014/017660

上記事情に鑑み、本発明は、径の大きい電線を圧着接続するために、体積抵抗率の小さく肉厚の厚い金属部材を用いても、溶接時における表面欠陥及び内部欠陥の発生や、首部における、内部応力の不均一性や曲げ加工によるクラックの発生を防止して、首部の機械的強度、耐久性及び止水性に優れた端子を提供することを目的とする。   In view of the above-described circumstances, the present invention provides a method for crimping a wire having a large diameter, even if a metal member having a small volume resistivity and a large thickness is used, the occurrence of surface defects and internal defects at the time of welding, and a problem in a neck portion. Another object of the present invention is to provide a terminal having excellent mechanical strength, durability and waterproofness of a neck portion by preventing unevenness of internal stress and generation of cracks due to bending.

本発明の構成の要旨は、以下の通りである。
[1]電線が圧着接続される筒状圧着部と、相手接続先と接続されるコネクタ部と、前記筒状圧着部と前記コネクタ部との間に設けられた首部と、を備え、前記筒状圧着部が、溶接により形成された熱影響部と前記熱影響部とは異なる領域である非熱影響部を有し、前記首部が、溶接により形成された前記熱影響部を有する端子であって、
前記端子が、Crが0.00mass%以上0.35mass%以下、Pが0.00mass%以上0.15mass%以下、Mgが0.05mass%以上0.8mass%以下、残部がCu及び不可避不純物からなり、平均肉厚が0.38mm以上0.80mm以下、導電率が60%IACS以上85%IACS以下である金属部材から形成されており、
前記首部における前記熱影響部の平均硬さに対する、前記非熱影響部の平均硬さの比が、1.1以上1.8以下である端子。
[2]Crが0.15mass%以上0.35mass%以下である[1]に記載の端子。
[3]Pが0.005mass%以上0.15mass%以下である[1]または[2]に記載の端子。
[4]前記筒状圧着部における、前記熱影響部の平均硬さに対する前記非熱影響部の平均硬さの比が、1.1以上1.7以下である[1]乃至[3]のいずれか1つに記載の端子。
[5]前記首部の電線挿入方向の前記熱影響部の幅が、前記首部の熱影響部における厚さの1.0倍以上4.0倍以下である[1]乃至[4]のいずれか1つに記載の端子。
[6]前記首部の熱影響部における平均結晶粒子径が、5μm以上30μm以下である[1]乃至[5]のいずれか1つに記載の端子。
[7]Ni及び/またはSnがめっきされた前記金属部材から形成された[1]乃至[6]のいずれか1つに記載の端子。
[8]前記首部の熱影響部の電線挿入方向における伸び率が0.05%となるように、前記端子の一端を電線挿入方向に対して直交方向に往復振動させた際に、1000万回の往復にても前記首部が破壊されない[1]乃至[7]のいずれか1つに記載の端子。
The gist of the configuration of the present invention is as follows.
[1] The tube includes a tubular crimping portion to which an electric wire is crimped and connected, a connector portion connected to a mating connection destination, and a neck portion provided between the tubular crimping portion and the connector portion. A crimped portion having a heat-affected portion formed by welding and a non-heat-affected portion that is a different region from the heat-affected portion, and the neck portion being a terminal having the heat-affected portion formed by welding. hand,
The terminal has a Cr content of 0.00 mass% or more and 0.35 mass% or less, a P content of 0.00 mass% or more and 0.15 mass% or less, a Mg content of 0.05 mass% or more and 0.8 mass% or less, and a balance of Cu and inevitable impurities. It is made of a metal member having an average thickness of 0.38 mm or more and 0.80 mm or less, and a conductivity of 60% IACS or more and 85% IACS or less,
A terminal in which a ratio of an average hardness of the non-heat-affected zone to an average hardness of the heat-affected zone in the neck is 1.1 or more and 1.8 or less.
[2] The terminal according to [1], wherein Cr is 0.15% by mass or more and 0.35% by mass or less.
[3] The terminal according to [1] or [2], wherein P is 0.005% by mass or more and 0.15% by mass or less.
[4] The ratio of the average hardness of the non-heat-affected zone to the average hardness of the heat-affected zone in the cylindrical pressure-bonded portion, wherein the ratio of the average hardness is 1.1 or more and 1.7 or less. The terminal according to any one of the above.
[5] Any one of [1] to [4], wherein a width of the heat-affected zone in the wire insertion direction of the neck is 1.0 to 4.0 times a thickness of the heat-affected zone of the neck. Terminal described in one.
[6] The terminal according to any one of [1] to [5], wherein the average crystal grain size in the heat-affected zone of the neck is 5 μm or more and 30 μm or less.
[7] The terminal according to any one of [1] to [6], which is formed from the metal member plated with Ni and / or Sn.
[8] When one end of the terminal is reciprocally oscillated in a direction perpendicular to the wire insertion direction such that the heat-affected zone of the neck has an elongation rate of 0.05% in the wire insertion direction, 10 million times The terminal according to any one of [1] to [7], wherein the neck portion is not destroyed even when reciprocating.

本明細書中、「熱影響部」は、溶接により形成された溶接部を含む領域であり、溶接により軟化して溶接前の金属部材の硬さの90%以下に低下した部分を意味する。「非熱影響部」は、溶接による熱影響を受けていない部分であり、溶接前の金属部材の硬さの部分である。また、本明細書中、「硬さ」とは、ビッカース硬さを意味する。ビッカース硬さは、JIS Z 2244に準拠した方法で測定することができる。   In the present specification, the “heat-affected zone” is a region including a welded portion formed by welding, and means a portion softened by welding and reduced to 90% or less of the hardness of the metal member before welding. The “non-heat-affected zone” is a portion that is not affected by heat due to welding, and is a portion of the hardness of the metal member before welding. In the present specification, “hardness” means Vickers hardness. Vickers hardness can be measured by a method according to JIS Z 2244.

[1]の端子では、Crが0.00mass%とは、Crが含まれていないことを意味し、Pが0.00mass%とは、Pが含まれていないことを意味するので、CrとPは任意成分である。   In the terminal [1], 0.00 mass% of Cr means that Cr is not contained, and 0.00 mass% of P means that P is not contained. P is an optional component.

本発明の端子の態様によれば、Crが0.00mass%以上0.35mass%以下、Pが0.00mass%以上0.15mass%以下、Mgが0.05mass%以上0.8mass%以下、残部がCu及び不可避不純物からなる金属部材が用いられていることにより、60%IACS以上85%IACS以下という優れた導電率が得られる。また、上記成分の金属部材が用いられることにより、溶接時における表面欠陥及び内部欠陥を防止でき、平均肉厚が0.38mm以上0.80mm以下と厚い板材にして曲げ加工を実施してもクラック発生を防止できる。さらに、首部における熱影響部の平均硬さに対する、非熱影響部の平均硬さの比が1.1以上1.8以下であることにより、首部における内部応力の不均一性によるクラックの発生を防止でき、また耐久性を向上させることができる。   According to the aspect of the terminal of the present invention, Cr is 0.00 mass% or more and 0.35 mass% or less, P is 0.00 mass% or more and 0.15 mass% or less, Mg is 0.05 mass% or more and 0.8 mass% or less, and the balance is Is a metal member composed of Cu and unavoidable impurities, whereby an excellent electrical conductivity of 60% IACS or more and 85% IACS or less can be obtained. Further, the use of the metal member having the above components can prevent surface defects and internal defects at the time of welding, so that cracks can be formed even when a plate material having an average thickness of 0.38 mm or more and 0.80 mm or less is bent and bent. Occurrence can be prevented. Furthermore, since the ratio of the average hardness of the non-heat-affected zone to the average hardness of the heat-affected zone at the neck is 1.1 or more and 1.8 or less, the occurrence of cracks due to the non-uniformity of internal stress at the neck is reduced. Can be prevented, and the durability can be improved.

従って、径の大きい電線を圧着接続するために、体積抵抗率の小さく肉厚の厚い金属部材を用いても、溶接時における表面欠陥及び内部欠陥の発生や、端子の首部における、内部応力の不均一性によるクラックの発生や曲げ加工によるクラックの発生を防止できる。結果として、首部における機械的強度、耐久性及び止水性に優れた端子を得ることができる。   Therefore, even if a thick metal member having a small volume resistivity and a large thickness is used for crimping a wire having a large diameter, the occurrence of surface defects and internal defects at the time of welding and the occurrence of internal stress at the neck of the terminal are not affected. Generation of cracks due to uniformity and generation of cracks due to bending can be prevented. As a result, it is possible to obtain a terminal having excellent mechanical strength, durability and waterproofness at the neck.

本発明の端子の態様によれば、筒状圧着部における、熱影響部の平均硬さに対する非熱影響部の平均硬さの比が1.1以上1.7以下であることにより、首部だけではなく筒状圧着部における内部応力の不均一性によるクラックの発生も防止できる。従って、筒状圧着部における機械的強度と止水性をさらに向上させることができる。   According to the aspect of the terminal of the present invention, the ratio of the average hardness of the non-heat-affected zone to the average hardness of the heat-affected zone in the cylindrical crimped portion is 1.1 or more and 1.7 or less, so that only the neck portion is formed. Instead, the occurrence of cracks due to the non-uniformity of the internal stress in the cylindrical crimping portion can also be prevented. Therefore, the mechanical strength and the water stopping property of the cylindrical pressure-bonded portion can be further improved.

本発明の端子の態様によれば、首部の電線挿入方向の熱影響部の幅が、首部の熱影響部における厚さの1.0倍以上4.0倍以下であることにより、首部の熱影響部における封止性を得つつ、首部の機械的強度と耐久性をさらに向上させることができる。   According to the aspect of the terminal of the present invention, the width of the heat-affected zone in the wire insertion direction of the neck is 1.0 to 4.0 times the thickness of the heat-affected zone of the neck, and thereby the heat of the neck is reduced. It is possible to further improve the mechanical strength and durability of the neck while obtaining the sealing property in the affected part.

本発明の端子の態様によれば、首部の熱影響部における平均結晶粒子径が、5μm以上30μm以下であることにより、首部の機械的強度と耐久性をさらに向上させることができる。   According to the aspect of the terminal of the present invention, the mechanical strength and durability of the neck can be further improved because the average crystal grain size in the heat-affected zone of the neck is 5 μm or more and 30 μm or less.

本発明の実施形態例に係る端子の概要を説明する斜視図である。It is a perspective view explaining the outline of the terminal concerning an example of an embodiment of the present invention. 筒状圧着部における熱影響部と非熱影響部を説明した断面図である。It is sectional drawing explaining the heat-affected part and the non-heat-affected part in a cylindrical crimping part. 首部における熱影響部と非熱影響部を説明した断面図である。It is sectional drawing explaining the heat affected zone and the non-heat affected zone in a neck part. 本発明の端子の耐久性の試験方法の説明図である。It is explanatory drawing of the test method of the durability of the terminal of this invention.

以下に、本発明の実施形態に係る端子について説明する。まず、本発明の実施形態に係る端子の構造について、図面を用いながら説明する。図1は、本発明の実施形態例に係る端子の概要を説明する斜視図である。図2は、筒状圧着部における熱影響部と非熱影響部を説明した断面図である。図3は、首部における熱影響部と非熱影響部を説明した断面図である。図4は、本発明の端子の耐久性の試験方法の説明図である。   Hereinafter, a terminal according to an embodiment of the present invention will be described. First, the structure of a terminal according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view illustrating an outline of a terminal according to an embodiment of the present invention. FIG. 2 is a cross-sectional view illustrating a heat-affected portion and a non-heat-affected portion in a cylindrical crimping portion. FIG. 3 is a cross-sectional view illustrating a heat-affected zone and a non-heat-affected zone at the neck. FIG. 4 is an explanatory diagram of a method for testing the durability of a terminal according to the present invention.

図1に示すように、本発明の実施形態に係る端子1は、電線(図示せず)が圧着接続される筒状圧着部30と、相手接続先(図示せず)と接続されるコネクタ部20と、筒状圧着部30とコネクタ部20との間に設けられた、筒状圧着部30とコネクタ部20を橋渡しして一体的につなぐ首部(トランジション部)40と、を備えている。   As shown in FIG. 1, a terminal 1 according to an embodiment of the present invention includes a cylindrical crimping portion 30 to which an electric wire (not shown) is crimped, and a connector portion to be connected to a mating connection destination (not shown). 20 and a neck portion (transition portion) 40 provided between the tubular crimping portion 30 and the connector portion 20 for bridging and integrally connecting the tubular crimping portion 30 and the connector portion 20.

コネクタ部20は、例えば、雄型端子の挿入タブを有する構造、雄型端子の挿入タブの挿入を許容するボックス部である。実施形態において、雄型端子の挿入タブやボックス部の細部の形状は、特に限定されない。実施形態例では、端子1の説明の便宜上、雌型端子の例を示している。   The connector section 20 is, for example, a structure having an insertion tab for a male terminal, and a box section that allows insertion of the insertion tab for the male terminal. In the embodiment, the shape of the details of the insertion tab and the box portion of the male terminal is not particularly limited. In the embodiment, an example of a female terminal is shown for convenience of description of the terminal 1.

筒状圧着部30は、端子1と電線とを圧着接続する部位である。筒状圧着部30の一端は、電線を挿入することができる挿入口31を有し、他端は首部40に接続されている。筒状圧着部30は、電線の挿入方向に沿って延在している。筒状圧着部30の首部40側は、水分等の浸入を防止するために、閉口した閉塞部32となっている。閉塞部32の形成方法は、例えば、レーザによる溶接、プレス成型等を挙げることができる。本明細書において、筒状圧着部30と首部40の境界について、電線と端子1とが圧着接続される部分から挿入口31までの部位、すなわち、筒状圧着部30の閉塞部32から挿入口31までの部位を筒状圧着部30とする。端子1の筒状圧着部30は、筒状であれば止水性に対して一定の効果を得られるので、端子1の使用条件等に応じて、長手方向の形状やサイズは、適宜選択可能である。   The cylindrical crimping part 30 is a part for crimping connection between the terminal 1 and the electric wire. One end of the cylindrical crimping portion 30 has an insertion port 31 into which an electric wire can be inserted, and the other end is connected to the neck portion 40. The cylindrical crimping part 30 extends along the insertion direction of the electric wire. The neck 40 side of the tubular crimping portion 30 is a closed closing portion 32 for preventing intrusion of moisture and the like. Examples of a method for forming the closing portion 32 include laser welding, press molding, and the like. In the present specification, with respect to the boundary between the cylindrical crimping portion 30 and the neck portion 40, a portion from the portion where the electric wire and the terminal 1 are crimped to the insertion opening 31, that is, from the closing portion 32 of the cylindrical crimping portion 30 to the insertion opening. The portion up to 31 is the cylindrical crimping portion 30. If the cylindrical crimping portion 30 of the terminal 1 has a cylindrical shape, a certain effect on the water blocking property can be obtained, so that the shape and size in the longitudinal direction can be appropriately selected according to the use conditions of the terminal 1 and the like. is there.

端子1は、溶接により筒状圧着部30が形成されていることから、筒状圧着部30には溶接により形成された溶接部72を含む熱影響部70が形成されている。筒状圧着部30は、金属部材の曲げ加工により、断面がC字形状の圧着部を形成した上で、該圧着部をその向かい合う両端で溶接して、金属部材の筒状圧着部を形成する。このように、筒状圧着部30を形成する溶接は、電線の挿入方向に沿って、筒状圧着部30の挿入口31から閉塞部32まで行われるので、筒状圧着部30において、熱影響部70は挿入口31から閉塞部32まで延在している。溶接領域の寸法は特に限定されないが、例えば、筒状圧着部30の電線の挿入方向に対して直交する断面において、溶接痕の領域が、それ以外の領域の2〜5%の面積率を有するように溶接する。   The terminal 1 has the tubular crimped portion 30 formed by welding, so that the tubular crimped portion 30 has a heat-affected zone 70 including a welded portion 72 formed by welding. The cylindrical crimping portion 30 forms a crimping portion having a C-shaped cross section by bending a metal member, and then welds the crimping portion at opposite ends thereof to form a cylindrical crimping portion of the metal member. . As described above, the welding for forming the cylindrical crimping portion 30 is performed from the insertion port 31 of the cylindrical crimping portion 30 to the closing portion 32 along the insertion direction of the electric wire. The part 70 extends from the insertion port 31 to the closing part 32. Although the size of the welding region is not particularly limited, for example, in a cross section orthogonal to the wire insertion direction of the cylindrical crimping portion 30, the region of the welding mark has an area ratio of 2 to 5% of the other region. To be welded.

熱影響部70は、非熱影響部71である非溶接部の硬さに対して、溶接により軟化して硬さが90%以下に低下した部分を意味する。非熱影響部71は、溶接による熱影響を受けていない部分であり、非熱影響部71の硬さは、溶接前の金属部材の硬さである。図2に示すように、筒状圧着部30における溶接部72に対向する領域の断面の硬さを測定することで非熱影響部71の硬さを測定することができる筒状圧着部30の熱影響部70の平均硬さは、熱影響部70を筒状に沿って、肉厚の中心の硬さを100μmの等間隔で測定した平均値とした。   The heat-affected zone 70 means a portion where the hardness is reduced by welding to 90% or less with respect to the hardness of the non-welded zone which is the non-heat-affected zone 71. The non-heat-affected zone 71 is a portion that is not affected by heat due to welding, and the hardness of the non-heat-affected zone 71 is the hardness of the metal member before welding. As shown in FIG. 2, the hardness of the non-heat-affected zone 71 can be measured by measuring the hardness of the cross section of a region of the cylindrical crimping portion 30 facing the welded portion 72. The average hardness of the heat-affected zone 70 was an average value obtained by measuring the hardness at the center of the thickness of the heat-affected zone 70 at equal intervals of 100 μm along the cylinder.

筒状圧着部30では、筒状圧着部30を構成する金属部材と電線とが圧着接続されることにより、電線と端子を機械的に接続し且つ電気的にも接続する。筒状圧着部30は、かしめ治具を用いてかしめることにより、電線を圧着接続することができる。筒状圧着部30に電線が圧着接続されることで、電線の終端接続構造体が形成される。このような接続構造体を複数束ねることによって、例えば、自動車用ワイヤハーネスとすることができる。   In the cylindrical crimping section 30, the metal member and the electric wire forming the cylindrical crimping section 30 are crimped and connected, so that the electric wire and the terminal are mechanically connected and also electrically connected. The cylindrical crimping section 30 can crimp and connect an electric wire by caulking using a caulking jig. By crimping the electric wire to the cylindrical crimping portion 30, a terminal connection structure of the electric wire is formed. By bundling a plurality of such connection structures, for example, an automobile wire harness can be obtained.

首部40は、筒状圧着部30の閉塞部32から閉塞状態を維持したままコネクタ部20の方向へ延在した部位である。首部40は、電線の挿入方向に対して直交方向において対向する金属部材の部位が接した状態となっている。従って、首部40は、電線の挿入方向に対して直交方向における断面積がコネクタ部20及び筒状圧着部30の上記断面積よりも小さい構造となっている。   The neck portion 40 is a portion extending from the closing portion 32 of the tubular crimping portion 30 toward the connector portion 20 while maintaining the closed state. The neck portion 40 is in a state where portions of the metal member facing in a direction orthogonal to the insertion direction of the electric wire are in contact with each other. Therefore, the neck portion 40 has a structure in which the cross-sectional area in the direction orthogonal to the insertion direction of the electric wire is smaller than the cross-sectional area of the connector portion 20 and the cylindrical crimping portion 30.

端子1は、溶接により首部40が形成されていることから、首部40には溶接により形成された溶接部74を含む熱影響部73が形成されている。首部40は、金属部材の折り曲げ加工により、金属部材の重ね合わせ部を形成した上で、該重ね合わせ部の重ね合わせ方向から、該重ね合わせ部を電線の挿入方向に対して直交方向に幅方向全体にわたって溶接して、金属部材の首部を形成する。重ね合わせ部の重ね合わせ方向から首部40がその幅方向全体にわたって溶接されることにより、溶接部74を含む熱影響部73は首部40の幅方向全体にわたって延在している。首部40がその幅方向全体にわたって溶接されることで、首部40に封止性が付与される。   Since the terminal 1 has the neck 40 formed by welding, the neck 40 has a heat-affected zone 73 including a welded portion 74 formed by welding. The neck 40 is formed by forming a superposed portion of the metal member by bending the metal member, and then moving the superposed portion from the superposed direction of the superposed portion in the width direction in a direction orthogonal to the insertion direction of the electric wire. The whole is welded to form the neck of the metal member. The neck 40 is welded over the entire width direction from the overlapping direction of the overlapping portions, so that the heat-affected zone 73 including the welded portion 74 extends over the entire width of the neck 40. Since the neck portion 40 is welded over the entire width direction, the neck portion 40 is provided with a sealing property.

熱影響部73は、非熱影響部71である非溶接部の硬さに対して、溶接により軟化して硬さが90%以下に低下した部分を意味する。図3に、端子1を筒状圧着部30の溶接部72と非熱影響部71のうち筒状圧着部30の溶接部72に対向する領域にそって、首部40を縦割りにした断面を示す。首部40における熱影響部73の幅は、縦割り断面の肉厚の中心の硬さを長手方向に測定して、非熱影響部71の硬さに対して、90%以下に軟化している部分の長さとした。また首部40の熱影響部73の平均硬さは、熱影響部73の幅に沿って、肉厚の中心の硬さを100μmの等間隔で測定した平均値とした。   The heat-affected zone 73 refers to a portion where the hardness is reduced by welding to 90% or less of the hardness of the non-welded zone, which is the non-heat-affected zone 71. FIG. 3 is a cross-sectional view of the terminal 1 along the region of the welded portion 72 of the cylindrical crimped portion 30 and the non-heat-affected portion 71 facing the welded portion 72 of the cylindrical crimped portion 30 with the neck 40 vertically divided. Show. The width of the heat-affected zone 73 in the neck portion 40 is softened to 90% or less of the hardness of the non-heat-affected zone 71 by measuring the hardness at the center of the thickness of the vertical section in the longitudinal direction. The length of the part. The average hardness of the heat-affected zone 73 of the neck portion 40 was an average value obtained by measuring the hardness at the center of the wall thickness at equal intervals of 100 μm along the width of the heat-affected zone 73.

首部40における熱影響部73の幅、すなわち、首部40の電線挿入方向における熱影響部73の寸法は、特に限定されないが、首部40の熱影響部73における封止性を確実に得つつ、首部40の機械的強度と耐久性をさらに向上させる点から、熱影響部73の部位における首部40の厚さの1.0倍以上4.0倍以下が好ましく、2.0倍以上3.0倍以下が特に好ましい。   The width of the heat-affected zone 73 in the neck 40, that is, the dimension of the heat-affected zone 73 in the wire insertion direction of the neck 40 is not particularly limited. In order to further improve the mechanical strength and durability of the heat-affected zone 73, the thickness of the neck 40 at the portion of the heat-affected zone 73 is preferably 1.0 to 4.0 times, more preferably 2.0 to 3.0 times. The following are particularly preferred.

次に、本発明の実施形態に係る端子1に用いる金属部材について説明する。端子1に用いる金属部材は板材であり、板材の金属部材を所定形状に曲げ加工し、曲げ加工した金属部材を溶接して首部40と筒状圧着部30を形成することで端子1を製造することができる。端子1に径の太い電線(例えば、アルミニウム電線)を圧着接続するためには、肉厚の厚い端子とすることが必要となる。そこで、端子1に用いる板材の平均厚さは、0.38mm以上0.80mm以下と肉厚化されている。   Next, a metal member used for the terminal 1 according to the embodiment of the present invention will be described. The metal member used for the terminal 1 is a plate material, and the metal member of the plate material is bent into a predetermined shape, and the bent metal member is welded to form the neck portion 40 and the cylindrical crimping portion 30 to manufacture the terminal 1. be able to. In order to crimp and connect a large-diameter electric wire (for example, an aluminum electric wire) to the terminal 1, it is necessary to use a thick terminal. Therefore, the average thickness of the plate material used for the terminal 1 is increased to 0.38 mm or more and 0.80 mm or less.

端子1に用いる金属部材の成分としては、クロム(Cr)が0.00mass%以上0.35mass%以下、リン(P)が0.00mass%以上0.15mass%以下、マグネシウム(Mg)が0.05mass%以上0.8mass%以下、残部が銅(Cu)及び不可避不純物からなる銅合金を用いる。上記金属部材が用いられることにより、端子1に60%IACS以上85%IACS以下という優れた導電率が得られるので、端子1の電気抵抗が低減して、径の太い電線に大電流を通電することができる。   As components of the metal member used for the terminal 1, chromium (Cr) is 0.00 mass% or more and 0.35 mass% or less, phosphorus (P) is 0.00 mass% or more and 0.15 mass% or less, and magnesium (Mg) is 0.1 mass% or less. A copper alloy containing not less than 05 mass% and not more than 0.8 mass%, with the balance being copper (Cu) and unavoidable impurities, is used. By using the metal member, the terminal 1 has an excellent electrical conductivity of 60% IACS or more and 85% IACS or less, so that the electric resistance of the terminal 1 is reduced, and a large current flows through the thick wire. be able to.

一方で、導電率に優れた金属部材では、熱伝導率も高いために溶接(例えば、レーザ溶接)時に導入した熱エネルギーが放出されやすくなるため、レーザの高出力化が必要となる。また、金属部材の厚さが肉厚化されている点からもレーザの高出力化が必要となる。レーザを高出力化すると、金属部材の添加元素が蒸発しやすくなるため、溶接部にスパッタ、ボイド、クラックといった表面欠陥と内部欠陥が発生しやすくなる。また、熱伝導率が高い金属部材は、冷却速度も速いことからも、ボイドやクラックなどの表面欠陥と内部欠陥が発生しやすくなる。しかし、金属部材として上記銅合金を用いることにより、その構成元素が溶接時において蒸発しにくい成分であることから、レーザを高出力化しても、溶接時及び溶接後の冷却において、スパッタ、ボイド、クラックといった表面欠陥及び内部欠陥(すなわち、溶接欠陥)の発生を防止できる。   On the other hand, a metal member having excellent electrical conductivity has a high thermal conductivity, so that thermal energy introduced at the time of welding (for example, laser welding) is easily released. Therefore, it is necessary to increase the output of the laser. In addition, it is necessary to increase the output of the laser because the thickness of the metal member is increased. When the output of the laser is increased, the additional elements of the metal member are more likely to evaporate, so that surface defects such as spatter, voids and cracks and internal defects are more likely to occur in the welded portion. In addition, since a metal member having a high thermal conductivity has a high cooling rate, surface defects such as voids and cracks and internal defects are easily generated. However, by using the copper alloy as a metal member, its constituent elements are components that are difficult to evaporate at the time of welding, so even when increasing the output of the laser, at the time of welding and cooling after welding, spatter, voids, Generation of surface defects such as cracks and internal defects (that is, welding defects) can be prevented.

金属部材として上記銅合金を用いることにより、板材の平均厚さが0.38mm以上0.80mm以下と厚い板材にして曲げ加工を実施しても、加工残存応力、特に、首部40における加工残存応力の不均一性を抑制して、曲げ加工に起因するクラック発生を防止できる。   By using the above copper alloy as the metal member, even if the plate is bent into a thick plate having an average thickness of 0.38 mm or more and 0.80 mm or less, the processing residual stress, particularly, the processing residual stress in the neck portion 40. Can be suppressed, and the occurrence of cracks due to bending can be prevented.

前記銅合金では、添加元素であるクロム(Cr)とリン(P)は任意成分であり、銅合金に添加されていることが必須ではない。しかし、導電率がさらに向上し、溶接時における表面欠陥と内部欠陥の発生をより確実に防止する点から、少なくともクロム(Cr)またはリン(P)のいずれか一方が含まれていることが好ましい。クロム(Cr)が含まれる場合、クロム(Cr)は0.15mass%以上0.35mass%以下含まれていることが特に好ましく、リン(P)が含まれる場合、リン(P)は0.005mass%以上0.15mass%以下含まれていることが特に好ましい。   In the copper alloy, chromium (Cr) and phosphorus (P), which are additive elements, are optional components and need not be added to the copper alloy. However, it is preferable that at least one of chromium (Cr) and phosphorus (P) is contained from the viewpoint that the conductivity is further improved and the occurrence of surface defects and internal defects during welding is more reliably prevented. . When chromium (Cr) is contained, it is particularly preferable that chromium (Cr) is contained at 0.15 mass% or more and 0.35 mass% or less. When phosphorus (P) is contained, phosphorus (P) is 0.005 mass%. % Or more and 0.15 mass% or less is particularly preferable.

前記銅合金の表面には、必要に応じて、ニッケル(Ni)及び/またはすず(Sn)がめっきされためっき膜が設けられていてもよい。前記銅合金の表面にめっき膜を形成する場合、めっき膜は、必須成分としてニッケル(Ni)及び/またはスズ(Sn)を含有している。これらのめっき膜には、例えば、スズ(Sn)めっき膜、下地めっきであるニッケル(Ni)めっきとスズ(Sn)めっきからなるめっき膜が挙げられる。端子1を構成する銅合金の表面が、上記めっき膜で被覆されていることにより、端子1に耐食性が付与されて、端子1の耐久性向上に寄与する。なお、めっき膜は、必要に応じて、任意成分として銅(Cu)、銀(Ag)等も含まれた合金のめっき膜でもよく、銅(Cu)めっき、銀(Ag)めっきをさらに設けためっき膜でもよい。めっき膜の厚さは、端子1の使用条件等により適宜調整可能であり、例えば、0.3マイクロメートル(μm)〜1.2マイクロメートル(μm)が挙げられる。   A plating film plated with nickel (Ni) and / or tin (Sn) may be provided on the surface of the copper alloy as needed. When a plating film is formed on the surface of the copper alloy, the plating film contains nickel (Ni) and / or tin (Sn) as essential components. These plating films include, for example, a tin (Sn) plating film and a plating film composed of nickel (Ni) plating and tin (Sn) plating, which are base platings. Since the surface of the copper alloy forming the terminal 1 is covered with the plating film, the terminal 1 is provided with corrosion resistance and contributes to the improvement of the durability of the terminal 1. The plating film may be an alloy plating film containing copper (Cu), silver (Ag), or the like as an optional component, if necessary, and further provided with copper (Cu) plating and silver (Ag) plating. A plating film may be used. The thickness of the plating film can be appropriately adjusted depending on the use conditions of the terminal 1 and the like, and includes, for example, 0.3 μm (μm) to 1.2 μm (μm).

端子1では、首部40における熱影響部73の平均硬さ(ビッカース硬さ)に対する、非熱影響部71の平均硬さ(ビッカース硬さ)の比が、1.1以上1.8以下となっている。首部40における熱影響部73の平均硬さに対する非熱影響部71の平均硬さの比が、1.1以上1.8以下と、首部40の熱影響部73の硬さと非熱影響部71の硬さの差異が低減されていることにより、溶接に起因する首部40における内部応力の不均一性を抑制できる。首部40における内部応力の不均一性を抑制できることにより、首部40にクラックが発生することを防止でき、また、首部40の耐久性を向上させることができる。首部40の熱影響部73の平均硬さに対する、非熱影響部71の平均硬さの比は、溶接に起因する内部応力の不均一性をより確実に抑制する点から1に近いほど好ましく、例えば、前記比の上限値は1.7が好ましい。非熱影響部71の硬さの測定位置は、首部40でも、筒状圧着部30でも、特に限定されない。   In the terminal 1, the ratio of the average hardness (Vickers hardness) of the non-heat-affected zone 71 to the average hardness (Vickers hardness) of the heat-affected zone 73 in the neck 40 is 1.1 or more and 1.8 or less. ing. The ratio of the average hardness of the non-heat-affected zone 71 to the average hardness of the heat-affected zone 73 in the neck 40 is 1.1 or more and 1.8 or less. By reducing the difference in hardness, the unevenness of internal stress in the neck 40 due to welding can be suppressed. Since the unevenness of the internal stress in the neck 40 can be suppressed, it is possible to prevent the occurrence of cracks in the neck 40 and to improve the durability of the neck 40. The ratio of the average hardness of the non-heat-affected zone 71 to the average hardness of the heat-affected zone 73 of the neck portion 40 is preferably closer to 1 from the viewpoint of more reliably suppressing the non-uniformity of the internal stress caused by welding, For example, the upper limit of the ratio is preferably 1.7. The measurement position of the hardness of the non-heat-affected zone 71 is not particularly limited, whether the neck portion 40 or the cylindrical crimping portion 30.

首部40の熱影響部73の平均硬さ(ビッカース硬さ)は、例えば、80(Hv)〜150(Hv)である。首部40が非熱影響部71を有する場合には、非熱影響部71の平均硬さ(ビッカース硬さ)は、例えば、100(Hv)〜200(Hv)である。首部40の熱影響部73の平均硬さに対する非熱影響部71の平均硬さの比は、首部40に対応する上記銅合金の部位を溶接する際に投入するエネルギー量を選択することで、調整することができる。   The average hardness (Vickers hardness) of the heat-affected zone 73 of the neck 40 is, for example, 80 (Hv) to 150 (Hv). When the neck portion 40 has the non-heat-affected zone 71, the average hardness (Vickers hardness) of the non-heat-affected zone 71 is, for example, 100 (Hv) to 200 (Hv). The ratio of the average hardness of the non-heat-affected zone 71 to the average hardness of the heat-affected zone 73 of the neck 40 is determined by selecting the amount of energy to be input when welding the copper alloy portion corresponding to the neck 40. Can be adjusted.

端子1に用いる金属部材について、首部40の熱影響部73における平均結晶粒子径は、特に限定されないが、首部の機械的強度と耐久性をさらに向上させる点から、5μm以上30μm以下が好ましく、9μm以上27μm以下が特に好ましい。平均結晶粒子径は、JISH0501、H0502に準じて交差法により測定することができる。   Regarding the metal member used for the terminal 1, the average crystal grain size in the heat-affected zone 73 of the neck 40 is not particularly limited, but is preferably 5 μm or more and 30 μm or less, and more preferably 9 μm from the viewpoint of further improving the mechanical strength and durability of the neck. It is particularly preferable that the thickness be at least 27 μm. The average crystal particle diameter can be measured by an intersection method according to JIS H0501, H0502.

また、筒状圧着部30における、熱影響部70の平均硬さに対する非熱影響部71の平均硬さの比は、特に限定されない。しかし、首部40だけではなく筒状圧着部30における内部応力の不均一性によるクラックの発生も防止して、筒状圧着部30における機械的強度と止水性をさらに向上させる点から、筒状圧着部30における、熱影響部70の平均硬さに対する非熱影響部71の平均硬さの比は、1.1以上1.7以下が好ましい。筒状圧着部30においても、熱影響部70の平均硬さに対する非熱影響部71の平均硬さの比は、溶接に起因する内部応力の不均一性をより確実に抑制する点から1に近いほど好ましく、例えば、前記比の上限値は1.6が特に好ましい。筒状圧着部30における非熱影響部71の硬さの測定位置は、特に限定されない。   The ratio of the average hardness of the non-heat-affected zone 71 to the average hardness of the heat-affected zone 70 in the cylindrical crimping section 30 is not particularly limited. However, the occurrence of cracks due to the non-uniformity of the internal stress in the cylindrical crimping portion 30 as well as the neck portion 40 is also prevented, and the mechanical strength and waterproofness of the cylindrical crimping portion 30 are further improved. The ratio of the average hardness of the non-heat-affected zone 71 to the average hardness of the heat-affected zone 70 in the portion 30 is preferably 1.1 or more and 1.7 or less. The ratio of the average hardness of the non-heat-affected zone 71 to the average hardness of the heat-affected zone 70 in the cylindrical crimped portion 30 is set to 1 from the viewpoint of more reliably suppressing the non-uniformity of the internal stress caused by welding. The lower the ratio, the more preferable. For example, the upper limit of the ratio is particularly preferably 1.6. The measurement position of the hardness of the non-heat-affected zone 71 in the tubular crimping section 30 is not particularly limited.

筒状圧着部30の熱影響部70の平均硬さ(ビッカース硬さ)は、例えば、80(Hv)〜150(Hv)であり、非熱影響部71の平均硬さ(ビッカース硬さ)は、例えば、100(Hv)〜200(Hv)である。筒状圧着部30においても、熱影響部70の平均硬さに対する非熱影響部71の平均硬さの比は、筒状圧着部30に対応する上記銅合金の部位を溶接する際に投入するエネルギー量を選択することで、調整することができる。   The average hardness (Vickers hardness) of the heat-affected zone 70 of the cylindrical pressure-bonded portion 30 is, for example, 80 (Hv) to 150 (Hv), and the average hardness (Vickers hardness) of the non-heat-affected zone 71 is , For example, 100 (Hv) to 200 (Hv). The ratio of the average hardness of the non-heat-affected zone 71 to the average hardness of the heat-affected zone 70 in the cylindrical crimping section 30 is also input when welding the copper alloy portion corresponding to the cylindrical crimping section 30. It can be adjusted by selecting the amount of energy.

次に、端子1の製造方法例について説明する。まず、上記成分を有する板状の銅合金からなる金属部材を、端子1を展開した形状に対応した所定の平面形状に加工する。加工方法としては、例えば、打ち抜き加工が挙げられる。所定の平面形状に加工した金属部材の一端部を曲げ加工することにより、電線挿入方向に対して直交方向の断面がC字形状の圧着部を形成する。その後、該圧着部をその向かい合う両端で溶接して、金属部材の筒状圧着部、すなわち、端子1の筒状圧着部30に対応する部位を形成する。次に、所定の平面形状に加工した金属部材の中間部を電線の挿入方向に沿って左右から折り曲げ加工により、金属部材の重ね合わせ部を形成する。その後、該重ね合わせ部の重ね合わせ方向から、該重ね合わせ部を電線の挿入方向に対して直交方向に、該重ね合わせ部の幅方向全体にわたって溶接して、金属部材の首部、すなわち、端子1の首部40に対応する部位を形成する。その後、所定の平面形状に加工した金属部材の他端部を曲げ加工することにより、コネクタ部20を形成する。   Next, an example of a method for manufacturing the terminal 1 will be described. First, a metal member made of a plate-like copper alloy having the above-described components is processed into a predetermined planar shape corresponding to a shape in which the terminal 1 is developed. As a processing method, for example, a punching process is exemplified. By bending one end of the metal member processed into a predetermined planar shape, a crimping portion having a C-shaped cross section in a direction perpendicular to the wire insertion direction is formed. Thereafter, the crimping portion is welded at opposite ends thereof to form a cylindrical crimping portion of the metal member, that is, a portion corresponding to the cylindrical crimping portion 30 of the terminal 1. Next, an overlapping portion of the metal member is formed by bending an intermediate portion of the metal member processed into a predetermined planar shape from right and left along the insertion direction of the electric wire. Then, from the overlapping direction of the overlapping portion, the overlapping portion is welded in a direction perpendicular to the insertion direction of the electric wire and over the entire width direction of the overlapping portion to form a neck of the metal member, that is, the terminal 1. Is formed at a position corresponding to the neck 40. Then, the connector part 20 is formed by bending the other end of the metal member processed into a predetermined planar shape.

電線の芯線としては、例えば、銅合金線、アルミニウム合金線などが挙げられる。アルミニウム合金芯線の具体例としては、鉄(Fe)を約0.2質量%、銅(Cu)を約0.2質量%、マグネシウム(Mg)を約0.1質量%、シリコン(Si)を約0.04質量%、残部がアルミニウム(Al)および不可避不純物からなるアルミニウム芯線を用いることができる。他の合金組成として、Feを約1.05質量%、Mgを約0.15質量%、Siを約0.04質量%、残部がAlおよび不可避不純物のもの、Feを約1.0質量%、Siを約0.04質量%、残部がAlおよび不可避不純物のもの、Feを約0.2質量%、Mgを約0.7質量%、Siを約0.7質量%、残部がAlおよび不可避不純物のものなどを用いることができる。これらは、さらにTi、Zr、Sn、Mn等の合金元素を含んでいてもよい。このような組成の金属素線を用いて、合計断面積2〜13mm、素線本数7〜171本の撚り線の形態とした、径の大きい芯線を用いることができる。芯線の絶縁被覆として使用する被覆材としては、例えばPE、PPなどのポリエレフィンを主成分としたもの、PVCを主成分としたもの等を用いることができる。 Examples of the core wire of the electric wire include a copper alloy wire and an aluminum alloy wire. As a specific example of the aluminum alloy core wire, iron (Fe) is about 0.2% by mass, copper (Cu) is about 0.2% by mass, magnesium (Mg) is about 0.1% by mass, and silicon (Si) is It is possible to use an aluminum core wire of about 0.04% by mass, the balance being aluminum (Al) and unavoidable impurities. Other alloy compositions include about 1.05% by mass of Fe, about 0.15% by mass of Mg, about 0.04% by mass of Si, the balance being Al and unavoidable impurities, and about 1.0% by mass of Fe. , About 0.04 mass% of Si, the balance being Al and unavoidable impurities, about 0.2 mass% of Fe, about 0.7 mass% of Mg, about 0.7 mass% of Si, the balance of Al and Inevitable impurities can be used. These may further contain alloy elements such as Ti, Zr, Sn, and Mn. By using a metal wire having such a composition, a core wire having a large diameter in the form of a stranded wire having a total cross-sectional area of 2 to 13 mm 2 and a number of wires of 7 to 171 can be used. As a coating material used as the insulating coating of the core wire, for example, a material mainly containing polyelefin such as PE or PP, a material mainly containing PVC, or the like can be used.

次に、本発明の実施例を説明するが、本発明はその趣旨を超えない限り、以下の実施例に限定されるものではない。   Next, examples of the present invention will be described. However, the present invention is not limited to the following examples unless departing from the gist.

実施例1〜5、比較例1〜3
端子の製造方法
下記表1に示す銅合金からなる金属部材を用いて、上記した構成を有する実施形態の端子を製造した。具体的には、下記表1に示す成分と板厚を有する板状の銅合金を、端子を展開した形状に対応した平面形状にプレス打抜きにより加工した。所定の平面形状に加工した板状の銅合金の一端部を曲げ加工することにより、電線挿入方向に対して直交方向の断面がC字形状の圧着部を形成した。次に、所定の平面形状に加工した板状の銅合金の中間部を電線の挿入方向に沿って左右から折り曲げ加工により、銅合金の重ね合わせ部を形成した。次に、所定の平面形状に加工した金属部材の他端部を曲げ加工することにより、コネクタ部を形成した。その後、圧着部を対向する両端に、所定のエネルギー量のレーザを照射してレーザ溶接し、端子の筒状圧着部を形成し、上記重ね合わせ部の重ね合わせ方向から、該重ね合わせ部を電線の挿入方向に対して直交方向に、該重ね合わせ部の幅方向全体にわたって所定のエネルギー量のレーザを照射してレーザ溶接し、端子の首部を形成した。電線挿入方向に対して直交方向における筒状圧着部の直径は0.5mmであった。その後、アルミニウム電線を筒状圧着部に挿入し、アルミニウム電線の断面積が0.2mmとなるように圧着した。
Examples 1 to 5, Comparative Examples 1 to 3
Method of Manufacturing Terminal A terminal of the embodiment having the above-described configuration was manufactured using a metal member made of a copper alloy shown in Table 1 below. Specifically, a plate-shaped copper alloy having the components and plate thicknesses shown in Table 1 below was processed by press punching into a planar shape corresponding to the developed shape of the terminal. One end of a plate-shaped copper alloy processed into a predetermined planar shape was bent to form a crimping portion having a C-shaped cross section in a direction orthogonal to the wire insertion direction. Next, an overlapped portion of the copper alloy was formed by bending an intermediate portion of the plate-shaped copper alloy processed into a predetermined planar shape from the left and right along the insertion direction of the electric wire. Next, the connector part was formed by bending the other end of the metal member processed into a predetermined planar shape. Thereafter, a laser beam having a predetermined energy amount is applied to both ends of the crimped portion and laser-welded to form a cylindrical crimped portion of the terminal. Then, a laser beam having a predetermined energy amount was irradiated over the entire width direction of the overlapped portion in a direction perpendicular to the insertion direction of the terminal and was welded by laser to form a neck portion of the terminal. The diameter of the cylindrical crimping portion in the direction perpendicular to the wire insertion direction was 0.5 mm 2 . Thereafter, the aluminum electric wire was inserted into the cylindrical crimping portion and crimped so that the cross-sectional area of the aluminum electric wire was 0.2 mm 2 .

レーザ溶接の実験条件は、下記の通りである。
・使用レーザ光源:半導体レーザ
・ガルバノスキャナ(非テレセントリック)を用いた掃引照射
・レーザ光出力:800〜1000W
・掃引速度:50〜500mm/sec.
・全条件ジャストフォーカスでレーザ光照射(スポットサイズ:30μm)
Experimental conditions for laser welding are as follows.
・ Used laser light source: Semiconductor laser
-Sweep irradiation using a galvano scanner (non-telecentric)-Laser beam output: 800 to 1000W
-Sweep speed: 50 to 500 mm / sec.
・ Laser beam irradiation (spot size: 30 μm) with just focus on all conditions

(1)引張強度の測定方法
NCフライスにて13B号のサンプルを作製し、株式会社島津製作所製「AG−100KND」を用いて測定した。
(1) Measuring method of tensile strength A sample of No. 13B was prepared with an NC milling machine and measured using "AG-100KND" manufactured by Shimadzu Corporation.

(2)導電率の測定方法
幅10mm、長さ200mmの短冊状サンプルを作製し、四端子法にて測定した。
(2) Method of Measuring Conductivity A rectangular sample having a width of 10 mm and a length of 200 mm was prepared and measured by a four-terminal method.

(3)筒状圧着部における熱影響部の平均硬さに対する、非熱影響部の平均硬さの比(非熱影響部の硬さ/筒部熱影響部の硬さ)
熱影響部の硬さと非熱影響部の硬さは、JIS Z 2244に準拠した、ビッカース試験法にて測定した。
熱影響部は、非熱影響部である非溶接部の硬さに対して、溶接により軟化し硬さが90%以下に低下した部分を意味する。
筒状圧着部の熱影響部の平均硬さは、筒状圧着部の熱影響部のうち板厚の中心部分を100μmの等間隔で測定した平均値とした。
また、非熱影響部の平均硬さは、首部溶接部から5mm以上離れた筒状圧着部のうち、筒状圧着部の溶接部に対向する領域の板厚の中心部分を100μmの等間隔で測定した平均値とした。
(3) The ratio of the average hardness of the non-heat-affected zone to the average hardness of the heat-affected zone in the cylindrical pressure-bonded portion (hardness of the non-heat-affected zone / hardness of the cylindrical heat-affected zone)
The hardness of the heat-affected zone and the hardness of the non-heat-affected zone were measured by the Vickers test method based on JIS Z 2244.
The heat-affected zone means a portion where the hardness is reduced by welding to 90% or less of the hardness of the non-welded portion which is the non-heat-affected zone.
The average hardness of the heat-affected zone of the cylindrical pressure-bonded portion was an average value of the heat-affected portions of the cylindrical pressure-bonded portion measured at equal intervals of 100 μm at the center of the plate thickness.
In addition, the average hardness of the non-heat-affected zone is such that the central portion of the thickness of the region opposite to the welded portion of the cylindrical crimped portion at an interval of 100 μm among the cylindrical crimped portions separated from the neck welded portion by 5 mm or more. The measured average value was used.

(4)首部の厚さに対する首部の電線挿入方向の熱影響部の寸法(首部の電線挿入方向の熱影響部の幅/首部の厚さ)
首部の厚さは、首部の断面を光学顕微鏡で観察し3カ所の厚さを測定し、その平均値とした。
首部における熱影響部の幅は、図3に示すように、首部の縦割り断面の肉厚の中心の硬さを長手方向に測定し、非熱影響部の硬さに対して90%以下に軟化している部分の長さとした。
(4) The dimension of the heat-affected zone in the direction of wire insertion of the neck relative to the thickness of the neck (width of the heat-affected zone in the direction of wire insertion of the neck / thickness of the neck)
The thickness of the neck was determined by observing the cross section of the neck with an optical microscope, measuring the thickness at three locations, and taking the average value.
As shown in FIG. 3, the width of the heat-affected zone at the neck is measured in the longitudinal direction by measuring the hardness at the center of the thickness of the vertical section of the neck, and is 90% or less of the hardness of the non-heat-affected zone. The length of the softened portion was set.

(5)首部における熱影響部の平均硬さに対する、非熱影響部の平均硬さの比(非熱影響部の硬さ/首部熱影響部の硬さ)
首部の熱影響部の平均硬さは、熱影響部の幅に沿って、その肉厚の中心の硬さを100μm の等間隔で測定した平均値とした。
また、非熱影響部の平均硬さは、首部の溶接部から5mm以上離れた筒状圧着部のうち、筒状圧着部の溶接部に対向する領域の板厚の中心部分を100μmの等間隔で測定した平均値とした。
(5) The ratio of the average hardness of the heat-affected zone to the average hardness of the heat-affected zone at the neck (hardness of the non-heat-affected zone / hardness of the neck heat-affected zone)
The average hardness of the heat-affected zone at the neck was an average value obtained by measuring the hardness at the center of the wall thickness at equal intervals of 100 μm along the width of the heat-affected zone.
In addition, the average hardness of the non-heat-affected zone is such that the center part of the thickness of the region opposite to the welded portion of the cylindrical crimped portion in the cylindrical crimped portion separated from the welded portion of the neck by 5 mm or more is equally spaced by 100 μm. It was the average value measured in.

(6)首部の熱影響部の平均結晶粒子径
JIS H0501、H0502に準じて交差法により平均結晶粒子径の測定を行った。具体的には、撮影された写真に電線挿入方向に平行な直線を引き、その直線と交わる粒界の数を測定した。
(6) Average crystal particle diameter of heat-affected zone at neck The average crystal particle diameter was measured by a crossing method according to JIS H0501 and H0502. Specifically, a straight line parallel to the wire insertion direction was drawn on the photographed photo, and the number of grain boundaries intersecting the straight line was measured.

(7)耐久性(疲労破壊するまでの屈曲回数)
図4に示すように、端子の筒状圧着部を固定用部材に狭持して固定し、首部の熱影響部の電線挿入方向における伸び率が0.05%となるように、端子のコネクタ部を電線挿入方向に対して直交方向に1000万回往復振動させて、首部のクラック発生等の破壊の有無を目視にて評価した。
○:クラック等の破壊の発生なし
×:クラック等の破壊の発生あり
(7) Durability (number of flexures before fatigue failure)
As shown in FIG. 4, the terminal crimping portion is pinched and fixed to a fixing member, and the terminal connector is connected so that the elongation of the heat-affected portion of the neck in the wire insertion direction is 0.05%. The part was reciprocated 10 million times in the direction perpendicular to the wire insertion direction, and the presence or absence of breakage such as crack generation at the neck was visually evaluated.
:: No destruction such as cracks occurred ×: Destruction such as cracks occurred

(8)止水性
端子の筒状圧着部に、筒状圧着部の挿入口から端部が11mm延出するように被覆材で被覆された電線を圧着接続した。その後、水を入れた容器を用意し、電線を圧着接続した端子を該容器に入れ、挿入口の部分まで完全に水に浸漬させた。次に、水に浸漬していない電線の端部から空気圧を徐々に上げて50kPaの空気圧を30秒間あてて空気のリークがないことを目視にて確認した。その後、電線を圧着接続した端子を上記容器から取り出し、120℃で120時間経過した後に、上記と同様にしてリーク試験を行った。120℃で120時間経過した後のリーク試験にてリークが認められなかった場合を○、リークが認められた場合を×と評価した。
(8) Water stoppage An electric wire covered with a covering material was crimp-connected to the tubular crimping portion of the terminal such that the end extended 11 mm from the insertion opening of the tubular crimping portion. Thereafter, a container filled with water was prepared, the terminal to which the electric wire was crimped was connected, and the terminal was completely immersed in water up to the insertion port. Next, the air pressure was gradually increased from the end of the electric wire that was not immersed in water, and air pressure of 50 kPa was applied for 30 seconds to visually confirm that there was no air leak. Thereafter, the terminal to which the wire was crimped was taken out of the container, and after 120 hours at 120 ° C., a leak test was performed in the same manner as described above. When no leak was observed in the leak test after elapse of 120 hours at 120 ° C., it was evaluated as 認 め, and when leak was observed, as ×.

評価結果を下記表1に示す。   The evaluation results are shown in Table 1 below.

Figure 2020004673
Figure 2020004673

表1から、Mgが0.05mass%以上0.8mass%以下含まれ、導電率が60%IACS以上85%IACS以下、板厚が0.38mm以上0.80mm以下である銅合金にNi及び/またはSnがめっきされた金属部材を用い、非熱影響部の硬さ/首部熱影響部の硬さが1.1〜1.8である実施例1〜5では、首部における耐久性と機械的特性に優れ、止水性に優れた端子を得ることができた。また、実施例1〜5では、非熱影響部の硬さ/筒部圧着部の熱影響部の硬さが1.1〜1.7であり、筒部圧着部においてもクラック等の発生が防止されて、機械的強度と止水性に優れた端子を得ることができた。また、実施例1〜5では、首部の電線挿入方向の熱影響部の幅が首部の熱影響部における厚さの1倍以上4倍以下であり、首部の熱影響部における封止性を得つつ、首部の機械的強度と耐久性を確実に向上させることに寄与できた。また、実施例1〜5では、首部の熱影響部における平均結晶粒子径が5μm以上30μm以下であり、首部の機械的強度と耐久性をさらに向上させることに寄与できた。   From Table 1, it is found that Ni and / or Ni are contained in a copper alloy containing 0.05 mass% to 0.8 mass% of Mg, having a conductivity of 60% IACS to 85% IACS, and a plate thickness of 0.38 mm to 0.80 mm. Alternatively, in Examples 1 to 5, in which the hardness of the non-heat-affected zone / the hardness of the neck heat-affected zone is 1.1 to 1.8 using a metal member plated with Sn, the durability and mechanical properties of the neck are It was possible to obtain a terminal having excellent characteristics and excellent water stopping properties. Further, in Examples 1 to 5, the hardness of the non-heat-affected zone / the hardness of the heat-affected zone of the tube portion crimping portion is 1.1 to 1.7, and cracks and the like also occur in the tube portion crimping portion. As a result, a terminal having excellent mechanical strength and waterproofness was obtained. Further, in Examples 1 to 5, the width of the heat-affected zone in the wire insertion direction of the neck is 1 to 4 times the thickness of the heat-affected zone of the neck, and the sealing property of the heat-affected zone of the neck is obtained. At the same time, it was able to contribute to reliably improving the mechanical strength and durability of the neck. In Examples 1 to 5, the average crystal grain size in the heat-affected zone of the neck was 5 μm or more and 30 μm or less, which could contribute to further improving the mechanical strength and durability of the neck.

一方で、銅合金にMgが含まれず、非熱影響部の硬さ/首部熱影響部の硬さが2.1〜2.9である比較例1、2では、首部における耐久性と、端子の止水性が得られなかった。また、銅合金にMgが0.1mass%含まれる金属材料を用いた比較例3では、非熱影響部の硬さ/首部熱影響部の硬さが2.7であり、やはり、首部における耐久性と、端子の止水性が得られなかった。   On the other hand, in Comparative Examples 1 and 2 in which the copper alloy does not contain Mg and the hardness of the non-heat-affected zone / hardness of the neck heat-affected zone is 2.1 to 2.9, the durability at the neck and the terminal Could not be obtained. In Comparative Example 3 using a metal material containing 0.1 mass% of Mg in a copper alloy, the hardness of the non-heat-affected zone / the hardness of the neck heat-affected zone was 2.7, and the durability at the neck was also high. Properties and water stopping properties of the terminals could not be obtained.

本発明の端子は、径の大きい電線を圧着接続するために、体積抵抗率の小さく肉厚の厚い金属部材を用いても、首部におけるクラックの発生を防止して、首部の機械的強度、耐久性及び止水性に優れた端子を得ることができるので、例えば、径の大きい電線が使用される自動車のワイヤハーネスの分野、すなわち、自動車用端子の分野で利用価値が高い。   The terminal of the present invention prevents the occurrence of cracks in the neck even if a thick metal member having a small volume resistivity is used for crimping connection of a large-diameter electric wire, and the mechanical strength and durability of the neck are improved. Since it is possible to obtain a terminal excellent in water resistance and water blocking property, it is highly useful, for example, in the field of automobile wire harnesses using large-diameter electric wires, that is, in the field of automobile terminals.

1 端子
20 コネクタ部
30 筒状圧着部
40 首部
70 筒部圧着部の熱影響部
71 非熱影響部
72 筒部圧着部の溶接部
73 首部の熱影響部
74 首部の溶接部
DESCRIPTION OF SYMBOLS 1 Terminal 20 Connector part 30 Cylindrical crimping part 40 Neck 70 Heat-affected part 71 of a tube part crimping part Non-heat-affected part 72 Welding part 73 of a tube part crimping part Heat-affected part 74 of a neck part

Claims (8)

電線が圧着接続される筒状圧着部と、相手接続先と接続されるコネクタ部と、前記筒状圧着部と前記コネクタ部との間に設けられた首部と、を備え、前記筒状圧着部が、溶接により形成された熱影響部と前記熱影響部とは異なる領域である非熱影響部を有し、前記首部が、溶接により形成された前記熱影響部を有する端子であって、
前記端子が、Crが0.00mass%以上0.35mass%以下、Pが0.00mass%以上0.15mass%以下、Mgが0.05mass%以上0.8mass%以下、残部がCu及び不可避不純物からなり、平均肉厚が0.38mm以上0.80mm以下、導電率が60%IACS以上85%IACS以下である金属部材から形成されており、
前記首部における前記熱影響部の平均硬さに対する、前記非熱影響部の平均硬さの比が、1.1以上1.8以下である端子。
A tubular crimping portion to which an electric wire is crimped and connected, a connector portion connected to a mating connection destination, and a neck portion provided between the tubular crimping portion and the connector portion; However, the heat-affected zone formed by welding and the heat-affected zone has a non-heat-affected zone that is a different region, the neck portion is a terminal having the heat-affected zone formed by welding,
The terminal has a Cr content of 0.00 mass% or more and 0.35 mass% or less, a P content of 0.00 mass% or more and 0.15 mass% or less, a Mg content of 0.05 mass% or more and 0.8 mass% or less, and a balance of Cu and inevitable impurities. It is made of a metal member having an average thickness of 0.38 mm or more and 0.80 mm or less, and a conductivity of 60% IACS or more and 85% IACS or less,
A terminal in which a ratio of an average hardness of the non-heat-affected zone to an average hardness of the heat-affected zone in the neck is 1.1 or more and 1.8 or less.
Crが0.15mass%以上0.35mass%以下である請求項1に記載の端子。   The terminal according to claim 1, wherein Cr is 0.15% by mass or more and 0.35% by mass or less. Pが0.005mass%以上0.15mass%以下である請求項1または2に記載の端子。   The terminal according to claim 1, wherein P is 0.005 mass% or more and 0.15 mass% or less. 前記筒状圧着部における、前記熱影響部の平均硬さに対する前記非熱影響部の平均硬さの比が、1.1以上1.7以下である請求項1乃至3のいずれか1項に記載の端子。   The ratio of the average hardness of the non-heat-affected zone to the average hardness of the heat-affected zone in the cylindrical crimped portion is 1.1 or more and 1.7 or less. Terminal described. 前記首部の電線挿入方向の前記熱影響部の幅が、前記首部の熱影響部における厚さの1.0倍以上4.0倍以下である請求項1乃至4のいずれか1項に記載の端子。   5. The neck according to claim 1, wherein a width of the heat-affected zone in the wire insertion direction of the neck is 1.0 to 4.0 times a thickness of the heat-affected zone of the neck. 6. Terminal. 前記首部の熱影響部における平均結晶粒子径が、5μm以上30μm以下である請求項1乃至5のいずれか1項に記載の端子。   The terminal according to any one of claims 1 to 5, wherein an average crystal grain diameter in the heat-affected zone of the neck is 5 µm or more and 30 µm or less. Ni及び/またはSnがめっきされた前記金属部材から形成された請求項1乃至6のいずれか1項に記載の端子。   The terminal according to any one of claims 1 to 6, wherein the terminal is formed from the metal member plated with Ni and / or Sn. 前記首部の熱影響部の電線挿入方向における伸び率が0.05%となるように、前記端子の一端を電線挿入方向に対して直交方向に往復振動させた際に、1000万回の往復にても前記首部が破壊されない請求項1乃至7のいずれか1項に記載の端子。   When one end of the terminal is reciprocated in the direction perpendicular to the wire insertion direction so that the elongation percentage of the heat-affected zone of the neck in the wire insertion direction becomes 0.05%, the terminal is reciprocated 10 million times. The terminal according to any one of claims 1 to 7, wherein the neck portion is not broken even when the terminal portion is broken.
JP2018125762A 2018-07-02 2018-07-02 terminal Active JP7295617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018125762A JP7295617B2 (en) 2018-07-02 2018-07-02 terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018125762A JP7295617B2 (en) 2018-07-02 2018-07-02 terminal

Publications (2)

Publication Number Publication Date
JP2020004673A true JP2020004673A (en) 2020-01-09
JP7295617B2 JP7295617B2 (en) 2023-06-21

Family

ID=69100459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018125762A Active JP7295617B2 (en) 2018-07-02 2018-07-02 terminal

Country Status (1)

Country Link
JP (1) JP7295617B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187025A (en) * 2013-02-24 2014-10-02 Furukawa Electric Co Ltd:The Metal member, terminal, wire connection structure and method for manufacturing terminal
JP2014187000A (en) * 2012-07-27 2014-10-02 Furukawa Electric Co Ltd:The Terminal, method of manufacturing terminal, and terminating structure for electric wire
JP2015053251A (en) * 2013-02-24 2015-03-19 古河電気工業株式会社 Terminal manufacturing method, terminal, electric wire end edge connection structure manufacturing method, and electric wire end edge connection structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110177727A1 (en) 2010-01-18 2011-07-21 Weiping Zhao Aluminum conductor and conductive terminal connection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187000A (en) * 2012-07-27 2014-10-02 Furukawa Electric Co Ltd:The Terminal, method of manufacturing terminal, and terminating structure for electric wire
JP2014187025A (en) * 2013-02-24 2014-10-02 Furukawa Electric Co Ltd:The Metal member, terminal, wire connection structure and method for manufacturing terminal
JP2015053251A (en) * 2013-02-24 2015-03-19 古河電気工業株式会社 Terminal manufacturing method, terminal, electric wire end edge connection structure manufacturing method, and electric wire end edge connection structure

Also Published As

Publication number Publication date
JP7295617B2 (en) 2023-06-21

Similar Documents

Publication Publication Date Title
JP6182451B2 (en) Terminal, terminal manufacturing method, electric wire terminal connection structure, electric wire with terminal, and wire harness
KR101532894B1 (en) Terminal, a wire connecting structure and a method of manufacturing the terminal
KR101515772B1 (en) Metal member, a terminal, a wire connecting structure and a method of manufacturing a terminal
JP2015053251A (en) Terminal manufacturing method, terminal, electric wire end edge connection structure manufacturing method, and electric wire end edge connection structure
JP2004300524A (en) Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD
JP2014161862A (en) Laser welding method of copper alloy plate material, and copper alloy terminal formed using the same
JP2020004673A (en) Terminal
JP7203643B2 (en) Terminal and terminal manufacturing method
JP2014164934A (en) Crimp terminal and method for manufacturing crimp terminal
JP2014164908A (en) Brass terminal
JP2014164944A (en) Method for manufacturing crimp terminal
JP6210551B2 (en) Terminal, terminal manufacturing method, and electric wire terminal connection structure
JP2014187015A (en) Terminal manufacturing method, terminal, electric wire end connection structure manufacturing method, and electric wire end connection structure
JP2014164906A (en) Brass plate for terminal
JP2014164904A (en) Brass terminal
JP2014164907A (en) Method for manufacturing copper alloy terminal and terminal manufactured by the method
JP2014164910A (en) Copper or copper alloy terminal and manufacturing method thereof
JP2014187011A (en) Terminal, method of manufacturing the terminal, and termination connection structure of electric wire
JP2014187016A (en) Terminal manufacturing method, terminal, electric wire end connection structure manufacturing method, and electric wire end connection structure
JP2019155476A (en) Solder joint
JP2014161871A (en) Terminal manufacturing method, terminal material used for the same, terminal manufactured by the same, wire end edge connection structure body and its manufacturing method, and copper or copper alloy plate for terminal
JP2021048094A (en) Pin terminal, connector, wire harness with connector, and control unit
JP2014164909A (en) Copper alloy terminal
JP2005138163A (en) Resistance spot welding method for copper alloy
JP2014164911A (en) Copper alloy terminal and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220912

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220912

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220922

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220927

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20221125

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20221129

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230221

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230609

R151 Written notification of patent or utility model registration

Ref document number: 7295617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151