JP2020004421A - 1個以上の障害物を回避して始状態から終状態集合まで移動する物体の経路を決定する方法およびシステム - Google Patents

1個以上の障害物を回避して始状態から終状態集合まで移動する物体の経路を決定する方法およびシステム Download PDF

Info

Publication number
JP2020004421A
JP2020004421A JP2019141940A JP2019141940A JP2020004421A JP 2020004421 A JP2020004421 A JP 2020004421A JP 2019141940 A JP2019141940 A JP 2019141940A JP 2019141940 A JP2019141940 A JP 2019141940A JP 2020004421 A JP2020004421 A JP 2020004421A
Authority
JP
Japan
Prior art keywords
node
parent
path
child
cost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019141940A
Other languages
English (en)
Other versions
JP6711949B2 (ja
Inventor
アレシアニ、フランチェスコ
Alesiani Francesco
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Laboratories Europe GmbH
Original Assignee
NEC Laboratories Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Laboratories Europe GmbH filed Critical NEC Laboratories Europe GmbH
Priority to JP2019141940A priority Critical patent/JP6711949B2/ja
Publication of JP2020004421A publication Critical patent/JP2020004421A/ja
Application granted granted Critical
Publication of JP6711949B2 publication Critical patent/JP6711949B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

【課題】1個以上のノードを経由して始状態から終状態集合まで移動するロボット等の経路を決定するシステムを提供する。【解決手段】a)親ノードに対して特定の距離内にある複数の新しい子ノードを生成する。b)親ノードから記子ノードのそれぞれへの遷移に障害物がある場合、この部分経路が除外される。c)部分経路のそれぞれについてコスト値を計算する。d)始ノードから親ノードまでのコスト値に、計算されたコスト値を加算する。e)子ノードのそれぞれから終状態を表す終ノードまでの部分経路に対して推定または期待されるコスト値を加算する。f)ステップd)〜e)に従って決定されたコスト値から最低の全コスト値を決定し、最低コストに対応する子ノードを新しい親ノードとして選択する。g)選択された子ノードが終ノードまで所与の距離内にあるという終了条件をが満たされるまでステップa)〜g)の実行を繰り返す。【選択図】図1

Description

本発明は、1個以上のノードを経由して始状態から1個以上の終状態を含む終状態集合まで移動するロボット等の物体の経路を決定する方法に関する。各ノードは1個以上の障害物を回避するように探索された無障害物状態として規定される。
また、本発明は、1個以上のノードを経由して始状態から1個以上の終状態を含む終状態集合まで移動するロボット等の物体の経路を決定するシステムに関する。各ノードは1個以上の障害物を回避するように探索された無障害物状態として規定される。
本発明は、いかなる種類の物体にも適用可能であるが、以下ではロボットに関して説明する。
ロボットおよび自律/無人運転輸送手段は、今日の日常生活に影響を及ぼす2つの広範な分野およびシステムである。ロボットは、工業自動化や生活支援に使用される。最近ではドローンもまた、軍事および民生用に導入されている。自律運転車は高度の信頼性を示しており、近い将来には公的使用のために利用可能となるであろうが、農業・鉱業用のような非公道用には既に使用されている。無人輸送手段は、無人の船舶や宇宙船も構想されている。
他の応用分野として、医療において、外科手術器具を硬軟の組織と生命に必須の器官との間で動かす場合がある。また、他の応用としては、軍事・宇宙分野において、輸送手段が障害物を回避しながら移動しなければならない場合がある。
上記の理由から、このような物体の経路や移動は、障害物の回避を含めて計画されなければならない。経路計画は、始状態から目標の終状態集合までの経路の生成を対象とするロボティクスの分野である。経路は、ロボット/輸送手段の拘束と状態発展ダイナミクスを考慮しなければならず、ロボット/輸送手段の状態の無障害物集合内に存在しなければならない。
特許文献1には、輸送手段等の物体の経路計画を行うシステムおよび方法が開示されている。このシステムは、輸送手段および障害物の移動が確率的に知られている場合に、動的に変化する不確定な環境における運動学的動力学的拘束(kinodynamic constraint)の下で動作する輸送手段に対して、実時間経路計画を扱うランダム化適応経路計画を提供する。詳細には、ツリー構築が以下のステップによって実行される。ルートノードを初期輸送手段状態に設定し、停止条件が満たされているかどうかをチェックする。満たされていない場合、決定性ツリー延長およびランダムツリー延長を実行する。これらのツリー延長に基づいて、まだ選択されていないノードを選択する。そして、該ノードが延長されているか否かをチェックする。延長されていない場合、該ノードは死んでいる(dead)と設定される。該ノードが延長されている場合、消去(kill)条件が満たされているか否かをチェックし、消去条件が満たされていない場合、すべてのノードが選択されたか否かをチェックする。すべてのノードが選択されてはいない場合、まだ選択されていないノードを選択する。それ以外の場合、停止条件が満たされているか否かを再びチェックする。
特許文献2には、自動部品計画を行うシステムおよび方法が開示されている。このシステムおよび方法は、無衝突の部品除去経路を自動的に求める。このシステムは、高次元の状態空間を粗サンプリングし、近接仮定を用いて残りの空間をマッピングする。より詳細には、特許文献2では、始状態および宛先状態を中心とする球によって規定される重なり領域内に完全に含まれる始状態と宛先状態とを結ぶ経路が障害物と衝突するかどうかをチェックする。障害物にぶつかっている場合、障害物が該領域と交わる衝突点を求め、現領域と近隣領域のサイズを、その中心から最近接衝突点までの距離が小さくなるように調整する。そして、無障害物領域が親領域として選択される。この親領域から子領域が生成されることになる。親領域の候補点を子領域の中心点として選択し、候補点が障害物にぶつかる場合、領域の半径を適当に調節し、別の候補点または親領域を繰り返し選択する。候補点が障害物にぶつからない場合、子領域が生成される。子領域は、候補点をその中心点とし、候補点のリストにおける最近接衝突位置よりも小さい半径を有する。
特許文献3には、輸送手段の経路を決定する二点間経路計画方法が開示されている。この方法では、始点および終点が規定され、障害物ディテクタが、始点と終点の間の作業領域における1個以上の障害物を検出する。各障害物に対応して、その周りに境界ゾーンが規定される。そして、始点と終点の間の候補経路が識別される。各候補経路は、各障害物に対応する1個の境界ゾーンのみと交わる。始点と終点の間で各候補経路またはその一部をたどる経済的コストが推定される。識別された候補経路のうちから、推定された経済的コストが最低であることに基づいて優先経路が選択される。
他の経路計画の方法およびアルゴリズムは、例えば、非特許文献1や非特許文献2に開示されている。
しかし、従来の方法およびシステムの欠点の1つとして、状態空間が大きくなる場合、特に未知の形状の障害物が存在する場合に、妥当な時間で経路を見つけることが問題となる。もう1つの課題は、対象となる領域内で障害物が移動する場合、すなわち時間成分を考慮する場合に、経路が手に負える(tractable)ものでなければならないことである。もう1つの課題は、従来の経路計画システムは漸近的最適性の達成や急拡大するデータ構造に注目しているが、有界な最適経路を無視していることである。
米国特許第7447593B2号明細書 米国特許第5999881号明細書 国際公開第2006/080996A2号
S. Karaman, E. Frazzoli, "Sampling-based algorithms for optimal motion planning", Int. J. of Robotics Research 30(7):846-894, 2011 Webb, D. and van den Berg, J. (2013), "Kinodynamic RRT: Asymptotically optimal motion planning for robots with linear dynamics", pp. 5054--5061
したがって、本発明の目的は、物体の経路を決定する問題に対して高速で誤差有界な解を与える、物体の経路を決定する方法およびシステムを提供することである。
本発明のもう1つの目的は、多数の相異なる応用分野に適用可能な、物体の経路を決定する方法およびシステムを提供することである。
本発明のさらにもう1つの目的は、実施が容易で費用効果の高い、物体の経路を決定する方法およびシステムを提供することである。
上記の目的は、請求項1の方法および請求項25のシステムによって達成される。
請求項1において、1個以上のノードを経由して始状態から1個以上の終状態を含む終状態集合まで移動するロボット等の物体の経路を決定する方法が規定される。各ノードは1個以上の障害物を回避するように探索された無障害物状態として規定される。
請求項1によれば、本方法は、
a)親ノードに対して複数の子ノードを決定するステップであって、ステップa)が最初に実行されるときには前記始状態を表す始ノードが前記親ノードとなり、前記子ノードは前記親ノードまである特定の距離内にある、決定するステップと、
b)前記親ノードから前記子ノードのそれぞれへの遷移に障害物がないかどうかをチェックし、障害物がある場合、対応する子ノードおよび前記親ノードから該子ノードまでのこの部分経路が除外される、チェックするステップと、
c)前記部分経路のそれぞれについてコスト値を計算するステップと、
d)前記始ノードから前記親ノードまでのコスト値に、前記計算されたコスト値を加算するステップと、
e)前記子ノードのそれぞれから終状態を表す終ノードまでの部分経路に対して推定または期待されるコスト値を加算するステップと、
f)ステップd)〜f)に従って決定されたコスト値から最低の全コスト値を決定し、該決定された最低コストに対応する子ノードを新しい親ノードとして選択するステップと、
g)選択された子ノードが前記終ノードまで所与の距離内にあるという終了条件を含む少なくとも1つの終了条件が満たされるまでステップa)〜g)の実行を繰り返すステップと
を備えたことを特徴とする。
請求項25において、1個以上のノードを経由して始状態から1個以上の終状態を含む終状態集合まで移動するロボット等の物体の経路を決定するシステムが規定される。各ノードは1個以上の障害物を回避するように探索された無障害物状態として規定される。
請求項25によれば、本システムは、
a)親ノードに対して複数の子ノードを決定するステップであって、ステップa)が最初に実行されるときには前記始状態を表す始ノードが前記親ノードとなり、前記子ノードは前記親ノードまである特定の距離内にある、決定するステップと、
b)前記親ノードから前記子ノードのそれぞれへの遷移に障害物がないかどうかをチェックし、障害物がある場合、対応する子ノードおよび前記親ノードから該子ノードまでのこの部分経路が除外される、チェックするステップと、
c)前記部分経路のそれぞれについてコスト値を計算するステップと、
d)前記始ノードから前記親ノードまでのコスト値に、前記計算されたコスト値を加算するステップと、
e)前記子ノードのそれぞれから終状態を表す終ノードまでの部分経路に対して推定または期待されるコスト値を加算するステップと、
f)ステップd)〜f)に従って決定されたコスト値から最低の全コスト値を決定し、該決定された最低コストに対応する子ノードを新しい親ノードとして選択するステップと、
g)選択された子ノードが前記終ノードまで所与の距離内にあるという終了条件を含む少なくとも1つの終了条件が満たされるまでステップa)〜g)の実行を繰り返すステップと
を行うように適応されるか、または、行うために相互に協力するように適応された1個以上の計算要素を備えたことを特徴とする。
換言すれば、本発明は、好ましくは、有界近似最適コストおよび反復解による局所成長ツリー探索を使用する。
好ましくは特許請求の範囲において、特に明細書において、「コスト」という用語はその最広義に理解されるべきであり、距離、時間、エネルギー、汚染および/または経済的コスト等を含み得るが、これらに限定されない。
本発明によって認識されたこととして、ロボット、輸送手段等の物体の経路が障害物を回避するように提供され、障害物の形状は事前に未知でもよく、時間的に変動することも可能である。
また、本発明によって認識されたこととして、決定される経路は、有界時間で計算される最適コスト経路に対して有界誤差を守る。
また、本発明によって認識されたこととして、本発明は、例えば協調的自律運転輸送手段からロボットやドローンの無障害物移動や医療精密制御まで、多くの応用分野に適用可能である。
また、本発明によって認識されたこととして、本発明は、漸近的最適収束が可能となるような拡張を可能にすることに関してフレキシブルである。
さらなる特徴、利点および好ましい実施形態について、従属請求項に関して以下で説明する。
好ましい実施形態によれば、子ノードから前記終状態集合までの実コストに対する下限値が決定され、ステップe)における前記推定または期待されるコストとして使用される。これにより、探索時にコストが下方推定コスト以下の場合にのみ無障害物空間を探索することが可能となる。経路のコストは、中間状態までの現コストに、終状態までの実コストの下限を加えたものによって近似することが可能である。これにより、限られた時間内に費用効果の高い経路を推定することができる。下方推定コストの一例は、障害物を考慮しないか、実際の全コストの一部のみ(例えば距離のみ)を含む解(すなわち経路)に関連するコストである。
さらに好ましい実施形態によれば、子ノードを決定するため、親被覆空間が選択され、子ノードがその個別被覆空間で所定の親範囲まで前記親被覆空間を被覆するように子ノードが局所的に生成され、前記個別被覆空間は相互に重なり合わない。これにより、それぞれの探索されるノードのまわりの空間を効果的に探索することができる。障害物は、十分な精度で高速に決定することができる。
さらに好ましい実施形態によれば、子ノードに対する個別被覆空間および/または親ノードに対する親被覆空間の形が所定の半径を有する球状である。これにより、計算の有効性がさらに向上する。というのは、球は対称的であり、2個の変数、すなわち中心の位置と半径だけで記述できるからである。
さらに好ましい実施形態によれば、子ノードを局所的に生成するため、前記親被覆空間の中心から限られた数の方向が生成され、該方向に子ノードを生成することによって前記親被覆空間を被覆するために該方向が使用される。これにより、例えば、ある特定の方向を選択または優先することが可能となる。このためフレキシビリティが向上する。また、いくつかの方向の選択により、これらの方向に沿った局所探索を実行して、個別被覆空間の例として新しい球を最適に配置することが可能となる。
さらに好ましい実施形態によれば、ステップb)で障害物があると判定された場合、親被覆空間のうちで該障害物のない部分がある特定の範囲まで被覆されるように子ノードが前記親被覆空間内に生成される。これにより、物体が存在する場合に無障害物空間の被覆が向上する。
さらに好ましい実施形態によれば、ステップb)で2個以上の障害物があると判定された場合、2個の障害物の間の最小障害物距離が決定され、個別被覆空間の最小距離の方向における最大範囲が前記最小障害物距離よりも小さく設定される。この場合、例えば、最小障害物距離の半分の半径を有する球でも依然として両方の障害物を通る可能性がある。これにより、近接した障害物の間の経路を検出することが可能となる。
さらに好ましい実施形態によれば、現在の親ノードの最近接ノードが決定され、該最近接ノードが現在の親ノードを中心とする子ノードの個別被覆空間内にある場合、現在の親ノードから前記最近接ノードまでの部分経路に対するコストを含む全コスト値が前記最近接ノードに対して決定され、該コストが現在の親ノードの全コストよりも低い場合、前記最近接ノードが新しい親ノードとして選択される。これにより、例えば個別被覆空間が球のとき、ノードが最小半径よりも近い場合、さらにノードを探索することなく、経路のさらなる最適化が可能となることが保証される。
さらに好ましい実施形態によれば、好ましくは球状の、親被覆空間および/または個別被覆空間の形状を規定するパラメータがランダムに決定され、好ましくは、球の半径が1個以上の確率分布に従ってランダムに決定される。これにより、十分な精度を保つことが可能でありながら、精度を低減することによって、より短い時間で適当な経路を見つけることが可能となる。その場合、有効な半径は、最小値と最大値の平均、または一般に、例えば球の半径の分布の平均である。最小半径は、分布の最小半径である。ランダム化を用いて通過する障害物間の最小距離は、確率分布から決定される大きいほうの半径の半分である。
さらに好ましい実施形態によれば、個別被覆空間および/または親被覆空間が球の場合、対応する半径が、前記2個以上の障害物の間の最小距離の半分よりも小さく決定される。これにより、このような半径を有する球が障害物間の最小距離を通ることができるように最小半径を選択することが可能となる。
さらに好ましい実施形態によれば、障害物の時間発展、好ましくは障害物の移動を実現するため、障害物および前記経路に沿ったノードがさらに時間の次元を有するように実現される。例えば、始点と終点の間の状態空間はこの場合には時間次元も含む。例えば2次元空間内の矩形状の障害物は、その矩形を第3次元に拡張した直平行六面体の形を有する。これにより、障害物の時間発展を実現することが容易となる。
さらに好ましい実施形態によれば、障害物の時間発展、好ましくは障害物の移動を実現するため、ノードの状態に、障害物のない時間を示す時間間隔が割り当てられる。例えば、この間隔は、1から番号付けされてもよい。ノードを探索しながら、到達した各ノードにおける時間間隔が保存される。次の間隔が始状態間隔に状態移動時間を加えたものと両立し、移動において障害物がない場合にのみ、次のノードに到達することができる。ノードを探索しながら、コストを更新する。コストは、以前の到達時刻を使用する。移動を効率的に保存するため、移動は、所定の時間ステップで、移動する物体を含む最小体積の多次元矩形と結びつけることができる。
さらに好ましい実施形態によれば、前記始状態から前記終状態までの発展が運動学的動力学的である場合、親ノードと子ノードの2状態間のコストが局所最適化タスクを実行することによって計算される。これにより、2個の状態またはノードの間のコストを非常に効率的に計算することが可能となる。
さらに好ましい実施形態によれば、ステップa)〜g)が、初期親ノードとしての前記終ノードから逆向きに前記始ノードに戻るようにも実行され、前記始ノードから出発する経路と前記終ノードから出発する経路の両方の経路のノードが相互にある特定の距離内にある場合に終了条件が満たされ、前記終状態集合がただ1つの終状態のみを含む。これは、始点と終点の間の経路を決定する別法を提供し、始ノードと終ノードの間の経路のさらに高速な決定を可能にする。
さらに好ましい実施形態によれば、状態、ノードおよび障害物、好ましくは移動する障害物の時間発展を実現するため、逆向きの時間方向を考慮するように時間が減算される。これにより、状態、ノードおよび障害物、好ましくは移動する障害物の時間発展の容易な実現が可能となり、逆向きの時間方向を考慮するように時間が減算されることで、始ノードと終ノードの間の経路を決定するための二重伝搬ツリーに対する時間発展の容易な実現が可能となる。
さらに好ましい実施形態によれば、新しい親および/または子ノードごとに、宛先までの直接経路に沿ってノードが追加され、判定条件は、ステップa)〜g)が実行され前記新しい親ノードが前記終状態集合において全コストがより低い終状態を表すノードであるような部分経路によって終ノード集合に到達する場合にのみ適用される。これにより、それぞれの新しい親ノードにおいて直接に宛先に到達する試行を実現することが可能となる。宛先までの直接経路に沿ったノードは単純に追加される。直接に接続する延長を含む経路によって終状態/終ノードに到達する場合には、終了条件は満たされないのが好ましい。その理由は、より低い全コストを加える経路が存在する可能性があるからである。終了条件が満たされるのは、終状態/終ノードに到達するときに経路が延長ノードを含まない場合、または、キュー(後述)が空であるか、もしくは所定の反復数に到達した場合だけである。
さらに好ましい実施形態によれば、前記始状態から前記終状態集合までの経路がある時間限界内に見つかった場合、より低いコストの代替経路をチェックするために残りの時間を使用してRRT手順を適用する。これにより、有界な理想または最適の経路が既に見つかったが時間が残っている場合、すなわち時間拘束を破らずに、見つかった経路をさらに最適化することが可能となる。さらなる利点として、有界誤差経路が見つかった後に漸近的最適化が達成される。RRT手順は、RRT手順の漸近的に最適なバージョンであり、KaramanとFrazzoliにより開発され、上記の非特許文献1に開示されている。
さらに好ましい実施形態によれば、複数の物体がある場合、第1の物体に対してステップa)〜g)が実行された後、障害物として固定された該第1の物体に対して決定された経路を考慮して1個以上の第2の物体に対してステップa)〜g)が実行され、すべての経路に対する共通の全コストが決定される。これにより、それぞれの始ノードから対応する終ノードまでの経路を見つけるべき複数の物体を容易に実現することが可能となる。この場合の一例は、クワッドローターが、障害物のある環境で同時に移動する必要がある場合である。その場合、共通コスト関数が規定され、本発明の一実施形態による方法は、各ロボット/輸送手段に対して、他のロボット輸送手段の経路を固定して考慮することによって、別個に反復される。コストは、右から近づく輸送手段が左から到着する輸送手段よりも小さい罰金コストを有するように、輸送手段の優先度値に関連する因子を含んでもよい。その場合、判定基準は、例えば、見つかった経路においてもはや有意な変化がない場合や、所定の反復数に到達した場合のような、何らかの収束基準としてもよい。
さらに好ましい実施形態によれば、共通の全コストが第1の物体と第2の物体の間の相互作用コストを含み、好ましくは、該相互作用コストは、前記第1の物体と第2の物体の間の距離が大きいほど減少する。これは、2個の物体がどのように接近してもコストが高くなるため衝突が回避されることを考慮している。
さらに好ましい実施形態によれば、個別被覆空間および/または親被覆空間の中心がグリッド構造に割り当てられる。これにより、例えば、球の中心を規則的および/または固定的なグリッド上に置くことが可能となる。その利点の1つは、衝突をチェックする必要がないことである。すなわち、ノードのすべての位置は相互に固定されるため、球状の個別被覆領域はいかにしても重なり合わないように選択可能である。フレキシビリティを提供するため、グリッド上のノードの一部に到達しないようにして、どのノードを探索すべきかにおいて少なくともある程度の適応可能性が実現される。グリッドを生成するためには、任意の格子またはグリッド生成手順を使用可能である。例えば、格子は、空間の次元数だけの線型独立なベクトルの基底によって生成可能である。
さらに好ましい実施形態によれば、各ノードに対して、始状態から終状態集合までの経路を取得するのに何個のノードが接続される必要があるかを指定するために閾値が使用される。これにより、始ノードから終ノードまでのノード数を低減あるいは制限することが可能となる。この臨界閾値は、各ノードに対して、何個の球およびノードが接続される必要があるかを決定するために使用可能であり、接続性を取得するため、すなわち、少なくとも1つの経路を見つけるための平均値である。例えば、すべてのノードが同じ接続性を有する(すなわち、接続されたノードの数がkに等しい)規則的ツリーグラフでは、臨界確率閾値は1/kである。接続されたノードの数が低減されると、ステップa)〜g)を実行した場合に実際には経路が見つからないことがあり、あるいは、見つかった経路の誤差が所与の限界内に入ることが保証されない。これらの2つの事態を軽減するため、ノードあたりいくつかの到達ノードを保存し、より多くの反復が可能な場合や、宛先に到達せずさらなるノードに行けない場合に、過去に未発見のノードをさらに使用してもよい。
さらに好ましい実施形態によれば、各ノードに対して、コスト値を示すためにキューが使用され、期待コスト値が最低のノードが次のノードとして使用され、より高いコストの他のノードは前記キュー内に期待コスト値に従って配列される。これにより、探索中にノードが挿入される優先度キューを提供することが可能となる。この優先度キューは、より低コストの要素を返して除去し、その要素が親ノードとして使用される。
さらに好ましい実施形態によれば、ステップb)〜f)を実行するため、各子ノードを経由する経路に対する全コスト値が後で決定され、現在の子ノードを経由する全コスト値が前の子ノードのものよりも小さい場合、現在の子ノードが新しい親ノードとして選択され、前の子ノードが前記キューに再挿入される。これにより、容易かつ効率的に新しい親ノードを決定することが可能となる。
さらに好ましい実施形態によれば、ステップa)を実行するため、前記始ノードが前記キューに挿入される。これにより、経路を決定するための反復が非常に容易に初期化される。
本発明を好ましい態様で実施するにはいくつもの可能性がある。このためには、一方で請求項1に従属する諸請求項を参照しつつ、他方で図面により例示された本発明の好ましい実施形態についての以下の説明を参照されたい。図面を用いて本発明の好ましい実施形態を説明する際には、本発明の教示による好ましい実施形態一般およびその変形例について説明する。
経路を決定する基礎問題を模式的に示す図である。 本発明の第1の実施形態によるシステムを示す図である。 球状の親被覆空間および個別被覆空間を示す図である。 障害物によって部分的に遮蔽された親被覆空間を示す図である。 2個の物体によって部分的に遮蔽された親被覆空間を示す図である。 本発明の第2の実施形態による方法の結果として決定される経路の結果を示す図である。 最終ノードに到達する際の最大可能コスト誤差を模式的に示す図である。 本発明の第3の実施形態による方法の使用例を示す図である。 従来の急速探索ランダムツリー法の結果を示す図である。 従来の連結急速探索ランダムツリー法を示す図である。 本発明の第4の実施形態による方法のステップを示す図である。 本発明の第5の実施形態による方法のステップを示す図である。
図1は、経路を決定する基礎問題を模式的に示している。
図1に、例示的な問題を示す。始状態N0と、終ノード(NE)を含む終状態集合ESSとの間の無衝突経路Pを見つけたい。ただし、障害物O(ここでは矩形状)が一般には始状態N0と終状態集合ESSの間にある。
図2は、本発明の第1の実施形態によるシステムを示している。
図2に、有界近似最適コストの局所成長ツリーに対するシステムアーキテクチャの例を示す。入力パラメータとして、障害物関数、始状態、終状態集合、コスト関数および近似未来コスト関数、状態の動的記述、ならびに球ICSの密度等の他の方法パラメータが使用される。その場合、経路計画システムは、近似された最適経路、見つかった経路のコスト、探索されたツリーおよびノードコストを出力する。
経路を計算するため、すなわち、始状態xと終状態集合Xの間の1個以上の経路を見つけるため、本発明の一実施形態による方法を用いることにより、いわゆる状態発展関数によって限定された時間変動可能な障害物を回避することが可能となる。返される経路は、コスト関数f(x)に関して測定可能である。ただしf(x)は、始状態xから現在の状態xまで移動するコストである。経路のコストは、中間状態までの現コストに、終状態または終状態集合までの実コストの下限を加えたものによって近似される。
本発明によれば、探索時に経路のコストが下方推定コスト以下の場合にのみ無障害物空間が探索される。
より詳細には、以下で次式を仮定する。
∃h(x,y):h(x,y)≦f(x,y)
f(x,y|z)=f(x,z)+f(z,y)
ただし、f(x,y|z)は、zを通ってxからyまで行くコストであり、h(x,y)は実コスト関数f(x,y)の下限である。近似下方コストはg(x,x|x)=f(x,x)+h(x,x)である。x、xは始状態および終状態であり、xは経路に沿った状態である。
本発明により提案される方法は、探索中にノードが挿入される優先度キューの使用を含む。優先度キューは、より低コストの要素を返して除去する。ただし、そのコストは期待コストg(x,x)である。
始状態/始ノードから開始して、それぞれの探索されたノード(最初は始ノードのみ)に対して、半径Rminの球ICSとなる近隣空間をおよそ被覆する新ノードCN0,CN1,CN2が生成されるように、追加のノードが探索される。新ノードCN0,CN1,CN2は、半径Rmaxの球PCSが、半径Rminの重なり合わない球ICSで被覆されるまで局所的に生成される。これは、好ましくは、十分だが限られた数の方向を生成して近傍ノードCN0,CN1,CN2についてチェックすることによって得られる。近傍ノードCN1,CN2は、探索関数を用いて見つけてもよい。半径Rおよび対応する入力ノードxの入力に対して、現在のノードCN0を中心とし所与の半径の球PCS内にすべてのノードCN1,CN2が見つかる。返されるノードCN1,CN2は、好ましくは距離で順序づけされる。また、N個の最近接ノードCN0,CN1,CN2のみをチェックすることができる。ただし、Nは選択されるべきパラメータである。
図3は、球状の親被覆空間および個別被覆空間を示している。
図3に、個別被覆空間ICSを有する新ノードCN0,CN1,CN2の生成を示す。球ICSの最大個数は次式で規定される。
max=Vmax/Vmin
ただし、Vmax、Vminはd次元球ICSの体積である。最大反復数Niter,maxは、始状態および1個以上の終状態を焦点とする超楕円体内の半径Rminの球の数によって与えられ、距離の和は最適解のコストによって与えられる。
iter,max=Vellipse/Vmin
図4は、障害物によって部分的に遮蔽された親被覆空間を示している。
図4において、障害物Oが存在するとき、半径Rmaxの球PCSが半径Rminの子ノードCN0,CN1,CN2で被覆されている。障害物Oの近くで探索が実行される場合、ノードCN0,CN1,CN2は、残りの空間を考慮し、子ノードCN0,CN1,CN2の半径Rminによって与えられる密度で残りの空間を被覆するように生成される。
図5は、2個の物体によって部分的に遮蔽された親被覆空間を示している。
図5において、狭い通路を被覆する球が示されている。より詳細には、図5は、2個の障害物O1,O2が存在する場合における親ノード空間PCSの被覆を示している。障害物O1,O2が互いに非常に近い場合、球ICSの半径Rminが2個の障害物O1,O2の間の最小距離Dminの大きさの約半分であれば、個別被覆空間ICS(すなわち球)はうまく通過できる。
図6は、本発明の第2の実施形態による方法によって決定される経路の結果を示している。
図6に、障害物Oが存在する場合の、始ノードN0から終ノードNEまでの局所成長ツリーあるいは経路Pの一例が示されている。図6からわかるように、ツリーのない領域に部分的に外挿されたすべてのツリーの周囲は楕円体の形である。また、図6からわかるように、経路Pは、始ノードN0から終ノードNEまでの途中のすべての障害物を回避している。
図7は、最終ノードに到達する際の最大可能コスト誤差を模式的に示している。
図7には、最終ノードに到達する際のコストに生じ得る最大誤差が示されている。この誤差は、中心が最適経路に沿って配置されていない可能性のある球の配置に由来する。これは、最大で1/sin(45°)*Lの誤差に相当し、約2Lに等しい。ただし、Lはノードに沿った経路の長さである。コスト誤差は、実際のコスト関数およびそれと経路の長さとの関係に依存する。決定される経路の実際の誤差はこれより低い。
図8は、本発明の第3の実施形態による方法の使用例を示している。
図8に、領域被覆のための局所成長ツリーの使用例が示されている。基礎となる領域被覆問題は、一般的な経路計画問題の拡張である。ここで、初期状態から出発する無障害物空間がほとんど被覆されなければならない。ここでは相異なる経路間のコストは重要でないため、コストは各経路に対して同一とすることができ、探索経路の接続性のみが重要である。各反復において、すべての近傍ノードが好ましくは保存され、新ノードは、最小半径Rminよりも近い距離にある近傍である場合には追加が回避される。新ノードがもはや追加できなくなった自由空間の探索の終了時に、ハミルトン閉路問題あるいは巡回セールスマン問題を定式化し、生成されたグラフについて始点から解くことができる。最小半径Rminは好ましくはそれらの被覆経路間の距離の半分に設定される。球状の空間を探索するためにキューを使用することにより、探索が始点からある特定の距離で停止するようにすることができる。領域被覆を高速化するため、キューをリストとしての先入れ先出しFIFOまたは後入れ先出しLIFOのデータ構造で置き換えることが可能である。
図9は従来の急速探索ランダムツリー法の結果を示し、図10は従来の連結急速探索ランダムツリー法を示している。
図1によるケースに対して、図9に従来の急速探索ランダムツリー(rapid-exploring random tree, RRT)法を示し、図10に連結急速探索ランダムツリー(connected rapid-exploring random tree, C−RRT)法を示している。始ノードN0から出発し、始ノードN0から終ノードNEまでの経路Pの間に障害物があり、障害物Oを回避する経路Pは発見できない。
図11は、本発明の第4の実施形態による方法のステップを示している。
図11に、本発明の一実施形態による方法を示す。
第1のステップS1で、親ノードに対して複数の子ノードが決定される。ただし、ステップS1が最初に実行されるとき、始状態を表す始ノードが親ノードとなり、子ノードは親ノードまである特定の距離内にある。
第2のステップS2で、親ノードから子ノードのそれぞれへの遷移に障害物がないかどうかがチェックされ、障害物がある場合、対応する子ノードおよび親ノードからこの子ノードまでのこの部分経路が除外される。
第3のステップS3で、前記部分経路のそれぞれについてコスト値が計算される。
第4のステップS4で、始ノードから親ノードまでのコスト値に、前記計算されたコスト値が加算される。
第5のステップS5で、子ノードのそれぞれから終状態を表す終ノードまでの部分経路に対して推定または期待されるコスト値が加算される。
第6のステップS6で、ステップd)〜f)に従って決定されたコスト値から最低の全コスト値が決定され、決定された最低コストに対応する子ノードが新しい親ノードとして選択される。
第7のステップS7で、選択された子ノードが終ノードまで所与の距離内にあるという終了条件を含む少なくとも1つの終了条件が満たされるまでステップS1〜S6が繰り返し実行される。
図12は、本発明の第5の実施形態による方法のステップを示している。
図12に、本発明の別の実施形態による方法のステップを示す。
第1のステップT1で、始ノードが優先度キューに挿入される。
第2のステップT2で、最低のコストが期待されるノードが優先度キューから取り出される。
第3のステップT3で、半径Rmaxの球内に半径Rminの子ノードを被覆する局所的球が生成される。
第4のステップT4で、現在の親ノードから子ノードのうちの1つへの遷移に障害物がないかどうかがチェックされる。
第5のステップT5で、親のコストと、現在の親ノードから子ノードまでの接続コストを加算することによって、始ノードから現在の親ノードまでのコストが計算される。また、宛先/終ノードまでのコストh(x,x)と現ノードのコストを加算することによって、期待コストが計算される。
第6のステップT6で、現ノードに対する最近接ノードまたはノード群が決定される。
第7のステップT7で、最近接ノードが現ノードまでRminよりも近いかどうかがチェックされ、そうである場合、最近接ノードからのコストと現ノードからのコストがチェックされ、現ノードからのコストが最近接ノードからのコストよりも高い場合、現ノードが優先度キューに再挿入され、その場合、親ノードが、決定された最近接ノードとなる。
第8のステップT8で、半径Rmin内に近傍ノードが見つからない場合、現ノードのコストが計算されて優先度キューに追加され、現ノードが経路に追加され、経路が更新される。
第9のステップT9で、半径Rmax内のすべての近傍ノードが決定される。
第10のステップT10で、決定された近傍ノードのそれぞれに対するコストが、新しい子ノードの決定されたコストに、新ノードから近傍ノードまでの接続に対するコストを加えたものと比較してチェックされる。
第11のステップT11で、新ノードのコストが親ノードのコストよりも低い場合、親ノードが優先度キューに再挿入され、経路の全コストが更新され、ツリー内の経路が幅優先探索でたどられて、接続されたノードのコストが更新される。
第12のステップT12で、優先度キューが空になるか、最大反復数または宛先集合/終ノードに到達するまで、ステップT2〜T11が反復される。
要約すれば、本発明により、現在到達したノードまでのコストを維持し、下限コスト関数を用いるとともに確率的局所探索を実行して最も有望なノードを選択することにより、誤差有界の最適コストで無障害物状態空間経路を発見することが可能となる。
また、本発明により、所定の確率分布に従った半径の球で自由空間を探索することが可能となる。
また、本発明により、期待コストを用いて、有界な最適解を達成するための実コストの下限を計算することが可能となる。
また、本発明により、優先度キューまたは整列データ構造を用いて自由空間を探索することが可能となる。
特に、本発明により、近隣のノードをチェックし前方にコストを更新することによって、探索経路ツリーの再最適化が可能となる。
また、本発明により、無障害物状態空間における経路の発見において、始ノードと終ノードを二重に発展させることが可能となる。
また、本発明により、無障害物時間間隔を規定し、ある間隔から、新しい状態における別の無衝突時間間隔まで移動する実現可能性を発展させながらチェックすることによって、状態空間に完全に連続的な別の次元を追加することなく、時間すなわち状態空間における時間軸を考慮することが可能となる。
本発明により、以下のものが提供可能となる。
1.優先度付きの高速局所成長ツリー構造を使用することにより、障害物を回避する経路計画問題に対する有界な近似最適解を計算するシステム。
2.局所成長ツリー構造を用いた協調的経路計画を計算するシステム。
3.まず所定の密度半径の球で自由空間を探索してから、結果として得られたグラフに対してハミルトン閉路を計算することによって、領域被覆経路を計算するシステム。
4.輸送手段等の各移動物体ごとに、他は固定して反復的に解を求め、輸送手段やロボット等の移動物体間の距離の増大とともに減少する相互作用のコストを含む共通の目的関数を規定することによって、協調的かつ分散的な経路計画を計算する方法。
5.まず所定の分布半径の球で局所優先度データ構造を用いて探索をしてから、結果として得られたグラフに対してハミルトン閉路/巡回セールスマン問題を計算することによって、移動物体/輸送手段/ロボットに対する領域被覆経路を計算する方法。
要約すれば、本発明は、協調的経路の計算を含む移動物体/輸送手段/ロボットに対する計画経路を計算し、領域被覆計算の問題を解決する方法を提供する。この方法は、好ましくは以下のステップを含む。
1.最適コスト計算により、所定の確率分布に従う等半径の球を用いた、局所成長ツリー/グラフ。
2.有望でない解領域を回避するため、有界最適コストの自由空間を探索することを可能にする優先度データ構造。
3.次善でない解に対してのみ自由空間を探索することを可能にする下限コスト関数。
本発明は、とりわけ、以下の利点を有する。本発明により、自由空間の興味のない領域の探索を回避した有界な誤差コストが可能となる。また、本発明は、優先度キューを用いて解の有界最適性を保証し、誤差有界な最適解までの反復数を限定することが可能となる。
本発明は、有界なステップ数の後に経路が見つかることを保証し、探索半径が障害物間の最小通路の半分である場合に最適解からの誤差が有界な経路が得られる。本発明は、経路計画問題および拡張に対する高速かつ誤差有界な解を提供する。
また、本発明は、医療、ロボット動作、ドローン、自律運転輸送手段、協調的輸送手段、精密制御、コンピュータアニメーション、ナビゲーション、コンピュータシミュレーション、ゲーム制作、軍事・宇宙、海洋・海峡航行、農業・鉱業用無人輸送手段等の多数のさまざまな応用分野に適用可能である。
上記の説明および添付図面の記載に基づいて、当業者は本発明の多くの変形例および他の実施形態に想到し得るであろう。したがって、本発明は、開示した具体的実施形態に限定されるものではなく、変形例および他の実施形態も、添付の特許請求の範囲内に含まれるものと解すべきである。本明細書では特定の用語を用いているが、それらは総称的・説明的意味でのみ用いられており、限定を目的としたものではない。

Claims (25)

  1. 1個以上のノードを経由して始状態から1個以上の終状態を含む終状態集合まで移動するロボット等の物体の経路を動的に決定する方法において、各ノードは1個以上の障害物を回避するように探索された無障害物状態として規定され、該方法は、
    a)親ノードに対して複数の新しい子ノードを生成するステップであって、ステップa)が最初に実行されるときには前記始状態を表す始ノードが前記親ノードとなり、前記子ノードは前記親ノードまである特定の距離内にある、生成するステップと、
    b)前記親ノードから前記子ノードのそれぞれへの遷移に障害物がないかどうかをチェックし、障害物がある場合、対応する子ノードおよび前記親ノードから該子ノードまでのこの部分経路が除外される、チェックするステップと、
    c)前記部分経路のそれぞれについてコスト値を計算するステップと、
    d)前記始ノードから前記親ノードまでのコスト値に、前記計算されたコスト値を加算するステップと、
    e)前記子ノードのそれぞれから終状態を表す終ノードまでの部分経路に対して推定または期待されるコスト値を加算するステップと、
    f)ステップd)〜e)に従って決定されたコスト値から最低の全コスト値を決定し、該決定された最低コストに対応する子ノードを新しい親ノードとして選択するステップと、
    g)選択された子ノードが前記終ノードまで所与の距離内にあるという終了条件を含む少なくとも1つの終了条件が満たされるまでステップa)〜g)の実行を繰り返すステップと
    を備えたことを特徴とする、物体の経路を動的に決定する方法。
  2. 子ノードから前記終状態集合までの実コストに対する下限値が決定され、ステップe)における前記推定または期待されるコストとして使用されることを特徴とする請求項1に記載の方法。
  3. 子ノードを決定するため、親被覆空間が選択され、子ノードがその個別被覆空間で所定の親範囲まで前記親被覆空間を被覆するように子ノードが局所的に生成され、前記個別被覆空間は相互に重なり合わないことを特徴とする請求項1または2に記載の方法。
  4. すべての子ノードに対する個別被覆空間および/またはすべての親ノードに対する親被覆空間の形が所定の半径を有する球状であることを特徴とする請求項3に記載の方法。
  5. 子ノードを局所的に生成するため、前記親被覆空間の中心から限られた数の方向が生成され、該方向に子ノードを生成することによって前記親被覆空間を被覆するために該方向が使用されることを特徴とする請求項3または4に記載の方法。
  6. ステップb)で障害物があると判定された場合、親被覆空間のうちで該障害物のない部分がある特定の範囲まで被覆されるように子ノードが前記親被覆空間内に生成されることを特徴とする請求項3ないし5のいずれか1項に記載の方法。
  7. ステップb)で2個以上の障害物があると判定された場合、2個の障害物の間の最小障害物距離が決定され、個別被覆空間の最小距離の方向における最大範囲が前記最小障害物距離よりも小さく設定されることを特徴とする請求項3ないし6のいずれか1項に記載の方法。
  8. 現在の親ノードの最近接ノードが決定され、該最近接ノードが現在の親ノードを中心とする子ノードの個別被覆空間内にある場合、現在の親ノードから前記最近接ノードまでの部分経路に対するコストを含む全コスト値が前記最近接ノードに対して決定され、該全コストが現在の親ノードの全コストよりも低い場合、前記最近接ノードが新しい親ノードとして選択されることを特徴とする請求項3ないし7のいずれか1項に記載の方法。
  9. 親被覆空間および/または個別被覆空間の形状を規定するパラメータがランダムに決定されることを特徴とする請求項3ないし8のいずれか1項に記載の方法。
  10. 個別被覆空間および/または親被覆空間が球の場合、対応する半径が、前記2個以上の障害物の間の最小距離の半分よりも小さく決定されることを特徴とする請求項7ないし9のいずれか1項に記載の方法。
  11. 障害物の時間発展を実現するため、障害物および前記経路に沿ったノードがさらに時間の次元を有するように実現されることを特徴とする請求項1ないし10のいずれか1項に記載の方法。
  12. 障害物の時間発展を実現するため、ノードの状態に、障害物のない時間を示す時間間隔が割り当てられることを特徴とする請求項1ないし10のいずれか1項に記載の方法。
  13. 前記始状態から前記終状態集合までの発展がキノダイナミックである場合、親ノードと子ノードの2状態間のコストが局所最適化タスクを実行することによって計算されることを特徴とする請求項1ないし12のいずれか1項に記載の方法。
  14. ステップa)〜g)が、初期親ノードとしての前記終ノードから逆向きに前記始ノードに戻るようにも実行され、前記始ノードから出発する経路と前記終ノードから出発する経路の両方の経路のノードが相互にある特定の距離内にある場合に終了条件が満たされ、前記終状態集合がただ1つの終状態のみを含むことを特徴とする請求項1ないし13のいずれか1項に記載の方法。
  15. 新しい親および/または子ノードごとに、前記終ノードまでの直接経路に沿ってノードが追加され、終了条件は、ステップa)〜g)が実行され前記新しい親ノードが前記終状態集合において終状態を表すノードであるような部分経路によって終ノード集合に到達する場合にのみ適用されることを特徴とする請求項1ないし14のいずれか1項に記載の方法。
  16. 前記始状態から前記終状態集合までの経路がある時間限界内に見つかった場合、より低いコストの代替経路をチェックするために残りの時間を使用してRRT手順を適用することを特徴とする請求項1ないし15のいずれか1項に記載の方法。
  17. 複数の物体がある場合、第1の物体に対してステップa)〜g)が実行された後、障害物として固定された該第1の物体に対して決定された経路を考慮して1個以上の第2の物体に対してステップa)〜g)が実行され、共通の全コストが決定されることを特徴とする請求項1ないし16のいずれか1項に記載の方法。
  18. 共通の全コストが第1の物体と第2の物体の間の相互作用コストを含むことを特徴とする請求項1ないし17のいずれか1項に記載の方法。
  19. 前記相互作用コストは、前記第1の物体と第2の物体の間の距離が大きいほど減少することを特徴とする請求項18に記載の方法。
  20. 個別被覆空間および/または親被覆空間の中心がグリッド構造に割り当てられることを特徴とする請求項3ないし19のいずれか1項に記載の方法。
  21. 各ノードに対して、始状態から終状態集合までの経路を取得するのに何個のノードが接続される必要があるかを指定するために閾値が使用されることを特徴とする請求項1ないし20のいずれか1項に記載の方法。
  22. 各ノードに対して、期待コスト値を示すためにキューが使用され、期待コスト値が最低のノードが次のノードとして使用され、より高いコストの他のノードは前記キュー内に期待コスト値に従って配列されることを特徴とする請求項1ないし21のいずれか1項に記載の方法。
  23. ステップb)〜f)を実行するため、各子ノードを経由する経路に対する全コスト値が決定され、現在の子ノードを経由する全コスト値が前の子ノードのものよりも小さい場合、現在の子ノードが新しい親ノードとして選択され、前の子ノードが前記キューに再挿入されることを特徴とする請求項22に記載の方法。
  24. ステップa)を実行するため、前記始ノードが前記キューに挿入されることを特徴とする請求項22または23に記載の方法。
  25. 1個以上のノードを経由して始状態から1個以上の終状態を含む終状態集合まで移動するロボット等の物体の経路を動的に決定するシステムにおいて、各ノードは1個以上の障害物を回避するように探索された無障害物状態として規定され、該システムは、
    a)親ノードに対して複数の新しい子ノードを生成するステップであって、ステップa)が最初に実行されるときには前記始状態を表す始ノードが前記親ノードとなり、前記子ノードは前記親ノードまである特定の距離内にある、生成するステップと、
    b)前記親ノードから前記子ノードのそれぞれへの遷移に障害物がないかどうかをチェックし、障害物がある場合、対応する子ノードおよび前記親ノードから該子ノードまでのこの部分経路が除外される、チェックするステップと、
    c)前記部分経路のそれぞれについてコスト値を計算するステップと、
    d)前記始ノードから前記親ノードまでのコスト値に、前記計算されたコスト値を加算するステップと、
    e)前記子ノードのそれぞれから終状態を表す終ノードまでの経路に対して推定または期待されるコスト値を加算するステップと、
    f)ステップd)〜e)に従って決定されたコスト値から最低の全コスト値を決定し、該決定された最低コストに対応する子ノードを新しい親ノードとして選択するステップと、
    g)選択された子ノードが前記終ノードまで所与の距離内にあるという終了条件を含む少なくとも1つの終了条件が満たされるまでステップa)〜g)の実行を繰り返すステップと
    を行うように適応されるか、または、行うために相互に協力するように適応された1個以上の計算要素を備えたことを特徴とする、物体の経路を動的に決定するシステム。
JP2019141940A 2019-08-01 2019-08-01 1個以上の障害物を回避して始状態から終状態集合まで移動する物体の経路を決定する方法およびシステム Active JP6711949B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019141940A JP6711949B2 (ja) 2019-08-01 2019-08-01 1個以上の障害物を回避して始状態から終状態集合まで移動する物体の経路を決定する方法およびシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019141940A JP6711949B2 (ja) 2019-08-01 2019-08-01 1個以上の障害物を回避して始状態から終状態集合まで移動する物体の経路を決定する方法およびシステム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017516690A Division JP2017529631A (ja) 2014-09-30 2014-09-30 1個以上の障害物を回避して始状態から終状態集合まで移動する物体の経路を決定する方法およびシステム

Publications (2)

Publication Number Publication Date
JP2020004421A true JP2020004421A (ja) 2020-01-09
JP6711949B2 JP6711949B2 (ja) 2020-06-17

Family

ID=69100197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019141940A Active JP6711949B2 (ja) 2019-08-01 2019-08-01 1個以上の障害物を回避して始状態から終状態集合まで移動する物体の経路を決定する方法およびシステム

Country Status (1)

Country Link
JP (1) JP6711949B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111207767A (zh) * 2020-02-20 2020-05-29 大连理工大学 一种基于rrt算法改进的车辆规划算法
WO2021145137A1 (ja) 2020-01-15 2021-07-22 株式会社クラレ 樹脂組成物、樹脂シート及び合わせガラス
CN113858210A (zh) * 2021-11-01 2021-12-31 贵州大学 基于混合算法的机械臂路径规划方法
CN116774733A (zh) * 2023-08-21 2023-09-19 南京航空航天大学 一种多无人机覆盖路径规划方法
CN116909293A (zh) * 2023-09-13 2023-10-20 宁德思客琦智能装备有限公司 一种机器人路径规划方法及装置、电子设备、计算机可读介质
CN117451057A (zh) * 2023-12-25 2024-01-26 长春理工大学 基于改进a*算法无人机三维路径规划方法、设备和介质
CN118578404A (zh) * 2024-08-05 2024-09-03 南京电力设计研究院有限公司 一种gis检修机器人机械臂路径规划方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297944A (ja) * 1992-04-24 1993-11-12 Fujitsu Ltd 移動ロボットの障害物回避方式
JP2005050105A (ja) * 2003-07-28 2005-02-24 Matsushita Electric Works Ltd 自律移動のための経路生成装置及び該装置を用いた自律移動装置
JP2007249632A (ja) * 2006-03-16 2007-09-27 Fujitsu Ltd 障害物のある環境下で自律移動する移動ロボットおよび移動ロボットの制御方法。
JP2007531110A (ja) * 2004-03-26 2007-11-01 レイセオン・カンパニー 適応型経路計画のためのシステム及び方法
JP2009025974A (ja) * 2007-07-18 2009-02-05 Toyota Motor Corp 経路計画装置及び方法、コスト評価装置、並びに移動体
JP2010231698A (ja) * 2009-03-30 2010-10-14 Advanced Telecommunication Research Institute International ネットワークロボットシステム、ロボット制御装置、ロボット制御方法およびロボット制御プログラム
US20120165982A1 (en) * 2010-12-27 2012-06-28 Samsung Electronics Co., Ltd. Apparatus for planning path of robot and method thereof
JP2012189381A (ja) * 2011-03-09 2012-10-04 Denso Corp 道路推定装置
JP2013045265A (ja) * 2011-08-24 2013-03-04 Toyota Central R&D Labs Inc 自律移動体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297944A (ja) * 1992-04-24 1993-11-12 Fujitsu Ltd 移動ロボットの障害物回避方式
JP2005050105A (ja) * 2003-07-28 2005-02-24 Matsushita Electric Works Ltd 自律移動のための経路生成装置及び該装置を用いた自律移動装置
JP2007531110A (ja) * 2004-03-26 2007-11-01 レイセオン・カンパニー 適応型経路計画のためのシステム及び方法
JP2007249632A (ja) * 2006-03-16 2007-09-27 Fujitsu Ltd 障害物のある環境下で自律移動する移動ロボットおよび移動ロボットの制御方法。
JP2009025974A (ja) * 2007-07-18 2009-02-05 Toyota Motor Corp 経路計画装置及び方法、コスト評価装置、並びに移動体
JP2010231698A (ja) * 2009-03-30 2010-10-14 Advanced Telecommunication Research Institute International ネットワークロボットシステム、ロボット制御装置、ロボット制御方法およびロボット制御プログラム
US20120165982A1 (en) * 2010-12-27 2012-06-28 Samsung Electronics Co., Ltd. Apparatus for planning path of robot and method thereof
JP2012189381A (ja) * 2011-03-09 2012-10-04 Denso Corp 道路推定装置
JP2013045265A (ja) * 2011-08-24 2013-03-04 Toyota Central R&D Labs Inc 自律移動体

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021145137A1 (ja) 2020-01-15 2021-07-22 株式会社クラレ 樹脂組成物、樹脂シート及び合わせガラス
CN111207767A (zh) * 2020-02-20 2020-05-29 大连理工大学 一种基于rrt算法改进的车辆规划算法
CN111207767B (zh) * 2020-02-20 2023-06-16 大连理工大学 一种基于rrt算法改进的车辆规划算法
CN113858210A (zh) * 2021-11-01 2021-12-31 贵州大学 基于混合算法的机械臂路径规划方法
CN113858210B (zh) * 2021-11-01 2023-04-25 贵州大学 基于混合算法的机械臂路径规划方法
CN116774733A (zh) * 2023-08-21 2023-09-19 南京航空航天大学 一种多无人机覆盖路径规划方法
CN116774733B (zh) * 2023-08-21 2023-10-31 南京航空航天大学 一种多无人机覆盖路径规划方法
CN116909293A (zh) * 2023-09-13 2023-10-20 宁德思客琦智能装备有限公司 一种机器人路径规划方法及装置、电子设备、计算机可读介质
CN116909293B (zh) * 2023-09-13 2023-12-12 宁德思客琦智能装备有限公司 一种机器人路径规划方法及装置、电子设备、计算机可读介质
CN117451057A (zh) * 2023-12-25 2024-01-26 长春理工大学 基于改进a*算法无人机三维路径规划方法、设备和介质
CN117451057B (zh) * 2023-12-25 2024-03-12 长春理工大学 基于改进a*算法无人机三维路径规划方法、设备和介质
CN118578404A (zh) * 2024-08-05 2024-09-03 南京电力设计研究院有限公司 一种gis检修机器人机械臂路径规划方法及系统

Also Published As

Publication number Publication date
JP6711949B2 (ja) 2020-06-17

Similar Documents

Publication Publication Date Title
EP3201709B1 (en) Method and system for determining a path of an object for moving from a starting state to an end state set avoiding one or more obstacles
JP6711949B2 (ja) 1個以上の障害物を回避して始状態から終状態集合まで移動する物体の経路を決定する方法およびシステム
Costa et al. A survey on path planning algorithms for mobile robots
Elbanhawi et al. Sampling-based robot motion planning: A review
Jun et al. Path planning for unmanned aerial vehicles in uncertain and adversarial environments
KR101105325B1 (ko) 실제 로봇의 다중 경로계획 방법
Kiani et al. Adapted-RRT: novel hybrid method to solve three-dimensional path planning problem using sampling and metaheuristic-based algorithms
Al-Mutib et al. D* lite based real-time multi-agent path planning in dynamic environments
CN112229419B (zh) 一种动态路径规划导航方法及系统
Chen et al. Improved RRT-connect based path planning algorithm for mobile robots
US12103187B2 (en) Path planning method and biped robot using the same
Okumura et al. Iterative refinement for real-time multi-robot path planning
Chi et al. A reusable generalized voronoi diagram-based feature tree for fast robot motion planning in trapped environments
Khanmirza et al. A comparative study of deterministic and probabilistic mobile robot path planning algorithms
Chiang et al. Stochastic ensemble simulation motion planning in stochastic dynamic environments
Woosley et al. Integrated real-time task and motion planning for multiple robots under path and communication uncertainties
CN110705803B (zh) 基于三角形内心引导rrt算法的路径规划方法
Sadiq et al. Robot arm path planning using modified particle swarm optimization based on D* algorithm
Masehian et al. An improved particle swarm optimization method for motion planning of multiple robots
Kiesel et al. An effort bias for sampling-based motion planning
Chintam et al. Informed sampling space driven robot informative path planning
Liu et al. A Novel Graph-based Motion Planner of Multi-Mobile Robot Systems with Formation and Obstacle Constraints
Janovský et al. Finding coordinated paths for multiple holonomic agents in 2-d polygonal environment
Khaksar et al. A fuzzy-tabu real time controller for sampling-based motion planning in unknown environment
Jo et al. Field Evaluation of a Prioritized Path-Planning Algorithm for Heterogeneous Agricultural Tasks of Multi-UGVs

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200528

R150 Certificate of patent or registration of utility model

Ref document number: 6711949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350