JP2020003055A - Bearing cap with sensor unit and hub unit bearing - Google Patents

Bearing cap with sensor unit and hub unit bearing Download PDF

Info

Publication number
JP2020003055A
JP2020003055A JP2018126087A JP2018126087A JP2020003055A JP 2020003055 A JP2020003055 A JP 2020003055A JP 2018126087 A JP2018126087 A JP 2018126087A JP 2018126087 A JP2018126087 A JP 2018126087A JP 2020003055 A JP2020003055 A JP 2020003055A
Authority
JP
Japan
Prior art keywords
holder
insertion hole
ring
bearing cap
holder insertion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018126087A
Other languages
Japanese (ja)
Other versions
JP7107032B2 (en
JP2020003055A5 (en
Inventor
山口 司
Tsukasa Yamaguchi
司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2018126087A priority Critical patent/JP7107032B2/en
Priority to CN201920994227.0U priority patent/CN211820436U/en
Priority to DE202019103600.1U priority patent/DE202019103600U1/en
Publication of JP2020003055A publication Critical patent/JP2020003055A/en
Publication of JP2020003055A5 publication Critical patent/JP2020003055A5/ja
Application granted granted Critical
Publication of JP7107032B2 publication Critical patent/JP7107032B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/723Shaft end sealing means, e.g. cup-shaped caps or covers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0047Hubs characterised by functional integration of other elements
    • B60B27/0068Hubs characterised by functional integration of other elements the element being a sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0073Hubs characterised by sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/026Housings for speed measuring devices, e.g. pulse generator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/10Force connections, e.g. clamping
    • F16C2226/12Force connections, e.g. clamping by press-fit, e.g. plug-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Rolling Contact Bearings (AREA)
  • Sealing Of Bearings (AREA)

Abstract

To obtain a bearing cap with a sensor unit, which can secure sealing performance between a holder insertion hole and a holder shaft part, and also can make attachment workability of a sensor holder satisfactory, and can improve rotation speed detection accuracy satisfactory by thinning a thickness of a bottom part of the holder insertion hole.SOLUTION: An O-ring 15 is arranged between an inner peripheral face of an intermediate part in an axial direction of a holder insertion hole 36 and an outer peripheral face of an intermediate part in an axial direction of a holder shaft part 48 in a state of being compressed in a radial direction. An annular recess 53 whose inside diameter dis larger than an outside diameter of the O-ring 15 which is externally fit to the holder shaft part 48 before the insertion of the O-ring into the holder insertion hole 36 is provided in a range reaching a position adjacent to the inside of an arrangement position P of the O-ring 15 in the axial direction from an inside opening in the axial direction out of the inner peripheral face of the holder insertion hole 36 over an entire periphery.SELECTED DRAWING: Figure 2

Description

本発明は、ハブユニット軸受を構成する外輪の開口部を塞ぐための軸受キャップにセンサユニットを取り付けてなるセンサユニット付軸受キャップ、及び、該センサユニット付軸受キャップを備えたハブユニット軸受に関する。   The present invention relates to a bearing cap with a sensor unit in which a sensor unit is attached to a bearing cap for closing an opening of an outer ring constituting a hub unit bearing, and a hub unit bearing provided with the bearing cap with the sensor unit.

自動車などの車輪を懸架装置に対して回転自在に支持するためのハブユニット軸受に、ABSなどの制御に必要な車輪の回転速度を検出するための回転速度検出装置を組み合わせることが、従来から行われている。   Conventionally, a hub unit bearing for rotatably supporting wheels of an automobile or the like with respect to a suspension device is combined with a rotation speed detection device for detecting a wheel rotation speed required for control of ABS or the like. Has been done.

例えば特開2013−53638号公報には、ハブユニット軸受を構成するハブの軸方向内側部に、回転速度検出装置を構成する円環状のエンコーダを支持し、かつ、ハブユニット軸受を構成する外輪の軸方向内側開口を塞いだ軸受キャップに、回転速度検出装置を構成するセンサユニットを取り付けた構造が記載されている。また、特開2013−53638号公報に記載された構造では、軸受キャップのうちで、エンコーダの周方向一部と軸方向に対向する部分に、軸方向に貫通したホルダ挿入孔を設けている。そして、ホルダ挿入孔に、センサユニットを構成するセンサホルダのうちで、先端部にセンサを保持したホルダ軸部を挿入している。これにより、センサの検出部をエンコーダの被検出面に近接対向させている。また、ホルダ軸部の外周面とホルダ挿入孔の内周面との間に、弾性材製のOリングを挟持している。   For example, Japanese Patent Application Laid-Open No. 2013-53638 discloses that an annular encoder constituting a rotation speed detecting device is supported on an axially inner portion of a hub constituting a hub unit bearing, and an outer ring constituting a hub unit bearing is provided. A structure is described in which a sensor unit constituting a rotation speed detecting device is attached to a bearing cap that closes an axially inner opening. In the structure described in Japanese Patent Application Laid-Open No. 2013-53638, a holder insertion hole penetrating in the axial direction is provided in a portion of the bearing cap that is axially opposed to a part of the circumferential direction of the encoder. The holder shaft of the sensor holder constituting the sensor unit, which holds the sensor at the tip, is inserted into the holder insertion hole. As a result, the detection unit of the sensor is made to closely approach the detection surface of the encoder. An O-ring made of an elastic material is sandwiched between the outer peripheral surface of the holder shaft and the inner peripheral surface of the holder insertion hole.

上記構造によれば、車輪とともにエンコーダが回転した際に、センサの検出部の近傍を、エンコーダの被検出面に配置されたS極とN極とが交互に通過する。このため、センサの検出部を流れる磁束の密度が変化し、センサの出力信号を変化させる。センサの出力信号が変化する周波数は、車輪の回転数に比例するため、センサの出力信号を制御器に送れば、ABSやTCSを適切に制御することが可能になる。   According to the above structure, when the encoder rotates together with the wheel, the S pole and the N pole disposed on the detection surface of the encoder alternately pass near the detection unit of the sensor. For this reason, the density of the magnetic flux flowing through the detection unit of the sensor changes, and the output signal of the sensor changes. Since the frequency at which the output signal of the sensor changes is proportional to the number of revolutions of the wheel, sending the output signal of the sensor to the controller makes it possible to appropriately control the ABS and TCS.

ただし、特開2013−53638号公報に記載された構造は、ハブユニット軸受が厳しい泥水環境下で使用され、Oリングによる密封性が不足する場合に、貫通孔であるホルダ挿入孔を通じて、軸受キャップの内側の空間に泥水が侵入する可能性がある。   However, when the hub unit bearing is used in a severe muddy water environment and the sealing performance by the O-ring is insufficient, the structure described in Japanese Patent Application Laid-Open No. 2013-53638 discloses a bearing cap through a holder insertion hole which is a through hole. Muddy water can enter the space inside the building.

このような事情に鑑みて、例えば特開2016−136064号公報には、ホルダ挿入孔を有底孔とすることで、センサを、ホルダ挿入孔の底部を介して、エンコーダに対向させる構造が記載されている。このような構造によれば、ホルダ挿入孔を通じて、軸受キャップの内側の空間に泥水などの異物が侵入することを有効に防止できる。   In view of such circumstances, for example, JP-A-2006-136064 discloses a structure in which a sensor is opposed to an encoder via the bottom of the holder insertion hole by making the holder insertion hole a bottomed hole. Have been. According to such a structure, it is possible to effectively prevent foreign matter such as muddy water from entering the space inside the bearing cap through the holder insertion hole.

ただし、特開2016−136064号公報に記載された構造では、ホルダ挿入孔とホルダ軸部との間に侵入した水分が凍結した場合に、ホルダ挿入孔の底部が破損する可能性がある。このため、ホルダ挿入孔の底部の強度を確保する必要があり、ホルダ挿入孔の底部の厚さを薄くすることが難しくなる。この結果、センサの検出部とエンコーダの被検出面との距離(エアギャップ)が増大し、エンコーダの被検出面から出入りしてセンサの検出部を通過する磁束の量が低減するため、センサによる回転速度検出の精度が低下する可能性がある。   However, in the structure described in JP-A-2006-136064, when moisture that has entered between the holder insertion hole and the holder shaft freezes, the bottom of the holder insertion hole may be damaged. For this reason, it is necessary to secure the strength of the bottom of the holder insertion hole, and it becomes difficult to reduce the thickness of the bottom of the holder insertion hole. As a result, the distance (air gap) between the detection unit of the sensor and the detection surface of the encoder increases, and the amount of magnetic flux that enters and exits the detection surface of the encoder and passes through the detection unit of the sensor decreases. Accuracy of rotation speed detection may be reduced.

また、特開2016−136064号公報に記載された構造は、ホルダ挿入孔の内側に水分が滞留することを防止するために、使用状態でホルダ挿入孔の下方に位置する部分に、ホルダ挿入孔の底部にまで達する排水溝を設けている。ところが、水分を排出するために設けた排水溝を通じて、逆に、水分がホルダ挿入孔に侵入してしまう可能性がある。   Further, the structure described in JP-A-2006-136064 discloses a structure in which a holder insertion hole is provided in a portion located below the holder insertion hole in a use state in order to prevent moisture from staying inside the holder insertion hole. There is a drain ditch reaching the bottom of the. However, on the contrary, there is a possibility that the water may enter the holder insertion hole through the drain groove provided for discharging the water.

特開2013−53638号公報JP 2013-53638 A 特開2016−136064号公報JP-A-2006-136064

特開2013−53638号公報及び特開2016−136064号公報に記載された構造で生じ得る問題を解決するために、例えば、図9に示すような構造を採用することが考えられる。図示の構造は、本願の発明者等が本願発明を完成する以前に考えた、未公開の構造である。図示の構造では、軸受キャップ1に設けるホルダ挿入孔2を、奥端部を除いて内径が軸方向にわたり変化しない有底孔としている。また、ホルダ挿入孔2の軸方向中間部の内周面とホルダ軸部3の軸方向中間部の外周面の間に、弾性材製のOリング4を挟持している。   In order to solve problems that can occur in the structures described in JP-A-2013-53638 and JP-A-2006-136064, for example, it is conceivable to adopt a structure as shown in FIG. The illustrated structure is an undisclosed structure that the present inventors considered before completing the present invention. In the illustrated structure, the holder insertion hole 2 provided in the bearing cap 1 is a bottomed hole whose inner diameter does not change in the axial direction except for the back end. An O-ring 4 made of an elastic material is sandwiched between the inner peripheral surface of the intermediate portion in the axial direction of the holder insertion hole 2 and the outer peripheral surface of the intermediate portion in the axial direction of the holder shaft portion 3.

上記構造によれば、特開2016−136064号公報に記載された構造と同様に、ホルダ挿入孔2を有底孔としているため、ホルダ挿入孔2を通じて、軸受キャップ1の内側の空間に泥水などの異物が侵入することを有効に防止できる。また、ホルダ挿入孔2の内周面とホルダ軸部3の外周面との間にOリング4を挟持しているため、Oリング4が挟持された部分よりも奥側(軸方向外側)に、水分が侵入することを防止できる。したがって、水分の凍結に起因して、ホルダ挿入孔2の底部5が破損することを防止できため、底部5の厚さを薄くすることが可能になる。この結果、ホルダ軸部3の先端部に保持したセンサ6の検出部と図示しないエンコーダの被検出面との距離を短くすることが可能になり、センサ6の検出精度を向上させることができる。   According to the above-described structure, similarly to the structure described in JP-A-2006-136064, since the holder insertion hole 2 is a bottomed hole, muddy water or the like enters the space inside the bearing cap 1 through the holder insertion hole 2. It is possible to effectively prevent foreign matter from entering. Further, since the O-ring 4 is sandwiched between the inner peripheral surface of the holder insertion hole 2 and the outer peripheral surface of the holder shaft portion 3, the O-ring 4 is located deeper (axially outward) than the portion where the O-ring 4 is sandwiched. It can prevent moisture from entering. Therefore, it is possible to prevent the bottom portion 5 of the holder insertion hole 2 from being damaged due to the freezing of the water, so that the thickness of the bottom portion 5 can be reduced. As a result, the distance between the detection unit of the sensor 6 held at the tip of the holder shaft 3 and the detection surface of the encoder (not shown) can be shortened, and the detection accuracy of the sensor 6 can be improved.

ところが、図9の構造では、ホルダ軸部3をホルダ挿入孔2の内側に挿入する際に、2点鎖線で示したように、ホルダ軸部3に外嵌したOリング4の外周面がホルダ挿入孔2の開口縁部に接触した段階から、ホルダ挿入孔2の内部に存在する空気が外部に逃げられなくなる。このため、ホルダ軸部3を、実線で示した所期の配置位置まで挿入するには、ホルダ挿入孔2の内部の空気を大きく圧縮する必要がある。したがって、ホルダ軸部3が押し戻されてセンサホルダ7の取付作業性が悪くなったり、ホルダ挿入孔2の底部5が、ホルダ挿入孔2内の圧力の上昇によって破損するといった問題が生じる可能性がある。ホルダ挿入孔2の内部に存在する空気を外部に逃がすために、軸受キャップ1にホルダ挿入孔2の奥部に通じる空気孔を設けることも考えられる。ただし、このような空気孔を、軸受キャップ1の軸方向側面に開口するように設けると、該空気孔が水分の侵入経路になる可能性がある。また、水分の侵入経路になりにくくするために、空気孔を径方向に開口するように設けることも考えられるが、このような空気孔を形成することは、軸受キャップ1をアキシャルドロー成形により造る場合には困難である。   However, in the structure shown in FIG. 9, when the holder shaft 3 is inserted into the holder insertion hole 2, the outer peripheral surface of the O-ring 4 externally fitted to the holder shaft 3 is, as shown by a two-dot chain line, the holder. The air existing inside the holder insertion hole 2 cannot escape to the outside from the stage where it comes into contact with the opening edge of the insertion hole 2. For this reason, in order to insert the holder shaft portion 3 to the desired position shown by the solid line, it is necessary to greatly compress the air inside the holder insertion hole 2. Therefore, there is a possibility that the holder shaft portion 3 is pushed back and the workability of mounting the sensor holder 7 is deteriorated, and the bottom portion 5 of the holder insertion hole 2 is broken due to an increase in the pressure in the holder insertion hole 2. is there. In order to allow air existing inside the holder insertion hole 2 to escape to the outside, it is conceivable to provide the bearing cap 1 with an air hole communicating with the inside of the holder insertion hole 2. However, if such an air hole is provided so as to open on the axial side surface of the bearing cap 1, the air hole may be a path through which moisture enters. Further, in order to make it difficult for the water to enter the passage of water, it is conceivable to provide the air hole so as to open in the radial direction. However, such an air hole is formed by forming the bearing cap 1 by axial draw molding. In case it is difficult.

本発明は、上述のような事情に鑑みて、ホルダ挿入孔とホルダ軸部との間の密封性を確保できるだけでなく、軸受キャップに対するセンサホルダの取付作業性が良好で、かつ、ホルダ挿入孔の底部の厚さを薄くして回転速度検出精度の向上を図れる、センサユニット付軸受キャップの構造を実現すべく発明したものである。   In view of the circumstances described above, the present invention not only ensures the sealing performance between the holder insertion hole and the holder shaft portion, but also has a good workability in attaching the sensor holder to the bearing cap, and also has the holder insertion hole. The invention has been made to realize a structure of a bearing cap with a sensor unit, which can improve the rotational speed detection accuracy by reducing the thickness of the bottom of the bearing cap.

本発明のセンサユニット付軸受キャップ及びハブユニット軸受のうち、センサユニット付軸受キャップは、軸受キャップと、センサユニットと、弾性リングとを備える。
前記軸受キャップは、有底円筒形状を有しており、エンコーダを備えたハブを回転自在に支持した外輪の軸方向内側部に装着されて、前記外輪の軸方向内側開口を塞ぐものである。また、前記軸受キャップは、前記外輪に嵌合固定される嵌合筒部と、該嵌合筒部の内径側を塞ぎ、前記エンコーダの一部と軸方向に対向する部分に軸方向内側にのみ開口した有底孔のホルダ挿入孔が設けられた合成樹脂製の底板部とを有している。
前記センサユニットは、前記ホルダ挿入孔に挿入されたホルダ軸部を有し、前記軸受キャップに取り付けられたセンサホルダと、前記ホルダ軸部の先端部に保持されたセンサとを有している。
前記弾性リングは、前記ホルダ挿入孔の軸方向中間部の内周面と前記ホルダ軸部の軸方向中間部の外周面との間に、径方向に圧縮された態様で配置されている。
本発明ではさらに、前記ホルダ挿入孔は、内周面の円周方向の少なくとも一部で、かつ、軸方向内側開口から前記弾性リングの配置位置の軸方向内側に隣接した位置にわたる範囲に、その内半径が、前記ホルダ軸部に外嵌された前記弾性リングの前記ホルダ挿入孔に挿入する以前における外半径よりも大きい、逃げ部を有している。
Among the bearing cap with a sensor unit and the hub unit bearing of the present invention, the bearing cap with a sensor unit includes a bearing cap, a sensor unit, and an elastic ring.
The bearing cap has a bottomed cylindrical shape, and is mounted on an axially inner portion of an outer ring that rotatably supports a hub having an encoder, and closes an axially inner opening of the outer ring. Further, the bearing cap is a fitting cylindrical portion fitted and fixed to the outer ring, and closes an inner diameter side of the fitting cylindrical portion, and is provided only on the axially inner side in a portion axially opposed to a part of the encoder. A synthetic resin bottom plate provided with an opened bottomed holder insertion hole.
The sensor unit has a holder shaft inserted into the holder insertion hole, and has a sensor holder attached to the bearing cap, and a sensor held at a tip of the holder shaft.
The elastic ring is arranged in a radially compressed state between an inner peripheral surface of an axially intermediate portion of the holder insertion hole and an outer peripheral surface of an axially intermediate portion of the holder shaft portion.
Further, in the present invention, the holder insertion hole is formed in at least a part of the inner peripheral surface in the circumferential direction, and in a range extending from the axially inner opening to a position adjacent to the elastic ring in the axially inward position. An inner radius is larger than an outer radius of the elastic ring fitted to the holder shaft before being inserted into the holder insertion hole.

本発明のセンサユニット付軸受キャップを実施する場合には、例えば、前記逃げ部を、前記ホルダ挿入孔の内周面に全周にわたり設けられた環状凹部とすることもできるし、又は、前記ホルダ挿入孔の内周面の円周方向の一部に設けられた凹溝とすることもできる。   When implementing the bearing cap with a sensor unit of the present invention, for example, the relief portion may be an annular concave portion provided on the entire inner circumferential surface of the holder insertion hole, or the holder It may be a concave groove provided in a part of the inner peripheral surface of the insertion hole in the circumferential direction.

前記逃げ部を、前記環状凹部とする場合には、該環状凹部の底面を、軸方向内側に向かう程内径が大きくなる方向に傾斜したテーパ面とすることもできるし、又は、軸方向にわたり内径が一定の円筒面とすることもできる。   In the case where the relief portion is the annular concave portion, the bottom surface of the annular concave portion may be a tapered surface inclined in a direction in which the inner diameter increases toward the inner side in the axial direction, or the inner diameter extends in the axial direction. May be a constant cylindrical surface.

本発明のハブユニット軸受は、内周面に外輪軌道を有し、使用時にも回転しない外輪と、外周面に内輪軌道を有し、使用時に回転するハブと、前記外輪軌道と前記内輪軌道との間に設けられた複数の転動体と、前記ハブの軸方向内側部にこのハブと同軸に支持されたエンコーダと、前記外輪の軸方向内側部に装着された軸受キャップと、該軸受キャップに取り付けられたセンサユニットとを備えている。
本発明のハブユニット軸受では、前記軸受キャップに前記センサユニットを取り付けてなるセンサユニット付軸受キャップを、本発明のセンサユニット付軸受キャップとしている。
The hub unit bearing of the present invention has an outer ring raceway on the inner peripheral surface and does not rotate even during use, a hub that has an inner raceway on the outer peripheral surface and rotates during use, the outer raceway and the inner raceway. A plurality of rolling elements provided therebetween, an encoder supported coaxially with the hub at an axially inner portion of the hub, a bearing cap mounted at an axially inner portion of the outer ring, and a bearing cap. And an attached sensor unit.
In the hub unit bearing of the present invention, the bearing cap with the sensor unit, in which the sensor unit is attached to the bearing cap, is the bearing cap with the sensor unit of the present invention.

本発明によれば、ホルダ挿入孔とホルダ軸部との間の密封性を確保できるだけでなく、軸受キャップに対するセンサホルダの取付作業性を良好にすることができ、かつ、ホルダ挿入孔の底部の厚さを薄くして回転速度検出精度の向上を図れる。   ADVANTAGE OF THE INVENTION According to this invention, not only the sealing performance between a holder insertion hole and a holder shaft part can be ensured, but the mounting workability of the sensor holder with respect to a bearing cap can be made favorable, and the bottom of the holder insertion hole can be improved. By reducing the thickness, the rotation speed detection accuracy can be improved.

図1は、実施の形態の第1例にかかる回転速度検出装置付のハブユニット軸受を示す断面図である。FIG. 1 is a cross-sectional view showing a hub unit bearing with a rotation speed detecting device according to a first example of an embodiment. 図2は、図1の右上部に相当する部分の拡大図である。FIG. 2 is an enlarged view of a portion corresponding to the upper right portion of FIG. 図3は、実施の形態の第1例にかかる回転速度検出装置付のハブユニット軸受から軸受キャップを取り出して示す断面図である。FIG. 3 is a sectional view showing a bearing cap taken out from a hub unit bearing with a rotation speed detecting device according to the first example of the embodiment. 図4は、図3の左側から軸受キャップを見た図である。FIG. 4 is a view of the bearing cap viewed from the left side of FIG. 図5は、図3の右側から軸受キャップを見た図である。FIG. 5 is a view of the bearing cap viewed from the right side of FIG. 図6は、Oリングを外嵌したホルダ軸部をホルダ挿入孔に挿入する工程を説明する図であり、(A)はOリングがテーパ面の内径側に存在する初期段階を示しており、(B)はOリングがガイドテーパ面の内径側に存在する中期段階を示しており、(C)はOリングが支持円筒面の内径側に存在する終期段階を示している。6A and 6B are diagrams illustrating a process of inserting a holder shaft portion having an O-ring externally fitted into a holder insertion hole, and FIG. 6A illustrates an initial stage in which the O-ring exists on the inner diameter side of the tapered surface; (B) shows a middle stage in which the O-ring exists on the inner diameter side of the guide taper surface, and (C) shows a final stage in which the O-ring exists on the inner diameter side of the supporting cylindrical surface. 図7は、実施の形態の第2例を示す、図2に相当する図である。FIG. 7 is a diagram illustrating a second example of the embodiment and corresponding to FIG. 2. 図8は、実施の形態の第3例を示す、図2に相当する図である。FIG. 8 is a diagram illustrating a third example of the embodiment and corresponding to FIG. 2. 図9は、未公開の従来構造を示す、図2に相当する図である。FIG. 9 is a view corresponding to FIG. 2 and showing a non-disclosed conventional structure.

[実施の形態の第1例]
実施の形態の第1例について、図1〜図6を用いて説明する。
本例のハブユニット軸受8は、車輪を懸架装置に対して回転自在に支持するとともに、車輪の回転速度を検出するものであり、使用状態で回転しない外輪9と、使用状態で車輪とともに回転するハブ10と、複数の転動体11と、外側密封部材12と、軸受キャップ13と、回転速度検出装置14と、弾性リングであるOリング15とを備えている。
[First Example of Embodiment]
A first example of the embodiment will be described with reference to FIGS.
The hub unit bearing 8 of the present embodiment supports the wheel rotatably with respect to the suspension device and detects the rotation speed of the wheel. The outer ring 9 does not rotate in the use state and rotates together with the wheel in the use state. The vehicle includes a hub 10, a plurality of rolling elements 11, an outer sealing member 12, a bearing cap 13, a rotational speed detecting device 14, and an O-ring 15 as an elastic ring.

なお、ハブユニット軸受8に関して、軸方向外側は、車両に組み付けた状態で車両の幅方向外側となる図1〜図3及び図6の左側であり、軸方向内側は、車両に組み付けた状態で車両の幅方向中央側となる図1〜図3及び図6の右側である。   In addition, regarding the hub unit bearing 8, the outer side in the axial direction is the left side in FIG. 1 to FIG. 3 and FIG. 6, which is the outer side in the width direction of the vehicle when assembled to the vehicle. FIG. 7 is a right side of FIGS. 1 to 3 and FIG. 6 which is a center side in a width direction of the vehicle.

外輪9は、内周面に複列の外輪軌道16a、16bを有しており、外周面に静止フランジ17を有している。静止フランジ17は、外輪9の軸方向中間部に径方向外方に突出するように設けられている。外輪9は、静止フランジ17をナックルなどの懸架装置に固定するため、使用状態で回転しない。外輪9は、例えばS53Cなどの中炭素鋼製であり、少なくとも外輪軌道16a、16bの表面に、高周波焼き入れなどの硬化処理が施されている。   The outer race 9 has double rows of outer raceways 16a and 16b on the inner peripheral surface, and has the stationary flange 17 on the outer peripheral surface. The stationary flange 17 is provided at an axially intermediate portion of the outer ring 9 so as to protrude radially outward. The outer ring 9 does not rotate in use in order to fix the stationary flange 17 to a suspension device such as a knuckle. The outer ring 9 is made of medium carbon steel such as S53C, for example, and at least the surfaces of the outer ring raceways 16a and 16b are subjected to hardening treatment such as induction hardening.

ハブ10は、外輪9の内径側に外輪9と同軸に配置されており、ハブ輪18と内輪19とを組み合わせて構成されている。ハブ輪18は、内輪19を外嵌保持する軸部材であり、軸部20と、回転フランジ21とを有している。軸部20は、ハブ輪18の軸方向内側部から軸方向中間部にわたる範囲に設けられている。軸部20は、その軸方向内側部に内輪19を外嵌するための小径段部22を有しており、その軸方向中間部の外周面に軸方向外側列の内輪軌道23aを有している。軸部20の軸方向内側部には、径方向外方に折れ曲がったかしめ部24が形成されており、該かしめ部24は、内輪19の軸方向内端面を抑え付けている。回転フランジ21は、軸部20の軸方向外側に隣接するハブ輪18の軸方向外側部から径方向外方に突出しており、略円輪形状を有している。内輪19は、ハブ輪18の小径段部22に外嵌されており、外周面に軸方向内側列の内輪軌道23bを有している。ハブ10は、回転フランジ21に車輪を構成するホイール及び制動用回転体が固定され、使用時に回転する。ハブ輪18は、例えばS53Cなどの中炭素鋼製であり、少なくとも内輪軌道23aの表面を含む軸部20の外周面に、高周波焼き入れなどの硬化処理が施されている。これに対し、内輪19は、例えばSUJ2などの高炭素クロム軸受鋼製であり、ずぶ焼き入れによる硬化処理が施されている。   The hub 10 is disposed coaxially with the outer ring 9 on the inner diameter side of the outer ring 9, and is configured by combining a hub wheel 18 and an inner ring 19. The hub wheel 18 is a shaft member that externally holds the inner ring 19, and has a shaft portion 20 and a rotating flange 21. The shaft portion 20 is provided in a range from the inside in the axial direction of the hub wheel 18 to the middle portion in the axial direction. The shaft portion 20 has a small-diameter stepped portion 22 for externally fitting the inner ring 19 on the inner side in the axial direction, and has an inner ring raceway 23a in the axially outer row on the outer peripheral surface of the axially intermediate portion. I have. A caulking portion 24 that is bent radially outward is formed on the inner side in the axial direction of the shaft portion 20, and the caulking portion 24 suppresses the axial inner end surface of the inner ring 19. The rotating flange 21 protrudes radially outward from the axially outer portion of the hub wheel 18 adjacent to the shaft portion 20 in the axial direction, and has a substantially circular shape. The inner ring 19 is externally fitted to the small-diameter step portion 22 of the hub wheel 18, and has an inner ring raceway 23b in an axially inner row on the outer peripheral surface. The hub 10 has a rotating flange 21 to which wheels constituting wheels and a rotating body for braking are fixed, and rotates during use. The hub wheel 18 is made of medium carbon steel such as S53C, for example, and a hardening process such as induction hardening is applied to at least the outer peripheral surface of the shaft portion 20 including the surface of the inner raceway 23a. On the other hand, the inner ring 19 is made of high-carbon chromium bearing steel such as SUJ2, for example, and is subjected to hardening treatment by soaking.

転動体11は、図示しない保持器により転動自在に保持されており、複列の外輪軌道16a、16bと複列の内輪軌道23a、23bとの間に、配置されている。これにより、ハブ10が、外輪9の内径側に回転自在に支持されている。図示の例では、転動体11として玉を使用しているが、重量の嵩む自動車用のハブユニット軸受の場合には、円すいころを使用する場合もある。   The rolling element 11 is rotatably held by a retainer (not shown), and is disposed between the double-row outer raceways 16a and 16b and the double-row inner raceways 23a and 23b. Thus, the hub 10 is rotatably supported on the inner diameter side of the outer ring 9. Although a ball is used as the rolling element 11 in the illustrated example, a tapered roller may be used in the case of a heavy hub unit bearing for an automobile.

外輪9の内周面とハブ10の外周面との間に存在し、かつ、複数の転動体11が設置された空間25には、図示しないグリースを封入している。そして、空間25に封入したグリースが外部に漏洩することを防止するとともに、泥水などの異物が空間25に侵入することを防止するために、空間25の軸方向外側開口を、外側密封部材12により塞いでいる。これに対し、外輪9の軸方向内側部には、有底円筒状の軸受キャップ13を装着して、外輪9の軸方向内側開口を塞いでいる。   Grease (not shown) is sealed in a space 25 that is present between the inner peripheral surface of the outer race 9 and the outer peripheral surface of the hub 10 and in which the plurality of rolling elements 11 are installed. Then, in order to prevent the grease sealed in the space 25 from leaking to the outside, and to prevent foreign matter such as muddy water from entering the space 25, the outer opening in the axial direction of the space 25 is formed by the outer sealing member 12. I'm blocking. On the other hand, a bottomed cylindrical bearing cap 13 is attached to the inner side of the outer ring 9 in the axial direction to close the axially inner opening of the outer ring 9.

軸受キャップ13は、合成樹脂製で略円板状のキャップ本体26と、該キャップ本体26にモールド固定された金属環27及びナット28とから構成されており、略円筒状の嵌合筒部29と、該嵌合筒部29の内径側を塞ぐ略円板状の底板部30とを備えている。   The bearing cap 13 includes a substantially disc-shaped cap main body 26 made of synthetic resin, a metal ring 27 and a nut 28 molded and fixed to the cap main body 26, and has a substantially cylindrical fitting cylindrical portion 29. And a substantially disk-shaped bottom plate portion 30 that closes the inner diameter side of the fitting tube portion 29.

キャップ本体26は、合成樹脂を射出成形(アキシャルドロー成形)することにより造られている。キャップ本体26を構成する合成樹脂としては、例えばポリアミド66樹脂に、グラスファイバーを適宜加えた繊維強化ポリアミド樹脂材料を使用することができる。また、必要に応じて、ポリアミド樹脂に、非晶性芳香族ポリアミド樹脂(変性ポリアミド6T/6I)、低吸水脂肪族ポリアミド樹脂(ポリアミド11樹脂、ポリアミド12樹脂、ポリアミド610樹脂、ポリアミド612樹脂)を適宜加えることで、より耐水性を向上させても良い。   The cap body 26 is made by injection molding (axial draw molding) of a synthetic resin. As the synthetic resin forming the cap body 26, for example, a fiber reinforced polyamide resin material obtained by appropriately adding glass fiber to polyamide 66 resin can be used. If necessary, an amorphous aromatic polyamide resin (modified polyamide 6T / 6I) and a low water-absorbing aliphatic polyamide resin (polyamide 11 resin, polyamide 12 resin, polyamide 610 resin, polyamide 612 resin) may be used as the polyamide resin. The water resistance may be further improved by adding as appropriate.

キャップ本体26の径方向外側部には、ステンレス鋼板や圧延鋼板などから造られた、金属環27がモールド固定されている。金属環27は、略L字形の断面形状を有しており、円筒部31と、該円筒部31の軸方向内側部から径方向外方に折れ曲がった外向フランジ部32とを備えている。円筒部31は、キャップ本体26の径方向外側部から軸方向外側に突出しており、軸受キャップ13の嵌合筒部29を構成する。外向フランジ部32は、キャップ本体26の径方向外側部の内部で、軸受キャップ13を外輪9に圧入する際に、押圧治具を押し当てる面と軸方向に重畳する位置に埋め込まれており、押圧治具による圧入力を嵌合筒部29へ伝えている。また、キャップ本体26の径方向外側部の軸方向外側面には、係止溝33が全周にわたり形成されている。係止溝33には、Oリング34が係止されている。   A metal ring 27 made of a stainless steel plate, a rolled steel plate, or the like is molded and fixed to a radially outer portion of the cap body 26. The metal ring 27 has a substantially L-shaped cross-sectional shape, and includes a cylindrical portion 31 and an outward flange portion 32 bent radially outward from an axially inner portion of the cylindrical portion 31. The cylindrical portion 31 protrudes axially outward from a radially outer portion of the cap body 26, and forms a fitting cylindrical portion 29 of the bearing cap 13. The outward flange portion 32 is embedded inside a radially outer portion of the cap body 26 at a position axially overlapping a surface against which a pressing jig is pressed when the bearing cap 13 is pressed into the outer ring 9, The pressure input by the pressing jig is transmitted to the fitting cylinder 29. A locking groove 33 is formed over the entire circumference on the axially outer surface of the radially outer portion of the cap body 26. An O-ring 34 is locked in the locking groove 33.

キャップ本体26のうち、金属環27をモールドした部分よりも径方向内側に存在する部分は、金属環27の内径側を塞いでおり、軸受キャップ13の底板部30を構成する。底板部30は、他の部分よりも軸方向の厚さ(肉厚)が大きくなった厚肉部35を有している。厚肉部35は、ハブユニット軸受8を車両に組み付けた状態で、底板部30の鉛直方向上方かつ前後方向中央に位置する部分に設けられている。   A portion of the cap body 26 that is located radially inward from the portion where the metal ring 27 is molded blocks the inner diameter side of the metal ring 27 and forms the bottom plate portion 30 of the bearing cap 13. The bottom plate portion 30 has a thick portion 35 having a greater thickness (thickness) in the axial direction than other portions. The thick portion 35 is provided at a portion located vertically above the bottom plate portion 30 and at the center in the front-rear direction with the hub unit bearing 8 assembled to the vehicle.

厚肉部35の上部には、後述するエンコーダ42の被検出面の一部と軸方向に対向する部分に、軸方向内側にのみ開口した有底孔であるホルダ挿入孔36が設けられている。ホルダ挿入孔36の奥部は、底部37によって塞がれている。厚肉部35の径方向内側には、袋状のナット28がモールド固定されている。ナット28は、内周面に雌ねじ部38が形成されており、外周面に係合凹溝39が形成されている。係合凹溝39の内側には、厚肉部35を構成する合成樹脂の一部が進入している。厚肉部35の径方向中間部で、ホルダ挿入孔36とナット28との間に挟まれた部分には、軸方向外側にのみ開口した除肉部40が設けられている。   In the upper part of the thick portion 35, a holder insertion hole 36, which is a bottomed hole opened only inside in the axial direction, is provided at a portion axially opposed to a part of a detection surface of the encoder 42 described later. . The inner part of the holder insertion hole 36 is closed by a bottom part 37. A bag-like nut 28 is molded and fixed radially inside the thick portion 35. The nut 28 has a female screw portion 38 formed on the inner peripheral surface, and an engagement groove 39 formed on the outer peripheral surface. A part of the synthetic resin constituting the thick portion 35 enters the inside of the engagement groove 39. At a radially intermediate portion of the thick portion 35, a portion between the holder insertion hole 36 and the nut 28 is provided with a thinned portion 40 that is opened only outward in the axial direction.

底板部30の軸方向外側面には、複数のリブ41a、41bが設けられている。リブ41aは、平板形状を有しており、底板部30の中心部から放射方向に伸長するように設けられている。リブ41bは、円筒形状を有しており、底板部30と同軸に配置されている。このようなリブ41a、41bは、キャップ本体26の強度を確保するとともに、キャップ本体26を射出成形により造る際の溶融樹脂の流れを良好にするために設けている。   A plurality of ribs 41a and 41b are provided on the axially outer surface of the bottom plate portion 30. The rib 41a has a flat plate shape, and is provided so as to extend in the radial direction from the center of the bottom plate portion 30. The rib 41b has a cylindrical shape and is arranged coaxially with the bottom plate 30. Such ribs 41a and 41b are provided to ensure the strength of the cap body 26 and to improve the flow of the molten resin when the cap body 26 is manufactured by injection molding.

以上のような軸受キャップ13は、金属環27の円筒部31により構成される嵌合筒部29を、外輪9の軸方向内側部に締り嵌めで内嵌固定することで、外輪9の軸方向内側部に装着されている。また、キャップ本体26の径方向外側部の軸方向外側面を、外輪9の軸方向内端面に突き当てることで、外輪9に対する軸受キャップ13の軸方向に関する位置決めを図っている。さらに、Oリング34を、外輪9の軸方向内端面とキャップ本体26の係止溝33の底面との間で弾性的に挟持することで、キャップ本体26の径方向外側部の軸方向外側面と外輪9の軸方向内端面との当接部を通じて、軸受キャップ13の内側に水分などの異物が侵入することを防止している。   In the bearing cap 13 as described above, the fitting cylindrical portion 29 formed by the cylindrical portion 31 of the metal ring 27 is tightly fitted and fixed to the axially inner portion of the outer ring 9 in the axial direction of the outer ring 9. Mounted on the inside. In addition, the axial outer surface of the radially outer portion of the cap body 26 is abutted against the axial inner end surface of the outer ring 9, thereby positioning the bearing cap 13 with respect to the outer ring 9 in the axial direction. Further, the O-ring 34 is elastically sandwiched between the axial inner end surface of the outer ring 9 and the bottom surface of the locking groove 33 of the cap body 26, so that the axial outer surface of the radially outer portion of the cap body 26 is formed. Through the contact portion between the outer ring 9 and the inner end surface in the axial direction, foreign matter such as moisture is prevented from entering the inside of the bearing cap 13.

回転速度検出装置14は、エンコーダ42と、センサユニット43とを備えている。
エンコーダ42は、円環形状を有しており、ハブ10と同軸の状態で、ハブ10を構成する内輪19の軸方向内側部の外周面に支持固定されている。エンコーダ42は、支持環44と、エンコーダ本体45とを有している。支持環44は、磁性金属板製で、プレス加工を施して造られている。支持環44は、略L字形の断面形状を有しており、締り嵌めにより、内輪19の軸方向内側部に外嵌固定されている。エンコーダ本体45は、フェライト粉末などの磁性体を混入したゴム磁石又はプラスチック磁石などの永久磁石製で、支持環44の軸方向内側面に固定されている。エンコーダ本体45の軸方向内側面である被検出面には、S極とN極とが円周方向に関して交互にかつ等ピッチで配置されている。
The rotation speed detection device 14 includes an encoder 42 and a sensor unit 43.
The encoder 42 has an annular shape, and is supported and fixed to the outer peripheral surface of the inner ring 19 of the hub 10 in the axial direction while being coaxial with the hub 10. The encoder 42 has a support ring 44 and an encoder body 45. The support ring 44 is made of a magnetic metal plate, and is formed by press working. The support ring 44 has a substantially L-shaped cross section, and is externally fitted and fixed to the axially inner portion of the inner ring 19 by interference fit. The encoder main body 45 is made of a permanent magnet such as a rubber magnet or a plastic magnet mixed with a magnetic substance such as a ferrite powder, and is fixed to an axial inner surface of the support ring 44. S poles and N poles are alternately arranged at equal pitches in the circumferential direction on the detection surface, which is the inner surface in the axial direction of the encoder body 45.

センサユニット43は、軸受キャップ13に取り付けられており、合成樹脂製のセンサホルダ46と、センサ47とを備えている。センサホルダ46は、円柱状(棒状)のホルダ軸部48と、ホルダ軸部48の基端側に設けられた取付フランジ部49とを有している。ホルダ軸部48は、後述する係止凹溝51が形成された部分を除き、軸方向にわたり外径が変化しない。センサ47は、ホールIC、ホール素子、MR素子、GMR素子などの磁気検知素子及び波形成形回路を組み込んだICから成るもので、ホルダ軸部48の先端部に保持(モールド)されている。   The sensor unit 43 is attached to the bearing cap 13 and includes a sensor holder 46 made of a synthetic resin and a sensor 47. The sensor holder 46 has a columnar (rod-shaped) holder shaft 48 and a mounting flange 49 provided on the base end side of the holder shaft 48. The outer diameter of the holder shaft portion 48 does not change in the axial direction except for a portion where a locking groove 51 described later is formed. The sensor 47 is composed of an IC incorporating a magnetic sensing element such as a Hall IC, a Hall element, an MR element, a GMR element, and a waveform shaping circuit, and is held (molded) at the tip of a holder shaft 48.

センサユニット43は、取付フランジ部49に設けられた通孔50を挿通した、図示しないボルトの雄ねじ部を、底板部30にモールドされたナット28の雌ねじ部38に螺合することで、軸受キャップ13に取り付けられている。このような取付状態で、ホルダ軸部48は、ホルダ挿入孔36の内側に挿入されている。また、ホルダ軸部48の先端部に保持されたセンサ47は、ホルダ挿入孔36の底部37を介して、エンコーダ42(エンコーダ本体45)の被検出面に軸方向に近接対向している。   The sensor unit 43 is configured such that a male screw portion of a bolt (not shown) inserted through a through hole 50 provided in the mounting flange portion 49 is screwed into the female screw portion 38 of the nut 28 molded on the bottom plate portion 30 to thereby provide a bearing cap. 13 is attached. In such an attached state, the holder shaft portion 48 is inserted inside the holder insertion hole 36. The sensor 47 held at the distal end of the holder shaft 48 is axially close to the detection surface of the encoder 42 (encoder body 45) via the bottom 37 of the holder insertion hole 36.

ホルダ挿入孔36とホルダ軸部48との間の密封性を確保するために、ホルダ挿入孔36の軸方向中間部の内周面とホルダ軸部48の軸方向中間部の外周面との間に、Oリング15を径方向に圧縮した態様、すなわち、ホルダ挿入孔36の内周面とホルダ軸部48の外周面とに締め代を持たせた態様で配置している。本例では、ホルダ軸部48の挿入作業と、Oリング15を所期の配置位置Pに配置する作業とを同時に行えるようにするために、Oリング15を、ホルダ軸部48の軸方向中間部の外周面に形成された、略矩形状の断面形状を有する環状の係止凹溝51に外嵌(係止)している。Oリング15は、例えばゴムなどの弾性材製で、自由状態で略円形の断面形状を有しており、その線径は係止凹溝51の溝深さよりも大きい。なお、Oリング15の配置位置Pとは、ホルダ軸部48の挿入作業が完了した状態で、Oリング15の中心が位置する軸方向位置である。   In order to ensure the sealing performance between the holder insertion hole 36 and the holder shaft 48, the gap between the inner peripheral surface of the holder insertion hole 36 in the axial middle and the outer peripheral surface of the holder shaft 48 in the axial middle is provided. The O-ring 15 is arranged in a state of being compressed in the radial direction, that is, an inner peripheral surface of the holder insertion hole 36 and an outer peripheral surface of the holder shaft portion 48 are provided with interference. In the present example, the O-ring 15 is attached to the intermediate position of the holder shaft 48 in the axial direction so that the operation of inserting the holder shaft 48 and the operation of arranging the O-ring 15 at the intended arrangement position P can be performed simultaneously. It is externally fitted (locked) to an annular locking groove 51 having a substantially rectangular cross-sectional shape formed on the outer peripheral surface of the portion. The O-ring 15 is made of an elastic material such as rubber, has a substantially circular cross-section in a free state, and has a wire diameter larger than the groove depth of the locking groove 51. Note that the arrangement position P of the O-ring 15 is an axial position where the center of the O-ring 15 is located in a state where the work of inserting the holder shaft portion 48 is completed.

本例では、Oリング15を外嵌したホルダ軸部48をホルダ挿入孔36に挿入する際に、ホルダ挿入孔36の内部の空気を外部に逃がし、ホルダ挿入孔36の内部の空気が過度に圧縮されないようにするために、ホルダ挿入孔36の内周面形状を工夫している。
具体的には、ホルダ挿入孔36の内周面のうち、Oリング15の配置位置Pを含む軸方向外側部から中間部にわたる範囲を、軸方向にわたり内径が変化しない支持円筒面52としている。そして、支持円筒面52の内径d52を、ホルダ軸部48の外径D48よりもわずかに大きく、かつ、ホルダ軸部48に外嵌したOリング15のホルダ挿入孔36に挿入する以前における外径D15(以下「縮径前リング外径D15」と呼ぶ。図6の(A)参照)よりも小さくしている(D48<d52<D15)。これにより、Oリング15を支持円筒面52の内径側に配置した状態で、Oリング15を圧縮できるようにするとともに、ホルダ軸部48の先側部が支持円筒面52の内側でがたつくことを防止している。
In the present example, when the holder shaft portion 48 with the O-ring 15 fitted outside is inserted into the holder insertion hole 36, the air inside the holder insertion hole 36 is released to the outside, and the air inside the holder insertion hole 36 is excessively discharged. The shape of the inner peripheral surface of the holder insertion hole 36 is devised so as not to be compressed.
Specifically, in the inner peripheral surface of the holder insertion hole 36, a range from the axially outer portion to the intermediate portion including the arrangement position P of the O-ring 15 is a supporting cylindrical surface 52 whose inner diameter does not change in the axial direction. Then, the inner diameter d 52 of the support cylindrical surface 52, slightly larger than the outer diameter D 48 of the holder shaft 48, and, in prior to insertion into the holder insertion hole 36 of the O-ring 15 which is fitted to the holder shaft 48 It is smaller than the outer diameter D 15 (hereinafter, referred to as “ring outer diameter D 15 before reduced diameter”; see FIG. 6A) (D 48 <d 52 <D 15 ). This allows the O-ring 15 to be compressed in a state where the O-ring 15 is disposed on the inner diameter side of the support cylindrical surface 52, and prevents the front end of the holder shaft 48 from rattling inside the support cylindrical surface 52. It is preventing.

また、ホルダ挿入孔36の内周面のうち、軸方向内側開口からOリング15の配置位置Pの軸方向内側に隣接した位置にわたる範囲に、その内径d53が縮径前リング外径D15(内半径d53/2がOリング15の外半径D15/2)よりも大きい、逃げ部である環状凹部53を全周にわたり設けている。また、環状凹部53の底面(内周面)を、軸方向内側(ホルダ挿入孔36の開口側)に向かう程内径が大きくなる方向に傾斜したテーパ面54としている。なお、環状凹部53(テーパ面54)の軸方向長さ(開口部からの深さ)は、Oリング15の配置位置Pとの関係で決まるが、例えばホルダ挿入孔36の軸方向深さの20%〜40%程度とすることができる。また、テーパ面54の傾斜角度は、ホルダ挿入孔36の周囲の肉厚(外壁)が薄いことからあまり急な傾斜を付けることはできず、テーパ面54の開口部の内径が、ホルダ軸部48の係止凹溝51に係止されたOリング15の外径よりも大径であること、Oリング15を係止したホルダ軸部48をホルダ挿入孔36にスムーズに挿入できること、及び、ホルダ軸部48の挿入作業完了後に、Oリング15に十分な潰し代が与えられること、という観点から、例えば、0.5°〜5°程度とすることができる。 Further, among the inner circumferential surface of the holder insertion hole 36, the range extending position adjacent axially inner position P of the O-ring 15 from the axially inner opening, the inner diameter d 53 is reduced diameter front ring outer diameter D 15 (inner radius d 53/2 is the outer radius D 15/2 of the O-ring 15) is greater than is provided an annular recess 53 is a relief portion over the entire circumference. In addition, the bottom surface (inner peripheral surface) of the annular concave portion 53 is a tapered surface 54 that is inclined in such a direction that the inner diameter increases toward the inner side in the axial direction (the opening side of the holder insertion hole 36). The axial length (depth from the opening) of the annular concave portion 53 (tapered surface 54) is determined by the relationship with the arrangement position P of the O-ring 15, but, for example, the axial depth of the holder insertion hole 36 is determined. It can be about 20% to 40%. In addition, since the thickness (outer wall) around the holder insertion hole 36 is small, the inclination angle of the tapered surface 54 cannot be made too steep. 48, the diameter of the O-ring 15 locked in the locking groove 51 is larger than the outer diameter of the O-ring 15, the holder shaft portion 48 locking the O-ring 15 can be smoothly inserted into the holder insertion hole 36, and From the viewpoint that a sufficient squeeze allowance is given to the O-ring 15 after the insertion operation of the holder shaft portion 48 is completed, for example, the angle can be about 0.5 ° to 5 °.

さらに、ホルダ挿入孔36の内周面の軸方向中間部で、支持円筒面52とテーパ面54との間部分に、ガイドテーパ面55を設けている。ガイドテーパ面55は、後述するように、ホルダ軸部48をホルダ挿入孔36の内側に挿入する際に、ホルダ軸部48に外嵌されたOリング15の外周面が当接する部分であり、テーパ面54と同じ傾斜角度を有しており、テーパ面54と滑らかに連続している。ガイドテーパ面55の内径d55は、軸方向外側に向かうに従い小さくなっている。すなわち、ガイドテーパ面55は、軸方向外側部が支持円筒面52につながっており、軸方向外端部の内径d55が、支持円筒面52の内径d52と同じである。一方、ガイドテーパ面55は、軸方向内側部でテーパ面54につながっており、軸方向内端部の内径d55が、縮径前リング外径D15と同じである。なお、ガイドテーパ面55の傾斜角度は、テーパ面54の傾斜角度と異ならせることもできる。 Further, a guide tapered surface 55 is provided at a portion between the support cylindrical surface 52 and the tapered surface 54 at an axially intermediate portion of the inner peripheral surface of the holder insertion hole 36. The guide taper surface 55 is a portion where the outer peripheral surface of the O-ring 15 externally fitted to the holder shaft portion 48 comes into contact when the holder shaft portion 48 is inserted inside the holder insertion hole 36, as described later. It has the same inclination angle as the tapered surface 54 and is smoothly continuous with the tapered surface 54. The inner diameter d 55 of the guide tapered surface 55 is smaller toward the axially outward. That is, the guide taper surface 55 has an axially outer portion connected to the support cylindrical surface 52, and the inner diameter d 55 of the axially outer end portion is the same as the inner diameter d 52 of the support cylindrical surface 52. On the other hand, the guide taper surface 55 is connected to the taper surface 54 at the inner side in the axial direction, and the inner diameter d 55 at the inner end in the axial direction is the same as the outer diameter D 15 of the pre-reducing ring. Note that the inclination angle of the guide taper surface 55 can be different from the inclination angle of the taper surface 54.

以上のような本例のハブユニット軸受8によれば、車輪を懸架装置に対して回転自在に支持できるとともに、車輪の回転速度を検出することができる。このため、ABSやTCSを適切に制御できる。   According to the hub unit bearing 8 of the present embodiment as described above, the wheels can be rotatably supported by the suspension device, and the rotation speed of the wheels can be detected. Therefore, ABS and TCS can be appropriately controlled.

特に本例では、ホルダ挿入孔36とホルダ軸部48との間の密封性を確保できるだけでなく、軸受キャップ13に対するセンサホルダ46の取付作業性を良好にすることができ、かつ、ホルダ挿入孔36の底部37の厚さを薄くして、センサ47による回転速度検出精度の向上を図ることができる。   In particular, in this example, not only the sealing performance between the holder insertion hole 36 and the holder shaft portion 48 can be ensured, but also the workability of attaching the sensor holder 46 to the bearing cap 13 can be improved, and the holder insertion hole can be improved. By reducing the thickness of the bottom portion 37 of 36, the accuracy of rotation speed detection by the sensor 47 can be improved.

すなわち、ホルダ挿入孔36の軸方向中間部の内周面とホルダ軸部48の軸方向中間部の外周面との間に、Oリング15を締め代を持たせた態様で配置しているため、Oリング15が挟持された部分よりも奥側(軸方向外側)に、水分が侵入することを防止できる。したがって、水分の凍結に起因して、ホルダ挿入孔36の底部37が破損することを防止できる。   That is, since the O-ring 15 is arranged in a manner having a margin between the inner peripheral surface of the axially intermediate portion of the holder insertion hole 36 and the outer peripheral surface of the axially intermediate portion of the holder shaft portion 48. In addition, it is possible to prevent moisture from penetrating deeper (axially outside) than the portion where the O-ring 15 is sandwiched. Therefore, it is possible to prevent the bottom portion 37 of the holder insertion hole 36 from being damaged due to the freezing of water.

また、センサホルダ46の取付作業性を良好にでき、かつ、ホルダ挿入孔36の底部37の厚さを薄くして、センサ47による回転速度検出精度の向上を図ることができる理由について、センサホルダ46の取付作業を工程順に示した図6を参照して詳しく説明する。
図6の(A)に示すように、Oリング15を外嵌したホルダ軸部48を、ホルダ挿入孔36の内側に挿入する際に、Oリング15が環状凹部53の底面であるテーパ面54の内径側に位置する段階では、Oリング15の外周面とテーパ面54との間に隙間56を設けることができる。このため、ホルダ軸部48をさらに挿入して、図6の(B)に示すように、Oリング15の外周面がガイドテーパ面55に当接するまでの間、ホルダ挿入孔36の内部の空気を、隙間56を通じて外部に逃がすことができる。また、テーパ面54を、Oリング15の配置位置Pの軸方向内側に隣接した位置まで設けているため、図6の(B)→(C)に示すように、Oリング15がガイドテーパ面55に当接してから配置位置Pに移動するまでの間の、ホルダ軸部48の挿入量は十分に短くなる。したがって、ホルダ挿入孔36の内部の空気が過度に圧縮されることを防止できる。これにより、ホルダ軸部48が押し戻されることを防止でき、センサホルダ46の取付作業性を良好にできる。また、圧縮された空気圧に耐えるためにホルダ挿入孔36の底部37の強度(肉厚)を上げる必要がないため、底部37の厚さを薄くして、センサ47による回転速度検出精度の向上を図ることができる。
Further, the reason why the mounting workability of the sensor holder 46 can be improved and the thickness of the bottom portion 37 of the holder insertion hole 36 can be reduced to improve the rotation speed detection accuracy by the sensor 47 is described. The mounting operation of 46 will be described in detail with reference to FIG.
As shown in FIG. 6A, when the holder shaft portion 48 with the O-ring 15 fitted thereinto is inserted into the inside of the holder insertion hole 36, the O-ring 15 is tapered on the bottom surface of the annular recess 53. In the stage located on the inner diameter side of the O-ring 15, a gap 56 can be provided between the outer peripheral surface of the O-ring 15 and the tapered surface 54. For this reason, the holder shaft portion 48 is further inserted, and the air inside the holder insertion hole 36 is maintained until the outer peripheral surface of the O-ring 15 contacts the guide tapered surface 55 as shown in FIG. Through the gap 56 to the outside. In addition, since the tapered surface 54 is provided up to a position adjacent to the inside of the O-ring 15 in the axial direction of the disposition position P, as shown in FIG. The amount of insertion of the holder shaft 48 between the time when the holder shaft 55 is brought into contact with the position 55 and the time when the holder shaft 48 is moved to the arrangement position P is sufficiently short. Therefore, it is possible to prevent the air inside the holder insertion hole 36 from being excessively compressed. Thereby, the holder shaft portion 48 can be prevented from being pushed back, and the mounting workability of the sensor holder 46 can be improved. Further, since it is not necessary to increase the strength (thickness) of the bottom portion 37 of the holder insertion hole 36 in order to withstand the compressed air pressure, the thickness of the bottom portion 37 is reduced, and the rotation speed detection accuracy by the sensor 47 is improved. Can be planned.

また、テーパ面54は、ホルダ軸部48の先端部をガイド(案内)する機能を備えているため、ホルダ軸部48をホルダ挿入孔36の開口部に対してスムーズに挿入することができる。さらに、テーパ面54を通過したOリング15を、テーパ面54と同じ傾斜角度を有するガイドテーパ面55によって徐々に縮径することができる。このため、Oリング15を、支持円筒面52の内径側にスムーズに押し込むことができる。したがって、この面からも、センサホルダ46の取付作業性を良好にできる。   In addition, since the tapered surface 54 has a function of guiding the tip of the holder shaft 48, the holder shaft 48 can be smoothly inserted into the opening of the holder insertion hole 36. Further, the diameter of the O-ring 15 passing through the tapered surface 54 can be gradually reduced by the guide tapered surface 55 having the same inclination angle as the tapered surface 54. Therefore, the O-ring 15 can be smoothly pushed into the inner diameter side of the support cylindrical surface 52. Therefore, also from this aspect, the mounting workability of the sensor holder 46 can be improved.

[実施の形態の第2例]
実施の形態の第2例について、図7を用いて説明する。
本例では、ホルダ挿入孔36aの内周面のうち、軸方向内側開口からOリング15の配置位置Pの軸方向内側に隣接した位置にわたる範囲に、その内径d53aが縮径前リング外径D15(内半径d53a/2がOリング15の外半径D15/2)よりも大きい、環状凹部53aを全周にわたり設けている。また、環状凹部53aの底面(内周面)を、軸方向にわたり内径が一定の円筒面57としている。さらに、支持円筒面52と円筒面57とを、段差面58を介して連続している。
[Second Example of Embodiment]
A second example of the embodiment will be described with reference to FIG.
In this example, the inner diameter d 53a of the inner diameter d 53a of the inner peripheral surface of the holder insertion hole 36a extends from the inner opening in the axial direction to a position adjacent to the inner side in the axial direction of the arrangement position P of the O-ring 15. D is greater than 15 (the outer radius D 15/2 of internal radius d 53a / 2 is O-ring 15) is provided an annular recess 53a over the entire circumference. Further, the bottom surface (inner peripheral surface) of the annular concave portion 53a is a cylindrical surface 57 having a constant inner diameter in the axial direction. Further, the support cylindrical surface 52 and the cylindrical surface 57 are continuous via a step surface 58.

以上のような本例の場合にも、Oリング15を外嵌したホルダ軸部48を、ホルダ挿入孔36aの内側に挿入する際に、2点鎖線で示すように、Oリング15の外周面と環状凹部53aの底面である円筒面57との間に隙間56を設けることができる。このため、この隙間56を通じて、ホルダ挿入孔36aの内部の空気を外部に逃がすことができる。さらに、円筒面57の内径d53aを縮径前リング外径D15よりもわずかに大きい程度とすれば、円筒面57をOリング15の芯合わせ(ホルダ挿入孔36aとホルダ軸部48との芯合わせ)を行うための案内面として利用することもできる。
なお、本例を実施する際には、支持円筒面52と円筒面57とを、実施の形態の第1例の構造のように、軸方向内側に向かう程内径が小さくなったガイドテーパ面により連続させることもできるし、円弧状の断面形状を有する凸曲面により連続させることもできる。
その他の構成及び作用効果については、実施の形態の第1例と同様である。
Also in the case of the present embodiment as described above, when the holder shaft portion 48 with the O-ring 15 fitted outside is inserted into the holder insertion hole 36a, the outer peripheral surface of the O-ring 15 is A gap 56 can be provided between the annular concave portion 53a and the cylindrical surface 57 that is the bottom surface of the annular concave portion 53a. Therefore, the air inside the holder insertion hole 36a can escape to the outside through the gap 56. Further, the inner diameter d 53a of the cylindrical surface 57 if slightly larger than the reduced diameter front ring outer diameter D 15, the cylindrical surface 57 centering the O-ring 15 (the holder insertion hole 36a and the holder shaft 48 It can also be used as a guide surface for performing (centering).
When the present embodiment is carried out, the supporting cylindrical surface 52 and the cylindrical surface 57 are formed by a guide taper surface whose inner diameter becomes smaller toward the inside in the axial direction as in the structure of the first example of the embodiment. It can be continuous or can be continuous by a convex curved surface having an arc-shaped cross section.
Other configurations and operational effects are the same as those of the first example of the embodiment.

[実施の形態の第3例]
実施の形態の第3例について、図8を用いて説明する。
本例では、ホルダ挿入孔36bの内周面の円周方向一部で、軸方向内側開口からOリング15の配置位置Pの軸方向内側に隣接した位置にわたる範囲に、径方向外側に凹んだ状態で軸方向に延在する凹溝59を設けている。凹溝59の内半径d53bは、ホルダ軸部48に外嵌した弾性リング15のホルダ挿入孔36bに挿入する以前における外半径D15/2よりも大きい。また、凹溝59の底面を、軸方向にわたり内径が一定の部分円筒面57aとしている。さらに、支持円筒面52と部分円筒面57aとを、段差面58aにより連続している。なお、支持円筒面52と段差面58aとの間の陵部(連続部)、及び、凹溝59の円周方向側面と該凹溝59から円周方向に外れた部分との間の陵部は、円弧形の断面形状を有する凸曲面60として、該陵部によってOリング15が損傷することを防止している。凸曲面60に代えて、内径が徐々に変化する傾斜面を設けることもできる。
[Third Example of Embodiment]
A third example of the embodiment will be described with reference to FIG.
In this example, a part of the inner circumferential surface of the holder insertion hole 36b in the circumferential direction is radially outwardly recessed in a range from the axially inner opening to a position adjacent to the O-ring 15 disposed position P in the axial direction. A concave groove 59 extending in the axial direction in the state is provided. Inner radius d 53b of the groove 59 is larger than the outer radius D 15/2 in prior to insertion into the holder insertion hole 36b of the elastic ring 15 which is fitted to the holder shaft 48. The bottom surface of the concave groove 59 is a partial cylindrical surface 57a having a constant inner diameter in the axial direction. Further, the support cylindrical surface 52 and the partial cylindrical surface 57a are connected by a step surface 58a. In addition, a ridge (continuous portion) between the support cylindrical surface 52 and the step surface 58a, and a ridge between a circumferential side surface of the concave groove 59 and a portion deviated in the circumferential direction from the concave groove 59. Has a convex curved surface 60 having an arc-shaped cross section to prevent the O-ring 15 from being damaged by the ridge. Instead of the convex curved surface 60, an inclined surface whose inner diameter gradually changes can be provided.

以上のような本例の場合にも、Oリング15を外嵌したホルダ軸部48を、ホルダ挿入孔36bの内側に挿入する際に、Oリング15の外周面の一部(図8の下側部)と凹溝59の底面である部分円筒面57aとの間に隙間56を設けることができる。このため、この隙間56を通じて、ホルダ挿入孔36bの内部の空気を外部に逃がすことができる。
その他の構成及び作用効果については、実施の形態の第1例と同様である。
Also in the case of the present embodiment as described above, when the holder shaft portion 48 with the O-ring 15 externally fitted therein is inserted into the holder insertion hole 36b, a part of the outer peripheral surface of the O-ring 15 (the lower part of FIG. A gap 56 can be provided between the side portion) and the partial cylindrical surface 57a which is the bottom surface of the concave groove 59. Therefore, the air inside the holder insertion hole 36b can escape to the outside through the gap 56.
Other configurations and operational effects are the same as those of the first example of the embodiment.

本発明を実施する場合に、ホルダ挿入孔の内周面に形成する環状凹部及び凹溝の底面の形状は、テーパ面や円筒面(部分円筒面)に限らず、その他の形状を採用しても良い。また、ホルダ挿入孔の内周面に凹溝を形成する場合に、凹溝の数は、1つに限らず、複数形成することができる。また、実施の形態では、軸受キャップを、合成樹脂製のキャップ本体と、金属製の金属環など、合成樹脂以外の材料から造られた部材を組み合わせた構造を例に挙げて説明したが、本発明を実施する場合、軸受キャップは、その全体が合成樹脂から造られていても良い。さらに、実施の形態の各例の構造は、適宜組み合わせて実施することができる。   In practicing the present invention, the shape of the bottom surface of the annular concave portion and the concave groove formed on the inner peripheral surface of the holder insertion hole is not limited to a tapered surface or a cylindrical surface (partial cylindrical surface), and other shapes may be employed. Is also good. Further, when forming a concave groove on the inner peripheral surface of the holder insertion hole, the number of concave grooves is not limited to one, and a plurality of concave grooves can be formed. Further, in the embodiment, the bearing cap has been described by taking as an example a structure in which a cap body made of a synthetic resin and a member made of a material other than the synthetic resin such as a metal metal ring are combined. In practicing the invention, the bearing cap may be entirely made of synthetic resin. Further, the structures of the respective embodiments of the embodiments can be implemented in appropriate combinations.

1 軸受キャップ
2 ホルダ挿入孔
3 ホルダ軸部
4 Oリング
5 底部
6 センサ
7 センサホルダ
8 ハブユニット軸受
9 外輪
10 ハブ
11 転動体
12 外側密封部材
13 軸受キャップ
14 回転速度検出装置
15 Oリング
16a、16b 外輪軌道
17 静止フランジ
18 ハブ輪
19 内輪
20 軸部
21 回転フランジ
22 小径段部
23a、23b 内輪軌道
24 かしめ部
25 空間
26 キャップ本体
27 金属環
28 ナット
29 嵌合筒部
30 底板部
31 円筒部
32 外向フランジ部
33 係止溝
34 Oリング
35 厚肉部
36、36a、36b ホルダ挿入孔
37 底部
38 雌ねじ部
39 係合凹溝
40 除肉部
41a、41b リブ
42 エンコーダ
43 センサユニット
44 支持環
45 エンコーダ本体
46 センサホルダ
47 センサ
48 ホルダ軸部
49 取付フランジ部
50 通孔
51 係止凹溝
52 支持円筒面
53、53a 環状凹部
54 テーパ面
55 ガイドテーパ面
56 隙間
57 円筒面
57a 部分円筒面
58、58a 段差面
59 凹溝
60 凸曲面
DESCRIPTION OF SYMBOLS 1 Bearing cap 2 Holder insertion hole 3 Holder shaft part 4 O-ring 5 Bottom part 6 Sensor 7 Sensor holder 8 Hub unit bearing 9 Outer ring 10 Hub 11 Rolling element 12 Outer sealing member 13 Bearing cap 14 Rotational speed detector 15 O-ring 16a, 16b Outer ring raceway 17 Stationary flange 18 Hub wheel 19 Inner ring 20 Shaft part 21 Rotating flange 22 Small diameter stepped part 23a, 23b Inner ring raceway 24 Caulking part 25 Space 26 Cap body 27 Metal ring 28 Nut 29 Fitting cylinder part 30 Bottom plate part 31 Cylindrical part 32 Outward flange part 33 Lock groove 34 O-ring 35 Thick part 36, 36a, 36b Holder insertion hole 37 Bottom part 38 Female screw part 39 Engagement concave groove 40 Lightening part 41a, 41b Rib 42 Encoder 43 Sensor unit 44 Support ring 45 Encoder Main body 46 Sensor holder 7 Sensor 48 Holder Shaft 49 Mounting Flange 50 Through Hole 51 Locking Groove 52 Support Cylindrical Surface 53, 53a Annular Recess 54 Tapered Surface 55 Guide Tapered Surface 56 Gap 57 Cylindrical Surface 57a Partial Cylindrical Surface 58, 58a Step Surface 59 Concave Groove 60 convex surface

Claims (6)

エンコーダを備えたハブを回転自在に支持した外輪の軸方向内側部に装着されて、前記外輪の軸方向内側開口を塞ぐもので、前記外輪に嵌合固定される嵌合筒部と、該嵌合筒部の内径側を塞ぎ、前記エンコーダの一部と軸方向に対向する部分に軸方向内側にのみ開口した有底孔のホルダ挿入孔が設けられた合成樹脂製の底板部とを有する、有底円筒形状の軸受キャップと、
前記ホルダ挿入孔に挿入されたホルダ軸部を有し、前記軸受キャップに取り付けられたセンサホルダと、前記ホルダ軸部の先端部に保持されたセンサとを有する、センサユニットと、
前記ホルダ挿入孔の軸方向中間部の内周面と前記ホルダ軸部の軸方向中間部の外周面との間に、径方向に圧縮された態様で配置された弾性リングと、を備え、
前記ホルダ挿入孔は、内周面の円周方向の少なくとも一部で、かつ、軸方向内側開口から前記弾性リングの配置位置の軸方向内側に隣接した位置にわたる範囲に、その内半径が、前記ホルダ軸部に外嵌された前記弾性リングの前記ホルダ挿入孔に挿入する以前における外半径よりも大きい、逃げ部を有している、
センサユニット付軸受キャップ。
A fitting cylindrical portion mounted on an axially inner portion of an outer ring rotatably supporting a hub having an encoder to close an axially inner opening of the outer ring, and fitted and fixed to the outer ring; A synthetic resin bottom plate portion that closes the inner diameter side of the combined tube portion and has a holder insertion hole with a bottomed hole opened only in the axial direction at a portion facing the part of the encoder in the axial direction; A bottomed cylindrical bearing cap,
A sensor unit having a holder shaft inserted into the holder insertion hole, having a sensor holder attached to the bearing cap, and a sensor held at a tip end of the holder shaft;
An elastic ring arranged in a radially compressed manner between an inner peripheral surface of an axial intermediate portion of the holder insertion hole and an outer peripheral surface of an axial intermediate portion of the holder shaft portion,
The holder insertion hole has at least a part of the inner peripheral surface in the circumferential direction, and has an inner radius in a range from the axial inner opening to a position adjacent to the inner side in the axial direction of the disposition position of the elastic ring. Having a relief portion that is larger than the outer radius of the elastic ring externally fitted to the holder shaft before being inserted into the holder insertion hole,
Bearing cap with sensor unit.
前記逃げ部が、前記ホルダ挿入孔の内周面に全周にわたり設けられた環状凹部である、請求項1に記載したセンサユニット付軸受キャップ。   The bearing cap with a sensor unit according to claim 1, wherein the relief portion is an annular concave portion provided on the entire inner peripheral surface of the holder insertion hole. 前記環状凹部の底面が、軸方向内側に向かう程内径が大きくなる方向に傾斜したテーパ面である、請求項2に記載したセンサユニット付軸受キャップ。   The bearing cap with a sensor unit according to claim 2, wherein a bottom surface of the annular concave portion is a tapered surface inclined in a direction in which an inner diameter increases toward an inner side in the axial direction. 前記環状凹部の底面が、軸方向にわたり内径が一定の円筒面である、請求項2に記載したセンサユニット付軸受キャップ。   The bearing cap with a sensor unit according to claim 2, wherein the bottom surface of the annular concave portion is a cylindrical surface having a constant inner diameter in the axial direction. 前記逃げ部が、前記ホルダ挿入孔の内周面の円周方向の一部に設けられた凹溝である、請求項1に記載したセンサユニット付軸受キャップ。   The bearing cap with a sensor unit according to claim 1, wherein the relief portion is a concave groove provided on a part of an inner peripheral surface of the holder insertion hole in a circumferential direction. 内周面に外輪軌道を有し、使用時にも回転しない外輪と、外周面に内輪軌道を有し、使用時に回転するハブと、前記外輪軌道と前記内輪軌道との間に設けられた複数の転動体と、前記ハブの軸方向内側部にこのハブと同軸に支持されたエンコーダと、前記外輪の軸方向内側部に装着された軸受キャップと、該軸受キャップに取り付けられたセンサユニットと、を備えたハブユニット軸受であって、
前記軸受キャップに前記センサユニットを取り付けてなるセンサユニット付軸受キャップが、請求項1〜5のうちのいずれか1項に記載したセンサユニット付軸受キャップである、ハブユニット軸受。
An outer ring having an outer raceway on an inner peripheral surface and not rotating even during use, a hub having an inner raceway on an outer peripheral surface and rotating during use, and a plurality of hubs provided between the outer raceway and the inner raceway. A rolling element, an encoder coaxially supported by the hub on the axially inner portion of the hub, a bearing cap mounted on the axially inner portion of the outer ring, and a sensor unit mounted on the bearing cap. A hub unit bearing provided with
A hub unit bearing, wherein a bearing cap with a sensor unit obtained by attaching the sensor unit to the bearing cap is the bearing cap with a sensor unit according to any one of claims 1 to 5.
JP2018126087A 2018-07-02 2018-07-02 Bearing cap with sensor unit and hub unit bearing Active JP7107032B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018126087A JP7107032B2 (en) 2018-07-02 2018-07-02 Bearing cap with sensor unit and hub unit bearing
CN201920994227.0U CN211820436U (en) 2018-07-02 2019-06-28 Bearing cap with sensor unit and hub unit bearing
DE202019103600.1U DE202019103600U1 (en) 2018-07-02 2019-07-01 Bearing cover with sensor unit and wheel hub bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018126087A JP7107032B2 (en) 2018-07-02 2018-07-02 Bearing cap with sensor unit and hub unit bearing

Publications (3)

Publication Number Publication Date
JP2020003055A true JP2020003055A (en) 2020-01-09
JP2020003055A5 JP2020003055A5 (en) 2021-06-10
JP7107032B2 JP7107032B2 (en) 2022-07-27

Family

ID=67702008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018126087A Active JP7107032B2 (en) 2018-07-02 2018-07-02 Bearing cap with sensor unit and hub unit bearing

Country Status (3)

Country Link
JP (1) JP7107032B2 (en)
CN (1) CN211820436U (en)
DE (1) DE202019103600U1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115038884A (en) * 2020-02-21 2022-09-09 Ntn株式会社 Bearing cap for wheel bearing device with rotation speed detector, and wheel bearing device with rotation speed detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002029A (en) * 2009-06-18 2011-01-06 Ntn Corp Wheel bearing apparatus with rotational speed detecting device
JP2013053638A (en) * 2011-09-01 2013-03-21 Ntn Corp Wheel bearing device with rotation speed detector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205244148U (en) 2015-01-20 2016-05-18 日本精工株式会社 Strip sensor's bearing cap and antifriction bearing unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002029A (en) * 2009-06-18 2011-01-06 Ntn Corp Wheel bearing apparatus with rotational speed detecting device
JP2013053638A (en) * 2011-09-01 2013-03-21 Ntn Corp Wheel bearing device with rotation speed detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115038884A (en) * 2020-02-21 2022-09-09 Ntn株式会社 Bearing cap for wheel bearing device with rotation speed detector, and wheel bearing device with rotation speed detector

Also Published As

Publication number Publication date
JP7107032B2 (en) 2022-07-27
DE202019103600U1 (en) 2019-08-02
CN211820436U (en) 2020-10-30

Similar Documents

Publication Publication Date Title
JP6323046B2 (en) Rolling bearing unit with rotational speed detector
JP2009108876A (en) Bearing device for wheel with rotational speed detection device
JP2005042866A5 (en)
JP6260348B2 (en) Rolling bearing unit with rotational speed detector
JP2010101332A (en) Fitting ring and bearing device for wheel having the same
JP2008051819A (en) Rotation support device with sensor
JP2020003055A (en) Bearing cap with sensor unit and hub unit bearing
JP6256122B2 (en) Rolling bearing unit with rotational speed detector
JP2013221549A (en) Wheel bearing device
JP6572776B2 (en) Bearing cap with sensor unit and rolling bearing unit
JP2005106238A (en) Bearing unit for vehicle with rotational speed detection device
WO2008075456A1 (en) Sensor holder, and bearing device adapted for use for wheel, having rotation speed detection device, and integral with the sensor holder
JP2008019912A (en) Wheel bearing device
JP5623592B2 (en) Sensor cap for wheel bearing device with rotation speed detection device, wheel bearing device with rotation speed detection device provided with the same, and method for manufacturing sensor cap for wheel bearing device with rotation speed detection device
WO2009119036A1 (en) Bearing device adapted for use in wheel and having rotational speed detection device
JP2006342860A (en) Bearing device for wheel with rotational speed detection device
JP2019052738A (en) Hub unit bearing
JP5242102B2 (en) Wheel bearing device with rotation speed detector
JP2009068597A (en) Bearing device for wheel with encoder
JP2006275200A (en) Cover of rolling bearing device and rolling bearing device using this cover
JP5121429B2 (en) Wheel bearing device with rotation speed detector
JP2006349061A (en) Bearing device with rotational speed detector for wheel
JP2009024770A (en) Wheel bearing device with rotation speed detector
JP2006308396A (en) Bearing device for wheel with rotating speed detecting device
JP2008151623A (en) Sensor holder and wheel-use bearing device having rotation speed detector with the same sensor holder built-in

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220627

R150 Certificate of patent or registration of utility model

Ref document number: 7107032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150