JP2020002416A - Manufacturing method of cold-rolled steel sheet, hot-dip galvanized steel sheet and galvanized steel sheet - Google Patents

Manufacturing method of cold-rolled steel sheet, hot-dip galvanized steel sheet and galvanized steel sheet Download PDF

Info

Publication number
JP2020002416A
JP2020002416A JP2018121564A JP2018121564A JP2020002416A JP 2020002416 A JP2020002416 A JP 2020002416A JP 2018121564 A JP2018121564 A JP 2018121564A JP 2018121564 A JP2018121564 A JP 2018121564A JP 2020002416 A JP2020002416 A JP 2020002416A
Authority
JP
Japan
Prior art keywords
steel sheet
less
hot
cold
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018121564A
Other languages
Japanese (ja)
Inventor
直哉 清兼
Naoya Kiyokane
直哉 清兼
香菜 佐々木
Kana SASAKI
香菜 佐々木
陽平 金子
Yohei Kaneko
陽平 金子
孝子 山下
Takako Yamashita
孝子 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018121564A priority Critical patent/JP2020002416A/en
Publication of JP2020002416A publication Critical patent/JP2020002416A/en
Pending legal-status Critical Current

Links

Abstract

To provide a method of manufacturing a cold-rolled steel sheet having excellent formability and bake hardenability.SOLUTION: In the method of manufacturing the cold-rolled steel sheet that includes a hot-rolling step for hot-rolling a steel material to obtain a hot-rolled steel sheet, a cold-rolling step for cold-rolling to obtain a cold-rolled steel sheet, and an annealing step for annealing to obtain an annealed cold-rolled steel sheet, the steel material contains, in mass%, C:0.0010% or more and 0.0030% or less, Nb:0.010% or more and 0.025% or less, Al:0.050% or more and 0.080% or less, Si:0.05% or less, Mn:1.0% or less, P:0.10% or less, S:0.010% or less, B:0.0030% or less, N: 0.0030% or less, and balance consisting of Fe and unavoidable impurities, and has a composition that satisfies the formula(1), (Al/N)+(100×B/N)>100 (1). At the annealing step, a temperature is kept at 850°C or more and less than 910°C, and subsequently cooling is performed so as to cool to 750°C or less at an average cooling rate of 5°C/s or more.SELECTED DRAWING: None

Description

本発明は、冷延鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板の製造方法に関する。   The present invention relates to a method for producing a cold-rolled steel sheet, a hot-dip galvanized steel sheet, and an alloyed hot-dip galvanized steel sheet.

近年、地球環境の保全という観点から排出される汚染物質の低減のために排気ガス規制が実施され、自動車に対しては車体の軽量化による燃費向上が強く要求されている。車体を軽量化するための有力な手法の一つに使用する薄鋼板の高強度化があり、年々高強度鋼板の使用量が増加している。
薄鋼板の高強度化の方法としては、固溶強化元素を添加して固溶強化を利用する方法、析出強化元素を添加し析出物を利用する析出強化方法、硬質相であるマルテンサイトを利用した強化方法が一般的である。しかし、いずれの方法も高強度化に伴い、延性やr値等の低下による成形性の低下やスポット溶接性の劣化、さらには耐二次加工脆性の低下等が生じるという問題を含んでいる。このため、成形性の優れた高強度鋼板を製造する場合には、上記した強化元素を添加する方法あるいは硬質相であるマルテンサイトを利用する方法は必ずしも好ましい方法とは言えない。
また、車体を軽量化するための他の手段として、薄鋼板の成形性を高める方法がある。薄鋼板の成形性を高めることにより、従来の多くの部品を溶接して組み立てる溶接組み立て方式から、一体成形方式に変更することができ、溶接のための重ね代の低減により、自動車車体の軽量化が可能となる。また、一体成形では軽量化以外に製造コストの削減もできるメリットがある。
高い成形性と高強度化を両立させる打ち手として、成形時には軟質であり、成形時に導入される加工歪とその後の塗装焼付処理により、組み立て塗装後の最終部品(製品)において高強度化を達成する方法がある。この方法を利用した鋼板は焼付硬化型鋼板と称されている。この方法を使用することにより、成形時には軟質で成形性がよく、その一方で、鋼板に導入された加工歪と成形後の塗装焼付処理により生じる鋼の歪時効現象、いわゆる焼付硬化を利用して変形強度を高めることができ、最終部品(製品)の高強度化が図れる。この方法では強度の増加量に制限があるものの、最終部品(製品)の形状となるように成形する際には軟質で、焼き付け塗装後最終部品(製品)の高強度化が可能になるという利点がある。しかも、この方法は強化元素を添加しないためスポット溶接性が良好であり、粒界強度を上昇させる固溶Cが存在することから、耐二次加工脆性の低下も生じ難いという利点がある。また、添加元素を使用しないため、製造コストを抑えることができるという利点もある。
このような利点を有する焼付硬化型鋼板の製造方法について、例えば、特許文献1及び特許文献2など、これまでにいくつかの提案がなされている。
In recent years, exhaust gas regulations have been implemented to reduce pollutants emitted from the viewpoint of preserving the global environment, and there is a strong demand for automobiles to improve fuel efficiency by reducing the weight of vehicle bodies. One of the leading methods for reducing the weight of a vehicle body is to increase the strength of a thin steel sheet used, and the amount of high-strength steel sheet used is increasing year by year.
As a method for increasing the strength of thin steel sheets, a method using solid solution strengthening by adding a solid solution strengthening element, a method using a precipitate by adding a precipitation strengthening element, and a method using martensite which is a hard phase Generally, a strengthening method is adopted. However, each of these methods has a problem in that, as the strength is increased, the formability and spot weldability are deteriorated due to the decrease in ductility and r-value, and the secondary work brittleness resistance is lowered. For this reason, when manufacturing a high-strength steel sheet excellent in formability, the method of adding the above strengthening element or the method of using martensite which is a hard phase is not necessarily a preferable method.
Another method for reducing the weight of a vehicle body is to improve the formability of a thin steel plate. By improving the formability of thin steel sheets, it is possible to change from the conventional welding assembly method, which welds and assembles many parts, to an integrated molding method. Becomes possible. In addition, the integral molding has an advantage that the manufacturing cost can be reduced in addition to the weight reduction.
As a measure to achieve both high moldability and high strength, it is soft at the time of molding, and achieves high strength in the final part (product) after assembly painting by processing distortion introduced at the time of molding and subsequent baking treatment There is a way to do it. A steel sheet using this method is called a bake hardening steel sheet. By using this method, at the time of forming, it is soft and has good formability, while, on the other hand, utilizing the so-called bake hardening phenomenon, which is the strain aging phenomenon of steel caused by the work strain introduced into the steel sheet and the paint baking treatment after forming. The deformation strength can be increased, and the strength of the final part (product) can be increased. Although this method has a limitation in the amount of increase in strength, it is soft when formed into the shape of the final part (product) and has the advantage that the final part (product) can be strengthened after baking. There is. In addition, this method has an advantage that the spot weldability is good because no strengthening element is added, and the presence of solid solution C that increases the grain boundary strength does not easily cause a reduction in the secondary work brittleness resistance. In addition, since no additional element is used, there is an advantage that manufacturing cost can be reduced.
Several proposals have been made so far, for example, in Patent Document 1 and Patent Document 2, with respect to a method for producing a bake hardenable steel sheet having such advantages.

特許文献1には、C:0.0005〜0.0035質量%、Nb:5C〜9C質量%(ここでCはC量(質量%))を特定の関係を満足するように含有し、さらにSi、Mn、B、Al、Nを特定の量で含有する鋼素材に熱間圧延、冷間圧延を施したのち、連続焼鈍を730℃からNb量及びC量から決まる特定温度Tまでの昇温時間を30秒以上、特定温度T以上での滞在時間を40秒以上とすることを特徴とする高い焼付硬化性及び耐肌荒れ性を有する薄鋼板の製造方法が開示されている。特許文献1では、上記方法により、再結晶の進行とNb炭化物の溶解のタイミングを適度に調整することができ、高いBH量(焼付硬化量)を確保でき、かつ耐肌荒れ性の向上や深絞り成形性の向上が可能になるものとしている。   Patent Document 1 contains C: 0.0005 to 0.0035% by mass, and Nb: 5C to 9C% by mass (where C is the amount of C (% by mass)) so as to satisfy a specific relationship. After hot rolling and cold rolling are performed on a steel material containing specific amounts of Si, Mn, B, Al, and N, continuous annealing is performed from 730 ° C. to a specific temperature T determined by the amounts of Nb and C. A method for producing a thin steel sheet having high bake hardenability and surface roughening resistance, characterized in that the warming time is 30 seconds or more and the stay time at a specific temperature T or more is 40 seconds or more, is disclosed. In Patent Document 1, the timing of the progress of recrystallization and the dissolution of Nb carbide can be appropriately adjusted by the above method, a high BH amount (bake hardening amount) can be ensured, and the improvement of rough surface resistance and deep drawing can be achieved. The moldability can be improved.

また、特許文献2には、C:0.0008〜0.0025質量%、Nb:0.008〜0.020質量%をExcess C量=C−(12/93)Nb>−0.0005%となるように含有し、さらにSi、Mn、P、S、Al、Bを特定の量で含有する鋼素材に、熱間圧延、酸洗、冷間圧延を施したのち、溶融亜鉛めっき亜鉛ラインでの焼鈍温度をExcess C量が0%を越えの場合には800℃以上850℃未満、Excess C量が−0.0005%以上0%以下の場合には850℃以上Ac3変態点未満とし、さらに該焼鈍温度で焼鈍した後5℃/s以上の平均冷却速度で750℃以下の温度まで冷却することを特徴とする、焼付硬化性に優れた溶融亜鉛めっき鋼板の製造方法が開示されている。特許文献2では、上記方法により、Nb炭化物の溶解温度を適度に調整することができ、高いBH量(焼付硬化量)を確保が可能になるものとしている。   Further, in Patent Document 2, C: 0.0008 to 0.0025% by mass, Nb: 0.008 to 0.020% by mass, Excess C amount = C− (12/93) Nb> −0.0005% After hot rolling, pickling and cold rolling are performed on a steel material containing specific amounts of Si, Mn, P, S, Al and B, the hot-dip galvanized zinc line The annealing temperature at 800 ° C. or more and less than 850 ° C. when the amount of Excess C exceeds 0%, and 850 ° C. or more and less than the Ac3 transformation point when the amount of Excess C is −0.0005% or more and 0% or less, Further, there is disclosed a method for producing a galvanized steel sheet having excellent bake hardenability, wherein the steel sheet is cooled to a temperature of 750 ° C. or less at an average cooling rate of 5 ° C./s or more after annealing at the annealing temperature. . Patent Literature 2 discloses that the above method can appropriately adjust the dissolution temperature of Nb carbide and ensure a high BH amount (bake hardening amount).

特開平8−100221号公報JP-A-8-100221 特開2007−270167号公報JP 2007-270167 A 特開平3−281732号公報JP-A-3-281732

しかしながら、本発明者らが特許文献1及び特許文献2に記載された技術について検討したところ、例えば、出鋼時のC量、Nb量のバラツキにより、BH量(焼付硬化量)が大きく変動するため、延性には優れるが、BH量(焼付硬化量)が目標値より低くユーザーの要求特性を満足できないか、あるいは逆にBH量(焼付硬化量)は高いが延性が低下し、プレス割れを起こしやすい等の問題が生じる場合があることが明らかになった。また、出鋼時のC量、Nb量のバラツキ等により、プレス加工時にストレッチャー・ストレインが発生しやすく、表面外観を著しく損ない易いなどの問題が生じる場合があることも明らかになった。
また、特許文献3に記載の方法で得られる鋼板について検討したところ、その成形性及びBH量(焼付硬化量)は昨今要求されている水準を必ずしも満たすものではないことが明らかになった。
However, the present inventors have studied the techniques described in Patent Literature 1 and Patent Literature 2, and found that, for example, the BH amount (the amount of bake hardening) greatly fluctuates due to variations in the amounts of C and Nb during tapping. Therefore, although the ductility is excellent, the BH amount (bake hardening amount) is lower than the target value and cannot satisfy the characteristics required by the user, or conversely, the BH amount (bake hardening amount) is high, but the ductility is reduced, and press cracking occurs. It became clear that problems, such as easy occurrence, may occur. In addition, it has also been clarified that, due to variations in the amounts of C and Nb at the time of tapping, stretchers and strains are likely to be generated during press working and the surface appearance may be significantly impaired.
Further, when a steel sheet obtained by the method described in Patent Document 3 was examined, it became clear that the formability and the BH amount (bake hardening amount) did not always satisfy the standards required recently.

そこで、本発明は、上記実情を鑑みて、成形性及び焼付硬化性に優れる冷延鋼板の製造方法を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a method for producing a cold-rolled steel sheet having excellent formability and bake hardenability.

本発明者らは、上記した目的を達成するべく、BH量(焼付硬化量)に及ぼす、鋼の組成および製造条件の影響について詳細に検討した。その結果、C量が0.0010%以上0.0030%以下、Nb量が0.010%以上0.025%以下の範囲となるように制御すると共に、N量を0.0030%以下とし、Al量を0.050%以上0.080%以下とし、所定のAl、B、N含有バランスを確保した上で、冷間圧延後の焼鈍処理の焼鈍温度を調整し、特定温度範囲の冷却速度を適正範囲に調整することにより、Cを析出物として析出させることなく、固溶C量を一定にすることにより、30MPa以上の安定したBH量(焼付硬化量)の確保が可能となり、上記課題が解決できることを見出し、本発明に至った。
すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
The present inventors have studied in detail the effects of steel composition and manufacturing conditions on the BH amount (bake hardening amount) in order to achieve the above object. As a result, while controlling so that C amount may be in the range of 0.0010% or more and 0.0030% or less and Nb amount in the range of 0.010% or more and 0.025% or less, the N amount may be 0.0030% or less. The amount of Al is set to 0.050% or more and 0.080% or less, and a predetermined Al, B, and N content balance is secured, and then the annealing temperature of the annealing treatment after cold rolling is adjusted, and the cooling rate in a specific temperature range is adjusted. By adjusting C to an appropriate range, it is possible to secure a stable BH amount (bake hardening amount) of 30 MPa or more by keeping the amount of solid solution C constant without precipitating C as a precipitate. Can be solved, and the present invention has been accomplished.
That is, the present inventors have found that the above problem can be solved by the following constitution.

(1) 鋼素材に熱間圧延を施して熱延鋼板を得る、熱間圧延工程と、
上記熱延鋼板に冷間圧延を施して冷延鋼板を得る、冷間圧延工程と、
上記冷延鋼板に焼鈍処理を施して焼鈍処理を施した冷延鋼板を得る、焼鈍工程と、
を備える冷延鋼板の製造方法であって、
上記鋼素材が、質量%で、
C:0.0010%以上0.0030%以下
Nb:0.010%以上0.025%以下
Al:0.050%以上0.080%以下
Si:0.05%以下
Mn:1.0%以下
P:0.10%以下
S:0.010%以下
B:0.0030%以下
N:0.0030%以下
を含み、残部Fe及び不可避的不純物からなり、下記式(1)を満たす組成を有する鋼素材であり、
(Al/N)+(100×B/N)>100 (1)
上記焼鈍処理が、850℃以上910℃未満の温度で保持し、その後、5℃/s以上の平均冷却速度で750℃以下の温度まで冷却する処理である、冷延鋼板の製造方法。
(2) 上記(1)に記載の製造方法によって得られた焼鈍処理後の冷延鋼板に溶融亜鉛めっき処理を施して、溶融亜鉛めっき鋼板を得る、溶融亜鉛めっき鋼板の製造方法。
(3) 上記(2)に記載の製造方法によって得られた溶融亜鉛めっき鋼板に合金化処理を施して、合金化溶融亜鉛めっき鋼板を得る、合金化溶融亜鉛めっき鋼板の製造方法。
(1) hot rolling a steel material to obtain a hot rolled steel sheet,
Cold rolling the hot-rolled steel sheet to obtain a cold-rolled steel sheet, a cold rolling step,
Performing an annealing treatment on the cold-rolled steel sheet to obtain a cold-rolled steel sheet subjected to the annealing treatment, an annealing step,
A method for producing a cold-rolled steel sheet comprising:
The above steel material, in mass%,
C: 0.0010% or more and 0.0030% or less Nb: 0.010% or more and 0.025% or less Al: 0.050% or more and 0.080% or less Si: 0.05% or less Mn: 1.0% or less P: 0.10% or less S: 0.010% or less B: 0.0030% or less N: 0.0030% or less, with the balance being Fe and unavoidable impurities, having a composition satisfying the following formula (1) Steel material,
(Al / N) + (100 × B / N)> 100 (1)
A method for producing a cold-rolled steel sheet, wherein the annealing treatment is a treatment of holding at a temperature of 850 ° C. or more and less than 910 ° C., and thereafter cooling to a temperature of 750 ° C. or less at an average cooling rate of 5 ° C./s or more.
(2) A method for producing a hot-dip galvanized steel sheet, wherein a hot-dip galvanized steel sheet is obtained by performing a hot-dip galvanizing treatment on the cold-rolled steel sheet after the annealing treatment obtained by the production method according to the above (1).
(3) A method for producing an alloyed hot-dip galvanized steel sheet, wherein an alloying treatment is performed on the hot-dip galvanized steel sheet obtained by the manufacturing method according to (2) to obtain an alloyed hot-dip galvanized steel sheet.

以下に示すように、本発明によれば、成形性及び焼付硬化性に優れる冷延鋼板の製造方法を提供することができる。   As described below, according to the present invention, it is possible to provide a method for producing a cold-rolled steel sheet having excellent formability and bake hardenability.

以下に、本発明の冷延鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板の製造方法について説明する。
なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
Hereinafter, a method for producing a cold-rolled steel sheet, a hot-dip galvanized steel sheet, and an alloyed hot-dip galvanized steel sheet of the present invention will be described.
In this specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.

[冷延鋼板の製造方法]
本発明の冷延鋼板の製造方法(以下、「本発明の方法」とも言う)は、
鋼素材に熱間圧延を施して熱延鋼板を得る、熱間圧延工程と、
上記熱延鋼板に冷間圧延を施して冷延鋼板を得る、冷間圧延工程と、
上記冷延鋼板に焼鈍処理を施して焼鈍処理を施した冷延鋼板を得る、焼鈍工程と、
を備える冷延鋼板の製造方法であって、
上記鋼素材が、質量%で、
C:0.0010%以上0.0030%以下
Nb:0.010%以上0.025%以下
Al:0.050%以上0.080%以下
Si:0.05%以下
Mn:1.0%以下
P:0.10%以下
S:0.010%以下
B:0.0030%以下
N:0.0030%以下
を含み、残部Fe及び不可避的不純物からなり、下記式(1)を満たす組成を有する鋼素材であり、
(Al/N)+(100×B/N)>100 (1)
上記焼鈍処理が、850℃以上910℃未満の温度で保持し、その後、5℃/s以上の平均冷却速度で750℃以下の温度まで冷却する処理である、冷延鋼板の製造方法である。
[Production method of cold rolled steel sheet]
The method for producing a cold-rolled steel sheet of the present invention (hereinafter, also referred to as “method of the present invention”)
Hot-rolling a steel material to obtain a hot-rolled steel sheet by hot rolling,
Cold rolling the hot-rolled steel sheet to obtain a cold-rolled steel sheet, a cold rolling step,
Performing an annealing treatment on the cold-rolled steel sheet to obtain a cold-rolled steel sheet subjected to the annealing treatment, an annealing step,
A method for producing a cold-rolled steel sheet comprising:
The above steel material, in mass%,
C: 0.0010% or more and 0.0030% or less Nb: 0.010% or more and 0.025% or less Al: 0.050% or more and 0.080% or less Si: 0.05% or less Mn: 1.0% or less P: 0.10% or less S: 0.010% or less B: 0.0030% or less N: 0.0030% or less, with the balance being Fe and unavoidable impurities, having a composition satisfying the following formula (1) Steel material,
(Al / N) + (100 × B / N)> 100 (1)
This is a method for producing a cold-rolled steel sheet, wherein the above-mentioned annealing treatment is a treatment of holding at a temperature of 850 ° C or more and less than 910 ° C, and thereafter cooling to a temperature of 750 ° C or less at an average cooling rate of 5 ° C / s or more.

以下、各工程について説明する。   Hereinafter, each step will be described.

〔熱間圧延工程〕
熱間圧延工程は、特定の組成を有する鋼素材に熱間圧延を施して熱延鋼板を得る工程である。
(Hot rolling process)
The hot rolling step is a step of performing hot rolling on a steel material having a specific composition to obtain a hot-rolled steel sheet.

<鋼素材>
以下、熱間圧延工程で用いられる鋼素材の組成について説明する。なお、組成における「%」表示は、特に断らない限り「質量%」を意味する。
<Steel material>
Hereinafter, the composition of the steel material used in the hot rolling step will be described. The “%” indication in the composition means “% by mass” unless otherwise specified.

(C:0.0010%以上0.0030%以下)
Cは強度を増加させるとともに、焼付硬化性を発現する元素であり、多く添加することが望ましいが、添加量が多くなると延性、成形性を低下させる元素である。本発明では、所定以上の固溶C量を確保し30MPa以上の焼付硬化量を得るために、0.0010%以上の含有を必要とする。一方で、添加量が多くなると、延性の低下が大きくなる。このため、Cは0.0030%以下に限定した。好ましくは、0.0020%以上、0.0025%以下の範囲である。
(C: 0.0010% or more and 0.0030% or less)
C is an element that increases the strength and develops bake hardenability, and it is desirable to add a large amount of C. However, when the added amount is large, ductility and moldability are reduced. In the present invention, the content of 0.0010% or more is required in order to secure a predetermined amount of solid solution C or more and obtain a bake hardening amount of 30 MPa or more. On the other hand, when the amount of addition increases, the decrease in ductility increases. For this reason, C is limited to 0.0030% or less. Preferably, it is in the range of 0.0020% or more and 0.0025% or less.

(Nb:0.010%以上0.025%以下)
Nbは鋼板の成形性を改善する元素であると共に、焼鈍前にCを析出物(炭化物)として固定するための元素である。このような効果を得るためには0.010%以上の含有を必要とする。一方で、過剰に含有させると、鋼板の成形性が悪化するとともに、Cを過剰に炭化物として固定し、焼鈍過程において炭化物が溶解せずに固溶C量を確保できず、その結果として焼付硬化量が低下するため、0.025%以下に限定した。好ましくは、0.020%以上、0.025%以下の範囲である。
(Nb: 0.010% or more and 0.025% or less)
Nb is an element for improving the formability of the steel sheet and is an element for fixing C as a precipitate (carbide) before annealing. In order to obtain such effects, the content needs to be 0.010% or more. On the other hand, if it is contained excessively, the formability of the steel sheet deteriorates and C is excessively fixed as carbide, so that the carbide does not dissolve in the annealing process and the amount of solid solution C cannot be secured, resulting in baking hardening. Since the amount decreases, the content is limited to 0.025% or less. Preferably, it is in the range of 0.020% or more and 0.025% or less.

(Al:0.050%以上0.080%以下)
Alは製鋼過程おける脱酸剤として作用するとともにNとの親和力が強く、AlNを形成する傾向が強い。鋼板中のNは炭素と結合することで炭窒化物を形成し、焼付硬化量が低下するため、鋼板中のNは少ないほうが良く、鋼板中のNをAlNとして析出させ、焼付硬化量を確保するために、0.050%以上含有を必要とする。一方で、過剰に含有させると、粗大なAlNとなり、鋼板の延性を低下させる要因となるため、0.080%以下に限定した。好ましくは、0.060%以上、0.080%以下の範囲である。
(Al: 0.050% to 0.080%)
Al acts as a deoxidizing agent in the steelmaking process and has a strong affinity with N, and has a strong tendency to form AlN. N in the steel sheet forms carbonitride by bonding with carbon, and the bake hardening amount is reduced. Therefore, it is better that the N in the steel sheet is small, so that N in the steel sheet is precipitated as AlN to secure the bake hardening amount. In order to do so, 0.050% or more is required. On the other hand, if it is contained excessively, it becomes coarse AlN, which causes a reduction in ductility of the steel sheet. Therefore, the content is limited to 0.080% or less. Preferably, it is in the range of 0.060% or more and 0.080% or less.

(Si:0.05%以下)
Siは製鋼過程における脱酸剤として作用するとともに鋼を強化する有効な元素である。このような効果を得るためには、0.005%以上含有することが望ましいが、0.05%を超える含有は成形性とめっき性を低下させる。このため、Siは0.05%以下に限定した。
(Si: 0.05% or less)
Si is an effective element that acts as a deoxidizer in the steelmaking process and strengthens the steel. In order to obtain such an effect, it is desirable to contain 0.005% or more, but if it exceeds 0.05%, the moldability and the plating property are reduced. For this reason, Si was limited to 0.05% or less.

(Mn:1.0%以下)
Mnは製鋼過程おける脱酸剤として作用するとともに鋼を強化する有効な元素である。このような効果を得るためには、0.10%以上含有することが望ましい。また、得られる冷延鋼板の成形性及び焼付硬化性がより優れる(以下、「本発明の効果がより優れる」とも言う)理由から、0.5%超であることが好ましく、0.6%超であることがより好ましい。一方、1.0%を超える過剰の含有は鋼板の強度を必要以上に高めるとともに、脆化させる。このため、Mnは1.0%以下に限定した。
(Mn: 1.0% or less)
Mn is an effective element that acts as a deoxidizer in the steelmaking process and strengthens the steel. In order to obtain such an effect, it is desirable to contain 0.10% or more. Further, from the reason that the obtained cold-rolled steel sheet is more excellent in formability and bake hardenability (hereinafter also referred to as “the effect of the present invention is more excellent”), it is preferably more than 0.5%, and more preferably 0.6%. More preferably, it is more. On the other hand, an excessive content exceeding 1.0% increases the strength of the steel sheet more than necessary and makes the steel sheet brittle. For this reason, Mn was limited to 1.0% or less.

(P:0.10%以下)
Pは鋼を強化する作用があり、強度を増加させるためには、少なくとも0.02%以上含有させることが望ましいが、0.10%を超える含有は、耐二次加工脆性が低下する。このため、Pは0.10%以下に限定した。本発明の効果がより優れる理由から、好ましくは0.05%以下である。
(P: 0.10% or less)
P has the effect of strengthening steel, and it is desirable to contain at least 0.02% or more in order to increase the strength. However, if it exceeds 0.10%, the secondary work brittleness resistance is reduced. Therefore, P is limited to 0.10% or less. From the reason that the effect of the present invention is more excellent, it is preferably 0.05% or less.

(S:0.010%以下)
Sは鋼中では介在物として存在し、成形性を低下させる。このため、Sは極力低減する
ことが望ましいが、Sを低減させるほど、鋼素材の製造コストが大きくなる。そのため、S含有量は0.010%以下とした。なお、好ましくは0.005%以下である。
(S: 0.010% or less)
S is present as inclusions in steel and reduces formability. For this reason, although it is desirable to reduce S as much as possible, as the S is reduced, the manufacturing cost of the steel material increases. Therefore, the S content is set to 0.010% or less. In addition, it is preferably 0.005% or less.

(B:0.0030%以下)
Bは、Nと結合しBNを形成するため、Nを固定するのに有効な元素であるとともに、耐二次加工脆性を改善するのに有効な元素である。このような効果を得るためには、0.0003%以上の含有が望ましい。一方、0.0030%を超える含有は成形性を低下させる。このため、Bは0.0030%以下の範囲に限定した。なお、本発明の効果がより優れる理由から、好ましくは0.0020%以下である。
(B: 0.0030% or less)
B is an element effective for fixing N because it combines with N to form BN, and is also an element effective for improving the resistance to secondary working embrittlement. In order to obtain such an effect, the content is preferably 0.0003% or more. On the other hand, when the content exceeds 0.0030%, the moldability decreases. For this reason, B is limited to the range of 0.0030% or less. In addition, from the reason that the effect of this invention is more excellent, Preferably it is 0.0020% or less.

(N:0.0030%以下)
鋼板中にNが含有していると、炭窒化物を形成し、焼付硬化量が低下するため、Nは極力低減することが望ましい。そのため、N含有量は0.0030%以下とした。Nの含有量が0.0030%以下であるならば、NはAl及びBと結合し、窒化物を形成するため、焼付硬化量を確保することができる。なお、本発明の効果がより優れる理由から、好ましくは、0.0020%以下である。
(N: 0.0030% or less)
If N is contained in the steel sheet, a carbonitride is formed, and the amount of bake hardening is reduced. Therefore, it is desirable to reduce N as much as possible. Therefore, the N content is set to 0.0030% or less. If the content of N is 0.0030% or less, N combines with Al and B to form a nitride, so that the bake hardening amount can be secured. In addition, from the reason that the effect of this invention is more excellent, Preferably it is 0.0020% or less.

(残部)
上記した成分以外の残部は、Fe及び不可避的不純物である。
なお、不可避的不純物としてのOは、本発明の効果がより優れる理由から、0.0050%以下であることが好ましい。
(The rest)
The balance other than the above components is Fe and unavoidable impurities.
In addition, O as an inevitable impurity is preferably 0.0050% or less for the reason that the effect of the present invention is more excellent.

(式(1))
熱間圧延工程で用いられる鋼素材の組成は、下記式(1)を満たす。
(Al/N)+(100×B/N)>100 (1)
以下、式(1)の左辺((Al/N)+(100×B/N))を「式(1)左辺」とも言う。
(Equation (1))
The composition of the steel material used in the hot rolling step satisfies the following expression (1).
(Al / N) + (100 × B / N)> 100 (1)
Hereinafter, the left side of the equation (1) ((Al / N) + (100 × B / N)) is also referred to as “the left side of the equation (1)”.

式(1)左辺は、本発明の効果がより優れる理由から、110以上であることが好ましく、120以上であることがより好ましく、130以上であることがさらに好ましい。上限は特に制限されないが、本発明の効果がより優れる理由から、200以下であることが好ましい。   The left side of the formula (1) is preferably 110 or more, more preferably 120 or more, and still more preferably 130 or more, because the effect of the present invention is more excellent. The upper limit is not particularly limited, but is preferably 200 or less for the reason that the effect of the present invention is more excellent.

なお、例えば、後述する実施例欄の表1中のAで用いられる鋼素材であれば、式(1)左辺は以下のように算出される。
表1中のAで用いらえる鋼素材の式(1)左辺=(0.053/0.0013)+(100×0.0011/0.0013)≒125
上記のとおり表1中のAで用いられる鋼素材の式(1)左辺はおよそ125であり、100超であるため、式1中のAで用いられる鋼素材は式(1)を満たす。
In addition, for example, if it is a steel material used for A in Table 1 in the Examples section described later, the left side of Expression (1) is calculated as follows.
Equation (1) of steel material used for A in Table 1 left side = (0.053 / 0.0013) + (100 × 0.0011 / 0.0013) ≒ 125
As described above, the left side of Formula (1) of the steel material used in A in Table 1 is approximately 125, and is more than 100, so the steel material used in A in Formula 1 satisfies Formula (1).

<好適な態様>
熱間圧延工程の好適な態様としては、例えば、上述した鋼素材を加熱した後、熱間圧延を施し、巻取る工程が挙げられる。
<Preferred embodiment>
A preferred embodiment of the hot rolling step includes, for example, a step of heating the above-mentioned steel material, then performing hot rolling, and winding the steel material.

(加熱温度)
鋼素材の加熱温度は特に制限されないが、本発明の効果がより優れる理由から、1100〜1250℃であることが好ましい。
(Heating temperature)
The heating temperature of the steel material is not particularly limited, but is preferably 1100 to 1250 ° C. because the effect of the present invention is more excellent.

(圧延終了温度)
熱間圧延の圧延終了温度(FDT)は、成形性の観点から900℃以上とすることが好ましい。熱延鋼板の結晶粒粗大化が抑えられ、結果として、得られる冷延鋼板のプレス加工性(深絞り性)がより優れる理由から、圧延終了温度は900〜980℃であることが好ましい。
(Rolling end temperature)
The rolling end temperature (FDT) of the hot rolling is preferably 900 ° C. or higher from the viewpoint of formability. The rolling end temperature is preferably 900 to 980 ° C. because the coarsening of the crystal grains of the hot-rolled steel sheet is suppressed, and as a result, the cold-rolled steel sheet obtained has better press workability (deep drawability).

(巻取り温度)
巻取り温度は、700℃以下とすることが好ましい。巻取り温度が700℃を超えて高温となると材質向上効果が飽和するとともに酸洗性が低下する。なお、AlN及びNbCの析出の促進および上記析出物の粗大化による成形性の改善の観点から500〜700℃であるのが好ましい。
(Winding temperature)
The winding temperature is preferably set to 700 ° C. or lower. When the winding temperature is higher than 700 ° C., the effect of improving the material is saturated and the pickling property is reduced. In addition, it is preferable that it is 500-700 degreeC from a viewpoint of promotion of precipitation of AlN and NbC, and improvement of the formability by coarsening of the said precipitate.

〔冷間圧延工程〕
冷間圧延工程は、熱間圧延工程で得られた熱延鋼板、又は、後述する酸洗処理後の熱延鋼板に冷間圧延を施して冷延鋼板を得る工程である。
(Cold rolling process)
The cold rolling step is a step of performing cold rolling on the hot-rolled steel sheet obtained in the hot rolling step or the hot-rolled steel sheet after the pickling treatment described later to obtain a cold-rolled steel sheet.

<圧下率>
冷間圧延の圧下率は特に制限されないが、本発明の効果がより優れる理由から、50%以上であることが好ましい。
<Reduction ratio>
Although the rolling reduction of the cold rolling is not particularly limited, it is preferably 50% or more because the effect of the present invention is more excellent.

〔焼鈍工程〕
焼鈍工程は、冷間圧延工程で得られた冷延鋼板に焼鈍処理を施して焼鈍処理を施した冷延鋼板を得る工程である。
ここで、焼鈍処理は、850℃以上910℃未満の温度で保持し、その後、5℃/s(秒)以上の平均冷却速度で750℃以下の温度まで冷却する処理である。
なお、焼鈍処理は、例えば連続焼鈍ラインにおいて行われる。また、本発明の方法が後述するめっき工程をさらに備える場合には、焼鈍処理は、例えば連続溶融亜鉛めっきラインにおいて行われる。
[Annealing process]
The annealing step is a step of performing an annealing treatment on the cold-rolled steel sheet obtained in the cold rolling step to obtain a cold-rolled steel sheet that has been subjected to the annealing treatment.
Here, the annealing process is a process of holding at a temperature of 850 ° C. or more and less than 910 ° C., and thereafter cooling to a temperature of 750 ° C. or less at an average cooling rate of 5 ° C./s (second) or more.
The annealing is performed, for example, in a continuous annealing line. When the method of the present invention further includes a plating step described below, the annealing treatment is performed, for example, in a continuous galvanizing line.

<焼鈍温度>
上述のとおり、焼鈍処理の保持温度(焼鈍温度)は、850℃以上910℃未満である。
焼鈍処理においては、析出したNbCを溶解させ、固溶Cとし、30MPa以上の焼付硬化量を確保するために、850℃以上で焼鈍を行う。一方で、焼鈍温度が高温になると、Alを0.050%以上添加することで析出させたAlNが溶解し、その後の冷却過程において固溶した窒素により炭窒化物が形成することで焼付硬化量が低下するリスクが高くなるため、高くとも910℃未満の温度で焼鈍を行う。
なお、焼鈍処理では、本発明の効果がより優れる理由から、上記した焼鈍温度での保持を50〜300s程度とすることが好ましい。
<Annealing temperature>
As described above, the holding temperature (annealing temperature) of the annealing process is 850 ° C or more and less than 910 ° C.
In the annealing treatment, the precipitated NbC is dissolved to form solid solution C, and annealing is performed at 850 ° C. or more in order to secure a bake hardening amount of 30 MPa or more. On the other hand, when the annealing temperature becomes high, the precipitated AlN is dissolved by adding 0.050% or more of Al, and in the subsequent cooling process, carbonitride is formed by nitrogen dissolved in the solid solution, and the bake hardening amount is increased. Annealing is performed at a temperature of at most less than 910 ° C., since the risk of the decrease in the temperature increases.
In the annealing treatment, the above-mentioned holding at the annealing temperature is preferably set to about 50 to 300 s, because the effect of the present invention is more excellent.

<平均冷却速度及び冷却停止温度>
上述のとおり、850℃以上910℃未満の温度で保持し、その後、5℃/s以上の平均冷却速度で750℃以下の温度まで鋼板を冷却する。なお、ここでいう平均冷却速度とは、冷却開始温度から冷却停止温度までの平均をいうものとする。平均冷却速度が5℃/s未満では、焼鈍処理中に固溶させたCがNbCとして再析出し、焼付硬化量が低下するため、5℃/s以上の冷却速度が必要である。冷却速度が大きすぎると、鋼板の延性の低下につながるため、10℃/s以下の冷却速度が好ましい。また、冷却停止温度が750℃を超えて高温となると、その後の徐冷で固溶CがNbCとして再析出し、焼付硬化量が低下するため、750℃以下まで冷却する必要がある。
<Average cooling rate and cooling stop temperature>
As described above, the steel sheet is held at a temperature of 850 ° C. or more and less than 910 ° C., and thereafter, the steel sheet is cooled to a temperature of 750 ° C. or less at an average cooling rate of 5 ° C./s or more. Here, the average cooling rate means an average from a cooling start temperature to a cooling stop temperature. If the average cooling rate is less than 5 ° C./s, C dissolved as a solid solution during the annealing treatment is reprecipitated as NbC, and the bake hardening amount is reduced. Therefore, a cooling rate of 5 ° C./s or more is required. If the cooling rate is too high, the ductility of the steel sheet will decrease, so a cooling rate of 10 ° C./s or less is preferable. Further, when the cooling stop temperature exceeds 750 ° C. and becomes high, solid solution C is re-precipitated as NbC in the subsequent slow cooling, and the bake hardening amount is reduced. Therefore, it is necessary to cool to 750 ° C. or less.

〔その他の工程〕
本発明の方法は上述した工程以外の工程を備えていてもよい。
[Other steps]
The method of the present invention may include steps other than those described above.

<酸洗処理工程>
本発明の方法は、さらに酸洗処理工程を備えるのが好ましく、熱間圧延工程後、冷間圧延工程前に、さらに酸洗処理工程を備えるのがより好ましい。熱間圧延後の熱延鋼板に酸洗処理を施すと、表面のスケール(酸化皮膜)が除去され、冷間圧延で疵が付き難くなり、外観が向上する。
<Pickling process>
The method of the present invention preferably further comprises a pickling treatment step, and more preferably further comprises a pickling treatment step after the hot rolling step and before the cold rolling step. When pickling is performed on the hot-rolled steel sheet after hot rolling, scale (oxide film) on the surface is removed, and scratches are less likely to occur during cold rolling, and the appearance is improved.

[溶融亜鉛めっき鋼板の製造方法]
本発明の溶融亜鉛めっき鋼板の製造方法は、上述した本発明の方法によって得られた焼鈍処理を施した冷延鋼板に溶融亜鉛めっき処理を施して、溶融亜鉛めっき鋼板を得る、溶融亜鉛めっき鋼板の製造方法である。
溶融亜鉛めっき処理の条件はとくに限定されない。常用の溶融亜鉛めっき処理条件がいずれも適用できる。
[Method of manufacturing hot-dip galvanized steel sheet]
The method for producing a hot-dip galvanized steel sheet according to the present invention comprises subjecting the cold-rolled steel sheet subjected to the annealing treatment obtained by the above-described method of the present invention to hot-dip galvanizing treatment to obtain a hot-dip galvanized steel sheet. Is a manufacturing method.
The conditions for the hot-dip galvanizing treatment are not particularly limited. Any of the usual hot-dip galvanizing treatment conditions can be applied.

[合金化溶融亜鉛めっき鋼板の製造方法]
本発明の合金化溶融亜鉛めっき鋼板の製造方法は、上述した溶融亜鉛めっき鋼板の製造方法によって得られた溶融亜鉛めっき鋼板に合金化処理を施して、合金化溶融亜鉛めっき鋼板を得る、合金化溶融亜鉛めっき鋼板の製造方法である。
[Manufacturing method of galvannealed steel sheet]
The method for producing an alloyed hot-dip galvanized steel sheet according to the present invention includes subjecting a hot-dip galvanized steel sheet obtained by the above-described hot-dip galvanized steel sheet manufacturing method to an alloying treatment to obtain an alloyed hot-dip galvanized steel sheet. This is a method for producing a hot-dip galvanized steel sheet.

以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.

〔冷延鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板の製造〕
下記のとおり、冷延鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板を製造した。
[Manufacture of cold-rolled steel sheets, hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets]
As described below, cold-rolled steel sheets, hot-dip galvanized steel sheets, and alloyed hot-dip galvanized steel sheets were manufactured.

<熱間圧延工程>
表1に示す組成(質量%)のスラブ(鋼素材)を加熱温度:1200℃で加熱した後、熱間圧延を施し、板厚3.2mmの熱延鋼板を得た。なお、熱間圧延の圧延終了温度は950℃、巻取温度は680℃とし、巻取り後、室温まで冷却した。
<Hot rolling process>
A slab (steel material) having a composition (mass%) shown in Table 1 was heated at a heating temperature of 1200 ° C., and then subjected to hot rolling to obtain a hot-rolled steel sheet having a thickness of 3.2 mm. In addition, the rolling end temperature of the hot rolling was 950 ° C., and the winding temperature was 680 ° C. After winding, the temperature was cooled to room temperature.

<酸洗処理工程>
次いで、得られた熱延鋼板に酸洗処理を施した。
<Pickling process>
Next, the obtained hot-rolled steel sheet was subjected to an acid washing treatment.

<冷間圧延工程>
次いで、酸洗処理後の熱延鋼板に圧下率75%の冷間圧延を施し、板厚0.8mmの冷延鋼板を得た。
<Cold rolling process>
Next, the hot-rolled steel sheet after the pickling treatment was subjected to cold rolling with a reduction of 75% to obtain a cold-rolled steel sheet having a thickness of 0.8 mm.

<焼鈍工程>
次いで、得られた冷延鋼板に連続焼鈍ラインを用いて表2に示す条件で焼鈍処理を施した。
<Annealing process>
Next, the obtained cold-rolled steel sheet was subjected to an annealing treatment under the conditions shown in Table 2 using a continuous annealing line.

<めっき工程>
次いで、表2の「めっき処理」の欄に「有り」と記載している鋼板については、連続溶融亜鉛めっきラインを用いて溶融亜鉛めっき処理を施し、溶融亜鉛めっき鋼板を得た。
<Plating process>
Next, the steel sheet described as “Yes” in the column of “Plating treatment” in Table 2 was subjected to a hot-dip galvanizing treatment using a continuous hot-dip galvanizing line to obtain a hot-dip galvanized steel sheet.

<合金化工程>
さらに、表2の「合金化処理」の欄に「有り」と記載している鋼板については、溶融亜鉛めっき層に合金化処理を行い、合金化溶融亜鉛めっき鋼板を得た。
<Alloying process>
Further, for the steel sheet described as “Yes” in the column of “Alloying treatment” in Table 2, alloying treatment was performed on the hot-dip galvanized layer to obtain an alloyed hot-dip galvanized steel sheet.

〔評価〕
得られた冷延鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板について、以下の評価を行った。
[Evaluation]
The following evaluation was performed about the obtained cold rolled steel sheet, hot-dip galvanized steel sheet, and alloyed hot-dip galvanized steel sheet.

<引張特性>
得られた冷延鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板から、長軸を圧延方向に直交する方向としたJIS5号引張試験片を採取し、JIS Z2241の規定に準拠して引張試験を行い、引張特性(降伏強さ、引張強さ、伸び)を評価した。
結果を表3に示す。実用上、伸びは40%以上であることが好ましい。
<Tensile properties>
From the obtained cold-rolled steel sheet, hot-dip galvanized steel sheet, and alloyed hot-dip galvanized steel sheet, a JIS No. 5 tensile test piece having a long axis perpendicular to the rolling direction was sampled, and a tensile test was performed in accordance with JIS Z2241. And the tensile properties (yield strength, tensile strength, elongation) were evaluated.
Table 3 shows the results. For practical use, the elongation is preferably 40% or more.

<成形性>
得られた冷延鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板からJIS 5号引張試験片を採取し、r値を測定した。具体的には、試験片に引張試験で15%予歪を与えた後、3点法によりr値を測定し、圧延方向、圧延方向に対して45°の方向、圧延方向に対して90°の方向のr値を、それぞれをrL、rD及びrCとした。そして、平均値(=(rL+2rD+rC)/4)を求めた。
結果を表3に示す。r値が大きいほど成形性に優れることを意味する。実用上、1.50以上であることが好ましい。
<Moldability>
JIS No. 5 tensile test pieces were collected from the obtained cold-rolled steel sheet, hot-dip galvanized steel sheet, and alloyed hot-dip galvanized steel sheet, and the r value was measured. Specifically, after applying 15% pre-strain to the test piece by a tensile test, the r value was measured by the three-point method, and the rolling direction, the direction at 45 ° to the rolling direction, and the direction at 90 ° to the rolling direction. The r values in the direction of were designated as rL, rD and rC, respectively. Then, an average value (= (rL + 2rD + rC) / 4) was obtained.
Table 3 shows the results. The larger the r value, the better the moldability. In practice, it is preferably 1.50 or more.

<焼付硬化性>
得られた冷延鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板から、引張特性の評価と同様にJIS 5号引張試験片を採取し、JIS G3135の規定に準拠して、2%の引張予歪(塑性歪)を与える予変形処理を施し、次いで、170℃×20分の熱処理を施し、熱処理前後の変形応力の増加量(BH量)(焼付硬化量)(=(熱処理後の上降伏点(MPa))−(熱処理前の予変形応力(MPa)))を求めた。
結果を表3に示す。BH量が30MPa以上であれば焼付硬化性に優れると言える。
<Bake hardenability>
From the obtained cold-rolled steel sheet, hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet, a JIS No. 5 tensile test piece was sampled in the same manner as in the evaluation of the tensile properties, and a 2% tensile test was conducted in accordance with the provisions of JIS G3135. A pre-deformation treatment for giving a pre-strain (plastic strain) is performed, and then a heat treatment is performed at 170 ° C. for 20 minutes to increase the deformation stress before and after the heat treatment (BH amount) (bake hardening amount) (= Yield point (MPa))-(pre-deformation stress before heat treatment (MPa)) was determined.
Table 3 shows the results. If the BH amount is 30 MPa or more, it can be said that bake hardenability is excellent.

表1中、「式(1)」の欄は上述した式(1)左辺((Al/N)+(100×B/N))の値を表す。すなわち、「式(1)」の欄の値が100超であれば上述した式(1)を満たすことを意味し、「式(1)」の欄の値が100以下であれば上述した式(1)を満たさないことを意味する。
また、表1〜3中、下線部は、本発明の範囲外を示す。
In Table 1, the column of “Equation (1)” represents the value of the left side of the above-described Equation (1) ((Al / N) + (100 × B / N)). That is, if the value of the column of “Equation (1)” exceeds 100, it means that the above-described expression (1) is satisfied. If the value of the column of “Equation (1)” is 100 or less, the above-described expression is satisfied. It means that (1) is not satisfied.
In Tables 1 to 3, the underlined portions indicate out of the scope of the present invention.

表1〜3から分かるように、特定の組成を有する鋼素材に熱間圧延及び冷間圧延を施し、さらに特定の条件の焼鈍処理を施すことで得られたA〜Fの鋼板は、30MP以上の優れた焼付硬化量、また伸び40.0%以上、r値1.50以上の優れた成形性を示した。なかでも、式(1)左辺が130超であるC及びFは、より優れた焼付硬化性を示した。   As can be seen from Tables 1 to 3, the steel sheets A to F obtained by subjecting a steel material having a specific composition to hot rolling and cold rolling and further performing an annealing treatment under specific conditions are 30MP or more. , And excellent moldability with an elongation of 40.0% or more and an r value of 1.50 or more. Above all, C and F in which the left side of the formula (1) is more than 130 showed more excellent bake hardenability.

一方、鋼素材が特定の組成を有さないG〜J及びL〜Mの鋼板、並びに、特定の組成を有する鋼素材を用いるが焼鈍条件が特定の条件ではないKの鋼板は、成形性及び焼付硬化性の少なくとも一方が不十分であった。   On the other hand, steel sheets of G to J and LM in which the steel material does not have a specific composition, and a steel sheet of K in which a steel material having a specific composition is used but the annealing conditions are not the specific conditions, At least one of the bake hardenability was insufficient.

Claims (3)

鋼素材に熱間圧延を施して熱延鋼板を得る、熱間圧延工程と、
前記熱延鋼板に冷間圧延を施して冷延鋼板を得る、冷間圧延工程と、
前記冷延鋼板に焼鈍処理を施して焼鈍処理を施した冷延鋼板を得る、焼鈍工程と、
を備える冷延鋼板の製造方法であって、
前記鋼素材が、質量%で、
C:0.0010%以上0.0030%以下
Nb:0.010%以上0.025%以下
Al:0.050%以上0.080%以下
Si:0.05%以下
Mn:1.0%以下
P:0.10%以下
S:0.010%以下
B:0.0030%以下
N:0.0030%以下
を含み、残部Fe及び不可避的不純物からなり、下記式(1)を満たす組成を有する鋼素材であり、
(Al/N)+(100×B/N)>100 (1)
前記焼鈍処理が、850℃以上910℃未満の温度で保持し、その後、5℃/s以上の平均冷却速度で750℃以下の温度まで冷却する処理である、冷延鋼板の製造方法。
Hot-rolling a steel material to obtain a hot-rolled steel sheet by hot rolling,
Cold rolling the hot-rolled steel sheet to obtain a cold-rolled steel sheet, a cold rolling step,
Performing an annealing treatment on the cold-rolled steel sheet to obtain a cold-rolled steel sheet subjected to the annealing treatment, an annealing step,
A method for producing a cold-rolled steel sheet comprising:
The steel material is expressed in mass%,
C: 0.0010% or more and 0.0030% or less Nb: 0.010% or more and 0.025% or less Al: 0.050% or more and 0.080% or less Si: 0.05% or less Mn: 1.0% or less P: 0.10% or less S: 0.010% or less B: 0.0030% or less N: 0.0030% or less, with the balance being Fe and unavoidable impurities, having a composition satisfying the following formula (1) Steel material,
(Al / N) + (100 × B / N)> 100 (1)
A method for producing a cold-rolled steel sheet, wherein the annealing treatment is a treatment of holding at a temperature of 850 ° C. or more and less than 910 ° C., and thereafter cooling to a temperature of 750 ° C. or less at an average cooling rate of 5 ° C./s or more.
請求項1に記載の製造方法によって得られた焼鈍処理後の冷延鋼板に溶融亜鉛めっき処理を施して、溶融亜鉛めっき鋼板を得る、溶融亜鉛めっき鋼板の製造方法。   A method for manufacturing a hot-dip galvanized steel sheet, wherein a hot-dip galvanized steel sheet is obtained by performing a hot-dip galvanizing treatment on the cold-rolled steel sheet after the annealing treatment obtained by the manufacturing method according to claim 1. 請求項2に記載の製造方法によって得られた溶融亜鉛めっき鋼板に合金化処理を施して、合金化溶融亜鉛めっき鋼板を得る、合金化溶融亜鉛めっき鋼板の製造方法。   A method for manufacturing an alloyed hot-dip galvanized steel sheet, comprising subjecting a hot-dip galvanized steel sheet obtained by the manufacturing method according to claim 2 to alloying treatment to obtain an alloyed hot-dip galvanized steel sheet.
JP2018121564A 2018-06-27 2018-06-27 Manufacturing method of cold-rolled steel sheet, hot-dip galvanized steel sheet and galvanized steel sheet Pending JP2020002416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018121564A JP2020002416A (en) 2018-06-27 2018-06-27 Manufacturing method of cold-rolled steel sheet, hot-dip galvanized steel sheet and galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018121564A JP2020002416A (en) 2018-06-27 2018-06-27 Manufacturing method of cold-rolled steel sheet, hot-dip galvanized steel sheet and galvanized steel sheet

Publications (1)

Publication Number Publication Date
JP2020002416A true JP2020002416A (en) 2020-01-09

Family

ID=69098805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018121564A Pending JP2020002416A (en) 2018-06-27 2018-06-27 Manufacturing method of cold-rolled steel sheet, hot-dip galvanized steel sheet and galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP2020002416A (en)

Similar Documents

Publication Publication Date Title
CN108474096B (en) Aluminum-plated iron alloy steel sheet for hot press forming, hot press formed member using same, and method for producing same
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
JP5454746B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP4470701B2 (en) High-strength thin steel sheet with excellent workability and surface properties and method for producing the same
JP4860784B2 (en) High strength steel plate with excellent formability and method for producing the same
JP4214006B2 (en) High strength steel sheet with excellent formability and method for producing the same
JP2005528519A5 (en)
JP4528184B2 (en) Method for producing alloyed hot-dip galvanized high-strength steel sheet with good workability
JP5305149B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
JP5953695B2 (en) High-strength hot-dip galvanized steel sheet with excellent plating adhesion and formability and its manufacturing method
JP5397141B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
US20060207692A1 (en) Ultrahigh strength hot-rolled steel and method of producing bands
JP2003313636A (en) Hot-dipped steel sheet with high ductility and high strength, and manufacturing method therefor
JPH06145891A (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JP5310920B2 (en) High strength cold-rolled steel sheet with excellent aging resistance and seizure hardening
JP2007270167A (en) Method for producing galvanized steel sheet excellent in baking hardenability
JP3908964B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
JP4622187B2 (en) Cold-rolled steel sheet, cold-rolled steel sheet having excellent strain age hardening characteristics and no room temperature aging deterioration, and methods for producing them
WO2021020439A1 (en) High-strength steel sheet, high-strength member, and methods respectively for producing these products
JP3719025B2 (en) Cold-rolled steel sheet for deep drawing with excellent fatigue resistance
JP2003003216A (en) Method for producing high strength galvanized steel sheet having excellent deep drawability and secondary working brittleness resistance
JP5672736B2 (en) High-strength thin steel sheet with excellent material stability and manufacturing method thereof
JPH06306531A (en) Cold rolled steel sheet for machining excellent in baking hardenability and surface treated steel sheet
JP2020002416A (en) Manufacturing method of cold-rolled steel sheet, hot-dip galvanized steel sheet and galvanized steel sheet