JP2020001995A - Heat-fusing method for multiple laminated glass having color and pattern incorporated - Google Patents

Heat-fusing method for multiple laminated glass having color and pattern incorporated Download PDF

Info

Publication number
JP2020001995A
JP2020001995A JP2018135379A JP2018135379A JP2020001995A JP 2020001995 A JP2020001995 A JP 2020001995A JP 2018135379 A JP2018135379 A JP 2018135379A JP 2018135379 A JP2018135379 A JP 2018135379A JP 2020001995 A JP2020001995 A JP 2020001995A
Authority
JP
Japan
Prior art keywords
temperature
glass
laminated
heat
laminated glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018135379A
Other languages
Japanese (ja)
Inventor
るり 巽
Ruri Tatsumi
るり 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsumi Ruri
Original Assignee
Tatsumi Ruri
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsumi Ruri filed Critical Tatsumi Ruri
Priority to JP2018135379A priority Critical patent/JP2020001995A/en
Publication of JP2020001995A publication Critical patent/JP2020001995A/en
Pending legal-status Critical Current

Links

Landscapes

  • Table Devices Or Equipment (AREA)

Abstract

To provide a method of laminating, heat-fusing, and uniting a color glass and a glass using a heat-resistant raw material in a laminated inner layer.SOLUTION: With respect to a temperature difference between an upper and a lower part of laminated glass being fused, a standby time at three temperatures, i.e. a fusion start temperature, a shape maintenance temperature, and an original gloss maintenance temperature of glass in cooling which differ in the quantity and the number of sheets of the glass in use is varied with the thickness of lamination so as to remove strain which may be a generation source for cracking etc., due to the temperature difference, thereby obtaining crack-free uniform glass. The three variation contact temperatures are determined by checking a process of temperature raising and cooling of one master glass in use which is about 3 millimeters. Further, operation at a point of time of temperature leveling is changed to obtain change due to strain of an intermediate layer.SELECTED DRAWING: Figure 1

Description

本発明は、複数の板ガラスを積層して加熱融着するとき、固体と液体の間の変化の過程での加熱又は冷却の温度と所用時間を積層するガラスの枚数と最終的に得ようとする製品の形態により変えてゆくのであるが、この時のポイントとなる温度の決定は、あらかじめ1枚の親ガラスをサンプルとして溶解するまでの温度過程を観測し、固体から液体へ変化するポイントの温度を把握して、そのポイントとなる温度においてその温度が積層全体へ均一的に広がるのを図って積層状態を保つ程度に融着度合いを調整することにより、上下の内層にモザイク状や組み合わせ状にカットした色ガラス又は耐熱物質による図柄を加えても、クラックや歪みを生じることなく、従来は絵付けやプリント、吹きガラスによる混ぜ込みでしか表現できなかったガラスへの加工と鉛や錫等の金属をサッシとして異質・異色ガラスを接合していたモザイクガラスの製造が、ステンドグラスのカット技術を応用して図柄を置いて加熱してゆく上述の技法で、積層の上下左右に施せるという方法により、鉛などの有害物質を使うことなく、独創性、芸術性を持った生活用具を製作するものである。  The present invention seeks to finally obtain the number of glasses to be laminated and the heating or cooling temperature and required time in the process of change between solid and liquid when laminating and fusing a plurality of glass sheets. It depends on the form of the product. At this point, the point temperature is determined by observing the temperature process before dissolving one parent glass as a sample and measuring the temperature at the point where it changes from solid to liquid. By adjusting the degree of fusion to such an extent that the temperature will be spread evenly over the entire stack and maintain the stacked state at that point temperature, the upper and lower inner layers will be in a mosaic or combination Conventionally, it was possible to express only by painting, printing, or mixing with blown glass without adding cracks or distortion even when adding a pattern made of cut colored glass or heat resistant material The processing of lath and the production of mosaic glass, which uses a metal such as lead or tin as a sash, and joins dissimilar / unique glass, use the above-mentioned technique of applying a stained glass cutting technology and placing a pattern and heating it. By using a method that can be applied to the top, bottom, left and right of the laminate, it is possible to produce a living tool with originality and artistic art without using harmful substances such as lead.

固体である板状ガラスを積層して加熱により一体化させ目指す形状を整えるという、固体としての形状を保ちながら一部分液状化させ融着させることにより作り出す形状の確保であるから、完全に液状化させたガラスを吹き上げて整形した作品を固体状に冷却してゆくという、液状ガラスから固体状ガラスへの単純な温度変化による施工過程とは異なり、〔0001〕に示したサンプリングによるポイント温度データに基づく温度の上昇及び徐冷双方の過程においてガラスの層状となっている固体状の形態を崩さずに液体状への変化の接点まで積層ガラス全体を導いて融着させ、異質ガラス間の融着では通常発生する膨張率の差によるクラックや破断を起こす寸前の融着環境で安定化させてゆくことが要諦である。
このとき、上昇温度過程の均一な温度変化の確保に要する最低時間と最終的に作り出そうとする形状を保つ加熱温度の上限は使用される素材ガラスの質や積層枚数により微妙に異なってくるが、温度上昇と限度まで上昇した温度も均一化に要する時間は積層する枚数による厚さ10ミリメートルを基準として、この厚み以下か超えるかの二通りに分類して特定してゆく方法を発見した。
ガラス質の相違による融着温度を〔0001〕に示したサンプリングで前もって把握して、積層ガラス上部と下部の加熱時の温度差を均一にしながら融着まで導いてゆくことと、そのあとガラス本来の透明感を失わない徐冷時の均一的な温度変化及び徐冷終了となる限度の温度までの温度設定と誘導が必要となる。温度上昇及び下降時の温度変化の緩急は、積層するガラス内部の均一的な温度変化が必要であり、それは積層枚数及び全体の厚みにより異なってくる。素材ガラスの質により異なる融着開始温度や個体形状維持温度、透明維持温度の3点の変化接点温度における作品全体への温度均一化措置をそれぞれの接点温度をが当時間維持することにより施さなければ作品が破損するので、接点となる変化温度における温度均一化の措置を積層の厚さにより変化させて行う。
この各種素材の3点の変化接点温度は、〔0001〕に概要を示した、3ミリメートル程度の素材親ガラス1枚をサンプルとして簡易の焼成釜で調べれば、ガラスの質によりそれぞれ若干の相違はあるものの、融着開始温度は摂氏700度前後、個体形状維持温度は摂氏800度前後、透明維持温度は摂氏500度前後が目安であり、さらに徐冷終了の平温最高温度は摂氏350度前後であることを発見した。
Laminating the solid plate-shaped glass and integrating it by heating to adjust the desired shape is to secure the shape created by partially liquefying and fusing while maintaining the shape as a solid. It is based on the sampling point temperature data shown in [0001], which is different from the simple process of changing temperature from liquid glass to solid glass, in which the shaped work is blown up and the shaped work is cooled down to a solid state. In the process of both temperature rise and slow cooling, the entire laminated glass is guided and fused to the point of change to the liquid state without breaking the solid form of the glass layer, and in the fusion between different glasses It is essential to stabilize in a fusion environment on the verge of causing cracks or breakage due to the difference in expansion coefficient that normally occurs.
At this time, the minimum time required to secure a uniform temperature change in the rising temperature process and the upper limit of the heating temperature that keeps the shape to be finally created slightly differ depending on the quality of the material glass used and the number of laminations, The time required for the temperature rise and the temperature raised to the limit to be equalized was determined based on a thickness of 10 mm according to the number of layers to be stacked and classified into two types, that is, less than or greater than the thickness.
The fusion temperature due to the difference in vitreous quality is grasped in advance by sampling shown in [0001], and the temperature difference between the upper and lower parts of the laminated glass during heating is led to fusion while making it uniform. It is necessary to set a uniform temperature change at the time of slow cooling without losing the transparent feeling and to set and guide the temperature up to the limit temperature at which the slow cooling is completed. The rise and fall of the temperature when the temperature rises and falls requires a uniform temperature change inside the glass to be laminated, which depends on the number of laminated layers and the total thickness. Three points of change of fusion start temperature, solid shape maintenance temperature, and transparency maintenance temperature that differ depending on the quality of the material glass. Measures must be taken to maintain uniform temperature throughout the work at the contact temperature, by maintaining the respective contact temperatures for the same time. If the work breaks down, measures to equalize the temperature at the changing temperature that will be the contact point are performed by changing the thickness of the laminate.
The three-point changing contact temperatures of these various materials are as shown in [0001]. When a single piece of a parent glass of about 3 millimeters is used as a sample and examined with a simple baking oven, there are slight differences depending on the quality of the glass. However, the fusing start temperature is around 700 degrees Celsius, the solid shape maintaining temperature is around 800 degrees Celsius, the transparency maintaining temperature is around 500 degrees Celsius, and the maximum normal temperature at the end of slow cooling is around 350 degrees Celsius. It was discovered that.

皿や椀などの食器や電球を囲む彩色ドームのように繊細な曲面や凹みなどの変化を必要とする表面を積層ガラスで表現する際の板ガラスの枚数は、3ミリ厚のもので3枚程度、10ミリメートル程度の厚さを限度とすることにより積み重なる層状の形態が融着により一体化した形の良いものが製作できることが判明した。
まず、作品に色ガラスや耐熱ペイントによる任意の図柄を積層ガラス上下の好ましい位置に配置し独創となるデザイン性を作品に施す。この10ミリメートル以下の作品の加熱融着方法は、摂氏700度の融着開始接点温度を目途に温度を上昇させ、そこでこの環境に30分程度置き全体が温度に馴染むのを待ってからガラスが融けだす摂氏800度前後までを目途に温度を上昇させ、この環境に10分程度置き全体が馴染むのを待ってから徐冷に入る。透明維持温度の摂氏500度前後までは急速徐冷を行い、この環境に20分ほどおいて全体が馴染むのを待ってから、徐冷終了の摂氏350度まで緩速徐冷を行い、以降は焼成の終了となる。
この工程の温度変化と時間の関係を、次のグラフに示す。
When expressing a surface that requires changes such as a delicate curved surface or dent such as a colored dome surrounding dishes or dishes such as plates and bowls with a laminated glass, the number of plate glasses that are 3 mm thick is about 3 It was found that by limiting the thickness to about 10 millimeters, a good product in which the stacked layered forms were integrated by fusion could be manufactured.
First, an arbitrary design made of colored glass or heat-resistant paint is placed on the top and bottom of the laminated glass at a desirable position to give the work its original design. The method of heat fusing of works of 10 mm or less raises the temperature at the fusion start junction temperature of 700 degrees Celsius, where it is placed in this environment for about 30 minutes, and the glass is allowed to wait for the whole to adjust to the temperature. The temperature is raised up to about 800 ° C. to start melting, and it is left in this environment for about 10 minutes, and then the cooling is started after the whole is adapted. Perform rapid slow cooling until the transparent maintenance temperature is about 500 degrees Celsius, wait about 20 minutes for the whole to adapt to this environment, then slowly slow cooling to 350 degrees Celsius at the end of slow cooling. The firing is completed.
The relationship between the temperature change in this step and time is shown in the following graph.

10ミリメートル程度を超える厚さの積層ガラス焼成は、製品の厚みが徐々に増加してゆくため、作品内部までの均一な温度上昇を〔0003〕以上にゆっくり取りながら、焼成むらの発生を防ぎ一体化した製品を作ることが必要となる。故に、厚みが増すごとに各段階に2倍、3倍の時間を掛けた加熱焼成が必要で、融着させようとするガラスの枚数に応じた積層内の均一な温度上昇を確保してゆくことにより、表面と内部の温度差によるクラックなどを防げることとなる。この場合、10ミリメートル以下における温度上昇時の最終最高温度を加えると積み重なるガラスの融着が進み過ぎて全体形状を保てなくなるので、摂氏100度程度下の摂氏700度前後を最高温度とし、その分全体に積層状況のはっきりした作品となる。
まず、作品に色ガラスや耐熱ペイントによる任意の図柄を積層ガラス上下の好ましい位置に配置し独創となるデザイン性を作品に施す。
10ミリメートルを超える作品の加熱融着方法は、ガラス全体を熱にゆっくり慣らすために摂氏200度前後ずつの温度上昇毎に30分ほどの温度環境均一化を図りながら摂氏700度前後の融着開始接点温度を目途に上昇させ、この環境に小一時間置き全体が馴染むのを待ってから作品の周囲の積層部分のみを融着させて全体の形状を維持しつつ一体化させ、徐冷の段階に入る。徐冷は、作品の厚さを考慮して、透明維持温度の摂氏500度前後までを2段階に分け、急速徐冷で摂氏600度前後で約15分間の環境維持を施し、更に急速徐冷で摂氏500度前後に達した状態で約30分間の環境維持を施して、徐冷終了の摂氏350度まで緩速徐冷を行い、以降は焼成の終了となる。
この方法により得られる作品は、厚さが増すほど強度が上がるので、建築資材やインテリアとして、屋内外を問わないものとなる。
この工程の温度変化と時間の関係を、次のグラフに示す。
When firing laminated glass with a thickness of more than about 10 mm, the thickness of the product gradually increases, so that uniform temperature rise to the inside of the work is taken slowly [0003] or more while preventing uneven firing and preventing the occurrence of uneven firing. It is necessary to make a product that has been transformed. Therefore, each time the thickness increases, it is necessary to heat and bake twice or three times at each stage, and a uniform temperature rise in the laminate according to the number of glasses to be fused is ensured. This can prevent cracks and the like due to the temperature difference between the surface and the inside. In this case, if the final maximum temperature at the time of a temperature rise of 10 mm or less is added, the fusion of the stacked glasses will proceed too much to maintain the entire shape, so that the maximum temperature is set to about 700 degrees Celsius below about 100 degrees Celsius. It becomes a work with a clear stacking situation throughout the minute.
First, an arbitrary design made of colored glass or heat-resistant paint is placed on the top and bottom of the laminated glass at a desirable position to give the work its original design.
The method of heat fusion of works exceeding 10 mm is started at around 700 degrees Celsius while trying to homogenize the temperature environment for about 30 minutes at every temperature rise of around 200 degrees Celsius in order to slowly familiarize the entire glass with heat. Raise the contact temperature, leave it for one hour in this environment, wait for the whole to adjust, then fuse only the laminated parts around the work to integrate it while maintaining the whole shape, and gradually cool down to go into. In the slow cooling process, considering the thickness of the work, the transparency maintenance temperature is divided into two stages up to around 500 degrees Celsius, and the environment is maintained at around 600 degrees Celsius for about 15 minutes by rapid slow cooling. After the temperature reaches about 500 degrees Celsius, the environment is maintained for about 30 minutes, and slow cooling is performed to 350 degrees Celsius at the end of the slow cooling, and thereafter the firing is completed.
Since the work obtained by this method increases in strength as the thickness increases, it can be used indoors and outdoors as a building material or interior.
The relationship between the temperature change in this step and time is shown in the following graph.

積層ガラス表面と内部の温度差を逆に利用し、表面のみを融着させ、内部にクラックを発生させてひび割れ模様を発生させることが可能で、これは陶芸作品にみられる陶器表面に施す釉のガラスにわざとひびを発生させて模様としているものを、積層ガラス内部に発生させる要領となる。この場合は焼成段階における温度均一化の時間を短くして膨張率の差を用いてひび割れを発生せる方法と、積層させるガラス層の材質を変えることにより材質による異なる膨張率の差を利用して作為的にひび割れを発生させる方法がある。
Using the reverse of the temperature difference between the surface of the laminated glass and the inside, it is possible to fuse only the surface, generate cracks inside and generate a crack pattern, this is a glaze applied to the ceramic surface seen in pottery works This is a method of generating a pattern in which a crack is intentionally generated in the above-mentioned glass inside the laminated glass. In this case, the method of generating cracks using the difference in expansion coefficient by shortening the time of temperature equalization in the firing step and the difference in expansion coefficient depending on the material by changing the material of the glass layer to be laminated are used. There is a method of artificially generating cracks.

特開2017−145190(P2017−145190A)「積層ガラスパネルの製造」JP-A-2017-145190 (P2017-145190A) "Production of laminated glass panel" 特開2017−52697(P2017−52697A)「積層ガラスの製造方法、積層ガラス及び窓ガラス」JP-A-2017-52697 (P2017-52697A) "Method for producing laminated glass, laminated glass and window glass"

従来、日常に使用するガラス食器にはステンドグラスのモザイク作品は採用されていない。それはモザイク状にガラスを接着するときに用いられる鉛等の金属成分が食器に向かないからであった。
また、ガラスブロックにはステンドグラスのモザイク作品が採用されていないのは、ステンドグラスが高価格なものであることによる。
Heretofore, stained glass mosaic works have not been adopted for glassware used daily. This is because metal components such as lead used when bonding glass in a mosaic shape are not suitable for tableware.
The reason why the stained glass mosaic work is not used for the glass block is that stained glass is expensive.

本発明は、このような理由から従来のガラス製品に使用されなかったステンドグラス作品を生活用品として取り入れ、生活者本人が関与した独自の芸術作品を低価格な積層ガラスの中にステンドグラスのモザイク作品を封入して、食器やテーブル、住居内採光壁面等の日用品又は居住空間に使ってゆくことを目的とする。  The present invention incorporates stained glass works, which were not used in conventional glassware for these reasons, as daily necessities, and created a unique artistic work involving the consumers themselves in a low-cost laminated glass mosaic of stained glass. The purpose of this work is to enclose works and use them in daily necessities such as tableware, tables, and lighting walls in houses or in living spaces.

本発明は、誰もが日常必ず使用する食器やテーブル、誰もが日常利用している採光窓やガラスブロックなど生活に必要不可欠なアイテムの中で、素材にガラスを使用するものを積層ガラスで作成することにより、独自の芸術作品を製作できることが最も主要な特徴であり、大量生産でなくとも1枚からの製作を低コストで作り出せる。
このとき、例えば食器類は薄く、壁面に組み込む採光ガラスブロックは分厚い、といった差があり積層ガラスの厚さによる製法の違いはこれまで明らかにされてこなかったが、積層する厚みにより調整する温度操作の要領を判明したことにより、簡便に積層内に作品を組み込むことができた。
The present invention is a tableware and table that everyone uses every day, a daylighting window and a glass block that everyone uses every day. The most important feature is that the creation of original works of art can be made by creating, and the production from one piece can be produced at low cost without mass production.
At this time, for example, tableware is thin, and the daylighting glass block to be incorporated into the wall is thick, and the difference in the manufacturing method due to the thickness of the laminated glass has not been clarified until now. As a result, the work could be easily incorporated into the laminate.

本発明の彩色及び図柄を組み込んだ多重積層ガラスは、日常生活において常に使用し目につくため、生活者本人が関与した独自の芸術作品を生活に取り込めるというお気に入りの自作品を、直接あるいは近傍で常に使用できるので、日常生活に潤いが生まれてくる。
作品が、例えば孫の作った記念的なものであったり、耐熱の記念品を封じ込めたものであったりと無限のバリエーションを日常に楽しめることとなる。
The multi-layer laminated glass incorporating the coloring and pattern of the present invention is always used and visible in daily life, so you can directly or near your favorite self-made work that allows you to take in your own unique art work in which you are involved. Because it can always be used, moisturizing is born in daily life.
You can enjoy an endless variety of works on a daily basis, for example, the work is a commemorative work made by a grandchild, or a work containing a heat-resistant souvenir.

10ミリメートル程度以下の積層ガラスで作成した例である。(実施例1)  This is an example in which it is made of a laminated glass of about 10 mm or less. (Example 1) 10ミリメートル程度を超える積層ガラスで作成した例である。(実施例2)  This is an example in which a laminated glass having a size exceeding about 10 mm is used. (Example 2)

図1は、本発明中、10ミリメートル程度以下の薄い積層ガラスで繊細な形状を形成したもので、1、2は皿を、3は椀に繊細な図柄を積層中に施したもの、4は皿の作品写真である。  FIG. 1 shows a delicate shape formed of a thin laminated glass of about 10 mm or less in the present invention, wherein 1 and 2 are dishes, 3 is a bowl with a delicate pattern applied during lamination, and 4 is It is a work photograph of the plate.

図2は、本発明中、10ミリメートル程度を超える積層ガラスで作成したもので、1は建築資材のガラスブロックに、2は看板や表札に繊細な図柄を積層中に施したもの、3はガラスブロック作品の写真である。  FIG. 2 shows a laminated glass having a thickness of about 10 mm or more in the present invention, wherein 1 is a glass block of building material, 2 is a delicate design applied to a signboard or a nameplate during lamination, and 3 is glass. It is a photograph of a block work.

食器や住宅など人々が身の回りで常に使用し存在するたくさんのアイテムを、使用者独自の感性による芸術性を持ったものに変化させることにより、画一的、均一的な生産物でなく、個々に独自性を持った建材や家庭用品で居住空間を創造できるツールに適用できる。  By changing many items, such as tableware and houses, that are always used and present around the user into items with artistry based on the user's unique sensibility, it is not a uniform and uniform product, but individual products It can be applied to tools that can create a living space with unique building materials and household goods.

Claims (1)

複数の板ガラスを積層して加熱融着するとき、あらかじめ1枚の親ガラスをサンプルとして溶解するまでの過程の温度を観測することにより、積層するガラスの質と枚数により異なってくる上限温度や上昇過程を特定したうえで、焼成温度と焼成時間の変化を、積層枚数と出来上がりの状態を想定した上で加減した前述のサンプル観測温度ごとに加え、固体からの液化ポイントとなる温度においてはその温度の積層全体への均一化を図るためその温度をプラスマイナス摂氏10度の範囲内に10分から20分間据え置いてに融着度合いを調整すれば、上下の内層にモザイク状や組み合わせ状にカットした異質の色ガラス片や耐熱ペイントによる図柄を挿入しても、融着ポイントでの異質ガラス間の緩い接着で完全な溶解でないことによりクラックや歪みの生じることなく、積層ガラスによる種々の生活用具を製作する方法。  When multiple sheets of glass are laminated and heated and fused, by observing the temperature in the process of melting one parent glass as a sample in advance, the upper limit temperature and temperature rise that differ depending on the quality and number of laminated glasses After specifying the process, the change in firing temperature and firing time is added to each of the above-mentioned sample observation temperatures adjusted by assuming the number of layers and the completed state, and the temperature at the temperature that is the liquefaction point from the solid is added. If the degree of fusion is adjusted by keeping the temperature within the range of plus or minus 10 degrees Celsius for 10 to 20 minutes in order to make the entire layer uniform, the upper and lower inner layers are cut in a mosaic or combination shape Even if a piece of colored glass or a pattern with heat-resistant paint is inserted, it is not completely melted due to loose adhesion between the different glasses at the fusion point. Without causing a click or distortion, method of fabricating a variety of life equipment by laminated glass.
JP2018135379A 2018-06-29 2018-06-29 Heat-fusing method for multiple laminated glass having color and pattern incorporated Pending JP2020001995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018135379A JP2020001995A (en) 2018-06-29 2018-06-29 Heat-fusing method for multiple laminated glass having color and pattern incorporated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018135379A JP2020001995A (en) 2018-06-29 2018-06-29 Heat-fusing method for multiple laminated glass having color and pattern incorporated

Publications (1)

Publication Number Publication Date
JP2020001995A true JP2020001995A (en) 2020-01-09

Family

ID=69098575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018135379A Pending JP2020001995A (en) 2018-06-29 2018-06-29 Heat-fusing method for multiple laminated glass having color and pattern incorporated

Country Status (1)

Country Link
JP (1) JP2020001995A (en)

Similar Documents

Publication Publication Date Title
TW201429885A (en) Method of making three dimensional glass ceramic article
CN106536441B (en) Method for producing a coated substrate, planar substrate comprising at least two layers applied by heating, and use of a coated substrate
KR20090089453A (en) Method for manufacturing non-planar glass-ceramic products
TW201834853A (en) Shaped glass laminates and methods for forming the same
KR20160021747A (en) Decorative porous inorganic layer compatible with ion exchange processes
TW201634410A (en) Glass film with specially formed edge, method for producing same, and use thereof
FR2992313A1 (en) VITROCERAMIC ARTICLE AND METHOD OF MANUFACTURE
CN106795033A (en) Glass laminates with the intensity for improving
KR20150117698A (en) Coatings for glass-shaping molds and glass-shaping molds comprising the same
JP2020001995A (en) Heat-fusing method for multiple laminated glass having color and pattern incorporated
CN1823018B (en) Glass-ceramic article with weld joint(s) and manufacture thereof
KR20180051514A (en) Glass Ceramic Furniture Surface
US10836683B2 (en) Method of making a sink from ceramic material slabs
RU2444478C1 (en) Method of bending sheet glass
JP2007530399A5 (en)
JP2012201526A (en) Crystallized glass article and method for manufacturing the same
US2521846A (en) Composite glass and metal article
RU2623749C1 (en) Method of obtaining a decorative relief glass and decorative glass products (versions)
RU2703089C1 (en) Method of applying a decorative enamel coating with volume elements
CN107140851A (en) A kind of preparation method of the glass decoration panel with high temperature mirror material layer
RU2733761C2 (en) Glass making method for manufacturing glasstelle glass
JP2006008476A (en) Glass article for use in building, and manufacturing method for glass article for use in building
JP2013067525A (en) Crystallized glass article
KR20210055123A (en) Glass decorative pattern pottery manufacturing method
CN111278782A (en) Glass-ceramic article and method for obtaining same