JP2020001990A - cBN sintered body and cutting tool - Google Patents

cBN sintered body and cutting tool Download PDF

Info

Publication number
JP2020001990A
JP2020001990A JP2018125799A JP2018125799A JP2020001990A JP 2020001990 A JP2020001990 A JP 2020001990A JP 2018125799 A JP2018125799 A JP 2018125799A JP 2018125799 A JP2018125799 A JP 2018125799A JP 2020001990 A JP2020001990 A JP 2020001990A
Authority
JP
Japan
Prior art keywords
cbn
sintered body
particles
volume
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018125799A
Other languages
Japanese (ja)
Other versions
JP7137119B2 (en
Inventor
雅大 矢野
Masahiro Yano
雅大 矢野
史朗 小口
Shiro Oguchi
史朗 小口
庸介 宮下
Yasusuke Miyashita
庸介 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2018125799A priority Critical patent/JP7137119B2/en
Publication of JP2020001990A publication Critical patent/JP2020001990A/en
Application granted granted Critical
Publication of JP7137119B2 publication Critical patent/JP7137119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

To provide a cBN sintered body with high toughness and a CBN tool including it as a tool substrate.SOLUTION: The present invention provides a cBN sintered body composed of cubic crystal boron nitride particles and a ceramic binder phase, in which YAlOwith an average particle size of 10 nm or more and 200 nm or less is dispersed so that its content is 1 vol.% or more and 20 vol.% or less relative to the sintered body. There is also provided a CBN tool including it as a tool substrate.SELECTED DRAWING: Figure 1

Description

本発明は、靭性に優れた立方晶窒化ほう素(以下、「cBN」で示す)基超高圧焼結体(以下、「cBN焼結体」という)、および、これを工具基体とする切削工具(以下、「CBN工具」という)に関する。   The present invention relates to a cubic boron nitride (hereinafter, referred to as “cBN”)-based ultrahigh-pressure sintered body (hereinafter, referred to as “cBN sintered body”) having excellent toughness, and a cutting tool using the same as a tool base. (Hereinafter referred to as “CBN tool”).

従来から、cBN焼結体は、靭性に優れることが知られており、鋼、鋳鉄等の鉄系被削材の切削工具材料として広く用いられている。   Conventionally, cBN sintered bodies have been known to have excellent toughness, and have been widely used as cutting tool materials for iron-based work materials such as steel and cast iron.

例えば、特許文献1には、硬質相としてのcBNを20〜80体積%含有し、残部が、周期律表の4a、5a、6aの炭化物、窒化物、ほう化物等のセラミックス化合物を結合相としたcBN工具が記載されている。   For example, Patent Literature 1 discloses that a cBN as a hard phase is contained in an amount of 20 to 80% by volume, and the balance is made of a ceramic compound such as carbides, nitrides, and borides of 4a, 5a, and 6a in the periodic table as a binder phase. CBN tools are described.

また、例えば、特許文献2には、20体積%以上80体積%以下のcBN粒子と結合材とを有する複合焼結体であって、前記結合材は、周期律表第4a族元素、第5a族元素、第6a族元素の窒化物、炭化物、硼化物、酸化物、およびこれらの固溶体からなる群の中から選択された少なくとも一種と、Zr、Si、W、Co等の単体、化合物、および固溶体からなる群の中から選択された少なくとも1種と、Alの化合物とからなり、前記複合焼結体中にW及び/又はCoが含有される場合には、該W及び/又はCoの合計質量は2.0質量%未満であり、かつ前記Zr、Si等(以下、「X」とする。)のいずれか一以上を含有し、該Xはそれぞれ0.005質量%以上2.0質量%未満であり、かつX/(X+W+Co)が0.01以上1.0以下を満たし、かつAlの質量が2.0質量%以上20.0質量%以下であるcBN焼結体が記載されている。   Further, for example, Patent Document 2 discloses a composite sintered body having cBN particles of 20% by volume or more and 80% by volume or less and a binder, wherein the binder is a Group 4a element of the periodic table, a 5a Group elements, nitrides, carbides, borides and oxides of group 6a elements, and at least one selected from the group consisting of solid solutions thereof, and a simple substance such as Zr, Si, W and Co, a compound, and When at least one selected from the group consisting of a solid solution and a compound of Al, and when W and / or Co is contained in the composite sintered body, the total of W and / or Co The mass is less than 2.0% by mass, and contains at least one of the above-mentioned Zr, Si, etc. (hereinafter, referred to as “X”), and each X is 0.005% by mass or more and 2.0% by mass. % And X / (X + W + Co) is 0.01 or more It met .0 less, and cBN sintered body weight of Al is 20.0 mass% or less 2.0% by weight or more is described.

さらに、例えば、特許文献3には、立方晶窒化硼素粒子と結合相とを含む焼結体を工具基体とする立方晶窒化硼素焼結体切削工具において、前記焼結体は、立方晶窒化硼素粒子を40容量%以上60容量%未満およびAlが下限値で2質量%、上限値でYをAl含有割合(質量%)、Xを立方晶窒化硼素粒子含有割合(容量%)としたとき、Y=−0.1X+10の関係を満足する範囲となるように含有し、前記結合相は、少なくともTi系化合物とAlと不可避不純物を含有し、前記Alのうち、直径10nm〜100nmの微粒Alが結合相中に分散、生成しており、前記結合相の断面1μm×1μmの領域において、前記微粒Alが30個以上生成していることを特徴とする立方晶窒化硼素焼結体切削工具が記載されている。 Furthermore, for example, Patent Document 3 discloses a cubic boron nitride sintered body cutting tool using a sintered body containing cubic boron nitride particles and a binder phase as a tool base, wherein the sintered body is cubic boron nitride. When the particles are 40% by volume or more and less than 60% by volume and Al is 2% by mass at the lower limit and Y is the Al content ratio (% by mass) and X is the cubic boron nitride particle content ratio (% by volume) at the upper limit value, Y = −0.1X + 10, and the binder phase contains at least a Ti-based compound, Al 2 O 3 and unavoidable impurities, and a diameter of 10 nm among the Al 2 O 3. Fine particles of Al 2 O 3 of 100100 nm are dispersed and generated in the binder phase, and 30 or more of the fine particles of Al 2 O 3 are generated in a region of a cross section of 1 μm × 1 μm of the binder phase. Cutting of cubic boron nitride sintered body Ingredients have been described.

特開昭53−77811号公報JP-A-53-77811 特許第5189504号公報Japanese Patent No. 5189504 特開2015−193072号公報JP-A-2013-193072

特許文献1に記載されたcBN焼結体は、結合相としてセラミックス化合物を用いているため、Co等の金属を結合相として用いた場合に比べて、強度、耐熱性、耐摩耗性の向上が認められる。しかし、このcBN焼結体は、切れ刃に高負荷が作用する断続切削加工用切削工具として用いた場合には、靱性が十分であるとはいえないため、チッピング、欠損等の異常損傷を発生し、短期間で寿命に至るという問題があった。   Since the cBN sintered body described in Patent Document 1 uses a ceramic compound as a binder phase, the strength, heat resistance, and abrasion resistance are improved as compared with a case where a metal such as Co is used as a binder phase. Is recognized. However, when this cBN sintered body is used as a cutting tool for intermittent cutting in which a high load acts on the cutting edge, it cannot be said that the toughness is sufficient, so that abnormal damage such as chipping and chipping occurs. However, there is a problem that the life is shortened in a short time.

特許文献2に記載されたcBN焼結体は、結合相の強度と靱性を高めるためにW及び/又はCo、Si又はZrを結合相中に所定量含有させているが、例えば、Wが焼結体中に占める割合が多いと焼結体の靱性が低下、Siが多いと結合材の拡散反応が過剰に抑制され、cBN粒子と結合材および結合材同士の結合力が低下し、焼結体の靱性が低下する問題があった。また、混合時の分散性が悪いと局所的に添加物の濃度が高い部分が生じ、cBN粒子と結合材との結合力の低下により焼結体の靱性が低下し、切削工具として使用した場合、破壊の起点となることによって耐欠損性が低下するという問題があった。   The cBN sintered body described in Patent Literature 2 contains a predetermined amount of W and / or Co, Si, or Zr in the binder phase in order to increase the strength and toughness of the binder phase. If the proportion of the binder in the binder is large, the toughness of the sintered body is reduced. If the content of Si is large, the diffusion reaction of the binder is excessively suppressed, and the bonding force between the cBN particles and the binder and the binder is reduced. There was a problem that the toughness of the body was reduced. In addition, when the dispersibility during mixing is poor, a portion where the concentration of the additive is locally high is generated, and the toughness of the sintered body is reduced due to a decrease in the bonding force between the cBN particles and the binder. However, there has been a problem that the fracture resistance is reduced due to the starting point of the fracture.

特許文献3に記載されたcBN焼結体は、平均粒径5〜15nmの超微粒Alを用いることで粒径100nm以下の微粒Alの均一分散化をしているが、含有させるAlが少ない場合、微粒なためクラックを偏向させる効果はあるが、Tiを主とするセラミックス結合相成分とAlのビッカース硬さは同程度のため、クラックを誘導させる効果が低減し、cBN焼結体の破壊靭性が低下する虞があった。 The cBN sintered body described in Patent Literature 3 uniformly disperses fine Al 2 O 3 having a particle size of 100 nm or less by using ultrafine Al 2 O 3 having an average particle size of 5 to 15 nm. When the amount of Al 2 O 3 to be contained is small, cracks are deflecting due to fine grains, but the Vickers hardness of the ceramics binder phase component mainly composed of Ti and Al 2 O 3 are almost the same, so that cracks are induced. The effect may be reduced, and the fracture toughness of the cBN sintered body may be reduced.

本発明は、前記先行技術においてcBN焼結体が十分な靱性を確保できないという課題を解決するものであって、靱性の高いcBN焼結体およびこれを工具基体とするCBN工具を提供することを目的とする。   The present invention solves the problem that the cBN sintered body cannot secure sufficient toughness in the prior art, and provides a cBN sintered body having high toughness and a CBN tool using the same as a tool base. Aim.

本発明者は、cBN焼結体及びこれを工具基体とするcBN工具について前記課題を解決すべく、cBN焼結体中のAl化合物粒子の分散と靱性の向上について鋭意検討を行った。その結果、微粒のイットリウム・アルミニウム・ガーネット(YAl12:YAG)をcBN焼結体中に1体積%以上20体積%以下含有し、かつ、結合相中に形成されるYAGの平均粒径を200nm以下とすることにより、cBN焼結体内で生じたクラックの進展がYAl12粒子により迂回されること、すなわち、細かく迂回されることに加えて、結合相中でのクラックの細かな伝播の誘導を強くすることにより、靱性の高いcBN焼結体を得ることができること、また、このcBN焼結体を切削工具として使用すれば、刃先への負荷の大きい断続切削あたって刃先が欠損しにくいという優れた切削性能を有することを知見した。 The present inventor has made intensive studies on the dispersion of Al compound particles in a cBN sintered body and the improvement of toughness in order to solve the above-mentioned problems in a cBN sintered body and a cBN tool using the same as a tool base. As a result, fine yttrium aluminum garnet (Y 3 Al 5 O 12 : YAG) is contained in the cBN sintered body in an amount of 1% by volume or more and 20% by volume or less, and the average of YAG formed in the binder phase is obtained. By setting the particle size to 200 nm or less, the propagation of cracks generated in the cBN sintered body is diverted by the Y 3 Al 5 O 12 particles, that is, in addition to being diverted finely, It is possible to obtain a cBN sintered body having high toughness by strengthening the induction of the fine propagation of cracks. It has been found that the cutting edge has excellent cutting performance in which the cutting edge is not easily broken.

本発明は、前記知見に基づいてなされたものであって、
「(1)立方晶窒化硼素粒子と結合相とからなるcBN焼結体において、
前記結合相には、平均粒径が10nm以上200nm以下のYAl12が、前記焼結体に対する含有割合として1体積%以上20体積%以下となるように分散していることを特徴とするcBN焼結体。
(2)前記(1)に記載のcBN焼結体を工具基体とすることを特徴とする切削工具。」
である。
The present invention has been made based on the above findings,
"(1) In a cBN sintered body composed of cubic boron nitride particles and a binder phase,
In the binder phase, Y 3 Al 5 O 12 having an average particle diameter of 10 nm or more and 200 nm or less is dispersed so as to be 1% by volume or more and 20% by volume or less with respect to the sintered body. CBN sintered body.
(2) A cutting tool, wherein the cBN sintered body according to (1) is used as a tool base. "
It is.

本発明は、焼結体中にYAl12の微粒子を分散させるため、cBN焼結体中で生じたクラックの進展を細かく迂回させ、直線的な進展を抑えて靱性を高めるとともに、結合相の材料であるTiN、TiCに比してビッカース硬さが同程度のAlではなく、ビッカース硬さが低いYAl12を使用することにより、焼結体中を進行するクラックの先端を硬さの低いYAl12へ誘導させることにより、その進展をより細かく迂回させ、より一層のcBN焼結体の靱性の向上がなされるという優れた効果を奏することができる。 The present invention disperses the fine particles of Y 3 Al 5 O 12 in the sintered body, finely circumvents the growth of cracks generated in the cBN sintered body, suppresses linear growth, and increases toughness. By using Y 3 Al 5 O 12 having a low Vickers hardness, instead of Al 2 O 3 having the same Vickers hardness as that of TiN or TiC, which is the material of the binder phase, it progresses in the sintered body. By inducing the tip of the crack to Y 3 Al 5 O 12 having a low hardness, the progress of the crack is more finely diverted, and an excellent effect that the toughness of the cBN sintered body is further improved is exhibited. Can be.

本発明のcBN焼結体の焼結組織を表す模式図であり、各組織の形状や寸法は実際の組織に則したものではない。It is a schematic diagram showing the sintered structure of the cBN sintered body of the present invention, and the shape and dimensions of each structure do not conform to the actual structure. 本発明のYAl12を用いたcBN焼結体(本発明焼結体1)のXRD(X−ray Diffraction)の一例を示す図である。Is a diagram illustrating an example of a XRD (X-ray Diffraction) of the cBN sintered body with Y 3 Al 5 O 12 of the present invention (the present invention sintered body 1).

以下、本発明を詳細に説明する。なお、本明細書において、数値範囲を「〜」を用いて表現する場合、その範囲は上限および下限の数値を含むものである。   Hereinafter, the present invention will be described in detail. In this specification, when a numerical range is expressed by using “to”, the range includes upper and lower numerical values.

1.cBN焼結体中の結合相に分散させるYAl12
(1)平均粒径
焼結体中に占めるYAl12粒の平均粒径は、10nm以上200nm以下とする。YAl12の平均粒径が、200nmを超えると、結合相中のYAl12粒子を起点とするクラックの発生や進展を生じやすくなるため、cBN焼結体の靱性が低下する。したがって、結合相中に存在するYAl12の平均粒径の上限値は200nmとする。より好ましい上限値は100nmである。また、YAl12の粒径が10nm未満であればクラックの進展を細かく迂回させ、直線的な進展を抑えることが十分でないことから、YAl12の粒径の下限値は10nmとした。
1. Y 3 Al 5 O 12 dispersed in the binder phase in the cBN sintered body
(1) Average particle size The average particle size of 12 Y 3 Al 5 O 12 particles occupying in the sintered body is set to 10 nm or more and 200 nm or less. If the average particle size of Y 3 Al 5 O 12 exceeds 200 nm, cracks originating from the Y 3 Al 5 O 12 particles in the binder phase tend to be generated and propagated, so that the toughness of the cBN sintered body is reduced. descend. Therefore, the upper limit of the average particle size of Y 3 Al 5 O 12 present in the binder phase is set to 200 nm. A more preferred upper limit is 100 nm. Further, if the particle size of Y 3 Al 5 O 12 is less than 10 nm, it is not sufficient to circumvent crack growth finely and to suppress linear growth, so the lower limit value of the particle size of Y 3 Al 5 O 12 is not sufficient. Was 10 nm.

(2)含有割合
焼結体中に占めるYAl12粒の含有割合は、1体積%(vol%)以上20体積%以下とする。その理由は、1体積%未満であるとクラックを細かく迂回させてその進展を抑制することが十分にできずcBN焼結体の靱性を向上させるには十分な量ではなく、一方、20体積%超えるとcBN焼結体中においてYAl12粒同士が接する確率が高くなり、隣り合ったYAl12粒が焼結時に粒成長し肥大なYAl12粒となり、その肥大なYAl12を起点としたクラックの発生が生じやすくなり、cBN焼結体の靱性低下し、好ましくないからである。
(2) Content Ratio The content ratio of the Y 3 Al 5 O 12 grains in the sintered body is not less than 1% by volume (vol%) and not more than 20% by volume. The reason is that if it is less than 1% by volume, it is not possible to sufficiently circumvent cracks and to suppress the progress thereof, and it is not a sufficient amount to improve the toughness of the cBN sintered body. If it exceeds, the probability that the Y 3 Al 5 O 12 grains come into contact with each other in the cBN sintered body increases, and the adjacent Y 3 Al 5 O 12 grains grow during the sintering to become enlarged Y 3 Al 5 O 12 grains. This is because cracks starting from the enlarged Y 3 Al 5 O 12 easily occur, and the toughness of the cBN sintered body is reduced, which is not preferable.

2.YAl12の平均粒径と含有割合の測定方法
(1)YAl12の平均粒径
Al12の存在は、X線回折(XRD:ターゲットCu)において、YAl12の回折ピークが現れることにより確認できる。
平均粒径は、cBN焼結体の断面組織をオージェ電子分光(Auger Electron Spectrography:以下、AESという)装置を用いて、Al元素、O元素およびY元素のマッピング像を得て、Al元素、O元素およびY元素が重なる部位を画像処理によって抜き出し、当該部位をYAl12粒子と特定し、次いで、特定した各粒子に対して画像解析を行って平均粒径を求める。具体的には、結合相中のYAl12粒子を明確に判断するため、AESを用いて得た同一視野におけるAl元素、O元素およびY元素の各マッピング像は、対象元素が存在しない部位を黒、存在する部位を白とし、黒を0、白を255の256階調のモノクロにて取得し、各々のモノクロ像において各元素が存在する位置が白色となるように2値化処理する。2値化処理し得られた同一視野内におけるAl元素、O元素およびY元素のマッピング像において、3元素が存在する、すなわち3元素の各マッピング像を比較しいずれも白色となる部位をYAl12粒子と特定する。
なお、YAl12粒同士が接触していると考えられる部分を切り離すような処理、例えば、画像処理法の1つであるウォーターシェッドを用いて接触していると思われるYAl12粒同士を分離する処理を、3元素の各マッピング像を比較しいずれも白色である部分を抜き出した後の像へ行ってもよい。
2値化処理後に得られた画像内のYAl12粒にあたる部分(白の部分)を粒子解析し、求めた最大長を各粒子の直径とする。最大長を求める粒子解析としては、例えば、1つのYAl12粒子に対してフェレ径を算出することより得られる2つの長さから大きい長さの値を最大長とし、その値を各粒子の直径とする。この直径を有する理想球体と仮定して計算より求めた体積を各粒子の体積として累積体積を求め、この累積体積を基に縦軸を体積百分率[%]、横軸を直径[μm]としてグラフを描画させ、体積百分率が50%のときの直径をYAl12粒子の平均粒径とし、これを3観察領域に対して行い、その平均値をYAl12の平均粒径[μm]とした。粒子解析を行う際には、あらかじめSEMにより分かっているスケールの値を用いて、1ピクセル当たりの長さ(μm)を設定しておく。画像処理に用いる観察領域としては、5.0μm×3.0μm程度の視野領域が望ましい。
2. The presence of Y 3 Al 5 average particle size and content The method of measurement of O 12 (1) Y 3 Al 5 average particle diameter Y 3 Al 5 O 12 of O 12 is, X-rays diffraction: In (XRD target Cu), This can be confirmed by the appearance of a diffraction peak of Y 3 Al 5 O 12 .
The average particle diameter is obtained by obtaining a mapping image of the Al element, the O element and the Y element using an Auger Electron Spectrograph (hereinafter, referred to as AES) apparatus for the cross-sectional structure of the cBN sintered body. A portion where the element and the Y element overlap is extracted by image processing, the portion is specified as Y 3 Al 5 O 12 particles, and then the specified particles are subjected to image analysis to obtain an average particle size. Specifically, in order to clearly determine the Y 3 Al 5 O 12 particles in the binder phase, the mapping images of the Al element, O element, and Y element in the same field of view obtained using AES show that the target element exists. The portions that do not exist are black, the portions that exist are white, black is 0, and white is acquired in monochrome with 256 gradations of 255, and binarized so that the position where each element exists in each monochrome image is white. To process. In the mapping image of the Al element, the O element, and the Y element in the same field of view obtained by the binarization processing, three elements are present, that is, a mapping image of each of the three elements is compared, and a portion where all become white is represented by Y 3 Specified as Al 5 O 12 particles.
In addition, a process of separating a portion where the Y 3 Al 5 O 12 grains are considered to be in contact with each other, for example, a Y 3 Al that seems to be in contact using a watershed which is one of image processing methods. The process of separating the 5 O 12 grains from each other may be performed on the image obtained by comparing the mapping images of the three elements and extracting the white portions.
A portion (white portion) corresponding to 12 Y 3 Al 5 O 12 particles in the image obtained after the binarization processing is subjected to particle analysis, and the obtained maximum length is defined as the diameter of each particle. As the particle analysis for obtaining the maximum length, for example, a value of a larger length from two lengths obtained by calculating a Feret diameter for one Y 3 Al 5 O 12 particle is set as the maximum length, and the value is set as the maximum length. The diameter of each particle. Assuming an ideal sphere having this diameter, the volume obtained by calculation is used as the volume of each particle to determine the cumulative volume. Based on this cumulative volume, the vertical axis represents the volume percentage [%], and the horizontal axis represents the diameter [μm]. Is drawn, and the diameter when the volume percentage is 50% is defined as the average particle size of the Y 3 Al 5 O 12 particles, and this is performed for three observation regions. The average value is the average particle size of the Y 3 Al 5 O 12 . The diameter was [μm]. When performing particle analysis, a length per pixel (μm) is set using a scale value known in advance by SEM. A viewing area of about 5.0 μm × 3.0 μm is desirable as an observation area used for image processing.

(2)含有割合
含有割合は、AESを用いて、Al元素、O元素およびY元素のマッピング像を得て、Al元素、O元素およびY元素が重なる部位を画像処理によって抜き出し、当該部位をYAl12粒子と特定し、画像解析によりYAl12粒子が占める面積を算出して、YAl12粒子の面積割合を求める。これを少なくとも3画像に対して行い、算出した各YAl12粒子の面積割合の平均値をcBN焼結体に占めるYAl12の含有割合として求める。画像処理に用いる観察領域として、5.0μm×3.0μm程度の視野領域が望ましい。
(2) Content ratio The content ratio is obtained by using AES to obtain a mapping image of the Al element, the O element, and the Y element, extracting a portion where the Al element, the O element, and the Y element overlap by image processing, and extracting the portion with the Y component. 3 Al 5 O 12 particles are specified, the area occupied by the Y 3 Al 5 O 12 particles is calculated by image analysis, and the area ratio of the Y 3 Al 5 O 12 particles is determined. This is performed on at least three images, and the average value of the calculated area ratios of the respective Y 3 Al 5 O 12 particles is determined as the content ratio of Y 3 Al 5 O 12 in the cBN sintered body. A viewing area of about 5.0 μm × 3.0 μm is desirable as an observation area used for image processing.

3.cBN焼結体中のcBN粒子の平均粒径と含有割合
本発明で用いるcBN粒子の平均粒径は、特に限定されるものではないが、0.2〜8.0μmの範囲であることが好ましい。
これは、硬質なcBN粒子を焼結体内に含むことにより耐欠損性を高める効果に加えて、平均粒径が0.2〜8.0μmのcBN粒子を焼結体内に分散させることにより、工具使用中に工具表面のcBN粒子が脱落して生じる刃先の凹凸形状を起点とする欠損、チッピングを抑制するだけでなく、工具使用中に刃先に加わる応力により生じるcBN粒子と結合相との界面から進展するクラック、あるいはcBN粒子が割れて進展するクラックの伝播を抑制することにより、優れた耐欠損性を有することができるためである。
cBN焼結体に占めるcBN粒子の含有割合は、特に限定されるものではないが、40体積%未満では、焼結体中に硬質物質が少なく、工具として使用した場合に、耐欠損性が低下することがあり、一方、78体積%を超えると、焼結体中にクラックの起点となる空隙が生成し、耐欠損性が低下することがある。そのため、本発明が奏する効果をより一層発揮するためには、cBN焼結体に占めるcBN粒子の含有割合は、40〜78体積%の範囲とすることが好ましい。
3. Average particle size and content ratio of cBN particles in cBN sintered body The average particle size of cBN particles used in the present invention is not particularly limited, but is preferably in the range of 0.2 to 8.0 µm. .
This is because, in addition to the effect of increasing the fracture resistance by including hard cBN particles in the sintered body, the cBN particles having an average particle size of 0.2 to 8.0 μm are dispersed in the sintered body, so that the tool is improved. In addition to suppressing chipping and chipping originating from the uneven shape of the cutting edge that occurs when cBN particles on the tool surface fall off during use, the interface between the cBN particles and the bonding phase generated by the stress applied to the cutting edge during use of the tool This is because excellent crack resistance can be obtained by suppressing the propagation of the crack that propagates or the crack that propagates by breaking the cBN particles.
The content ratio of the cBN particles in the cBN sintered body is not particularly limited, but if it is less than 40% by volume, the sintered body contains a small amount of hard material, and when used as a tool, the fracture resistance is reduced. On the other hand, if it exceeds 78% by volume, voids serving as crack starting points are formed in the sintered body, and the fracture resistance may be reduced. Therefore, in order to further exert the effect of the present invention, the content ratio of the cBN particles in the cBN sintered body is preferably in the range of 40 to 78% by volume.

cBN粒子の平均粒径と含有割合は、以下のとおりにして求めることができる。
cBN焼結体の断面組織をSEMにてcBN焼結体組織を観察し、二次電子像を得る。得られた画像内のcBN粒子の部分を画像処理にて抜き出し、画像解析より求めた各粒子の最大長を基に平均粒径を算出する。
画像内のcBN粒子の部分を画像処理にて抜き出すにあたり、cBN粒子と結合相とを明確に判断するため、画像は0を黒、255を白の256階調のモノクロで表示し、cBN粒子部分の画素値と結合相部分の画素値の比が2以上となる画素値の像を用いてcBN粒が黒となるように2値化処理を行う。
ここで、cBN粒子部分や結合相部分の画素値を求めるための領域として、0.5μm×0.5μm程度の領域内の平均値より求め、少なくとも同一画像内から異なる3個所より求めた平均の値を各々のコントラストとすることが望ましい。
なお、2値化処理後はcBN粒同士が接触していると考えられる部分を切り離すような処理、例えば、ウォーターシェッドを用いて接触していると思われるcBN粒同士を分離する。
2値化処理後に得られた画像内のcBN粒にあたる部分(黒の部分)を粒子解析し、求めた最大長を各粒子の直径とする。最大長を求める粒子解析としては、例えば、1つのcBN粒子に対してフェレ径を算出することより得られる2つの長さから大きい長さの値を最大長とし、その値を各粒子の直径とする。この直径を有する理想球体と仮定して計算より求めた体積を各粒子の体積として累積体積を求め、この累積体積を基に縦軸を体積百分率[%]、横軸を直径[μm]としてグラフを描画させ、体積百分率が50%のときの直径をcBN粒子の平均粒径とし、これを3観察領域に対して行い、その平均値をcBNの平均粒径[μm]とした。粒子解析を行う際には、あらかじめSEMにより分かっているスケールの値を用いて、1ピクセル当たりの長さ(μm)を設定しておく。画像処理に用いる観察領域として、cBN粒子の平均粒径が3μmの場合、15.0μm×15.0μm程度の視野領域が望ましい。
The average particle size and the content ratio of the cBN particles can be determined as follows.
The cross-sectional structure of the cBN sintered body is observed with a SEM to obtain a secondary electron image. The portion of the cBN particles in the obtained image is extracted by image processing, and the average particle size is calculated based on the maximum length of each particle obtained by image analysis.
In extracting the cBN particle portion in the image by image processing, in order to clearly determine the cBN particle and the binding phase, the image is displayed in monochrome with 256 gradations of 0 for black and 255 for white, and the cBN particle portion. The binarization process is performed so that the cBN grains are black using an image of a pixel value in which the ratio of the pixel value of the pixel value to the pixel value of the combined phase portion is 2 or more.
Here, as a region for calculating the pixel value of the cBN particle portion or the bonded phase portion, the average value in a region of about 0.5 μm × 0.5 μm is obtained, and at least the average obtained from three different portions in the same image is obtained. It is desirable that the values be the respective contrasts.
In addition, after the binarization process, a process of separating a portion where cBN particles are considered to be in contact with each other, for example, separating cBN particles which are considered to be in contact with each other using a watershed.
The portion (black portion) corresponding to cBN grains in the image obtained after the binarization processing is subjected to particle analysis, and the obtained maximum length is defined as the diameter of each particle. As the particle analysis for obtaining the maximum length, for example, a value of a larger length from two lengths obtained by calculating the Feret diameter for one cBN particle is set as the maximum length, and the value is defined as the diameter of each particle. I do. Assuming an ideal sphere having this diameter, the volume obtained by calculation is used as the volume of each particle to determine the cumulative volume. Based on this cumulative volume, the vertical axis represents the volume percentage [%], and the horizontal axis represents the diameter [μm]. Was drawn, and the diameter when the volume percentage was 50% was defined as the average particle diameter of the cBN particles. This was performed for three observation regions, and the average value was defined as the average particle diameter of cBN [μm]. When performing particle analysis, a length per pixel (μm) is set using a scale value known in advance by SEM. When the average particle size of the cBN particles is 3 μm, a viewing area of about 15.0 μm × 15.0 μm is desirable as an observation area used for image processing.

cBN焼結体に占めるcBN粒子の含有割合は、cBN焼結体の断面組織をSEMによって観察し、得られた二次電子像内のcBN粒子の部分を画像処理によって抜き出し、画像解析によってcBN粒子が占める面積を算出し、1画像内のcBN粒子が占める割合を求め、少なくとも3画像を処理し求めた値の平均値をcBN粒子の含有割合として求める。画像内のcBN粒子の部分を抜き出す画像処理は、cBN粒の平均粒径の2値化処理後の像を得る手順と同様に行う。画像処理に用いる観察領域として、例えば、cBN粒子の平均粒径0.3μmの場合、5.0μm×3.0μm程度の視野領域が望ましい。   The content ratio of cBN particles in the cBN sintered body can be determined by observing the cross-sectional structure of the cBN sintered body by SEM, extracting a portion of the cBN particles in the obtained secondary electron image by image processing, and analyzing the cBN particles by image analysis. Is calculated, the ratio of cBN particles in one image is determined, and the average of the values obtained by processing at least three images is determined as the content ratio of cBN particles. Image processing for extracting a portion of the cBN particles in the image is performed in the same manner as the procedure for obtaining an image after the binarization processing of the average particle size of the cBN particles. For example, when the average particle diameter of the cBN particles is 0.3 μm, a viewing area of about 5.0 μm × 3.0 μm is desirable as the observation area used for image processing.

4.製造方法
本発明の製造方法の一例を以下に示す。
(1)結合相を構成する成分の原料粉末の準備
結合相を構成する原料粉末として、YAl12原料と結合相の主となる原料を用意する。YAl12原料として、平均粒径3〜5μmのYAl12粉末を用意する。YAl12粉末は、所望の粒径に粉砕したYAl12原料粉とするため、例えば、超硬合金で内張りされた容器内に超硬合金製ボールとアセトンと共に充填し、蓋をした後にボールミルにより粉砕を行った後、遠心分離装置を用いて分級することにより、縦軸を体積百分率、横軸を粒子径とした場合のメディアン径D50を粉砕したYAl12原料粉の平均粒径とし、その値が10〜200nmのYAl12原料粉を得る。また、結合相の主となる原料としては、従来から知られている結合相形成原料粉末(TiN粉末、TiC粉末、TiCN粉末、TiAl粉末)を準備する。
4. Manufacturing method One example of the manufacturing method of the present invention is shown below.
(1) Preparation of Raw Material Powder for Component Constituting Bound Phase As a raw material powder for forming the binding phase, a Y 3 Al 5 O 12 raw material and a main raw material of the binding phase are prepared. As a Y 3 Al 5 O 12 raw material, a Y 3 Al 5 O 12 powder having an average particle size of 3 to 5 μm is prepared. In order to make the Y 3 Al 5 O 12 powder into a Y 3 Al 5 O 12 raw material powder pulverized to a desired particle size, for example, a container lined with a cemented carbide is filled together with cemented carbide balls and acetone. , after pulverized by a ball mill after the lid and then classified using a centrifugal separator, the volume percent of the vertical axis and the horizontal axis grinding the median diameter D50 in the case of a particle diameter Y 3 Al 5 O an average particle size of 12 raw material powder, the value is obtained a Y 3 Al 5 O 12 material powder of 10 to 200 nm. Further, as a main raw material of the binder phase, a binder phase forming raw material powder (TiN powder, TiC powder, TiCN powder, TiAl 3 powder) conventionally known is prepared.

(2)粉砕・混合
これらの原料粉末を、例えば、超硬合金で内張りされた容器内に超硬合金製ボールとアセトンと共に充填し、蓋をした後にボールミルにより粉砕および混合を行う。
その後、硬質相として機能させる平均粒径0.2〜8.0μmのcBN粉末を焼結後のcBN粒子の含有割合が所定の体積%となるように添加して、さらに、ボールミル混合を行う。
(2) Grinding / Mixing These raw material powders are filled together with cemented carbide balls and acetone into a container lined with a cemented carbide, for example, and after being covered, crushed and mixed by a ball mill.
Thereafter, cBN powder having an average particle size of 0.2 to 8.0 μm to function as a hard phase is added so that the content ratio of the cBN particles after sintering becomes a predetermined volume%, and further ball mill mixing is performed.

(3)成形、焼結
得られた焼結体原料粉末を、所定圧力で成形して成形体を作製し、これを真空下、1000℃で仮焼結し、その後、超高圧焼結装置に装入して、例えば、圧力:5GPa、温度:1200〜1600℃の範囲内の所定の温度で焼結することにより、本発明のcBN焼結体を作製する。
(3) Forming and sintering The obtained raw material powder of the sintered body is formed at a predetermined pressure to form a formed body, which is temporarily sintered at 1000 ° C. under vacuum, and then is applied to an ultra-high pressure sintering apparatus. The cBN sintered body of the present invention is manufactured by charging and sintering at a predetermined temperature within a range of, for example, pressure: 5 GPa and temperature: 1200 to 1600 ° C.

5.CBN工具
このように作製した本発明の、靭性に優れたcBN焼結体を工具基体とするcBN基超高圧焼結体製切削工具は、例えば、高硬度鋼の断続切削加工においても、耐欠損性に優れ、長期の使用にわたって優れた耐摩耗性を発揮する。
5. CBN Tool The cBN-based ultra-high pressure sintered compact cutting tool of the present invention produced using a cBN sintered compact having excellent toughness as a tool base according to the present invention is, for example, resistant to fracture even in intermittent cutting of high-hardness steel. Excellent wear resistance over a long period of use.

以下、本発明の実施例について記載する。   Hereinafter, examples of the present invention will be described.

本実施形態のcBN焼結体の製造では、結合相を構成するための原料粉末として、YAl12粉末を準備し、YAl12の粒径制御のため、ボールミルにて粉砕の処理を施した後、遠心分離法を用いて分級することにより所望の粒径範囲のYAl12原料粉を用意した。
すなわち、平均粒径3μmのYAl12粉末を準備し、超硬合金で内張りされた容器内に超硬合金製ボールとアセトンと共に充填し、蓋をした後にボールミルを用いて粉砕を実施後、混合したスラリーを乾燥させた後、遠心分離装置を用いて分級することにより平均粒径が10〜200nmのYAl12原料粉を得ることができる。
上記のように事前に準備したYAl12原料粉と、平均粒径が0.3μm〜0.9μmのTiN粉末、TiC粉末、TiCN粉末、TiAl粉末を用意し、これら原料粉末の中から選ばれたいくつかの結合相構成用原料粉末(各原料粉末の体積%を表1に示す)と、硬質相用原料としてのcBN粉末の合量を100体積%としたときの焼結後のcBN粒子の含有割合が40〜78体積%となるように配合し、湿式混合し、乾燥した。
次いで、得られた焼結体原料粉末を、成形圧1MPaで直径:50mm×厚さ:1.5mmの寸法にプレス成形し、ついでこの成形体を、圧力:1Pa以下の真空雰囲気中、1000℃の範囲内の所定温度に保持して仮焼結し、その後、超高圧焼結装置に装入して、圧力:5GPa、温度:1400℃の温度で焼結することにより、表2に示す本発明のcBN焼結体1〜15(本発明焼結体1〜15という)を作製した。なお、成形体に施す熱処理は、湿式混合時の溶媒を除去することが主な目的である。
また、上記作製工程は、超高圧焼結までの工程において原料粉末の酸化を防止することが好ましく、具体的には非酸化性の保護雰囲気中での取り扱いを実施することが好ましい。
本発明焼結体1のXRD図を図2に示す。
In the production of the cBN sintered body of the present embodiment, Y 3 Al 5 O 12 powder is prepared as a raw material powder for forming a binder phase, and is controlled by a ball mill to control the particle size of Y 3 Al 5 O 12 . After the pulverization treatment, the powder was classified by centrifugation to prepare a Y 3 Al 5 O 12 raw material powder having a desired particle size range.
That is, Y 3 Al 5 O 12 powder having an average particle size of 3 μm is prepared, filled in a vessel lined with cemented carbide together with cemented carbide balls and acetone, covered, and then ground using a ball mill. Thereafter, the mixed slurry is dried, and then classified by using a centrifugal separator, whereby Y 3 Al 5 O 12 raw material powder having an average particle diameter of 10 to 200 nm can be obtained.
Y 3 Al 5 O 12 raw material powder prepared in advance as described above, and TiN powder, TiC powder, TiCN powder, and TiAl 3 powder having an average particle diameter of 0.3 μm to 0.9 μm are prepared. Sintering when the total amount of several binder phase constituent raw material powders selected from the above (volume% of each raw material powder is shown in Table 1) and cBN powder as the hard phase raw material is 100 vol% It was blended so that the content ratio of the subsequent cBN particles was 40 to 78% by volume, wet-mixed and dried.
Next, the obtained sintered compact raw material powder is press-molded at a compacting pressure of 1 MPa to a size of diameter: 50 mm × thickness: 1.5 mm. Tentative sintering at a predetermined temperature within the range described above, and thereafter, the sintering was carried out in an ultrahigh pressure sintering apparatus, and sintering was performed at a pressure of 5 GPa and a temperature of 1400 ° C. Inventive cBN sintered bodies 1 to 15 (referred to as present invention sintered bodies 1 to 15) were produced. The main purpose of the heat treatment applied to the compact is to remove the solvent during wet mixing.
Further, in the above-mentioned manufacturing process, it is preferable to prevent oxidation of the raw material powder in the process up to ultrahigh pressure sintering, and specifically, it is preferable to carry out the handling in a non-oxidizing protective atmosphere.
FIG. 2 shows an XRD diagram of the sintered body 1 of the present invention.

比較のため、本発明において規定する範囲外のYAl12平均粒径、含有割合を検討すべく、YAl12を含まないおよび含む原料をボールミルを用いて粉砕し、遠心分離装置を用いて分級し、平均粒径0.3μm〜0.9μmのTiN粉末、TiCN粉末、TiAl粉末を用意し、これら原料粉末の中から選ばれたいくつかの結合相構成用原料粉末(各原料粉末の体積%を表3に示す)と、硬質相としてのcBN粉末との含量を100体積%としたときの焼結後のcBN粒子の含有割合が56〜65体積%となるように配合し、湿式混合し、乾燥した。
その後、本発明焼結体1〜15と同様な条件で成形体を作製し、熱処理し、この成形体を、本発明焼結体1〜15と同様な条件で超高圧高温焼結することにより、表4に示す比較例のcBN焼結体(以下、比較例焼結体という)1〜5を作製した。
For comparison, in order to examine the average particle diameter and content of Y 3 Al 5 O 12 outside the range specified in the present invention, a raw material containing no and containing Y 3 Al 5 O 12 was pulverized using a ball mill and centrifuged. Classification was performed using a separation device to prepare TiN powder, TiCN powder, and TiAl 3 powder having an average particle diameter of 0.3 μm to 0.9 μm, and several raw material powders for forming a binder phase selected from these raw material powders (The volume percentage of each raw material powder is shown in Table 3) and the content ratio of cBN particles after sintering when the content of cBN powder as the hard phase is 100 volume% is 56 to 65 volume%. And wet-mixed and dried.
Thereafter, a compact is produced under the same conditions as the sintered bodies 1 to 15 of the present invention, heat-treated, and the compact is subjected to ultra-high pressure and high temperature sintering under the same conditions as the sintered bodies 1 to 15 of the present invention. Then, cBN sintered bodies of comparative examples (hereinafter, referred to as comparative sintered bodies) 1 to 5 shown in Table 4 were produced.

次に、上記で作製した本発明品1〜15、比較品1〜5を、ワイヤー放電加工機で所定寸法に切断し、Co:5質量%、TaC:5質量%、WC:残りの組成およびISO規格CNGA120408のインサート形状をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、Cu:26質量%、Ti:5質量%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、上下面および外周研磨、ホーニング処理を施すことにより、ISO規格CNGA120408のインサート形状をもつ本発明のcBN基超高圧焼結体切削工具(本発明工具という)1〜15、および、比較例のcBN基超高圧焼結体切削工具(比較例工具という)1〜5を製造した。   Next, the inventive products 1 to 15 and the comparative products 1 to 5 prepared above were cut into predetermined dimensions by a wire electric discharge machine, and Co: 5% by mass, TaC: 5% by mass, WC: remaining composition and A brazing portion (corner portion) of a WC-based cemented carbide insert body having an insert shape conforming to ISO standard CNGA120408 has an Ag alloy having a composition consisting of 26% by mass of Cu, 5% by mass of Ti, and Ag: the remainder. By performing brazing using a brazing material, polishing the upper and lower surfaces and the outer periphery, and performing a honing process, the cBN-based ultrahigh-pressure sintered compact cutting tool of the present invention (referred to as a tool of the present invention) 1 having an insert shape of ISO standard CNGA120408. 15 and cBN-based ultrahigh-pressure sintered compact cutting tools (referred to as comparative example tools) 1 to 5 of Comparative Examples.

次いで、本発明工具1〜15と比較工具1〜5に対して、以下の切削条件で切削加工を実施し、欠損に至るまでの工具寿命(回数)を測定した。
<切削条件>
被削材:浸炭焼き入れ鋼(JIS・SCM415、硬さ:HRC58〜62)の長さ方向等間隔8本縦溝入り丸棒、
切削速度:200m/min、
切り込み:0.1mm、
送り:0.1mm/rev
の条件での、高硬度鋼の乾式切削加工試験を実施。
各工具の刃先がチッピングあるいは欠損に至るまでの断続回数を工具寿命とし、断続回数500回毎に刃先を観察し、刃先の欠損やチッピングの有無を確認した。
表5に、上記切削加工試験の結果を示す。
Next, cutting was performed on the present invention tools 1 to 15 and the comparative tools 1 to 5 under the following cutting conditions, and the tool life (number of times) until breakage was measured.
<Cutting conditions>
Work material: Carburized hardened steel (JIS SCM415, hardness: HRC58-62) Elongated round bar with 8 longitudinal grooves,
Cutting speed: 200m / min,
Notch: 0.1mm,
Feed: 0.1 mm / rev
Dry cutting test of high-hardness steel under the above conditions.
The number of interruptions until the cutting edge of each tool reached chipping or chipping was defined as the tool life, and the cutting edge was observed every 500 interruptions to confirm the presence or absence of chipping or chipping.
Table 5 shows the results of the cutting test.

表5に示される結果から、本発明工具は、比較例工具に比して、突発的な刃先の欠損、チッピングが発生することなく、工具寿命が延命化されており、靱性が向上したことが分かる。   From the results shown in Table 5, it can be seen that the tool of the present invention has a longer tool life and improved toughness without sudden chipping of the cutting edge and chipping as compared with the comparative example tool. I understand.

本発明の靱性に優れたcBN焼結体は、靱性が高くCBN工具の工具基体として用いると、欠損、破損を発生することなく長期の使用にわたって、優れた耐欠損性を発揮し、工具寿命の延命化が図られるものであることから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、低コスト化に十分満足に対応できるものである。   The cBN sintered body having excellent toughness of the present invention, when used as a tool base of a CBN tool having high toughness, exhibits excellent chipping resistance over a long period of use without causing breakage or breakage, and has a long tool life. Since the life is prolonged, it is possible to satisfactorily cope with high performance of the cutting apparatus, labor saving and energy saving of the cutting processing, and cost reduction.

Claims (2)

立方晶窒化ほう素粒子とセラミックス結合相からなるcBN焼結体において、
平均粒径が10nm以上200nm以下のYAl12が、前記焼結体に対する含有割合として1体積%以上20体積%以下となるように分散していることを特徴とするcBN焼結体。
In a cBN sintered body composed of cubic boron nitride particles and a ceramic binder phase,
A cBN sintered body characterized in that Y 3 Al 5 O 12 having an average particle size of 10 nm or more and 200 nm or less is dispersed so as to be 1% by volume or more and 20% by volume or less with respect to the sintered body. .
請求項1に記載のcBN焼結体を工具基体とすることを特徴とする切削工具。   A cutting tool comprising the cBN sintered body according to claim 1 as a tool base.
JP2018125799A 2018-07-02 2018-07-02 cBN sintered body and cutting tool Active JP7137119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018125799A JP7137119B2 (en) 2018-07-02 2018-07-02 cBN sintered body and cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018125799A JP7137119B2 (en) 2018-07-02 2018-07-02 cBN sintered body and cutting tool

Publications (2)

Publication Number Publication Date
JP2020001990A true JP2020001990A (en) 2020-01-09
JP7137119B2 JP7137119B2 (en) 2022-09-14

Family

ID=69098601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018125799A Active JP7137119B2 (en) 2018-07-02 2018-07-02 cBN sintered body and cutting tool

Country Status (1)

Country Link
JP (1) JP7137119B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335159A (en) * 1998-05-25 1999-12-07 Kyocera Corp High-strength, high-hardness alumina ceramics and its production
US20070134494A1 (en) * 2003-12-03 2007-06-14 Dole Stephen L Cubic boron nitride sintered body and method for making the same
JP2015193072A (en) * 2014-03-28 2015-11-05 三菱マテリアル株式会社 Cutting tool comprising sintered body of cubic boron nitride
WO2017204152A1 (en) * 2016-05-23 2017-11-30 三菱マテリアル株式会社 Cubic boron nitride sintered compact cutting tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335159A (en) * 1998-05-25 1999-12-07 Kyocera Corp High-strength, high-hardness alumina ceramics and its production
US20070134494A1 (en) * 2003-12-03 2007-06-14 Dole Stephen L Cubic boron nitride sintered body and method for making the same
JP2015193072A (en) * 2014-03-28 2015-11-05 三菱マテリアル株式会社 Cutting tool comprising sintered body of cubic boron nitride
WO2017204152A1 (en) * 2016-05-23 2017-11-30 三菱マテリアル株式会社 Cubic boron nitride sintered compact cutting tool

Also Published As

Publication number Publication date
JP7137119B2 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
KR101252332B1 (en) Composite sintered body
JP6853951B2 (en) cBN sintered body and cutting tool
JP6637664B2 (en) Cubic boron nitride sintered compact cutting tool
JP6032409B2 (en) Cutting tools and surface-coated cutting tools using a cubic boron nitride-based ultra-high pressure sintered body as a tool base
US9120707B2 (en) Cubic boron nitride sintered body and cubic boron nitride sintered body tool
JP6198142B2 (en) Cutting tool made of cubic boron nitride super high pressure sintered material
JP2021151943A (en) cBN sintered body and cutting tool
JP6968341B2 (en) Cubic boron nitride-based sintered body with microstructural structure and cutting tools
JP7096977B2 (en) cBN sintered body and cutting tool
JP7015979B2 (en) cBN sintered body and cutting tool
JP5804448B2 (en) Cubic boron nitride based ultra-high pressure sintered body, cutting tool using this as a tool base, and surface-coated cutting tool
JP7137119B2 (en) cBN sintered body and cutting tool
JP7377463B2 (en) cBN sintered body and cutting tools
JP2020131293A (en) Cutting tool made of cubic crystal boron nitride-based sintered body
WO2020179809A1 (en) cBN SINTERED COMPACT AND CUTTING TOOL
JP2022142894A (en) cBN SINTERED COMPACT
JP6933017B2 (en) Cubic boron nitride base sintered body and cutting tool
JP7161670B2 (en) Cubic boron nitride-based sintered body and cutting tool
JP2022147104A (en) cBN SINTERED BODY AND CUTTING TOOL INCLUDING THE SAME
JP2019107768A (en) Cutting tool made by cubic crystal boron nitride sintered body
JP2019167256A (en) Cubic boron nitride based sintered body and cutting tool comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220816

R150 Certificate of patent or registration of utility model

Ref document number: 7137119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150