JP2020000969A - Method and device of treating aqueous ink effluent - Google Patents

Method and device of treating aqueous ink effluent Download PDF

Info

Publication number
JP2020000969A
JP2020000969A JP2018120657A JP2018120657A JP2020000969A JP 2020000969 A JP2020000969 A JP 2020000969A JP 2018120657 A JP2018120657 A JP 2018120657A JP 2018120657 A JP2018120657 A JP 2018120657A JP 2020000969 A JP2020000969 A JP 2020000969A
Authority
JP
Japan
Prior art keywords
aqueous ink
acid
waste liquid
oxidizing agent
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2018120657A
Other languages
Japanese (ja)
Inventor
達夫 下村
Tatsuo Shimomura
達夫 下村
智一 関根
Tomokazu Sekine
智一 関根
桜井 学
Manabu Sakurai
学 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Industrial Cleaning Co Ltd
Original Assignee
Ebara Industrial Cleaning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Industrial Cleaning Co Ltd filed Critical Ebara Industrial Cleaning Co Ltd
Priority to JP2018120657A priority Critical patent/JP2020000969A/en
Publication of JP2020000969A publication Critical patent/JP2020000969A/en
Ceased legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

To provide a method of efficiently precipitating and flocculating resin components and colorant components of various aqueous inks.SOLUTION: There are provided a device of treating aqueous ink comprising a reaction tank 10 for mixing and heating effluent containing aqueous ink, an acid, and an oxidizer to flocculate a solid component of the ink, a filtration tank 70 comprising a filter, and a pipeline 60 for transferring a liquid that contains the agglomerate prepared in the reaction tank 10 to the filtration tank 70, and a method of treating aqueous ink effluent, which is characterized by flocculating the solid component of aqueous ink by adding an acid and an oxidizing agent to effluent that contains aqueous ink, and heating the effluent.SELECTED DRAWING: Figure 1

Description

本発明は、水性インキを含有する廃液の処理方法に関する。   The present invention relates to a method for treating a waste liquid containing an aqueous ink.

フレキソ印刷機、グラビア印刷機などで使用されるインキは油性のものが多く用いられてきた。近年では、揮発性有機溶剤(VOCs)の使用を低減するために水性インキの開発が進められており、水性インキの使用量が増大している。水性フレキソインキや水性グラビアインキは、ビヒクル成分と呼ばれる樹脂の水溶液もしくは水乳化液中に着色剤成分(有機顔料又は無機顔料)を分散させ、さらに乳化剤などの安定剤成分を加えた組成を有する。   Inks used in flexographic printing machines, gravure printing machines, and the like have often been oily inks. In recent years, aqueous inks have been developed to reduce the use of volatile organic solvents (VOCs), and the amount of aqueous inks used has been increasing. Aqueous flexographic inks and gravure inks have a composition in which a colorant component (organic pigment or inorganic pigment) is dispersed in an aqueous solution or aqueous emulsion of a resin called a vehicle component, and further a stabilizer component such as an emulsifier is added.

水性インキは、印刷機や付属機器の色替え時などに装置の水洗が可能であるという利点を持つ。しかし、水洗時に発生する洗浄廃液は1g/L〜500g/L程度の固形成分が分散している着色懸濁液であるため、そのまま放流することはできない。また、この着色懸濁液中の固形成分は濾過比抵抗が非常に大きく、ろ過装置による固液分離は困難である。   The water-based ink has an advantage that the apparatus can be washed with water when changing colors of a printing press or an accessory device. However, the washing waste liquid generated at the time of washing with water is a colored suspension in which about 1 g / L to 500 g / L of solid components are dispersed, and therefore cannot be discharged as it is. Further, the solid component in the colored suspension has a very high filtration specific resistance, and it is difficult to perform solid-liquid separation using a filtration device.

このため、水性インキを含有する洗浄廃液は、全量を産業廃棄物とするか、もしくは凝集剤を添加して樹脂及び着色剤成分などの固形成分を凝集沈殿させ、フィルタプレス等で加圧濾過することにより処理が行われている。しかし、凝集剤を用いる方法では、樹脂の性状や共存する極性溶剤成分、安定剤成分などによって凝集効果が大きく異なり、また固形成分が50g/L以上の高濃度液では凝集が不完全となって清澄なろ液が得られないという問題があった。さらに、濾集した固形成分は粘度が高く、結合水を多く含むため、取扱いが難しいうえに、廃棄物量が増大するという問題があった。   For this reason, the washing waste liquid containing the water-based ink is entirely industrial waste, or a coagulant is added to coagulate and precipitate solid components such as a resin and a colorant component, and pressure filtration is performed by a filter press or the like. The processing is thus performed. However, in the method using a flocculant, the flocculant effect differs greatly depending on the properties of the resin, the coexisting polar solvent component, the stabilizer component, and the like, and the flocculation becomes incomplete with a high concentration liquid having a solid component of 50 g / L or more. There was a problem that a clear filtrate could not be obtained. Further, the collected solid component has a high viscosity and contains a large amount of bound water, so that there is a problem that handling is difficult and a waste amount is increased.

凝集沈殿ろ過法として、酸又は金属塩のいずれか一方、もしくは両方を添加して加熱することにより樹脂成分を析出凝集させ、濾別する方法が提案されている(特許文献1)。この方法は、ビヒクル成分が、カルボキシル基を親水基とするアルカリ可溶型の樹脂であれば有効である場合もあるが、現在一般的に使用されている界面活性剤や乳化剤で安定化されたエマルジョン型樹脂やコロイダルディスパージョン型樹脂に対しては有効でないことが多い。   As a coagulation-sedimentation filtration method, a method has been proposed in which either or both of an acid and a metal salt are added and heated to precipitate and coagulate a resin component, and the resulting mixture is separated by filtration (Patent Document 1). This method may be effective as long as the vehicle component is an alkali-soluble resin having a carboxyl group as a hydrophilic group, but is stabilized by a surfactant or an emulsifier that is currently generally used. It is often not effective for emulsion type resins and colloidal dispersion type resins.

凝集沈殿ろ過法を改良して、酸の代わりに、強カチオン性ジシアンジアミド縮合物などの処理剤を添加して樹脂分を析出させ、さらに高分子凝集剤により凝集させる方法が提案されている(特許文献2)。しかし、凝集剤を添加する点において、廃棄物量が増大する問題は解決されていない。   A method has been proposed in which the coagulation-sedimentation filtration method is improved, a processing agent such as a strong cationic dicyandiamide condensate is added instead of an acid to precipitate a resin component, and further coagulation with a polymer coagulant (Patent) Reference 2). However, in terms of adding a flocculant, the problem of increasing the amount of waste has not been solved.

より一般的な有機性排水の処理方法としては、フェントン法や電解フェントン法(たとえば特許文献3)、促進酸化法(AOP法)(たとえば特許文献4)などが知られている。しかし、フェントン法や電解フェントン法は、OHラジカルを発生させるために、鉄塩の添加を必要とし、中和時に水酸化鉄が大量に発生して廃棄物量が増加する問題がある。また、処理対象が水性インキを含有する廃液の場合には有機物質の濃度が高いために完全分解には大量の酸化剤又は電力を必要とするという問題がある。促進酸化法は、オゾン、過酸化水素、UV照射を組み合わせてOHラジカルを発生させる方法であり、フェントン法と同様に、水性インキを含有する廃液の場合には有機物質の分解に大量の酸化剤を必要とし、また水性インキを含有する廃液は不透明であるためUV照射が有効ではない。   As more general methods for treating organic wastewater, a Fenton method, an electrolytic Fenton method (for example, Patent Document 3), an accelerated oxidation method (AOP method) (for example, Patent Document 4), and the like are known. However, the Fenton method and the electrolytic Fenton method require the addition of an iron salt in order to generate OH radicals, and there is a problem that a large amount of iron hydroxide is generated during neutralization and the amount of waste increases. Further, when the processing target is a waste liquid containing an aqueous ink, there is a problem that a large amount of an oxidizing agent or electric power is required for complete decomposition due to a high concentration of the organic substance. The accelerated oxidation method is a method of generating OH radicals by combining ozone, hydrogen peroxide, and UV irradiation. Like the Fenton method, in the case of a waste liquid containing an aqueous ink, a large amount of an oxidizing agent is used to decompose organic substances. In addition, UV irradiation is not effective because the waste liquid containing the aqueous ink is opaque.

特開昭48−57470号公報JP-A-48-57470 特開2007−14934号公報JP 2007-14934 A 特開2017−60942号公報JP 2017-60942 A 特開2017−202465号公報JP 2017-202465 A

水性インキを含有する廃液(以下「水性インキ廃液」ともいう。)は、アルカリ可溶型、エマルジョン型、コロイダルディスパージョン型など多種多様な水性インキが混在しているため、従来の処理方法では十分な処理ができなかった。たとえば、特許文献1に記載されている方法では、インキが異なると化学反応が異なるため、凝集しない成分が含まれ、十分な凝集処理ができない。特許文献3及び4に記載されている方法では、凝集はするものの、OHラジカルが発生し、またUV照射が必須であるため、水性インキ廃液の処理としては実用的ではない。このように、多種多様な水性インキの樹脂成分および着色剤成分を効率よく析出、凝集させる方法が確立されていない。また、金属塩や凝集剤の添加による処理方法では、固形廃棄物量が増大する問題がある。さらに、高濃度の水性インキ廃液は凝集処理できない。本発明は、これらの問題を解決し、効率的な水性インキ廃液の処理方法及び処理装置を提供することを目的とする。   The waste liquid containing the aqueous ink (hereinafter also referred to as “aqueous ink waste liquid”) contains a wide variety of aqueous inks such as an alkali-soluble type, an emulsion type, and a colloidal dispersion type, so that the conventional processing method is sufficient. Processing could not be performed. For example, in the method described in Patent Document 1, since a different ink causes a different chemical reaction, a component that does not agglomerate is contained, and a sufficient aggregating process cannot be performed. In the methods described in Patent Literatures 3 and 4, although aggregation occurs, OH radicals are generated and UV irradiation is indispensable, so that it is not practical as a treatment for aqueous ink waste liquid. As described above, a method for efficiently depositing and aggregating the resin component and the colorant component of a variety of aqueous inks has not been established. Further, the treatment method by adding a metal salt or a coagulant has a problem that the amount of solid waste increases. In addition, high-concentration aqueous ink waste cannot be subjected to coagulation treatment. SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and provide an efficient method and apparatus for treating aqueous ink waste liquid.

上記課題を解決するために本発明者らは鋭意研究した結果、水性インキ廃液に酸を加えて酸性官能基を非解離状態とすると共に、少量の酸化剤を加えて加温することにより、添加されている安定剤成分を部分分解することによって、金属塩や凝集剤を用いることなく、イオン性基を有していない疎水性の樹脂成分及び顔料成分を効率よく凝集除去できることを知見し、本発明を完成させるに至った。   The inventors of the present invention have conducted intensive studies to solve the above-described problems. As a result, the acid functional group was added to the aqueous ink waste liquid to make it non-dissociated, and a small amount of an oxidizing agent was added thereto, followed by heating. It has been found that by partially decomposing the stabilizer component, the hydrophobic resin component and the pigment component having no ionic group can be efficiently aggregated and removed without using a metal salt or a coagulant. The invention has been completed.

本発明の態様は以下のとおりである。
[1]水性インキを含有する廃液に、酸及び酸化剤を添加し、加温してインキの固形成分を凝集させることを特徴とする水性インキ廃液の処理方法。
[2]前記水性インキが水性フレキソインキまたは水性グラビアインキであることを特徴とする前記[1]に記載の水性インキ廃液の処理方法。
[3]前記酸化剤がオゾン、過酸化水素、塩素酸、塩素酸塩、過硫酸、過硫酸塩からなる群から選ばれることを特徴とする前記[1]又は[2]に記載の処理方法。
[4]水性インキを含有する廃液に、酸及び酸化剤を添加し、加温してインキの固形成分を凝集させた後、アルカリもしくは重炭酸塩を添加してpHを中性に調整してから凝集物をろ過することを特徴とする、前記[1]〜[3]のいずれか1に記載の処理方法。
[5]水性インキを含有する廃液、酸及び酸化剤を混合して加温してインキの固形成分を凝集させる反応槽と、
フィルタを具備するろ過槽と、
前記反応槽で調製された凝集物を含む液を前記ろ過槽に送る配管と、
を設けた、前記[1]〜[4]のいずれか1に記載の水性インキ廃液の処理方法を実施するための処理装置。
Embodiments of the present invention are as follows.
[1] A method for treating an aqueous ink waste liquid comprising adding an acid and an oxidizing agent to a waste liquid containing the aqueous ink, and heating the resultant to agglomerate solid components of the ink.
[2] The method for treating an aqueous ink waste liquid according to [1], wherein the aqueous ink is an aqueous flexographic ink or an aqueous gravure ink.
[3] The treatment method according to [1] or [2], wherein the oxidizing agent is selected from the group consisting of ozone, hydrogen peroxide, chloric acid, chlorate, persulfate, and persulfate. .
[4] An acid and an oxidizing agent are added to the waste liquid containing the aqueous ink, and the solid components of the ink are aggregated by heating, and then the pH is adjusted to neutral by adding an alkali or bicarbonate. The treatment method according to any one of [1] to [3], wherein the aggregate is filtered from the mixture.
[5] a reaction tank for mixing a waste liquid containing an aqueous ink, an acid, and an oxidizing agent and heating the mixture to aggregate the solid components of the ink;
A filtration tank having a filter;
A pipe for sending a liquid containing the aggregate prepared in the reaction tank to the filtration tank,
A processing apparatus for implementing the aqueous ink waste liquid treatment method according to any one of [1] to [4], further comprising:

すなわち本発明においては、水性インキ廃液に酸を加えることによりカルボキシル基などの酸性官能基を非解離状態(H型)にして親水性を失わせ、同時に酸化剤の酸化還元電位を上昇させて酸化力を向上させ、この状態で加温することにより、界面活性剤や乳化剤のポリエーテル鎖などの親水性構造を部分分解し、樹脂や顔料成分に対する安定剤としての機能を破壊することができる。この加温下での酸及び酸化剤による2つの反応の複合作用によって、高濃度の固形成分(樹脂由来)を含む水性インキ廃液であっても、固形成分を効率よく凝集させることができ、容易に固形成分をろ過分離することができる。   That is, in the present invention, the acid is added to the aqueous ink waste liquid to make acidic functional groups such as carboxyl groups into a non-dissociated state (H type) to lose hydrophilicity, and at the same time, increase the oxidation-reduction potential of the oxidizing agent to oxidize. By increasing the power and heating in this state, the hydrophilic structure such as a polyether chain of a surfactant or an emulsifier can be partially decomposed, and the function as a stabilizer for a resin or a pigment component can be destroyed. Due to the combined action of the two reactions of the acid and the oxidizing agent under this heating, even if the aqueous ink waste liquid contains a high concentration of a solid component (derived from resin), the solid component can be efficiently aggregated, and the solid component can be easily coagulated. The solid component can be separated by filtration.

添加する酸化剤として、OHラジカルを発生させないような、酸化還元電位が比較的低い酸化剤を用いることが好ましい。好適には、オゾン、過酸化水素、塩素酸、塩素酸塩、過硫酸、過硫酸塩からなる群から選ばれる少なくとも1種の酸化剤を用いることができる。これらの酸化還元電位が比較的低い酸化剤は、水性インキ廃液中の樹脂成分や有機顔料成分の表面及び界面に存在する乳化剤や界面活性剤の親水性構造を部分分解することに消費され、水性インキ廃液中の樹脂成分、有機顔料、乳化剤及び界面活性剤の疎水性の骨格部分を酸化するほどの酸化力を有していないため、表面の親水性基を攻撃して、安定剤としての機能を効率よく低下させることができ、酸化力の浪費を避けることができる。   As the oxidizing agent to be added, it is preferable to use an oxidizing agent having a relatively low oxidation-reduction potential that does not generate OH radicals. Preferably, at least one oxidizing agent selected from the group consisting of ozone, hydrogen peroxide, chloric acid, chlorate, persulfuric acid, and persulfate can be used. The oxidizing agent having a relatively low oxidation-reduction potential is consumed by partially decomposing the hydrophilic structure of the emulsifier and the surfactant present on the surface and the interface of the resin component and the organic pigment component in the aqueous ink waste liquid. Since it does not have enough oxidizing power to oxidize the hydrophobic skeleton of the resin components, organic pigments, emulsifiers and surfactants in the ink waste liquid, it functions as a stabilizer by attacking hydrophilic groups on the surface. Can be reduced efficiently, and waste of oxidizing power can be avoided.

また、安定剤を部分分解することにより、ろ過比抵抗や粘性が大幅に低下し、加圧しない解放条件でもろ過が可能になる上、脱水性が良好な濾集物を得ることができる。
添加する酸としては、カルボキシル基などの有機酸をH型とするために酸解離定数の小さな強酸であることが望ましく、例えば硫酸、塩酸、リン酸、硝酸、シュウ酸、メタンスルホン酸などが好ましく用いられる。酸性条件はマレイン酸のpKaであるpH6.58以下が好ましく、より好ましくはアクリル酸のpKaであるpH4.35以下である。
In addition, by partially decomposing the stabilizer, the filtration specific resistance and the viscosity are greatly reduced, so that filtration can be performed even under a release condition without pressurization, and a filtered product having good dehydration properties can be obtained.
The acid to be added is preferably a strong acid having a small acid dissociation constant in order to convert an organic acid such as a carboxyl group into an H-form. For example, sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, oxalic acid, methanesulfonic acid and the like are preferable. Used. The acidic condition is preferably pH 6.58 or less, which is the pKa of maleic acid, and more preferably pH 4.35 or less, which is the pKa of acrylic acid.

本発明において添加する酸化剤は、強力な酸化力を有する必要は無く、OHラジカルを発生させる鉄塩などの金属塩と組み合わせて使用する必要もない。酸化剤の浪費削減及び廃棄物削減の観点から、弱い酸化力を有し、揮発性を有する酸化剤が好ましい。本発明に用いる酸化剤としては、例えばオゾン、過酸化水素、次亜塩素酸、次亜塩素酸塩、塩素酸、塩素酸塩、過塩素酸、過塩素酸塩、過硫酸、過硫酸塩、モノ過硫酸カリウム複塩などから選択することができる。これらの酸化剤は薬剤として供給してもよく、あるいは電解酸化反応を利用してその場で生成又は再生することにより供給してもよい。これらの酸化剤のうち、オゾン、過酸化水素は反応後に塩として残留しないので、廃棄物量を低減する観点から好ましく用いられる。なお、塩素系の酸化剤を用いる場合は、酸との反応により塩素ガスが発生する恐れがあるため、換気に注意する必要がある。   The oxidizing agent added in the present invention does not need to have strong oxidizing power, and does not need to be used in combination with a metal salt such as an iron salt that generates an OH radical. From the viewpoint of reducing the waste of the oxidizing agent and the waste, an oxidizing agent having a weak oxidizing power and having a volatile property is preferable. As the oxidizing agent used in the present invention, for example, ozone, hydrogen peroxide, hypochlorous acid, hypochlorite, chloric acid, chlorate, perchloric acid, perchlorate, persulfate, persulfate, It can be selected from potassium monopersulfate double salt and the like. These oxidizing agents may be supplied as a chemical, or may be supplied by generating or regenerating in situ using an electrolytic oxidation reaction. Among these oxidizing agents, ozone and hydrogen peroxide do not remain as salts after the reaction, and therefore are preferably used from the viewpoint of reducing the amount of waste. When a chlorine-based oxidizing agent is used, it is necessary to pay attention to ventilation since chlorine gas may be generated by a reaction with an acid.

本発明における加温温度は、処理対象となる水性インキに含まれる安定化剤の種類と、添加する酸化剤との組み合わせを勘案して適宜設定することができる。例えば、40℃以上、好ましくは40℃〜50℃程度とすることができる。さらに70℃程度まで昇温することにより凝集作用は徐々に改善されるが、熱エネルギー低減の観点からは50℃程度で処理することが好ましい。加温時間は、例えば10分〜30分程度で、充分な凝集効果を得ることができる。加温のための熱源としては、投げ込みヒータなどを設置してもよく、エネルギー効率の観点からは印刷機の乾燥工程廃熱などを利用することも好ましい。   The heating temperature in the present invention can be appropriately set in consideration of the combination of the type of the stabilizer contained in the aqueous ink to be treated and the oxidizing agent to be added. For example, it can be set to 40 ° C. or higher, preferably about 40 ° C. to 50 ° C. Further, the coagulation action is gradually improved by raising the temperature to about 70 ° C., but it is preferable to perform the treatment at about 50 ° C. from the viewpoint of reducing heat energy. The heating time is, for example, about 10 to 30 minutes, and a sufficient coagulation effect can be obtained. As a heat source for heating, a throw-in heater or the like may be provided, and it is also preferable to use, for example, waste heat from a drying process of a printing press from the viewpoint of energy efficiency.

本発明において処理対象となる水性インキとしては、例えば水性フレキソインキや水性グラビアインキを好適に挙げることができるが、これらに限定されるものではなく、水を含む極性溶剤成分、ビヒクル成分、着色剤成分、および安定化剤成分から構成されるインキであれば適用可能である。ビヒクル成分である水性インキ用樹脂としては、例えば天然樹脂、アクリル系樹脂、スチレン−アクリル系樹脂、スチレン−マレイン酸−アクリル系樹脂、およびスチレン−マレイン酸系樹脂などが挙げられる。   Aqueous inks to be treated in the present invention include, for example, aqueous flexographic inks and aqueous gravure inks, but are not limited thereto, and include polar solvent components containing water, vehicle components, and colorants. Any ink can be applied as long as the ink is composed of a component and a stabilizer component. Examples of the vehicle component resin for an aqueous ink include a natural resin, an acrylic resin, a styrene-acrylic resin, a styrene-maleic acid-acrylic resin, and a styrene-maleic acid resin.

本発明により得られる凝集物は、ろ過比抵抗が非常に小さくなるため、密閉型バグフィルタ、フィルタプレスなどの加圧ろ過装置だけでなく、無加圧の開放ろ過装置を用いて凝集物をろ別することも可能であり、運転コストを抑制することができる。   Since the agglomerate obtained by the present invention has a very low filtration specific resistance, the agglomerate is filtered not only using a pressurized filtration device such as a closed bag filter and a filter press but also using a non-pressurized open filtration device. Separation is also possible, and operation costs can be suppressed.

図1は、本発明の水性インキ廃液の処理方法を実施するための装置(回分型)の一実施形態を示す概略図である。FIG. 1 is a schematic view showing an embodiment of an apparatus (batch type) for carrying out the method for treating aqueous ink waste liquid of the present invention. 図2は、本発明の水性インキ廃液の処理方法を実施するための装置(連続型)の一実施形態を示す概略図である。FIG. 2 is a schematic view showing one embodiment of an apparatus (continuous type) for performing the aqueous ink waste liquid treatment method of the present invention. 図3は、本発明の水性インキ廃液の処理方法を実施するための装置(ろ過後中和型)の一実施形態を示す概略図である。FIG. 3 is a schematic view showing an embodiment of an apparatus (neutralization type after filtration) for performing the aqueous ink waste liquid treatment method of the present invention. 実施例3及び比較例3による処理液の状態を示す写真である。9 is a photograph showing a state of a processing solution according to Example 3 and Comparative Example 3.

実施形態Embodiment

以下、添付図面を参照しながら、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
[第1実施形態]
本発明の処理方法を実施するための回分型処理装置の一実施形態を図1に示す。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited thereto.
[First Embodiment]
FIG. 1 shows an embodiment of a batch processing apparatus for performing the processing method of the present invention.

図1に示す処理装置は、水性インキ廃液と酸と酸化剤とを混合し、加温して凝集物を形成させ沈殿させる反応槽10と、反応槽10で調製された凝集物と上澄み液を含む液を凝集物と分離水とにろ別するフィルタを具備するろ過槽70と、反応槽10で調製された凝集物と上澄み水を含む液をろ過槽70に送る配管60と、を具備する。配管60は、反応槽10で調製された凝集物と上澄み水を含む液を反応槽10の下部から配管60に流出させるように、反応槽10に接続されている。   The processing apparatus shown in FIG. 1 mixes an aqueous ink waste liquid, an acid, and an oxidizing agent, and heats the reaction tank 10 to form and precipitate aggregates. A filtration tank 70 having a filter for filtering the liquid containing the aggregate into the aggregate and the separated water, and a pipe 60 for sending the liquid containing the aggregate prepared in the reaction tank 10 and the supernatant water to the filtration tank 70 are provided. . The pipe 60 is connected to the reaction tank 10 so that a liquid containing the aggregate and supernatant water prepared in the reaction tank 10 flows out from the lower part of the reaction tank 10 to the pipe 60.

反応槽10には、水性インキ廃液と酸と酸化剤とを混合し加温する手段が設けられている。図1の実施形態においては、反応槽10には、ヒータ20と、撹拌機40と、酸および酸化剤の供給手段30と、が設けられている。   The reaction tank 10 is provided with means for mixing and heating the aqueous ink waste liquid, the acid and the oxidizing agent. In the embodiment of FIG. 1, the reaction tank 10 is provided with a heater 20, a stirrer 40, and an acid and oxidant supply means 30.

図1の実施形態では、反応槽10には、さらに、水性インキ廃液と酸と酸化剤とを混合し加温することによって得られる凝集物と上澄み水とを含む液のpHを調整するpH調整剤供給手段50を具備する。pH調整剤供給手段50を用いてpH調整剤を添加して凝集物及び上澄み水のpH調整を行ってから、ろ過槽70にてろ過を行うことにより、清澄でかつpHが中和された処理水を得ることができる。   In the embodiment of FIG. 1, the reaction tank 10 further adjusts the pH of a liquid containing an aggregate obtained by mixing and heating an aqueous ink waste liquid, an acid, and an oxidizing agent and supernatant water. An agent supply unit 50 is provided. A process in which a pH adjusting agent is added using the pH adjusting agent supply means 50 to adjust the pH of the aggregate and the supernatant water, and then filtered in a filtration tank 70 to obtain a clear and neutralized pH. You can get water.

酸および酸化剤の供給手段30としては、酸および酸化剤の薬液タンクおよび薬注ポンプを配備することが一般的である。あるいは、小型の隔膜電解槽を設置して陽極区画で製造される酸化液を酸および酸化剤として供給することもできる。この場合、陰極区画で製造されたアルカリ液はpH調整剤として使用することも可能である。   As the supply means 30 for the acid and the oxidizing agent, a chemical tank for the acid and the oxidizing agent and a chemical pump are generally provided. Alternatively, an oxidizing solution produced in the anode compartment can be supplied as an acid and an oxidizing agent by installing a small diaphragm electrolytic cell. In this case, the alkaline solution produced in the cathode compartment can be used as a pH adjuster.

次に、図1に示す処理装置を用いた本発明の水性インキ廃液の処理方法を説明する。
印刷機や付属機器の色替えや洗浄に伴う廃液や洗浄廃水を受け入れ可能な場所に本発明の処理装置を設置し、反応槽10に水性インキ廃液を受け入れる。受け入れる水性インキ廃液の固形分濃度は特に限定されないが、酸添加時の流動性を確保するために固形分濃度は300g/L以下であることが好ましく、固形分濃度300g/Lを超える高濃度の水性インキ廃液を受け入れた場合は、本方法の処理方法により得られるろ過処理水を反応槽10に添加して適宜希釈することもできる。
Next, a method for treating aqueous ink waste liquid of the present invention using the treatment apparatus shown in FIG. 1 will be described.
The processing apparatus of the present invention is installed in a place where waste liquid and washing waste water accompanying color change and washing of a printing machine and attached equipment can be received, and the aqueous ink waste liquid is received in the reaction tank 10. The solid concentration of the aqueous ink waste liquid to be received is not particularly limited, but the solid concentration is preferably 300 g / L or less in order to secure the fluidity at the time of adding the acid, and the solid concentration is higher than 300 g / L. When the aqueous ink waste liquid is received, the filtered water obtained by the treatment method of the present method can be added to the reaction tank 10 and appropriately diluted.

反応槽10内において、攪拌機40を用いて水性インキ廃液を撹拌しながら、酸供給手段30から酸を添加し、反応槽10内の水性インキ廃液のpHを4.35以下に調整する。ヒータ20を用いて水性インキ廃液を50℃程度に加温し、酸化剤供給手段30から酸化剤を添加する。酸化剤の添加量および加温反応時間は水性インキ廃液の性状によって適宜調整すべきであるが、酸化剤は過酸化水素として1.5g/L程度、加温時間は10分も与えれば充分な凝集効果を得ることができる。   While stirring the aqueous ink waste liquid using the stirrer 40 in the reaction tank 10, an acid is added from the acid supply unit 30 to adjust the pH of the aqueous ink waste liquid in the reaction tank 10 to 4.35 or less. The aqueous ink waste liquid is heated to about 50 ° C. using the heater 20, and an oxidant is added from the oxidant supply unit 30. The addition amount of the oxidizing agent and the heating reaction time should be appropriately adjusted depending on the properties of the aqueous ink waste liquid, but the oxidizing agent is about 1.5 g / L as hydrogen peroxide, and the heating time of 10 minutes is sufficient. An aggregation effect can be obtained.

反応槽10での凝集反応が完了したら、形成され沈殿した凝集物と上澄み水を含む液を配管60を用いてろ過槽70に導入し、ろ別する。反応槽10からろ過槽70への液の移送は、ポンプを用いて揚水するか、槽間の高低差を利用する自然流下により行うことができる。ろ過槽70におけるろ別方法として、密閉型バグフィルタやフィルタプレス等を用いた圧搾を行ってもよいが、開放型バグフィルタ等を用いて自然ろ過による濾別を行うことも可能である。フィルタの孔径は5〜10μm程度の大きなものでも十分清澄なろ液を得ることができる。   When the agglutination reaction in the reaction tank 10 is completed, a liquid containing the formed and precipitated agglomerates and supernatant water is introduced into the filtration tank 70 using the pipe 60, and filtered. The transfer of the liquid from the reaction tank 10 to the filtration tank 70 can be performed by pumping water using a pump or by natural flow utilizing a height difference between the tanks. As a filtration method in the filtration tank 70, squeezing using a closed bag filter, a filter press, or the like may be performed, but filtration using natural filtration using an open bag filter or the like is also possible. A sufficiently clear filtrate can be obtained even if the pore size of the filter is as large as about 5 to 10 μm.

図1の実施形態では、さらに、水性インキ廃液と酸と酸化剤とを混合し加温する処理によって得られた凝集物と上澄み水を含む液をろ過槽70に送る前に、pH調整剤供給手段50を用いてpH調整を行う。pH調整剤供給手段50により供給するpH調整剤としては、水酸化ナトリウム、炭酸水素ナトリウム、水酸化カルシウムなどが好ましく用いられる。これらは粉末または水溶液として供給されることが好ましい。あるいは、酸および酸化剤供給手段として隔膜電解槽を用いる場合には、陰極区画液をpH調整剤として使用することができる。処理水のpHは一律排水基準値に定められている5.8以上8.6以下の範囲とすることが好ましい。   In the embodiment of FIG. 1, the pH adjusting agent is supplied before the liquid containing the aggregate and the supernatant water obtained by mixing and heating the aqueous ink waste liquid, the acid, and the oxidizing agent and heating the filtrate. The pH is adjusted using the means 50. As the pH adjuster supplied by the pH adjuster supply means 50, sodium hydroxide, sodium bicarbonate, calcium hydroxide and the like are preferably used. These are preferably supplied as a powder or an aqueous solution. Alternatively, when a diaphragm electrolytic cell is used as the acid and oxidizing agent supply means, a cathode compartment solution can be used as a pH adjuster. It is preferable that the pH of the treated water is in the range of 5.8 to 8.6 specified in the uniform wastewater standard value.

受け入れた水性インキ廃液の組成によっては、pH調整後の液に懸濁もしくは沈殿物が発生することがある。このような場合は上記のようにろ過前にpH調整を行って懸濁もしくは沈殿物を予め発生させておき、その後に濾過を行うことにより、pHが中和されてかつ清澄なろ過水を処理水として排水することができる。   Depending on the composition of the received aqueous ink waste liquid, a suspension or precipitate may be generated in the liquid after pH adjustment. In such a case, as described above, the pH is adjusted before filtration to generate a suspension or precipitate in advance, and then filtration is performed to treat the filtered water whose pH has been neutralized and clear. Can be drained as water.

なお、本発明の方法によって得られる処理水は固形分および着色剤を排除した清澄なものではあるが、受け入れた水性インキ廃液の組成によっては水溶性の有機物成分を含有してCOD濃度が高くなっている場合がある。これが問題となる場合は、処理水に対してさらに酸化剤を添加するか電解酸化処理を行うことによって有機物成分を分解する後処理を行うことも好ましい。   Although the treated water obtained by the method of the present invention is clear without solids and colorants, depending on the composition of the received aqueous ink waste liquid, it contains a water-soluble organic component and the COD concentration becomes high. May be. If this poses a problem, it is also preferable to perform a post-treatment of decomposing organic components by further adding an oxidizing agent to the treated water or performing electrolytic oxidation treatment.

[第2実施形態]
本発明の処理方法を実施するための連続型処理装置の一実施形態を図2に示す。
図2に示す処理装置は、水性インキ廃液と酸と酸化剤とを混合し、加温して凝集物を形成させる反応槽10と、反応槽10で調製された凝集物および上澄み水を含む流出液のpHを調整するpH調整剤供給手段50を具備するpH調整槽80と、pH調整後の流出液を凝集物と分離水とにろ別するフィルタを具備するろ過槽70と、反応槽10で調製された凝集物及び上澄み水を含む流出液をpH調整槽80に送る配管60と、pH調整後の凝集物および上澄み水を含む流出液をpH調整槽80からろ過槽70に送る配管62と、を具備する。配管60は、反応槽10で調整された流出液を反応槽10の下部から流出させるように反応槽10に接続されており、配管62はpH調整後の流出液をpH調整槽80の下部から流出させるようにpH調整槽80に接続されている。
[Second embodiment]
FIG. 2 shows an embodiment of a continuous processing apparatus for carrying out the processing method of the present invention.
The processing apparatus shown in FIG. 2 includes a reaction tank 10 in which an aqueous ink waste liquid, an acid, and an oxidizing agent are mixed and heated to form an aggregate, and an outflow including the aggregate prepared in the reaction tank 10 and supernatant water. A pH adjusting tank 80 having a pH adjusting agent supply means 50 for adjusting the pH of the liquid, a filtration tank 70 having a filter for filtering the effluent after the pH adjustment into aggregates and separated water, and a reaction tank 10 A pipe 60 for sending the effluent containing the aggregate and the supernatant water prepared in the above to the pH adjustment tank 80, and a pipe 62 for sending the effluent containing the aggregate and the supernatant water after the pH adjustment from the pH adjustment tank 80 to the filtration tank 70. And The pipe 60 is connected to the reaction tank 10 so that the effluent adjusted in the reaction tank 10 flows out from the lower part of the reaction tank 10, and the pipe 62 connects the effluent after pH adjustment from the lower part of the pH adjustment tank 80. It is connected to the pH adjusting tank 80 so as to flow out.

反応槽10には、水性インキ廃液と酸と酸化剤とを混合し加温する手段が設けられている。図2の実施形態においては、反応槽10には、ヒータ20と、撹拌機40と、酸および酸化剤の供給手段30と、が設けられている。   The reaction tank 10 is provided with means for mixing and heating the aqueous ink waste liquid, the acid and the oxidizing agent. In the embodiment of FIG. 2, the reaction tank 10 is provided with a heater 20, a stirrer 40, and an acid and oxidant supply means 30.

図2の実施形態では、反応槽10とろ過槽70との間にpH調整槽80が別個に設けられ、反応槽10からの凝集物及び上澄み水を含む流出液のpHを調整する。pH調整槽80にはpH調整剤供給手段50が設けられている。pH調整槽80にて、pH調整剤を添加して凝集物及び上澄み水を含む流出液のpH調整を行ってから、ろ過槽70にてろ過を行うことにより、清澄でかつpHが中和された処理水を得ることができる。   In the embodiment of FIG. 2, a pH adjusting tank 80 is separately provided between the reaction tank 10 and the filtration tank 70, and adjusts the pH of the effluent containing the aggregate and the supernatant water from the reaction tank 10. The pH adjusting tank 80 is provided with a pH adjusting agent supply means 50. In the pH adjusting tank 80, a pH adjusting agent is added to adjust the pH of the effluent including the aggregates and the supernatant water, and then the filtrate is filtered in the filtration tank 70, whereby the clarified and neutralized pH is obtained. Treated water can be obtained.

酸および酸化剤の供給手段30としては、酸および酸化剤の薬液タンクおよび薬注ポンプを配備することが一般的である。あるいは、小型の隔膜電解槽を設置して陽極区画で製造される酸化液を酸および酸化剤として供給することもできる。この場合、陰極区画で製造されたアルカリ液はpH調整剤として使用することも可能である。   As the supply means 30 for the acid and the oxidizing agent, a chemical tank for the acid and the oxidizing agent and a chemical pump are generally provided. Alternatively, an oxidizing solution produced in the anode compartment can be supplied as an acid and an oxidizing agent by installing a small diaphragm electrolytic cell. In this case, the alkaline solution produced in the cathode compartment can be used as a pH adjuster.

次に、図2に示す処理装置を用いた本発明の水性インキ廃液の処理方法を説明する。
印刷機や付属機器の色替えや洗浄に伴う廃液や洗浄廃水を受け入れ可能な場所に本発明の処理装置を設置し、反応槽10に水性インキ廃液を受け入れる。受け入れる水性インキ廃液の固形分濃度は特に限定されないが、酸添加時の流動性を確保するために固形分濃度は300g/L以下であることが好ましく、固形分濃度300g/Lを超える高濃度の水性インキ廃液を受け入れた場合は、本方法の処理方法により得られるろ過処理水を反応槽10に添加して適宜希釈することもできる。
Next, a method for treating aqueous ink waste liquid of the present invention using the treatment apparatus shown in FIG. 2 will be described.
The processing apparatus of the present invention is installed in a place where waste liquid and washing waste water accompanying color change and washing of a printing machine and attached equipment can be received, and the aqueous ink waste liquid is received in the reaction tank 10. The solid concentration of the aqueous ink waste liquid to be received is not particularly limited, but the solid concentration is preferably 300 g / L or less in order to secure the fluidity at the time of adding the acid, and the solid concentration is higher than 300 g / L. When the aqueous ink waste liquid is received, the filtered water obtained by the treatment method of the present method can be added to the reaction tank 10 and appropriately diluted.

反応槽10内において、攪拌機40を用いて水性インキ廃液を撹拌しながら、酸供給手段30から酸を添加し、反応槽10内の水性インキ廃液のpHを4.35以下に調整する。ヒータ20を用いて水性インキ廃液を50℃程度に加温し、酸化剤供給手段30から酸化剤を添加する。酸化剤の添加量および加温反応時間は水性インキ廃液の性状によって適宜調整すべきであるが、酸化剤は過酸化水素として1.5g/L程度、加温時間は10分も与えれば充分な凝集効果を得ることができる。   While stirring the aqueous ink waste liquid using the stirrer 40 in the reaction tank 10, an acid is added from the acid supply unit 30 to adjust the pH of the aqueous ink waste liquid in the reaction tank 10 to 4.35 or less. The aqueous ink waste liquid is heated to about 50 ° C. using the heater 20, and an oxidant is added from the oxidant supply unit 30. The addition amount of the oxidizing agent and the heating reaction time should be appropriately adjusted depending on the properties of the aqueous ink waste liquid, but the oxidizing agent is about 1.5 g / L as hydrogen peroxide, and the heating time of 10 minutes is sufficient. An aggregation effect can be obtained.

次いで、反応槽10から凝集物及び上澄み水を含む流出液は、pH調整槽80に送られ、pH調整剤添加手段50からpH調整剤が添加されて、中和される。pH調整剤供給手段50により供給するpH調整剤としては、水酸化ナトリウム、炭酸水素ナトリウム、水酸化カルシウムなどが好ましく用いられる。これらは粉末または水溶液として供給されることが好ましい。あるいは、酸および酸化剤供給手段として隔膜電解槽を用いる場合には、陰極区画液をpH調整剤として使用することができる。処理水のpHは一律排水基準値に定められている5.8以上8.6以下の範囲とすることが好ましい。
pH調整槽80にて中和された凝集物と上澄み水とを含む流出液は、配管62を用いてろ過槽70に導入され、凝集物と分離水とにろ別される。pH調整槽80からろ過槽70への分離水の移送は、ポンプを用いて揚水するか、あるいは槽間の高低差を利用する自然流下により行うことができる。ろ過槽70におけるろ別方法として、密閉型バグフィルタやフィルタプレス等を用いた圧搾を行ってもよいが、開放型バグフィルタ等を用いて自然ろ過による濾別を行うことも可能である。フィルタの孔径は5〜10μm程度の大きなものでも十分清澄なろ液を得ることができる。
Next, the effluent containing the aggregates and the supernatant water from the reaction tank 10 is sent to the pH adjusting tank 80, where the pH adjusting agent is added from the pH adjusting agent adding means 50 and neutralized. As the pH adjuster supplied by the pH adjuster supply means 50, sodium hydroxide, sodium hydrogen carbonate, calcium hydroxide and the like are preferably used. These are preferably supplied as a powder or an aqueous solution. Alternatively, in the case where a diaphragm electrolytic cell is used as the acid and oxidant supply means, a cathode compartment solution can be used as a pH adjuster. It is preferable that the pH of the treated water is in the range of 5.8 to 8.6, which is defined as a uniform drainage standard value.
The effluent containing the coagulated matter neutralized in the pH adjusting tank 80 and the supernatant water is introduced into the filtration tank 70 through the pipe 62, and is separated into the coagulated matter and separated water. Transfer of the separated water from the pH adjustment tank 80 to the filtration tank 70 can be performed by pumping using a pump or by natural flow utilizing a height difference between the tanks. As a filtration method in the filtration tank 70, squeezing using a closed bag filter, a filter press, or the like may be performed, but filtration using natural filtration using an open bag filter or the like is also possible. A sufficiently clear filtrate can be obtained even if the pore size of the filter is as large as about 5 to 10 μm.

なお、本発明の方法によって得られる処理水は固形分および着色剤を排除した清澄なものではあるが、受け入れた水性インキ廃液の組成によっては水溶性の有機物成分を含有してCOD濃度が高くなっている場合がある。これが問題となる場合は、処理水に対してさらに酸化剤を添加するか電解酸化処理を行うことによって有機物成分を分解する後処理を行うことも好ましい。   Although the treated water obtained by the method of the present invention is clear without solids and colorants, depending on the composition of the received aqueous ink waste liquid, it contains a water-soluble organic component and the COD concentration becomes high. May be. If this poses a problem, it is also preferable to perform a post-treatment of decomposing organic components by further adding an oxidizing agent to the treated water or performing electrolytic oxidation treatment.

[第3実施形態]
本発明の処理方法を実施するための連続型処理装置の別の実施形態を図3に示す。
図3に示す処理装置は、水性インキ廃液と酸と酸化剤とを混合し、加温して凝集物を形成させる反応槽10と、反応槽10で調製された凝集物及び上澄み水を含む流出液をろ別するフィルタを具備するろ過槽70と、ろ別した分離水のpHを調整するpH調整剤供給手段50を具備するpH調整槽80と、反応槽10で調製された凝集物及び上澄み水を含む流出液をろ過槽70に送る配管60と、ろ過槽70でろ別された分離水をpH調整槽80に送る配管64と、pH調整槽80で中和された処理水の一部をろ過槽70に返送する配管66と、を具備する。
[Third embodiment]
FIG. 3 shows another embodiment of a continuous processing apparatus for performing the processing method of the present invention.
The processing apparatus shown in FIG. 3 mixes an aqueous ink waste liquid, an acid, and an oxidizing agent and heats them to form aggregates, and the effluent containing the aggregates and supernatant water prepared in the reactor 10. A filtration tank 70 having a filter for filtering the liquid, a pH adjustment tank 80 having a pH adjusting agent supply means 50 for adjusting the pH of the filtered separated water, an aggregate prepared in the reaction tank 10 and supernatant A pipe 60 for sending an effluent containing water to a filtration tank 70, a pipe 64 for sending separated water filtered in the filtration tank 70 to a pH adjustment tank 80, and a part of the treated water neutralized in the pH adjustment tank 80 And a pipe 66 returning to the filtration tank 70.

配管60は、反応槽10で調製された凝集物及び上澄み水を含む流出液を反応槽10の下部から流出させるように反応槽10に接続されており、配管64はろ過槽70からの分離水をろ過槽70の下部から流出させるようにろ過槽70に接続されており、配管66は中和後の処理水をpH調整槽80の下部から流出させるようにpH調整槽80に接続されている。   The pipe 60 is connected to the reaction tank 10 so that the effluent containing the aggregate and the supernatant water prepared in the reaction tank 10 flows out from the lower part of the reaction tank 10, and the pipe 64 is connected to the separated water from the filtration tank 70. Is connected to the filtration tank 70 so as to flow out from the lower part of the filtration tank 70, and the pipe 66 is connected to the pH adjustment tank 80 so that the neutralized treated water flows out from the lower part of the pH adjustment tank 80. .

反応槽10には、水性インキ廃液と酸と酸化剤とを混合し加温する手段が設けられている。図3の実施形態においては、反応槽10には、ヒータ20と、撹拌機40と、酸および酸化剤の供給手段30と、が設けられている。   The reaction tank 10 is provided with means for mixing and heating the aqueous ink waste liquid, the acid and the oxidizing agent. In the embodiment of FIG. 3, the reaction tank 10 is provided with a heater 20, a stirrer 40, and an acid and oxidant supply means 30.

図3の実施形態では、ろ過槽70の後段に、pH調整槽80が別個に設けられ、凝集及びろ過後の分離水のpHが調整される。pH調整槽80にはpH調整剤供給手段50が設けられている。pH調整槽80にてpH調整剤を添加してpH調整を行なうことにより、清澄でかつpHが中和された処理水を得ることができる。   In the embodiment of FIG. 3, a pH adjustment tank 80 is separately provided downstream of the filtration tank 70, and the pH of the separated water after the aggregation and the filtration is adjusted. The pH adjusting tank 80 is provided with a pH adjusting agent supply means 50. By adding a pH adjusting agent in the pH adjusting tank 80 to adjust the pH, clear and neutralized treated water can be obtained.

pH調整槽80から流出する処理水の一部もしくは全部は、ろ過槽70に返送され、ろ過槽70にて再度ろ過処理することができる。
酸および酸化剤の供給手段30としては、酸および酸化剤の薬液タンクおよび薬注ポンプを配備することが一般的である。あるいは、小型の隔膜電解槽を設置して陽極区画で製造される酸化液を酸および酸化剤として供給することもできる。この場合、陰極区画で製造されたアルカリ液はpH調整剤として使用することも可能である。
Part or all of the treatment water flowing out of the pH adjustment tank 80 is returned to the filtration tank 70 and can be filtered again in the filtration tank 70.
As the supply means 30 for the acid and the oxidizing agent, a chemical tank for the acid and the oxidizing agent and a chemical pump are generally provided. Alternatively, an oxidizing solution produced in the anode compartment can be supplied as an acid and an oxidizing agent by installing a small diaphragm electrolytic cell. In this case, the alkaline solution produced in the cathode compartment can be used as a pH adjuster.

次に、図3に示す処理装置を用いた本発明の水性インキ廃液の処理方法を説明する。
印刷機や付属機器の色替えや洗浄に伴う廃液や洗浄廃水を受け入れ可能な場所に本発明の処理装置を設置し、反応槽10に水性インキ廃液を受け入れる。受け入れる水性インキ廃液の固形分濃度は特に限定されないが、酸添加時の流動性を確保するために固形分濃度は300g/L以下であることが好ましく、固形分濃度300g/Lを超える高濃度の水性インキ廃液を受け入れた場合は、本方法の処理方法により得られるろ過処理水を反応槽10に添加して適宜希釈することもできる。
Next, a method for treating aqueous ink waste liquid of the present invention using the treatment apparatus shown in FIG. 3 will be described.
The processing apparatus of the present invention is installed in a place where waste liquid and washing waste water accompanying color change and washing of a printing machine and attached equipment can be received, and the aqueous ink waste liquid is received in the reaction tank 10. The solid concentration of the aqueous ink waste liquid to be received is not particularly limited, but the solid concentration is preferably 300 g / L or less in order to secure the fluidity at the time of adding the acid, and the solid concentration is higher than 300 g / L. When the aqueous ink waste liquid is received, the filtered water obtained by the treatment method of the present method can be added to the reaction tank 10 and appropriately diluted.

反応槽10内において、攪拌機40を用いて水性インキ廃液を撹拌しながら、酸供給手段30から酸を添加し、反応槽10内の水性インキ廃液のpHを4.35以下に調整する。ヒータ20を用いて水性インキ廃液を50℃程度に加温し、酸化剤供給手段30から酸化剤を添加する。酸化剤の添加量および加温反応時間は水性インキ廃液の性状によって適宜調整すべきであるが、酸化剤は過酸化水素として1.5g/L程度、加温時間は10分も与えれば充分な凝集効果を得ることができる。   While stirring the aqueous ink waste liquid using the stirrer 40 in the reaction tank 10, an acid is added from the acid supply unit 30 to adjust the pH of the aqueous ink waste liquid in the reaction tank 10 to 4.35 or less. The aqueous ink waste liquid is heated to about 50 ° C. using the heater 20, and an oxidant is added from the oxidant supply unit 30. The addition amount of the oxidizing agent and the heating reaction time should be appropriately adjusted depending on the properties of the aqueous ink waste liquid, but the oxidizing agent is about 1.5 g / L as hydrogen peroxide, and the heating time of 10 minutes is sufficient. An aggregation effect can be obtained.

次いで、反応槽10から凝集物及び上澄み水を含む流出液は、ろ過槽70に送られ、ろ別される。反応槽10からろ過槽70への流出物の移送は、ポンプを用いて揚水してもよく、あるいは槽間の高低差を利用する自然流下により移送してもよい。ろ過槽70におけるろ別方法として、密閉型バグフィルタやフィルタプレス等を用いた圧搾を行ってもよいが、開放型バグフィルタ等を用いて自然ろ過による濾別を行うことも可能である。フィルタの孔径は5〜10μm程度の大きなものでも十分清澄なろ液を得ることができる。   Next, the effluent containing the aggregates and the supernatant water from the reaction tank 10 is sent to the filtration tank 70 and filtered. The transfer of the effluent from the reaction tank 10 to the filtration tank 70 may be carried out by pumping using a pump or by natural flow utilizing a height difference between the tanks. As a filtration method in the filtration tank 70, squeezing using a closed bag filter, a filter press, or the like may be performed, but filtration using natural filtration using an open bag filter or the like is also possible. A sufficiently clear filtrate can be obtained even if the pore size of the filter is as large as about 5 to 10 μm.

次に、ろ別された分離水は、pH調整槽80に送られ、pH調整剤添加手段50からpH調整剤が添加されて、中和される。pH調整剤供給手段50により供給するpH調整剤としては、水酸化ナトリウム、炭酸水素ナトリウム、水酸化カルシウムなどが好ましく用いられる。これらは粉末または水溶液として供給されることが好ましい。あるいは、酸および酸化剤供給手段として隔膜電解槽を用いる場合には、陰極区画液をpH調整剤として使用することができる。処理水のpHは一律排水基準値に定められている5.8以上8.6以下の範囲とすることが好ましい。
受け入れた水性インキ廃液の組成によっては、pH調整後の液に懸濁もしくは沈殿物が発生することがある。このような場合はpH調整後の液を配管66を介してろ過槽70に返送し、再度ろ過処理することによって清澄でかつpHが中和された処理液を得ることができる。 なお、本発明の方法によって得られる処理水は固形分および着色剤を排除した清澄なものではあるが、受け入れた水性インキ廃液の組成によっては水溶性の有機物成分を含有してCOD濃度が高くなっている場合がある。これが問題となる場合は、処理水に対してさらに酸化剤を添加するか電解酸化処理を行うことによって有機物成分を分解する後処理を行うことも好ましい。
Next, the separated water filtered is sent to the pH adjusting tank 80, and the pH adjusting agent is added from the pH adjusting agent adding means 50 to be neutralized. As the pH adjuster supplied by the pH adjuster supply means 50, sodium hydroxide, sodium bicarbonate, calcium hydroxide and the like are preferably used. These are preferably supplied as a powder or an aqueous solution. Alternatively, when a diaphragm electrolytic cell is used as the acid and oxidizing agent supply means, a cathode compartment solution can be used as a pH adjuster. It is preferable that the pH of the treated water is in the range of 5.8 to 8.6 specified in the uniform wastewater standard value.
Depending on the composition of the received aqueous ink waste liquid, a suspension or precipitate may be generated in the liquid after pH adjustment. In such a case, the pH-adjusted liquid is returned to the filtration tank 70 via the pipe 66 and filtered again to obtain a clear and neutralized treatment liquid. Although the treated water obtained by the method of the present invention is clear without solids and colorants, depending on the composition of the received aqueous ink waste liquid, it contains a water-soluble organic component and the COD concentration becomes high. May be. If this poses a problem, it is also preferable to perform a post-treatment of decomposing organic components by further adding an oxidizing agent to the treated water or performing electrolytic oxidation treatment.

次に実施例および比較例を挙げて本発明をさらに詳細に説明する。
[実施例1〜4]
図1に示す回分型の処理装置を用いて、多種類のインキを含む水性インキ廃液の処理を行った。実施例1〜4の試験条件および試験結果を表1にまとめて示す。実施例1〜4では紙袋用水性フレキソ印刷機の実廃水を使用し、実施例5では紙包材用水性グラビア印刷機の実廃液を使用した。
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[Examples 1 to 4]
An aqueous ink waste liquid containing various types of ink was treated using the batch type treatment apparatus shown in FIG. Table 1 shows the test conditions and test results of Examples 1 to 4. In Examples 1 to 4, actual wastewater of an aqueous flexographic printing press for paper bags was used, and in Example 5, actual wastewater of an aqueous gravure printing press for paper packaging materials was used.

いずれの実施例でも、清澄なろ液が得られ、自然ろ過したろ集物の風乾重量は廃液中の固形分濃度の1.1倍〜1.4倍程度に収まっていた。実施例4は実施例3と同じ薬液条件で反応温度と反応時間を増加させた条件であり、凝集物の粒径が実施例3の条件よりも大きくなってろ過比抵抗がさらに低下する効果を得た。   In each of the examples, a clear filtrate was obtained, and the air-dried weight of the filtered product naturally filtered was about 1.1 to 1.4 times the solid concentration in the waste liquid. Example 4 is a condition in which the reaction temperature and the reaction time are increased under the same chemical solution conditions as in Example 3, and the effect that the particle size of the aggregate is larger than the condition of Example 3 and the filtration specific resistance is further reduced. Obtained.

ろ液は水酸化ナトリウムでpHを調整することにより、中性の清澄な水として排出することができた。ただし実施例2のろ液のみ、pHを中性とすることによって分離液が濁り、黄褐色の沈殿が発生した。これは廃液中に微量の鉄塩やカルシウムが溶解していたためと考えられ、凝集物と共にケーキろ過を行うことにより清澄なろ液を排出することができた。   The filtrate could be discharged as neutral clear water by adjusting the pH with sodium hydroxide. However, when the pH of only the filtrate of Example 2 was neutralized, the separated solution became turbid, and a yellow-brown precipitate was generated. This is considered to be because trace amounts of iron salts and calcium were dissolved in the waste liquid, and a clear filtrate could be discharged by performing cake filtration together with the aggregates.

以下の比較例1〜4においては、実施例3で使用したのと同じフレキソインキ実廃水を使用して比較試験を行った。
[比較例1]
比較例1においては、従来法である凝集剤による処理を試みた。比較例1の試験条件および試験結果を表2に示す。水性フレキソインキ用の凝集剤として、ネクストリー社製アクアネイチャーAL−ST01を使用した。添加量を5,000mg/Lから30,000mg/Lまで変化させて凝集状態を観察したが、添加量10,000mg/Lまでは全く凝集が起こらず、30,000mg/L添加条件で部分的な凝集は生じたものの沈殿は生ぜず、ろ過は困難であり、液は清澄にならず着色し濁ったままであった。なお、同廃水を水で20倍希釈して固形分濃度を4.9g/Lとし、凝集剤AL−ST01を1,200mg/Lまで添加したところ、凝集沈殿が生じて清澄なろ液が得られた(表には示していない)。このことから、従来の方法では固形分濃度が高い廃液は処理できないことが確認された。
In Comparative Examples 1 to 4 below, comparative tests were performed using the same flexo ink actual wastewater as used in Example 3.
[Comparative Example 1]
In Comparative Example 1, a conventional treatment with a flocculant was attempted. Table 2 shows the test conditions and test results of Comparative Example 1. Aqua Nature AL-ST01 manufactured by Nextry was used as a flocculant for the aqueous flexographic ink. The state of aggregation was observed by changing the amount of addition from 5,000 mg / L to 30,000 mg / L. However, no aggregation occurred at up to 10,000 mg / L, and partial aggregation was observed under the addition of 30,000 mg / L. Although agglomeration occurred, no precipitation occurred, and filtration was difficult, and the solution was not clarified but remained colored and turbid. The wastewater was diluted 20-fold with water to a solids concentration of 4.9 g / L, and when the coagulant AL-ST01 was added to 1,200 mg / L, coagulation sedimentation occurred and a clear filtrate was obtained. (Not shown in the table). From this, it was confirmed that the waste liquid having a high solid content concentration cannot be treated by the conventional method.

[比較例2〜4]
比較例2〜4の試験条件および試験結果をまとめて表3に示す。比較例2〜4においては、実施例3にて処理条件としている酸添加、酸化剤添加、加温の3条件について、それぞれ1条件を省いた場合の影響を評価している。
[Comparative Examples 2 to 4]
Table 3 summarizes the test conditions and test results of Comparative Examples 2 to 4. In Comparative Examples 2 to 4, the effects of omitting one condition from each of the three conditions of acid addition, oxidizing agent addition, and heating, which were the treatment conditions in Example 3, were evaluated.

比較例2においては、酸化剤を添加せず、酸添加と加温のみを行った。反応を促進させるため、実施例3よりも加温温度を高くし、加温時間も長くしたが、有意な凝集沈殿は生じなかった。比較例2の方法は特許文献1の方法にも準拠しており、本試験において処理対象とした水性フレキソインキ廃液は、特許文献1の方法では処理困難であることが示唆された。   In Comparative Example 2, only the acid addition and the heating were performed without adding the oxidizing agent. In order to promote the reaction, the heating temperature was increased and the heating time was increased as compared with Example 3, but no significant aggregation and precipitation occurred. The method of Comparative Example 2 was also based on the method of Patent Document 1, and it was suggested that the aqueous flexo ink waste liquid to be treated in this test was difficult to treat by the method of Patent Document 1.

比較例3においては、酸を添加せず、酸化剤添加と加温のみを行った。比較例2と同様に加温温度と加温時間を実施例よりも増加させたが、全く凝集は生じなかった。pHが7.8の中性域にあったため、樹脂の酸性官能基が解離状態で維持されており、さらに酸化剤の酸化還元電位が上昇しないことも影響して凝集が生じなかったものと考えられる。   In Comparative Example 3, only an oxidizing agent was added and heating was performed without adding an acid. As in Comparative Example 2, the heating temperature and the heating time were increased as compared with the Example, but no aggregation occurred. Since the pH was in the neutral range of 7.8, the acidic functional groups of the resin were maintained in a dissociated state, and aggregation was not caused due to the fact that the oxidation-reduction potential of the oxidizing agent did not increase. Can be

比較例4においては、酸と酸化剤を添加して、加温は行わない条件にて試験を行った。水温約20℃の条件下で一昼夜反応を観察した。酸添加によってやや凝集が発生したが有意な沈殿は生ぜず、清澄な液は得られなかった。   In Comparative Example 4, an acid and an oxidizing agent were added, and the test was performed under the condition that heating was not performed. The reaction was observed overnight at a water temperature of about 20 ° C. Aggregation occurred slightly due to the addition of the acid, but no significant precipitation occurred, and a clear liquid was not obtained.

理解を容易にするために、図4に、実施例3と比較例3の凝集状態の写真を比較して示す。実施例3では、凝集物が沈殿し、分離水と明確に区別できるが、比較例3では懸濁したまま凝集沈殿が生じていない。   In order to facilitate understanding, FIG. 4 shows a comparison of photographs of the aggregated state of Example 3 and Comparative Example 3. In Example 3, aggregates precipitate and can be clearly distinguished from separated water, but in Comparative Example 3, aggregates and precipitates do not occur while suspended.

以上の結果より、本発明の方法である酸添加、酸化剤添加および加温の3条件を組み合わせることによって効率的な凝集処理が達成されていることが確認できる。   From the above results, it can be confirmed that an efficient coagulation treatment is achieved by combining the three conditions of the method of the present invention, namely, addition of an acid, addition of an oxidizing agent, and heating.

本発明の水性インキ廃液処理方法は、多種多様なインキを含む水性インキ廃液を効率的に凝集沈殿させて容易にろ別することができる。本発明は、包装材印刷業界等の油性インキから水性インキへの移行を促し、産業界の環境問題対応に資するものである。
According to the aqueous ink waste liquid treatment method of the present invention, an aqueous ink waste liquid containing a wide variety of inks can be efficiently coagulated and settled and easily filtered. The present invention promotes the transition from oil-based inks to water-based inks in the packaging material printing industry and the like, and contributes to addressing environmental problems in the industry.

Claims (5)

水性インキを含有する廃液に、酸及び酸化剤を添加し、加温してインキの固形成分を凝集させることを特徴とする水性インキ廃液の処理方法。 A method for treating an aqueous ink waste liquid, comprising adding an acid and an oxidizing agent to the aqueous ink-containing waste liquid and heating the same to aggregate the solid components of the ink. 前記水性インキが水性フレキソインキまたは水性グラビアインキであることを特徴とする請求項1に記載の水性インキ廃液の処理方法。 The method according to claim 1, wherein the aqueous ink is an aqueous flexographic ink or an aqueous gravure ink. 前記酸化剤がオゾン、過酸化水素、塩素酸、塩素酸塩、過硫酸、過硫酸塩からなる群から選ばれることを特徴とする請求項1又は2に記載の処理方法。 3. The method according to claim 1, wherein the oxidizing agent is selected from the group consisting of ozone, hydrogen peroxide, chloric acid, chlorate, persulfuric acid, and persulfate. 水性インキを含有する廃液に、酸及び酸化剤を添加し、加温してインキの固形成分を凝集させた後、アルカリもしくは重炭酸塩を添加してpHを中性に調整してから凝集物をろ過することを特徴とする、請求項1〜3のいずれか1に記載の処理方法。 An acid and an oxidizing agent are added to the waste liquid containing the aqueous ink, and the solid components of the ink are aggregated by heating, and then the pH is adjusted to neutral by adding an alkali or bicarbonate, and then the aggregate is formed. The treatment method according to any one of claims 1 to 3, wherein the water is filtered. 水性インキを含有する廃液、酸及び酸化剤を混合して加温してインキの固形成分を凝集させる反応槽と、
フィルタを具備するろ過槽と、
前記反応槽で調製された凝集物を含む液を前記ろ過槽に送る配管と、
を設けた、請求項1〜4のいずれか1に記載の水性インキ廃液の処理方法を実施するための処理装置。
A reaction tank that mixes the waste liquid containing the aqueous ink, the acid and the oxidizing agent and heats them to aggregate the solid components of the ink;
A filtration tank having a filter;
A pipe for sending a liquid containing the aggregate prepared in the reaction tank to the filtration tank,
A processing apparatus for implementing the aqueous ink waste liquid processing method according to any one of claims 1 to 4, further comprising:
JP2018120657A 2018-06-26 2018-06-26 Method and device of treating aqueous ink effluent Ceased JP2020000969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018120657A JP2020000969A (en) 2018-06-26 2018-06-26 Method and device of treating aqueous ink effluent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018120657A JP2020000969A (en) 2018-06-26 2018-06-26 Method and device of treating aqueous ink effluent

Publications (1)

Publication Number Publication Date
JP2020000969A true JP2020000969A (en) 2020-01-09

Family

ID=69097956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018120657A Ceased JP2020000969A (en) 2018-06-26 2018-06-26 Method and device of treating aqueous ink effluent

Country Status (1)

Country Link
JP (1) JP2020000969A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113321340A (en) * 2021-05-18 2021-08-31 哈尔滨工业大学(深圳) Method for treating oily ink wastewater by using advanced oxidation coupling degreaser
EP3900937A1 (en) 2020-01-07 2021-10-27 Seiko Epson Corporation Liquid ejecting apparatus and maintenance method for liquid ejecting apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990689A (en) * 1982-11-15 1984-05-25 Dowa Mining Co Ltd Treatment of colored waste water
JPH10128350A (en) * 1996-10-25 1998-05-19 Nippon Shokubai Co Ltd Method for treating wastewater containing coloring matter
US5792336A (en) * 1995-09-18 1998-08-11 Elif Technologies Ltd. Method for purification of wastewater from soluble substances
JP2001000986A (en) * 1999-06-24 2001-01-09 Hitachi Ltd Ozone injection system
JP2001219176A (en) * 2000-02-10 2001-08-14 Tokai Plant Eng Kk Method for treating aqueous paint wastewater
JP2008207122A (en) * 2007-02-27 2008-09-11 Kurita Water Ind Ltd Apparatus and method for treating organic matter-containing water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990689A (en) * 1982-11-15 1984-05-25 Dowa Mining Co Ltd Treatment of colored waste water
US5792336A (en) * 1995-09-18 1998-08-11 Elif Technologies Ltd. Method for purification of wastewater from soluble substances
JPH10128350A (en) * 1996-10-25 1998-05-19 Nippon Shokubai Co Ltd Method for treating wastewater containing coloring matter
JP2001000986A (en) * 1999-06-24 2001-01-09 Hitachi Ltd Ozone injection system
JP2001219176A (en) * 2000-02-10 2001-08-14 Tokai Plant Eng Kk Method for treating aqueous paint wastewater
JP2008207122A (en) * 2007-02-27 2008-09-11 Kurita Water Ind Ltd Apparatus and method for treating organic matter-containing water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3900937A1 (en) 2020-01-07 2021-10-27 Seiko Epson Corporation Liquid ejecting apparatus and maintenance method for liquid ejecting apparatus
CN113321340A (en) * 2021-05-18 2021-08-31 哈尔滨工业大学(深圳) Method for treating oily ink wastewater by using advanced oxidation coupling degreaser

Similar Documents

Publication Publication Date Title
Jiang The role of coagulation in water treatment
Verma et al. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters
Şengil et al. Treatment of tannery liming drum wastewater by electrocoagulation
Allègre et al. Treatment and reuse of reactive dyeing effluents
Kabdaşlı et al. Electrocoagulation applications for industrial wastewaters: a critical review
Zahrim et al. Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: a review
Babu et al. Treatment of tannery wastewater by electrocoagulation
CN101698530B (en) Method for waste water treatment by Fenton reaction
CN103043821B (en) Deep treatment method for printing ink wastewater by membrane method
Gasmi et al. Comparative study of chemical coagulation and electrocoagulation for the treatment of real textile wastewater: Optimization and operating cost estimation
CN102464440B (en) Method for carrying out decrement on physicochemical and biochemical mixed sludge
JP2020000969A (en) Method and device of treating aqueous ink effluent
WO2013176111A1 (en) Processing method and apparatus for copper chloride-containing acidic waste liquids
JP4920932B2 (en) Treatment method for wastewater containing heavy metals
JP5828327B2 (en) Method for processing development wastewater in color filter manufacturing process
CN110606598A (en) Method for treating low-concentration arsenic-containing organic industrial wastewater
JP6565268B2 (en) Method and apparatus for treating inorganic carbon-containing water
CN100368321C (en) Ink waste liquid treatment for ink-jetting printer
Aouni et al. The applicability of combined physico-chemical processes for treatment and reuse of synthetic textile reverse osmosis concentrate
JP7481117B2 (en) Water Treatment Methods
CN115304215A (en) Printing and dyeing wastewater treatment method
KR100652486B1 (en) Method for treating industrial wastewater and thereof apparatus
JP2018061923A (en) Treating method of dye waste water
CN212025042U (en) System for treating water in water tank of printing plant and enabling CTP (computer to plate) flushing water to reach discharge standard
JP2012161742A (en) Water treatment method, and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220706

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20221125