JP2019537407A - 多層圧電アクチュエータによってインレットガイドベーンを制御するためのデバイス - Google Patents

多層圧電アクチュエータによってインレットガイドベーンを制御するためのデバイス Download PDF

Info

Publication number
JP2019537407A
JP2019537407A JP2019513004A JP2019513004A JP2019537407A JP 2019537407 A JP2019537407 A JP 2019537407A JP 2019513004 A JP2019513004 A JP 2019513004A JP 2019513004 A JP2019513004 A JP 2019513004A JP 2019537407 A JP2019537407 A JP 2019537407A
Authority
JP
Japan
Prior art keywords
electric actuator
movable
stationary
voltage source
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019513004A
Other languages
English (en)
Inventor
ボンフェルト,ジャン−ジュリアン・カミーユ
クロノウスキー,トマ
ムトー,アントワーヌ
Original Assignee
サフラン・ヘリコプター・エンジンズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サフラン・ヘリコプター・エンジンズ filed Critical サフラン・ヘリコプター・エンジンズ
Publication of JP2019537407A publication Critical patent/JP2019537407A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/20Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted
    • F01D17/22Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted the operation or power assistance being predominantly non-mechanical
    • F01D17/24Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted the operation or power assistance being predominantly non-mechanical electrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/162Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for axial flow, i.e. the vanes turning around axes which are essentially perpendicular to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/20Control of working fluid flow by throttling; by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • F05D2240/51Magnetic
    • F05D2240/515Electromagnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

本発明は、ガスタービンエンジンのインレットガイドベーンのための電動アクチュエータに関し、電動アクチュエータ(100)は、エンジンの静止部分に取り付けられた固定部(104)と、インレットガイドベーンに機械的に接続された可動部(102)と、可動部の周囲に規則的間隔で分布され、固定部に留められた静止電磁石(108aから108h)と、静止電磁石の間に配置された可動電磁石(110aから110h)とを備え、各可動電磁石(110aから110h)は、第1および第2の圧電素子(114aから114h、および116a、116h)のいずれかの側に取り付けられ、可動電磁石ならびに第1および第2の圧電素子は、可動部に対して運動の自由度を有し、可動部に対して接線方向の、共通の接触線を形成する内面を有する。

Description

本発明は、(特に、航空機またはヘリコプター用の)航空エンジンの圧縮機およびタービンの一般的分野に関する。より正確には、本発明は、ガスタービンエンジンのインレットガイドベーン(IGV)を制御することに関する。
IGVのアクチュエータは、ヘリコプタータービンエンジンの圧縮機ステージから上流に位置するプレローテーションベーンの位置を制御するために使用される(例えば、米国特許出願公開第2014/0286745号明細書を参照)。そのようなアクチュエータの機能は、圧縮機から上流にあるエンジンに入る空気の流れを方向付けることにある。プレローテーションベーンの角度位置を変えることにより、エンジンの全体的な性能(過渡状態および比消費量)を最適化することが可能になる。
インレットガイドベーンを制御する機能は通常、ガス発生器の速度に直接指標付けられる流量および圧力を有する燃料回路によって動力を供給される油圧アクチュエータによって提供される。しかしながら、そのようなアーキテクチャは、多くの欠点を提示する。
第1に、それらの可逆性のために、現在の油圧アクチュエータは、「ポジションメモリ(position memory)」または「フェイルフリーズ(fail freeze)」を有さず、すなわち障害の場合には、現在の油圧アクチュエータは、最後の制御位置を維持できない。第2に、これらのアクチュエータは、広範囲の圧力および流量に合わせて寸法決めされているが、このことが、燃料回路とのインタラクションに起因して、燃料がアクチュエータを駆動するたびに燃料計量システムに実際の混乱を引き起こす。作動圧力差は、エンジンの動作点によって大きく異なる(アイドリング時には低デルタP、高速時には高デルタP)。それに加えて、その過大寸法は、エンジンの重量に無視できない影響を及ぼし、燃料の不必要な加熱を引き起こし、アクセサリギアボックスから、不要な動力を間接的に引き出す。最後に、これらのアクチュエータは、外部油圧ユニットの使用を必要とするので、エンジンが作動しているときにのみ制御可能であり、これは 、エンジンを始動させずにベーンを動かす必要があるエンジン内視鏡検査のような、特定の毎日の保守作業に関して特に支障をもたらす。
米国特許第7096657号明細書は、冗長に設けられた電動アクチュエータによって、インレットガイドベーンを制御するための制御システムを開示しており、これはブラシレスDCモータまたは誘導または可変リラクタンスACモータのいずれかとすることができる。しかしながら、ブラシレスモータの使用は、電磁的な適合性の観点から特に複雑で制限的な制御電子機器を必要とし、関連するパワーは、すべての飛行条件下で十分とは限らない。同様に、可変リラクタンスモータまたはその制御電子回路において短絡が発生した場合、短絡によって生じる制動トルクは、非常に小さいかゼロでさえあるので、必然的に、最後の制御位置をフリーズするために、外部の電気ブレーキ(通電解除式(energize−to−release type)ブレーキ)を使用する必要がある。モータ制御の低下したモードに安全に切り替えるために、この情報は不可欠である。これらの2つのタイプのモータの両方に、同じことが、パワーの喪失の場合にも当てはまる。
したがって、現在、上述した欠点を有さない新たなアクチュエータによって、インレットガイドベーンを制御する必要性がある。
米国特許出願公開第2014/0286745号明細書 米国特許第7096657号明細書
したがって、本発明は、IGVを制御する機能専用の効率的かつ最適化されたアクチュエータを提供し、また特に安全な挙動を提示することによって、上述した欠点を軽減することを目的とする。
この目的は、ガスタービンエンジンのインレットガイドベーン用の電動アクチュエータによって達成され、この電動アクチュエータは、前記エンジンの静止部分に取り付けられた固定部と、前記インレットガイドベーンに機械的に接続された可動部とを備え、前記電動アクチュエータは、前記可動部の周囲に規則的間隔で分布され、前記固定部に留められた静止電磁石と、前記静止電磁石の間に配置された可動電磁石とを備えることを特徴とし、各可動電磁石は、第1および第2の圧電素子のいずれかの側に取り付けられ、前記可動電磁石ならびに前記第1および第2の圧電素子は、前記可動部に対して運動の自由度を有する。
この新たな電気的アーキテクチャでは、従来技術のシステムの構造的な過大寸法が取り除かれ、したがって、燃料回路は、IGVを制御する機能とは独立して最適化され得る。
有利には、固定部は、回転式アクチュエータの固定子であり、可動部は回転式アクチュエータの回転子であり、前記運動の自由度は、前記回転子の回転軸を中心に回転する自由度である。
好ましくは、各圧電素子は、1つまたは複数の層に配置された一連のN個のセラミックで構成される。
有利には、前記圧電素子は、平行に配置された10個のセラミックの2重層を備える。
好ましくは、前記静止電磁石は、前記固定子の一体部分を構成し、よって、内部セレーションを形成する。
静止電磁石は、第1のDC電圧源DC1に電気的に並列に接続され、前記可動電磁石は、第2のDC電圧源DC2に電気的に並列に接続される。
好ましくは、前記DC電圧源は、2つの逆の信号を供給する。
有利には、前記第1の圧電素子は、第1のAC電圧源AC1に電気的に並列に接続され、前記第2の圧電素子は、第2のAC電圧源AC2に電気的に並列に接続される。
好ましくは、前記AC電圧源は、以下の関係:
AC1=A sin ω(t)およびAC2=A sin(ω(t)+π)
によって特徴付けられる、逆位相の2つの正弦波電圧を供給する。
本発明はまた、少なくとも1つの上述した電動アクチュエータを含むガスタービンエンジンを提供する。
本発明の他の特徴および利点は、非限定的な特徴の実施形態を図示する添付の図面を参照して行われる以下の説明から明らかになる。
本発明が適用されるガスタービンエンジンの概略図である。 図1のエンジンのインレットガイドベーンを制御するための本発明による電気回転式アクチュエータの第1の例を図示する。 図2のアクチュエータを動作させるために必要とされる様々な電源を図示する。 図2のアクチュエータの回転子の様々な運動のステップを図示する。 図2のアクチュエータの回転子の様々な運動のステップを図示する。 図2のアクチュエータの回転子の様々な運動のステップを図示する。 図2のアクチュエータの回転子の様々な運動のステップを図示する。 図1のエンジンのインレットガイドベーンを制御するための本発明による電動アクチュエータの第2の例を図示し、それはリニアアクチュエータである。
図1は、圧縮機12、燃焼室14、およびエンジンのベーン(図示せず)を駆動するように設計されたタービン16を従来的に備えるガスタービンエンジン10の図である。インレットガイドベーン(IGV)18は、圧縮機12の入口に配置され、エンジン、特に、燃焼室へのガスの注入の管理もする中央コンピュータ(FADEC)22により制御される1つまたは複数のアクチュエータ(ACT)20によって回転移動される。
本発明では、インレットガイドベーンのアクチュエータは、図2に図示されている特定の回転圧電モータの形態である電動アクチュエータである。
圧電モータ100は、環状固定子104を囲む中央回転子102を備える。重量を抑えるために有利には穿孔されている中央回転子は、インレットガイドベーンを作動させるレバーに固定的に接続されており、このレバーは、エンジンのケーシングとのピボット接続を有する 一方、固定子は、エンジンの静止部分への固定接続を有する。回転子材料の性質に応じて、回転子の周囲に規則的間隔で分布され、かつ固定子に機械的に留められたまたは結合された磁性体は、関連付けられた巻線106aから106hと協働して、規則的間隔で配置された静止電磁石108aから108hを形成する。磁性体はまた、固定子の一体部分を構成し、したがって、内部セレーションを形成できる。
可動電磁石110aから110h(各々、磁性体および関連付けられた巻線112aから112hによって形成される)が、これらの静止電磁石の間に配置され、各可動電磁石は、圧電素子114aから114h、116aから116hのいずれかの側に取り付けられる。各圧電素子は、1つまたは複数の層に配置された一連のセラミックで構成される。限定としてみなされるべきではない図示された実施形態では、圧電素子は、平行に配置された10個のセラミックの2重層を備える。セラミック層の高さは、これらの様々な構成要素の内面が、中央回転子102に対して接線方向の共通の接触線を形成するように、セラミック層を取り囲む静止または可動の磁性体の高さに対応する。この構成では、可動電磁石110aから110hならびに第1および第2の圧電素子114aから114h、116aから116hは、既知のタイプの圧電モータ構成とは異なり、(空隙(図示せず)が存在するために)固定子と回転子との間に摩擦がない状態で、中央回転子102の軸を中心とする回転における運動の自由度を有する。この空隙は、圧電素子が使用される方式と関連して、この圧電技術に関連付けられた主な問題のうちの1つ、すなわち、圧電構成要素が接着されているポリマーの磨耗に対処することを可能にする。摩擦を制限または除去することによって、機器の寿命および利用可能性が増大し、それを航空機内での使用に適合させることができる。
ここで、エンジンの動作サイクル中の制御信号および対応する中央回転子の運動を示す図3および図4Aから図4Dを参照して、モータの動作を説明する。
図4Bに示すように、静止電磁石108a、108b、108cは、第1のDC電圧源DC1(図3における曲線120)に電気的に並列に接続され、可動電磁石110a、110bは、第2のDC電圧源DC2(図3における曲線122)に並列に電気的に接続され、DC源DC1およびDC2は、逆の信号を供給する。第1の圧電素子114a、114bは、第1のAC電圧源AC1(図3における曲線124)に電気的に並列に接続され、第2の圧電素子116a、116bは、第2のAC電圧源AC2(図3における曲線126)に電気的に並列に接続される。AC電圧源は、逆位相の2つの正弦波電圧を供給し、したがって、これら正弦波電圧は、以下の関係:
AC1=A sin ω(t)およびAC2=A sin(ω(t)+π)
によって特徴付けられる。
圧電モータを駆動するために、圧電素子および電磁石は、2つのステップで電力を供給されねばならず、以下のように4つの連続したステージを規定する。
図4Aは、静止電磁石108a、108b、108cが、通過電流を有し(電圧源DC1が正)、したがって、中央回転子102との接触を維持する初期ステージを図示する。可動電磁石110a、110bは、非アクティブ化され(DC電圧源DC2がゼロにある)、第1および第2の圧電素子114a、114b、および116a、116bは、初期停止位置にある。
図4Bでは、通過電流を伴う静止電磁石108a、108b、108cが、中央回転子102との接触を維持している間、第1の圧電素子114a、114bが伸長し、第2の圧電素子116a、116bが収縮することによって、圧電素子に取り付けられ、電力が供給されていない(DC電圧源DC2がゼロに維持されている)可動電磁石110a、110bを、圧電素子とともに、(矢印によって図示される方向に)圧電素子の同時的な伸長/収縮運動で移動させる。
図4Cでは、圧電素子の伸長/収縮運動が終了し、中央回転子102との接触を維持するために、可動電磁石110a、110bに電力が供給され(電圧源DC2が正にされ)る。同時に、静止電磁石108a、108b、108cが、非アクティブ化される(DC電圧源DC1が、ゼロに設定される)。
図4Dは、最終ステージを図示し、最終ステージでは、初期形状に戻るように、第1の圧電素子114a、114bが収縮し、第2の圧電素子116a、116bが伸長し、可動電磁石110a、110bを、(矢印によって図示される方向に)圧電素子とともに移動させ、したがって、それらが接触している中央回転子102をも移動させる。指標130の回転を観察することにより、モータの実際の回転は、圧電素子の伸長/収縮のサイクルに対応することが理解され得る。
モータを逆方向に動作させるために、電磁石の制御の方向を逆にするか、または、第1および第2のAC電圧源AC1およびAC2の位相を、第2が第1よりも先に進むように交替させることが必要である。
上記の説明は回転モータの構成について与えられているが、説明は、例として与えられていること、および、リニアモータの構成は、図5に図示されるように、まさに適切であり得ることが明らかであることが注目されるべきである。
したがって、このようなリニア圧電モータ200は、可動部202と固定部204とを備える。上述の実施形態におけるように、可動部は、インレットガイドベーンを作動させるレバーに固定的に接続されており、可動部はエンジンの静止部分に固定接続されている。この可動部の周囲に規則的間隔で分布され、固定部に留められた磁性体は、関連付けられた巻線206aから206と協働して、規則的間隔で位置された静止電磁石208aから208bを形成する。磁性体も、この固定部の一体部分を構成し得る。可動電磁石210aから210b(各々が、磁性体および関連する巻線212aから212bで形成されている)が、これらの静止電磁石の間に配置され、各可動電磁石は、各々1つまたは複数の層に配置された一連のセラミックで構成された圧電素子214aから114b、216aから216bのいずれかの側に取り付けられ、これらの様々な構成要素の内面は、可動部202に対して接線方向の、共通の接触線(説明目的のために誇張して拡大された空隙218を無視した「接触部」)を形成する。この構成により、可動電磁石210aから210bと、第1および第2の圧電素子214aから214b、216aから216bとは、固定子と回転子との間に摩擦を生じることなく、可動部202に沿った並進運動の自由度を有する。
したがって、本発明では、直接的な電気機械変換によって、および、単純化された設計の制御によって、相当の軽量化が図られ、アクチュエータの重量(約500グラム(g))は、一般に約2500gの重量である油圧式IGVアクチュエータと比較して、5分の1まで減少され得る。
さらに、圧電アクチュエータの動的性能も、全負荷(100デカニュートン(daN))において、最大で毎秒200ミリメートル(mm/秒)となり、油圧式RTM322タイプのアクチュエータの8.5mm/秒と比較して大幅に改善され、精度も、(RTM322における±0.2ミリメートル(mm)と比較して)数マイクロメータ以内に改善される。

Claims (10)

  1. ガスタービンエンジンのインレットガイドベーンのための電動アクチュエータであって、電動アクチュエータは、前記エンジンの静止部分に取り付けられた固定部(104、204)と、前記インレットガイドベーンに機械的に接続された可動部(102、202)とを備え、前記電動アクチュエータ(100、200)は、前記可動部の周囲に規則的間隔で分布され、前記固定部に留められた静止電磁石(108aから108h;208aから208c)と、前記静止電磁石の間に配置された可動電磁石(110aから110h;210aから210c)とを備えることを特徴とし、各可動電磁石(110aから110h;210aから210c)は、第1および第2の圧電素子(114aから114h;214aから214cおよび116a、116h;216a、216c)のいずれかの側に取り付けられ、前記可動電磁石ならびに前記第1および第2の圧電素子は、前記可動部に対して運動の自由度を有する、電動アクチュエータ。
  2. 静止部分は、回転式アクチュエータの固定子(104)であり、可動部は、回転式アクチュエータの回転子(102)であり、前記運動の自由度は、前記回転子の回転軸を中心に回転する自由度である、請求項1に記載の電動アクチュエータ。
  3. 各圧電素子は、1つまたは複数の層に配置された一連のN個のセラミックで構成される、請求項1または2に記載の電動アクチュエータ。
  4. 前記圧電素子は、平行に配置された10個のセラミックの2重層を備える、請求項3に記載の電動アクチュエータ。
  5. 前記静止電磁石は、前記固定子の一体部分を構成し、よって、内部セレーションを形成する、請求項3または4に記載の電動アクチュエータ。
  6. 前記静止電磁石は、第1のDC電圧源DC1に電気的に並列に接続され、前記可動電磁石は、第2のDC電圧源DC2に電気的に並列に接続される、請求項1から5のうちいずれか一項に記載の電動アクチュエータ。
  7. 前記DC電圧源は、2つの逆の信号を供給する、請求項6に記載の電動アクチュエータ。
  8. 前記第1の圧電素子は、第1のAC電圧源AC1に電気的に並列に接続され、前記第2の圧電素子は、第2のAC電圧源AC2に電気的に並列に接続される、請求項1から5のうちいずれか一項に記載の電動アクチュエータ。
  9. 前記AC電圧源は、以下の関係、
    AC1=A sin ω(t)およびAC2=A sin(ω(t)+π)によって特徴付けられる、逆位相の2つの正弦波電圧を供給する、請求項8に記載の電動アクチュエータ。
  10. 請求項1から9のうちいずれか一項に記載の少なくとも1つの電動アクチュエータを含むガスタービンエンジン。
JP2019513004A 2016-09-08 2017-08-24 多層圧電アクチュエータによってインレットガイドベーンを制御するためのデバイス Pending JP2019537407A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1658348 2016-09-08
FR1658348A FR3055758B1 (fr) 2016-09-08 2016-09-08 Dispositif de pilotage des volets d'entree d'air via un actionneur piezoelectrique multicouche
PCT/FR2017/052270 WO2018046818A1 (fr) 2016-09-08 2017-08-24 Dispositif de pilotage des volets d'entrée d'air via un actionneur piézoélectrique multicouche

Publications (1)

Publication Number Publication Date
JP2019537407A true JP2019537407A (ja) 2019-12-19

Family

ID=57485655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019513004A Pending JP2019537407A (ja) 2016-09-08 2017-08-24 多層圧電アクチュエータによってインレットガイドベーンを制御するためのデバイス

Country Status (9)

Country Link
US (1) US10731504B2 (ja)
EP (1) EP3510253B1 (ja)
JP (1) JP2019537407A (ja)
KR (1) KR20190044681A (ja)
CN (1) CN109690027B (ja)
CA (1) CA3036147A1 (ja)
FR (1) FR3055758B1 (ja)
RU (1) RU2743471C2 (ja)
WO (1) WO2018046818A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10724395B2 (en) * 2018-10-01 2020-07-28 Raytheon Technologies Corporation Turbofan with motorized rotating inlet guide vane
CN111005768A (zh) * 2019-11-21 2020-04-14 中国航发沈阳黎明航空发动机有限责任公司 一种航空发动机转子电磁配重装置
CN114673728B (zh) * 2020-12-24 2024-01-26 迈格钠磁动力股份有限公司 一种永磁推力悬浮轴承及其控制方法
US11732600B2 (en) * 2021-02-05 2023-08-22 General Electric Company Gas turbine engine actuation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169847A (ja) * 1997-08-11 1999-03-09 Minolta Co Ltd 電気機械変換素子を使用したアクチエ−タ
US7096657B2 (en) * 2003-12-30 2006-08-29 Honeywell International, Inc. Gas turbine engine electromechanical variable inlet guide vane actuation system
CN104578902A (zh) * 2014-12-26 2015-04-29 燕山大学 基于电磁夹持非接触式旋转压电电机

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB691144A (en) * 1950-02-16 1953-05-06 Alfred Buechi Inlet control device for radial flow turbine wheels
AU5707796A (en) * 1996-03-26 1997-10-17 Mats Bexell An actuator motor and a method for fabrication of such an actuator
DE602004025560D1 (de) * 2003-04-26 2010-04-01 Camcon Ltd Elektromagnetische ventilbetätigungsvorrichtung
CN101029592A (zh) * 2007-03-14 2007-09-05 中国兵器工业集团第七0研究所 涡轮增压器可调喷嘴叶栅及调节机构
WO2008124758A1 (en) * 2007-04-10 2008-10-16 Elliott Company Centrifugal compressor having adjustable inlet guide vanes
EP2083174A1 (en) * 2008-01-25 2009-07-29 Siemens Aktiengesellschaft Inlet guide vane for a gas compressor
EP2474709A1 (de) * 2011-01-05 2012-07-11 Siemens Aktiengesellschaft Leitschaufelkranz für eine Dampfturbine mit einer Feinjustage der Schluckfähigkeit und zugehöriges Verfahren
US9394804B2 (en) * 2012-01-24 2016-07-19 Florida Institute Of Technology Apparatus and method for rotating fluid controlling vanes in small turbine engines and other applications
US9777641B2 (en) * 2012-12-19 2017-10-03 General Electric Company System for turbomachine vane control
EP2860405B1 (fr) * 2013-10-14 2016-05-25 Techspace Aero S.A. Système amortisseur piézoélectrique pour rotor de turbomachine axiale
US9932851B2 (en) * 2013-12-30 2018-04-03 Rolls-Royce North American Technologies, Inc. Active synchronizing ring
DE102014001034B4 (de) * 2014-01-25 2020-01-02 MTU Aero Engines AG Strömungsmaschine
WO2015168787A1 (en) * 2014-05-05 2015-11-12 Genesis Advanced Technology Inc. Buckling wave disk
US10001066B2 (en) * 2014-08-28 2018-06-19 General Electric Company Rotary actuator for variable geometry vanes
GB201509707D0 (en) * 2015-06-04 2015-07-22 Rolls Royce Plc An actuation arrangement
US10273976B2 (en) * 2017-02-03 2019-04-30 General Electric Company Actively morphable vane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169847A (ja) * 1997-08-11 1999-03-09 Minolta Co Ltd 電気機械変換素子を使用したアクチエ−タ
US7096657B2 (en) * 2003-12-30 2006-08-29 Honeywell International, Inc. Gas turbine engine electromechanical variable inlet guide vane actuation system
CN104578902A (zh) * 2014-12-26 2015-04-29 燕山大学 基于电磁夹持非接触式旋转压电电机

Also Published As

Publication number Publication date
WO2018046818A1 (fr) 2018-03-15
US10731504B2 (en) 2020-08-04
RU2019110138A3 (ja) 2020-12-14
US20190211702A1 (en) 2019-07-11
CN109690027B (zh) 2021-11-30
EP3510253B1 (fr) 2020-09-30
CA3036147A1 (fr) 2018-03-15
FR3055758A1 (fr) 2018-03-09
KR20190044681A (ko) 2019-04-30
FR3055758B1 (fr) 2020-11-27
RU2019110138A (ru) 2020-10-08
EP3510253A1 (fr) 2019-07-17
CN109690027A (zh) 2019-04-26
RU2743471C2 (ru) 2021-02-18

Similar Documents

Publication Publication Date Title
JP2019537407A (ja) 多層圧電アクチュエータによってインレットガイドベーンを制御するためのデバイス
US10378445B2 (en) Gas turbine engine fuel system
EP2236771B1 (en) Method and apparatus for clearance control
US9124150B2 (en) Active-active redundant motor gear system
US6767187B2 (en) Electrohydraulic device for varying the pitch of the blades of a machine rotor
US20050147492A1 (en) Gas turbine engine electromechanical variable inlet guide vane actuation system
US6722845B2 (en) Vane actuator
JP2009281385A (ja) 発電機
US10633987B2 (en) Simplified pitch actuation system for a turbine engine propeller
US10287908B2 (en) Variable orientation vane for compressor of axial turbomachine
JP7155531B2 (ja) 磁気浮上制御装置および真空ポンプ
US10870481B2 (en) Pitch actuation system for a turbomachine propeller
US10780976B2 (en) Simplified pitch actuation system for a turbomachine propeller
US10647411B2 (en) Electromechanical pitch actuation system for a turbomachine propeller
US20190131900A1 (en) Variable torque electric motor assembly
EP3477845B1 (en) Variable torque electric motor assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220315