JP2019528434A - 全地球航法衛星システム(gnss)信号追跡 - Google Patents

全地球航法衛星システム(gnss)信号追跡 Download PDF

Info

Publication number
JP2019528434A
JP2019528434A JP2019503298A JP2019503298A JP2019528434A JP 2019528434 A JP2019528434 A JP 2019528434A JP 2019503298 A JP2019503298 A JP 2019503298A JP 2019503298 A JP2019503298 A JP 2019503298A JP 2019528434 A JP2019528434 A JP 2019528434A
Authority
JP
Japan
Prior art keywords
hypothesis
signal
velocity
correlation
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019503298A
Other languages
English (en)
Other versions
JP6999640B2 (ja
Inventor
ツェンラン、チェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
U Blox AG
Original Assignee
U Blox AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by U Blox AG filed Critical U Blox AG
Publication of JP2019528434A publication Critical patent/JP2019528434A/ja
Application granted granted Critical
Publication of JP6999640B2 publication Critical patent/JP6999640B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/29Acquisition or tracking or demodulation of signals transmitted by the system carrier including Doppler, related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/52Determining velocity

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

複数の衛星から全地球航法衛星システム(GNSS)受信機によって受信された複数の衛星信号をベクトル追跡するための装置およびその使用方法。装置は、複数の相関値に基づいて、複数の速度仮説から最も可能性の高い速度仮説を決定し、最も可能性の高い速度仮説に関連するデータを、衛星信号を追跡するためにGNSS受信機のナビゲーション・エンジンに転送するように構成された仮説決定器を備え、複数の速度仮説は、GNSS受信機のための現在のおよび/または前の拡張速度解を示すナビゲーション・エンジン出力に基づいて生成されており、複数の相関値は、複数の相関器によって決定されており、各々が複数の速度仮説のうちの1つから導出された予想ドップラー・シフトを備える複数の第1の信号と、各々が複数の衛星信号のうちの1つから導出された真のドップラー・シフトを備える複数の第2の信号との間の相関を表す。

Description

本発明は、複数の衛星から受信された全地球航法衛星システム(GNSS)信号のベクトル追跡のための方法および装置に関する。特定の構成において、本発明は、GNSS受信機のための速度仮説(velocity hypothesis)に基づいた、GNSS信号をベクトル追跡するための方法および装置に関する。
多くの既知のGNSS受信機は、コード追跡ループを用いてGNSS衛星への擬似距離を推定し、キャリア追跡ループを用いて、GNSS衛星から受信された信号のキャリア・ドップラー(または擬似距離レート)を推定する。この衛星信号追跡方法は、スカラー追跡と呼ばれる場合がある。
コード追跡ループは、例えば、遅延ロック・ループ(DLL)とすることができ、キャリア追跡ループは、例えば、周波数ロック・ループ(FLL)、位相ロック・ループ(PLL)、または双方の組み合わせ、例えば、FLL支援型PLLとすることができる。そのようなGNSS受信機は、チャネルごとにコード追跡ループおよびキャリア位相追跡ループを含み、受信機の各チャネルは、特定のGNSS衛星からの信号を処理する。
大まかに言うと、DLLは、GNSS衛星から受信された信号と、衛星信号のローカルで生成されたバージョンとの間のタイミング差を最小にする。DLLは通常、受信信号を、数値制御発振器(NCO)の出力に基づいて作成されるローカルで生成された信号と相関付ける2つのコード相関器を備える。ノイズ特性を改善するために、コード相関器の出力は時間にわたって積分され、結果として得られる信号は、アルゴリズムにおいて、次のローカルで生成される信号のコード位相を更新するようにNCOを制御するために用いられる。例示的なDLLにおいて、各々がアーリー・コード相関、プロンプト・コード相関およびレイト・コード相関のうちの1つを生じる3つ以上のコード相関器が存在してもよい。
大まかに言うと、FLLは、同じ統計的信号処理技法に従う。1つの例において、キャリア相関器は、(場合によっては中間周波数の)受信衛星信号の一部を、NCOによって提供される、対応するローカルで生成されたキャリア信号と相関付ける。キャリア相関器の出力は、ノイズ特性を改善するために、時間にわたって積分され、結果として得られる信号は、アルゴリズムにおいて、ローカルで生成されるキャリア信号を更新するようにNCOを制御するために用いられる。
GNSS受信機の実際の実施態様において、キャリア追跡ループは、コード追跡ループを支援するのに用いられることができる。更に、コード追跡ループおよびキャリア追跡ループは通常、ネスト化構成にあり、キャリア相関器は、キャリア周波数を除去するのに用いられ、結果として得られる信号は、DC信号を追跡する完全なキャリアである場合、コード相関器に渡される。
そのようなGNSS受信機は、追跡ループがナビゲーション解決定と独立して動作するという点で、別個の信号追跡およびナビゲーション解を実施することができる。コード追跡ループおよびキャリア追跡ループは、ナビゲーション・エンジンにコード測定値およびキャリア測定値を提供し、ナビゲーション・エンジンは、これらの測定値を用いて、ナビゲーション解、通常は位置、速度および時間(すなわち、受信機クロック・オフセットおよびドリフト)(PVT)を決定する。更に、異なるGNSSコンステレーション(例えば、GPS、Galileo、GLONASSまたはBeiDou)からの衛星がナビゲーション解を決定するために用いられるシナリオでは、各GNSSからの衛星信号も別個の追跡ループを必要とし、これらの追跡ループは別個に実施され、別個の要素および異なる構成を必要とする。
ベクトル追跡ループは、信号追跡およびナビゲーションの解決定を単一のループに組み合わせる異なるアーキテクチャを用いる。例示的なベクトル追跡ループにおいて、例えばナビゲーション・エンジンによって、ナビゲーション解(すなわち、位置、速度および/または時間)であり得るナビゲーション・エンジン出力に基づいて、追跡される衛星信号ごとに、擬似距離および/または擬似距離レートが予測される。予測された擬似距離および擬似距離レートは、各チャネルの追跡ループにフィードされ、コード推定値およびキャリア推定値を決定するのに用いられ、これらの推定値は、標準的なGNSS受信機におけるように、ナビゲーション・エンジンにフィードされる。
本発明によれば、一態様において、複数の衛星から全地球航法衛星システム(GNSS)受信機によって受信された複数の衛星信号をベクトル追跡するための装置が提供される。装置は、複数の相関値に基づいて、複数の速度仮説から最も可能性の高い速度仮説を決定し、最も可能性の高い速度仮説に関連するデータを、衛星信号を追跡するためにGNSS受信機のナビゲーション・エンジンに転送するように構成された仮説決定器を備える。複数の速度仮説は、GNSS受信機のための現在のおよび/または前の拡張速度解を示すナビゲーション・エンジン出力に基づいて生成されている。複数の相関値は、複数の相関器によって決定されており、各々が複数の速度仮説のうちの1つから導出された予想ドップラー・シフトを備える複数の第1の信号と、各々が複数の衛星信号のうちの1つから導出された真のドップラー・シフトを備える複数の第2の信号との間の相関を表す。
任意選択で、最も可能性の高い速度仮説に関係するデータは、最も可能性の高い速度仮説と、最も可能性の高い速度仮説に基づく複数の予想ドップラー・シフトとのうちの1つまたは複数を備え、複数の予想ドップラー・シフトの各々は複数の衛星のうちの1つに関係する。
複数の速度仮説は、拡張速度解の1つまたは複数の要素における予測された変化に基づいて生成されている場合がある。
任意選択で、予測された変化は、受信機の動力学と、ナビゲーション・データの分散と、慣性センサ・データと、マップ・データとのうちの1つまたは複数に基づいて決定されている。
例示的な構成において、対応する第1の信号および第2の信号は、各々、複数の衛星のうちの1つに関係し、相関値は、対応する第1の信号および第2の信号間の相関を表す。
任意選択で、対応する第1の信号および第2の信号の複数の組の各々が、速度仮説のうちの1つに関係する。したがって、対応する第1の信号および第2の信号の複数の組の各々が、速度仮説のうちの1つから導出され、複数の衛星の各々に関係する複数の第1の信号と、真のドップラー・シフトを備え、複数の衛星の各々に関係する対応する複数の第2の信号とを備える。対応する第1の信号および第2の信号の複数の組の各々が、1つまたは複数の共通の第2の信号を含むことができる。
相関値の複数の組の各々は、対応する第1の信号および第2の信号の組における対応する第1の信号および第2の信号ごとに相関値を備える。
いくつかの例示的な構成では、第2の信号の組は、各々が複数の衛星のうちの異なる衛星に関係する複数の第2の信号を備えることができ、第1の信号の複数の組はそれぞれ、各々が複数の衛星のうちの異なる衛星に関係する複数の第1の信号を備え、第1の信号の組における複数の第1の信号は、複数の仮説のうちの1つから導出された。そのような例示的な構成において、相関値の複数の組の各々は、第2の信号の組における第2の信号の各々および第1の信号の異なる組における第1の信号の各々についての相関値を備えることができる。
仮説決定器は、相関値の組における複数の相関値の少なくとも1つの和を決定し、この少なくとも1つの和に基づいて、最も可能性の高い速度仮説を決定するように構成されることができる。例示的な構成において、仮説決定器は、相関値の異なる組における複数の相関値の少なくとも2つの和を決定するように構成されることができる。
任意選択の構成において、仮説決定器は、各々が相関値の異なる組に関係する複数の和を決定し、最も可能性の高い速度仮説を、複数の和のうちの最も大きな和に関係する速度仮説であると決定するように構成される。
仮説決定器は、最も大きな和が閾値よりも大きいことに依存して、最も可能性の高い速度仮説を、最も大きな和に関係する速度仮説であると決定するように構成されることができる。
任意選択で、複数の相関器のうちの1つまたは複数が、GNSS受信機内で生成されたレイト・コード相関サンプル、プロンプト・コード相関サンプルおよびアーリー・コード相関サンプルのうちの1つまたは複数から導出された信号の離散フーリエ変換(DFT)を行うように構成されることができ、DFTは、予想ドップラー・シフトの周波数を包含する周波数範囲に及び、対応する相関値は、予想ドップラー・シフトの周波数におけるDFTの出力の大きさを示す。
ナビゲーション・メッセージ等の変調データは、複数の相関器のうちの1つまたは複数がDFTを行う前に、変調ビット除去ユニットによって、レイト・コード相関サンプル、プロンプト・コード相関サンプルおよびアーリー・コード相関サンプルのうちの1つまたは複数から導出された信号から除去されることができる。変調ビット除去ユニットは、ベクトル追跡のための装置の別個の要素とすることができるか、またはDFTブロックの一部を形成することができる。変調ビット除去ユニットは、変調データ、および変調データを備える信号を受信し、変調データが除去された信号、すなわち、変調データを有しない信号を備える出力を生じるように構成されたミキサまたは乗算器とすることができる。これは、例えば、変調データを、変調データを備える信号と乗算することによって達成されることができる。
装置は、複数の衛星のうちの1つまたは複数についてレイト・コード相関サンプル、プロンプト・コード相関サンプルおよび/またはアーリー・コード相関サンプルから導出された信号を受信し、レイト・コード相関サンプル、プロンプト・コード相関サンプルおよびアーリー・コード相関サンプルから導出された信号に基づいて、1つまたは複数のコード位相推定値を決定し、各コード位相推定値をナビゲーション・エンジンに転送するように構成された1つまたは複数のコード位相推定ユニットを更に備えることができる。
第1の信号は、複数の衛星の各々について、見通し線ベクトルへの各速度仮説の変換を備えることができる。
任意選択で、装置は、複数の速度仮説および/または第1の信号を生成するための速度仮説ユニットと、複数の相関器と、ナビゲーション・エンジンとのうちの1つまたは複数を更に備える。
装置は、ナビゲーション・エンジンを備えることができ、ナビゲーション・エンジンは、最も可能性の高い速度仮説に関係するデータに少なくとも部分的に基づいて、後続の拡張速度解を決定するように構成される。
本発明によれば、更なる態様において、上記で示した任意のものによる装置を備えるGNSS受信機が提供される。
本発明によれば、更なる態様において、複数の衛星から全地球航法衛星システム(GNSS)受信機によって受信された複数の衛星信号をベクトル追跡するための方法が提供される。本方法は、仮説決定器によって、複数の相関値に基づいて、複数の速度仮説から最も可能性の高い速度仮説を決定することを備える。本方法は、仮説決定器によって、最も可能性の高い速度仮説に関連するデータを、衛星信号を追跡するためにGNSS受信機のナビゲーション・エンジンに転送することを更に備える。複数の速度仮説は、GNSS受信機のための現在のおよび/または前の拡張速度解を示すナビゲーション・エンジン出力に基づいて生成されている。複数の相関値は、複数の相関器によって決定されており、各々が複数の速度仮説のうちの1つから導出された予想ドップラー・シフトを備える複数の第1の信号と、各々が複数の衛星信号のうちの1つから導出された真のドップラー・シフトを備える複数の第2の信号との間の相関を表す。
最も可能性の高い速度仮説に関係するデータは、最も可能性の高い速度仮説と、最も可能性の高い速度仮説に基づく複数の予想ドップラー・シフトとのうちの1つまたは複数を備えることができ、複数の予想ドップラー・シフトの各々は複数の衛星のうちの1つに関係する。
任意選択で、本方法は、速度仮説ユニットが複数の速度仮説を生成することを更に備える。
複数の速度仮説は、拡張速度解の1つまたは複数の要素における予測された変化に基づいて生成されることができる。
本方法は、速度仮説ユニットが、受信機の動力学と、ナビゲーション・データの分散と、慣性センサ・データと、マップ・データとのうちの1つまたは複数に基づいて予測された変化を決定することを更に備えることができる。
例示的な構成において、対応する第1の信号および第2の信号は、各々、複数の衛星のうちの1つに関係し、相関値は、対応する第1の信号および第2の信号間の相関を表す。
対応する第1の信号および第2の信号の複数の組の各々が、速度仮説のうちの1つに関係することができる。
任意選択で、相関値の複数の組の各々は、対応する第1の信号および第2の信号の組における対応する第1の信号および第2の信号ごとに相関値を備える。
本方法は、仮説決定器が相関値の組における複数の相関値の少なくとも1つの和を決定することと、仮説決定器が、少なくとも1つの和に基づいて、最も可能性の高い速度仮説を決定することとを更に備えることができる。
本方法は、仮説決定器が、各々が相関値の異なる組に関係する複数の和を決定することと、仮説決定器が、最も可能性の高い速度仮説を、複数の和のうちの最も大きな和に関係する速度仮説であると決定することとを更に備えることができる。
任意選択で、本方法は、仮説決定器が、最も大きな和が閾値よりも大きいことに依存して、最も可能性の高い速度仮説を、最も大きな和に関係する速度仮説であると決定することを更に備える。
例示的な方法は、複数の相関器が複数の相関値を決定することを更に備えることができる。
複数の相関器のうちの1つまたは複数が、GNSS受信機内で生成されたレイト・コード相関サンプル、プロンプト・コード相関サンプルおよびアーリー・コード相関サンプルのうちの1つまたは複数から導出された信号の離散フーリエ変換(DFT)を行うことができ、DFTは、予想ドップラー・シフトの周波数を包含する周波数範囲に及び、対応する相関値は、予想ドップラー・シフトの周波数におけるDFTの出力の大きさを示す。
本方法は、変調ビット除去ユニットによって、複数の相関器のうちの1つまたは複数がDFTを行う前に、レイト・コード相関サンプル、プロンプト・コード相関サンプルおよびアーリー・コード相関サンプルのうちの1つまたは複数から導出された信号からナビゲーション・メッセージを除去することを更に備えることができる。
例示的な方法は、1つまたは複数のコード位相推定ユニットが、複数の衛星の1つまたは複数についてレイト・コード相関サンプル、プロンプト・コード相関サンプルおよび/またはアーリー・コード相関サンプルから導出された信号を受信することと、1つまたは複数のコード位相推定ユニットが、レイト・コード相関サンプル、プロンプト・コード相関サンプルおよびアーリー・コード相関サンプルから導出された信号に基づいて、1つまたは複数のコード位相推定値を決定することと、1つまたは複数のコード位相推定ユニットが、各コード位相推定値をナビゲーション・エンジンに転送することとを更に備える。
任意選択で、本方法は、速度仮説ユニットが、複数の衛星の各々について、見通し線ベクトルへの各速度仮説の変換を備える第1の信号を導出することを更に備える。
本方法は、ナビゲーション・エンジンが、最も可能性の高い速度仮説に関係するデータに少なくとも部分的に基づいて、後続の拡張速度解を決定することを更に備えることができる。
本発明によれば、更なる態様において、少なくとも1つのプロセッサによって実行されると、この少なくとも1つのプロセッサに、本明細書に記載の方法のうちのいずれか1つを実行させる命令を備えるコンピュータ・プログラムが提供される。
本発明によれば、更なる態様において、上述したコンピュータ・プログラムを含むキャリアが提供され、このキャリアは、電子信号、光信号、無線信号または非一時的コンピュータ可読ストレージ媒体のうちの1つである。
ここで、本発明の例示的な実施形態が、添付の図面を参照して説明される。
GNSS受信機において受信される複数の衛星信号のベクトル追跡のための装置のブロック概略図である。 GNSS受信機において受信される複数の衛星信号のベクトル追跡のための方法を示す流れ図である。 GNSS受信機において受信される複数の衛星信号のベクトル追跡のための装置のブロック概略図である。 GNSS受信機において受信される複数の衛星信号のベクトル追跡のための装置のブロック概略図である。
概して、複数のGNSS衛星から受信される衛星信号を用いたGNSS受信機の拡張速度ベクトル追跡のための方法および装置が本明細書に開示される。この関連において、拡張速度ベクトルは、受信機の3−D速度およびローカル・クロック・ドリフトを備える。例示的な方法および装置は、受信機の速度を直接追跡し、衛星信号を、一部は速度ドメインにおいて、一部は追跡パラメータ・ドメインにおいて間接的に追跡するようになっている。すなわち、衛星信号は、複数の速度仮説、および追跡パラメータ・ドメインにある複数の測定仮説に基づいて追跡される。
速度仮説および測定仮説は、現在および/または前回のエポックからのナビゲーション・エンジン出力に基づく。速度仮説を決定するのに用いられるナビゲーション・エンジン出力は、拡張速度解、または更新された拡張速度解とすることができ、v=[x’ y’ z’ δ’]であり、測定仮説を決定するのに用いられるナビゲーション・エンジン出力は、フルPVT解または更新されたフルPVT解とすることができる。更新された拡張速度解および更新されたフルPVT解は、ナビゲーション・エンジンによって実施されるカルマン・フィルター等のシステム動的方程式の遷移行列に基づいて決定されることができる。これについては、以下でより詳細に説明される。
速度仮説は、ナビゲーション・エンジン出力に基づく仮説(または予測)速度ドメイン・データを備えることができる。速度仮説は、拡張速度ベクトルを備える拡張速度仮説とすることができる。本文書の残りの部分において、「速度仮説」および「速度解」という用語が用いられるが、これらの用語は、拡張速度仮説および拡張速度解をそれぞれ包含することが理解されるべきである。
最も可能性が高い速度仮説が決定され、GNSS衛星信号を追跡するのに用いられる。これは、GNSS受信機のためのナビゲーション解を更新することによって行うことができ、更新されたナビゲーション解は、次に、以下で説明するように、例えばキャリア数値制御発振器(NCO)を制御するために用いられてもよい。
例示的な方法および装置は、速度仮説を用いて、衛星信号再取得中に用いられることができる追跡パラメータ仮説と、標準キャリア追跡ループを用いた衛星信号追跡とを置き換える。衛星信号を追跡し、PVT解を計算するために、特定の衛星について各追跡チャネルが擬似距離推定値およびドップラー推定値を測定する従来のマルチGNSS受信機と異なり、例示的な方法および装置は、速度仮説を、擬似距離またはコード位相推定値と共に直接用いてGNSS衛星を追跡することができる。
以下でより詳細に説明されるように、速度仮説は、相関器を駆動するために、追跡パラメータ・ドメインにマッピングされることができる。このようにして、速度仮説は、衛星信号再取得および衛星信号追跡の双方において評価されることができる。したがって、異なるGNSSシステムの一部である場合がある全ての可視の衛星からの信号電力が、極度に低いキャリア対雑音電力密度比(C/N)環境における信号対雑音比(SNR)の改善のためにコヒーレントにまたは非コヒーレントに組み合わされることができる。
本明細書に開示される例示的な方法および装置の利点は、以下を含む。
・受信される衛星信号の数が増大すると共に、全体信号電力、したがってGNSS受信機のSNRが線形に増大し、これにより信号追跡感度が改善する、
・受信衛星信号の時間にわたる積分は、受信衛星信号の衛星にわたる積分と交換可能であり、すなわち、スカラー追跡アルゴリズムと類似のSNR性能レベルに到達するために、本明細書に開示される方法および装置が必要とする積分時間はより短く、これによって、より高い追跡ループ・ダイナミクスが可能になる、
・信号モデルは、見通し線(LOS)信号のみからなるため、改善されたマルチパスおよび干渉除去が可能である、
・衛星信号追跡およびナビゲーション解決定の少なくとも部分的組み合わせ、
・GNSS受信機において必要とされる追跡ループ数の低減、および、
・単一のGNSS受信機において複数のGNSSから受信された衛星信号を組み合わせるためのプラットフォーム。
図1は、GNSS衛星信号を追跡するための例示的な装置のブロック概略図を示す。装置は、所与のGNSS受信機のためのPVTベクトルの1つまたは複数の要素を備えるナビゲーション解を決定するように構成されたナビゲーション・エンジン100を備える。
装置は、複数の速度仮説から最も可能性の高い速度仮説を決定するように構成された仮説決定器102も備える。図1の例示的な構成において、速度仮説は拡張速度仮説であり、クロック・ドリフト仮説を含む。仮説決定器102は、最も可能性の高い速度仮説に関係するデータをナビゲーション・エンジン100に転送するように更に構成される。以下で詳細に説明されるように、そのようなデータは、衛星信号ごとに、最も可能性の高い速度仮説および/またはドップラー・シフトデータを備えることができる。
装置は、複数の速度仮説を生成するための速度仮説ユニット104も備える。複数の速度仮説は、最も近時のまたは現在のエポックからのナビゲーション・エンジン出力に基づいて生成される。例示的な構成において、現在のエポックからのナビゲーション・エンジン出力は、最も近時の速度解および最も近時のクロック・ドリフト解を備えることができる。図1の例示的な構成において、現在のエポックからのナビゲーション・エンジン出力は、ナビゲーション・エンジン100によって決定された予測速度およびクロック・ドリフトを備える。本文書の残りの部分において、「速度予測」という用語は、x軸、y軸およびz軸方向における予測速度ならびに予測クロック・ドリフトを含むベクトルを包含する。速度予測は、現在の速度解およびクロック・ドリフト解に、システム動的方程式の遷移行列(例えば、カルマン・フィルター動的方程式における行列「A」)を乗算したものを備える。例示的な方法および装置において、速度仮説は、速度におけるデルタをナビゲーション・エンジン出力に加算することによって生成されることができ、これは図1の場合、速度予測である。
装置は複数の相関器も備え、これらの相関器は、図1の例示的な装置において、離散フーリエ変換(DFT)ユニット106a〜106nによって提供される。DFTユニット106a〜106nを用いた相関のプロセスが以下で詳細に説明される。DFTユニット106a〜106nを用いた相関は、複数のベースバンド処理ユニット108a〜108nによって生成された、アーリー・コード相関サンプル、プロンプト・コード相関サンプルおよびレイト・コード相関サンプルのうちの1つまたは複数において行われることができる。図1の例示的な装置において、プロンプト・コード相関サンプルが用いられる。特に、各チャネルからのプロンプト・コード相関サンプルは、長相関のために複数のDFTユニット106a〜106nに渡される前に、変調ビット除去ユニット110a〜110nによって受信される。
装置は複数の積分ダンプ・ユニット112a〜112nも備え、この積分ダンプ・ユニットは、アーリー・コード相関サンプル、プロンプト・コード相関サンプルおよびレイト・コード相関サンプルを受信し、それらを時間にわたって積分して雑音を平均化した後、積分されたアーリー・コード相関サンプル、プロンプト・コード相関サンプルおよびレイト・コード相関サンプルを複数のコード位相推定ユニット114a〜114nに渡し、このコード位相推定ユニットは、位置およびクロック・オフセット予測に基づいてコード位相を推定し、コード位相推定値をナビゲーション・エンジン100に渡すように構成される。
例示的な装置において、GNSS受信機の各チャネルは、ベースバンド処理ユニット108a〜108nと、積分ダンプ・ユニット112a〜112nと、コード位相推定ユニット114a〜114nと、変調ビット除去ユニット110a〜110nと、DFTユニット106a〜106nとを備える。
ナビゲーション・エンジン100は、ナビゲーション解、したがって速度予測の推定精度を示す分散データ116を速度仮説ユニット104に転送するように構成される。ナビゲーション・エンジンはまた、ナビゲーション・エンジン出力(速度予測を含む)118およびLOSデータ120を転送するように構成され、LOSデータ120は、受信機アンテナから衛星アンテナ位置を指し示すLOSベクトルを備える。予想観測ドップラー周波数を計算するために、衛星速度および受信機速度はLOSベクトルに投影される。以下で説明されるように、速度仮説ユニット104において受信されるナビゲーション・エンジン出力118は、速度仮説を導出するのに用いられることができる。
例示的な方法および装置において、データの転送は、1つのエンティティによる電気信号の生成と、別のエンティティによるこれらの電気信号の受信とを包含することに留意されたい。転移は送信を備えることができる。送信は、有線接続を介したものであってもよく、プロセッサ内で行われてもよい。
ナビゲーション・エンジン100はまた、更なるナビゲーション・エンジン出力119および衛星ごとのLOSデータ120を中央パラメータ生成器(CPG)122に転送するように構成される。更なるナビゲーション・エンジン出力119は、ナビゲーション解予測を備えることができ、ナビゲーション解予測は、例えば、現在のナビゲーション解に、ナビゲーション・エンジン100において実行されるシステム動的方程式の遷移行列(例えば、カルマン・フィルター動的方程式の行列「A」)を乗算することによって計算されることができる。CPG122は、更なるナビゲーション・エンジン出力を、衛星ごとのLOSベクトルにマッピングし、衛星ごとの予測キャリア周波数およびコード位相を決定する。CPG122は、予測キャリア周波数を、ベースバンド処理ユニット108a〜108nにおけるキャリア生成器126a〜126nに転送し、予測コード位相を、ベースバンド処理ユニット108a〜108nにおけるコード生成器128a〜128nに転送する。キャリア生成器126a〜126nおよびコード生成器128a〜128nは、キャリアワイプオフのためのキャリアおよびコードのレプリカを、多数の(the multiple of)アーリー・コード相関サンプル、プロンプト・コード相関サンプルおよびレイト・コード相関サンプルの作成のための対応するキャリア周波数、コード位相およびチッピングレートを用いて生成するように構成される。
例示的な方法および装置において用いられることができる複数の信号および式が以下に定義される。
まず、GNSS受信機のアンテナにおいて受信される信号は、付加雑音によって破損された複数の衛星信号の和としてモデル化されることができる。この受信された複素ベースバンド信号は、以下のように書かれることができる。
r(t)=g(t)+n(t) (1)
ここで、
および
である。
ここで、
・Kは衛星の数であり、
・g(t)は、衛星kからの雑音のない受信信号成分であり、
・g(t)は、雑音のない受信信号であり、
・n(t)は、加法的白色ガウス雑音であり、
・s(t)は、対応する疑似ランダム雑音(PRN)コードおよび個々の変調ビットを有する、衛星kからのベースバンド送信信号であり、
・[h,ω,τ,Ω,T]≡θは、以下の追跡関連パラメータからなるベクトルであり、[...]は行列転置を表し、
○hは、衛星kの複素振幅であり、
○ωは、衛星kのドップラー周波数であり、
○τは、衛星kの伝播遅延であり、
○Tは、衛星と無関係の、ローカル・クロック・オフセットによって生じる見かけ共通遅延(apparent common delay)であり、
○Ωは、衛星と無関係の、ローカル・クロック・ドリフトによって生じる見かけ共通周波数(apparent common frequency)である。
上記において、受信信号のLOS成分のみが検討され、マルチパス効果は無視される。更に、小さな大気効果も無視される。
装置が位置するGNSS受信機のナビゲーション状態は、時変位置、速度および時間(PVT)ベクトルによって記述されることができる。PVTベクトルの任意の部分は、本明細書においてナビゲーション・データとみなされる。
p=[x y z δ x’ y’ z’ δ’]
ここで、
・x、y、zは、GNSS受信機の時変3次元位置を示し、
・x’、y’、z’は、GNSS受信機の時変3次元速度を示し、
・δ、δ’は、GNSS受信機のローカル・クロック・オフセットおよびローカル・クロック・ドリフトを示し、
・(...)’は一次導関数を示す。
所与のpおよび既知の天体暦を有する所与の衛星コンステレーションについて、受信機アンテナから衛星kのアンテナ位置を指し示すLOSベクトル
が導出されることができる。θ(上記で定義済み)内の複素振幅hを除いて、pをθに変換する標準的なマッピング関数
が決定されることができる。電離層歪みはある程度既知であり、衛星によってブロードキャストされるが、衛星からGNSS受信機への衛星信号の送信についてのチャネル状態情報(CSI)、特に位相情報は未知であることに主に起因して、複素振幅は決定されることができない。
拡張速度ベクトルv=[x’ y’ z’ δ’]のためのコヒーレント推定方式および非コヒーレント推定方式の双方を以下のように定式化することができ、ここで、中央PVTベクトル
は、各推定反復における基礎としての役割を果たす。以下で説明されるように、hは前の追跡エポックからまたは衛星信号取得のための従来の技法から既知であることが想定される。
上記で論考したように、上記で信号モデルの一部として定義されたベクトルθにおける残りの追跡パラメータは、pを通じて相互に制約され、マッピング関数
から決定されることができる。pまたはpの任意のサブセットの最大尤度(ML)推定は、背景技術セクションにおいて論考したアーキテクチャ等のスカラー追跡アーキテクチャにおいて通常行われるようなθの完全な中間推定値を必要としない。代わりに、対数尤度関数は、vに関して以下のように直接最大化することができ、これは、PVTドメイン追跡、共同パラメータ推定またはベクトル追跡と呼ばれる。
ここで、

は、vの推定値を表し、

は、
に投影されたv(i)を表し、

は、実数部を表し、
・(...)は、複素共役を表し、

は、衛星kに関連付けられたLOSベクトルを用いて追跡パラメータ・ドメインに変換された更なるナビゲーション・エンジン出力119に対応するベクトルθを表す。
ここでは、衛星間の相互相関を無視するが、これはGNSSにおけるPRNコード特性にとって妥当であり、v(i)は、i番目の拡張速度仮説を表す。
実際には、hが推定されるべきであり、これは、比較的強力な信号についてのみ可能である。弱い信号の場合、式(4)は、hに対する依存を除去するように更に展開されることができる。この目的で、vの非コヒーレント推定が、以下に示されるように導出されることができる。
ここで、nは、通常、1または2である。上記は、vの2つの推定、すなわち、位相ロック・ループ(PLL)用途および/または中/高C/N環境での使用に適した、式(4)におけるコヒーレント推定と、周波数ロック・ループ(FLL)用途および/またはキャリア追跡に関する比較的弱い受信衛星信号での使用に適した、式(5)における非コヒーレント推定値とを提示する。本文書の残りの部分において、非コヒーレント推定のみが論考される。
ナビゲーション・エンジン100は、カルマン・フィルターを用いてナビゲーション解を生成することができる。観測が拡張速度ベクトルvと全ての衛星の従来のコード位相との混合であり、ローカル・クロック・オフセットが新たな観測ベクトルであると定義すると、カルマン・フィルターのためのモデルは、以下の動的方程式(6)および速度関連観測方程式に基づいて定式化されることができる。
p[n+1]=Ap[n]+z[n] (6)
式(6)において、Aは遷移行列であり、z[n]はプロセス雑音である。
ここで、GNSS信号を追跡するための例示的な方法が、図2、ならびに上記で与えられた信号および式を参照して説明される。
ナビゲーション・エンジン100は、ナビゲーション・エンジン出力(この場合は、速度予測)118を速度仮説ユニット104に、更なるナビゲーション・エンジン出力(この場合は、ナビゲーション予測)119をCPG122に転送する(200)。ナビゲーション・エンジン出力118および更なるナビゲーション・エンジン出力119は、現在のエポックのためのナビゲーション解に基づく。ナビゲーション解は、本明細書において開示される方法の前の反復中にナビゲーション・エンジン100において実行されるカルマン・フィルター等の動的モデルにおいて到達されることができる。代替的に、ナビゲーション解は、衛星信号取得のための従来の技法を用いたGNSS受信機の初回測位(first fix)、およびその後のナビゲーション解の最小二乗推定によって到達することができる。開示される例示的な方法および装置において、ナビゲーション・エンジン100は、LOSデータ120を速度仮説ユニット104およびCPG122にも転送する。
ステップ202において、CPG122は、マッピング関数
を生成し、衛星のためのLOSデータ120を用いて更なるナビゲーション・エンジン出力119をマッピングし、衛星ごとに予測キャリア周波数およびコード位相を決定する。CPG122は、予測キャリア周波数を、キャリア生成器126a〜126nに転送し、予測コード位相を、ベースバンド処理ユニットs108a〜108nにおけるコード生成器128a〜128nに転送する。
速度仮説ユニット104は、少なくとも受信した速度予測118に基づいて複数の速度仮説を生成する(204)。速度仮説ユニット104は、現在のナビゲーション・エポックからのものである速度予測118を用いて、複数の速度仮説を生成する。速度仮説ユニット104は、少なくとも速度予測(すなわち、x軸、y軸およびz軸に沿った予測速度および予測クロック・ドリフト)118の値に対し、予測速度変化および予測クロック・ドリフト変化を加算および/または減算することによって、複数の速度仮説のうちの少なくともいくつかを生成することができる。予測された変化は、ナビゲーション・エンジン100によって速度仮説ユニット104に転送されることもできる、分散データ116等の1つまたは複数の制約と、慣性ナビゲーションシステムから受信されたデータと、地理的マップ・データまたは他の外部情報源に基づいて決定されることができる、物理環境によって提供される任意の制約とに基づいて決定されることができる。
例示的な方法および装置において、速度仮説ユニット104は、前のナビゲーション・エポックおよび上記で論考した制約のうちの1つまたは複数から、速度予測118である中心仮説v(0)[n]を決定することができる。次に、速度仮説ユニット104は、上述した制約のうちの1つまたは複数に基づいて1つまたは複数のデルタ値を決定し、中心仮説に/からこのデルタ値を加算および/または減算することによって、複数の速度仮説v(i)[n]∀>0の残りの部分を決定することができる。複数の速度仮説の残りの部分は各々、仮説を立てられた[x’ y’ z’ δ’]を備える。
したがって、例示的な複数の速度仮説は、v(i)[n],i≧0として表されることができ、特定の例では、以下を含むことができる。
x軸、y軸およびz軸ならびにクロック・ドリフトのうちの1つまたは複数における複数のデルタ値の加算および/または減算に基づいて追加の速度仮説が生成されることができることに留意されるべきである。更に、x軸、y軸およびz軸の各々におけるデルタ値は、異なることができる。
ナビゲーション・エンジン100から受信されたLOSベクトルデータ120に基づいて、速度仮説ユニット104は、マッピング関数を決定する(206)。マッピング関数を用いて、速度仮説ユニット104は、衛星ごとに
を用いて、複数の速度仮説の各々をLOSベクトルに変換する(208)。これは、複数の変換された速度仮説132を生じ、各変換された速度仮説は、衛星ごとに1つのドップラー推定値とクロック・ドリフトとの組を備える。クロック・ドリフトは、変換による影響を受けず、速度仮説において、変換された速度仮説におけるものと同じであることに留意されたい。
速度仮説ユニット104は、複数の速度仮説130および複数の変換された速度仮説132を仮説決定器102に転送する(210)。
したがって、ここで仮説決定器102は、複数の速度仮説130および複数の変換された速度仮説を備え、各変換された速度仮説は、衛星ごとおよび速度仮説ごとにドップラー推定値とクロック・ドリフトとの組を備える。各ドップラー推定値は、速度仮説に基づいて、対応する衛星から受信された衛星信号についての予想ドップラー・シフトを提供する。
複数の変換速度仮説f(v(i)[n]),i≧0のうちの1つから導出された予想ドップラー・シフトを備える第1の信号と、真のドップラー・シフトを備え、複数の衛星信号(図1の場合、プロンプト・コード相関サンプル)のうちの1つから導出された第2の信号との間で相関がとられる(212)。これらの対応する第1の信号および第2の信号は、各々同じ衛星に関する。
対応する第1の信号および第2の信号は、単一の速度仮説に関係する複数の組にグループ化することができる。例えば、対応する第1の信号および第2の信号の各組は、以下を備えることができる。
・受信衛星信号、例えば衛星ごとのプロンプト・コード相関サンプルの異なる1つから各々が導出され、各々が真のドップラー・シフトを備える、複数の第2の信号、および
・各々が同じ衛星信号の予想ドップラー・シフトを備え、全てが単一の速度仮説に基づく、複数の第1の信号。
各相関器は、予想ドップラー・シフトと真のドップラー・シフトとの間の相関を示す相関値を出力する。相関値は、第1の信号および第2の信号の組に関する相関値の組にグループ分けすることもできる。例示的な方法および装置において、相関値の組は、衛星ごとの、全てが単一の速度仮説に関係する、第1の信号および第2の信号の相関値を備えることができる。
図2の例示的な方法において、相関は、DFTユニット106a〜106nによって行われ、DFTユニット106a〜106nは、ベースバンド処理ユニット108a〜108nの各々によって出力されたプロンプト・コード相関サンプルに対しDFTを行う。
DFTユニット106a〜106nは、GNSS受信機のそのチャネルにおいて受信された衛星信号のための予想ドップラー・シフトをカバーする周波数範囲内でDFTを行うように構成される。例示的な構成において、DFTユニット106a〜106nは、周波数ビン間隔が、DFT窓長の逆数となり、スペクトルカバレッジが全ての速度仮説をカバーするのに十分広くなるように構成される。DFTは、受信衛星信号ごとに行われる。DFTユニット106a〜106nは、DFT結果134a〜134nを仮説決定器102に転送する(214)。
DFTは、周波数範囲にわたる複数の相関とみなされることができる。すなわち、所与の信号のDFTは、周波数範囲内で等しく離間された周波数(周波数ビン)における複数の更なる信号とのその信号の相関を表す。DFTの出力は、周波数値および大きさ(相関値を表す)を備え、これは、信号のための周波数スペクトルを与えるようにプロットされることができる。したがって、DFTが、所与の速度仮説に関する予想ドップラー・シフトを包含する周波数範囲にわたると仮定すると、予想ドップラー・シフトの周波数に関する大きさは、その速度仮説のための相関値を表す。
したがって、DFTユニット106a〜106nからの各DFT出力は、大きさおよび周波数の複数の対を備える。相関値は、予想ドップラー・シフトの周波数に関係するDFT大きさ値を選択することによって決定される。
ナビゲーション・メッセージは、送信前の全ての衛星のキャリア信号上に変調される連続データ・ストリームである。変調ビット除去ユニット110a〜110nは、これらの変調データビットをプロンプト・コード相関サンプルから除去し、数ミリ秒にわたってこれを事前に積分する。事前に積分されたサンプルはバッファリングされ、その後、更なる相関のためにDFTユニット106a〜106nに転送される。変調ビットの除去によって、クロック安定性に依存して、110a〜110nにおいて最大で数百ミリ秒までの時間フレームにわたってプロンプト・コード相関サンプルの積分が可能になる。これは、いくつかのGNSS受信機において通常用いられる積分時間がはるかに短い(最大で20ミリ秒)ことと対照的である。長コヒーレント積分の利点は、DFTユニット106a〜106nにおける追跡感度および周波数分解能が積分長に比例するので、これらの追跡感度および周波数分解能が高くなることである。
変調ビット除去ユニット110a〜110nは、ナビゲーション・メッセージ140a〜140nのコピーを受信する。ナビゲーション・メッセージのコピーは、受信機において衛星信号を復号することによって生成される。変調ビット除去ユニット110a〜110nは、ナビゲーション・メッセージのそのコピーを用いて、プロンプト・コード相関サンプルにおけるビットフリップを除去し、その後更なる積分を行う。これは、例えば、変調ビットを相殺するために、プロンプト・コード相関サンプルにナビゲーション・メッセージのコピーを乗算することによって行うことができる。これによって、ナビゲーション・メッセージの複数のビットにわたる積分における打ち消し合う重ね合わせ(destructive superposition)を防ぎ、より長い積分時間を可能にする。これにより、次に、DFTユニット106a〜106nによって行われるDFTの周波数分解能が増大する。内部ナビゲーション・メッセージバッファからの変調ビットを受信するとき、変調ビット除去ユニット110a〜110nは、週内時刻信号を用いて、いずれの変調ビットが現在のプロンプト・コード相関出力に適用可能であるかを決定する。変調ビットが適用可能でない場合、数百ミリ秒ではなく、20ミリ秒の長さのコヒーレント積分がDFTユニット106a〜106nにおいて構成される。
仮説決定器102は、単一の速度仮説に関係する全ての受信衛星信号にわたって相関値を合算する(216)ように構成される。すなわち、仮説決定器102は、全て単一の速度仮説に関係する相関値の組内の相関値を合算するように構成される。合算は、速度仮説ごとに仮説決定器102によって繰り返される。実際には、仮説決定器102は、上記の式(5)を用いて合算を行うことができる。仮説決定器102は、最も可能性の高い速度仮説を、最も大きな合算に関係する速度仮説であると決定する(218)。
仮説決定器102は、最も可能性の高い速度仮説136に関係するデータをナビゲーション・エンジンに転送する(220)。図2の例示的な方法において、仮説決定器102は、実際の最も可能性の高い速度仮説をナビゲーション・エンジン100に転送する。ナビゲーション・エンジン100は、新たなカルマン・フィルター観測ベクトルにおける最も可能性の高い速度仮説を、コード位相推定値(以下に論考される)と共に用いて、カルマン・フィルター観測ベクトルおよびp(0)[n]に基づいてナビゲーション解の次のエポックおよびナビゲーション・エンジン出力を決定する(222)。
例示的な方法および装置において、アーリー、プロンプトおよびレイト・コード相関サンプルは、ベースバンド処理ユニット108a〜108nから積分ダンプ・ユニット112a〜112nに転送されることもでき、ここで、積分は通例の方式で行われる。積分されたアーリー、プロンプトおよびレイト・コード相関サンプルは、コード位相推定ユニット114a〜114nに転送され、コード位相推定ユニット114a〜114nは、これらの相関サンプルに基づいて通例の方式でコード位相推定値を決定する。コード位相推定値138a〜138nは、ナビゲーション・エンジン100に送信され、観測ベクトルに加算され、ナビゲーション・エンジンによって、ナビゲーション解の次のエポックと、速度仮説ユニット104およびCPG122に提供されることになる次のナビゲーション・エンジン出力とを決定するために用いられる。
例示的な方法および装置において、仮説決定器102は、合算が閾値より大きいことに依存して、上記で論考した相関値の最も大きな合算に関連付けられた最も可能性の高い速度仮説を決定するように構成される。閾値は、選択された仮説が真に最も可能性の高い仮説であり、単に雑音ではないことを確実にするように決定される。仮説決定器102は、閾値検出器を備えることができ、閾値検出器は、極度に弱い信号を追跡するとき、ロックロス検出器としての役割を果たす。同様に、最後の既知のナビゲーション解(信号損失前)は、衛星を再取得することができるのに十分正確であるはずであるため、例示的な方法および装置は、信号損失後の、例えば建物に入るときの衛星信号の再取得のために用いられることができる。
図3は、GNSS衛星信号を追跡するための例示的な装置のブロック概略図を示す。図3の特徴の多くは、図1に関連して既に上記で論考したものと同じかまたは類似である。これらの特徴は、「1」の代わりに「3」で始まることを除いて、図1におけるのと同じ参照符号を有し、これらが図3の装置の動作に関係しない限り再び論考されない。
図3の例示的な構成において、仮説決定器302は、上記で図1および図2に関係して説明された方法を用いて、最も可能性の高い速度仮説を決定するように構成される。図3の装置の場合、仮説決定器302によってナビゲーション・エンジン300に転送される最も可能性の高い速度仮説に関係するデータは、衛星ごとのドップラー推定値336a〜336nおよびクロック・ドリフト推定値337を備える。仮説決定器302は、最も可能性の高い速度仮説を決定し、次に、その最も可能性の高い速度仮説に対応する複数の変換された速度仮説から、変換された速度仮説を特定する。次に、仮説決定器302は、ドップラー推定値336a〜336nおよびクロック・ドリフト推定値337の対応する組をナビゲーション・エンジン300に転送する。
ナビゲーション・エンジン300は、カルマン・フィルターにおけるドップラー推定値336a〜336nおよびクロック・ドリフト推定値337およびコード位相推定値338a〜338nを用いて、次のナビゲーション解を提供するように構成される。
図3の装置の利点は、この装置が、既知のGNSS受信機のナビゲーション・エンジンにおいて実行される標準的なカルマン・フィルターと共に用いられることができることである。観測ベクトルは、ドップラー推定値336a〜336nおよびコード位相推定値338a〜338nを含むので、ナビゲーション・エンジンにおいて用いられるカルマン・フィルターの変更は必要とされない。したがって、図3の装置は、既存のGNSS受信機に、より容易に統合化されることができる。
図4は、GNSS衛星信号を追跡するための更なる例示的な装置のブロック概略図を示す。図4の特徴の多くは、上記で図1および図3に関して既に論考したものと同じまたは類似である。これらの特徴は、「1」または「3」の代わりに「4」で始まることを除いて、図1および図3におけるのと同じ参照符号を有し、これらが図4の装置の動作に関係しない限り再び論考されない。
図4において、予想ドップラー・シフトを含む周波数範囲にわたるDFTを行うように構成されたDFTユニットではなく、各チャネルにおける特定の相関器406a〜406nが用いられる。相関器406a〜406nは、ハードウェアまたはソフトウェアにおいて具現化されることができる。実際、相関器406a〜406nは、依然としてDFTを行うように構成されることができるが、ただし、そのDFTは、予想ドップラー・シフトに対応する単一の周波数ビン(または複数の選択された周波数ビン)においてのみ計算される。
相関器406a〜406nは、予想ドップラー・シフトを備える速度仮説ユニット404からの第1の信号432、および真のドップラー・シフトを備える第2の信号442a〜442nを受信するように構成される。各チャネルにおける相関器406a〜406nは、第1の信号と第2の信号との間の相関を示す値を出力する(434a〜434n)ように構成される。図4に示されるように、第1の信号432は、速度仮説ユニット404からの変換された速度仮説から導出されることができ、所与の衛星および所与の速度仮説ごとに、予想ドップラー・シフトを表すことができる。上記で説明したように、第2の信号は、プロンプト・コード相関サンプルから導出される。
相関器406a〜406nは、相関を並列に実行するように構成された、例えば速度仮説ごとに1つの、各チャネルにおける複数のまたは一列の相関器として具現化されることができることが留意されるべきである。そのような構成において、チャネルにおける各相関器は、所与の速度仮説およびチャネルに関係する所与の衛星についての予想ドップラー・シフトを表す生成信号を受信することができる。代替的に、一連の相関を行うように構成された各チャネルに単一の相関器406a〜406nが存在してもよく、第2の信号442a〜442nと生成信号との間の各一連の相関は、複数の速度仮説のうちの異なる速度仮説についての予想ドップラー・シフトを表す。
したがって、各チャネルにおける相関器406a〜406nは、各々が複数の速度仮説のうちの異なる速度仮説に関係する複数の相関値434a〜434nを決定するように構成される。
各相関器406a〜406nは、決定された相関値を仮説決定器402に転送する。仮説決定器402は、速度仮説ごとに全ての衛星にわたって相関値を合算するように構成される。次に、上記で説明されたように、仮説決定器402は、最も可能性の高い速度仮説を決定し、その最も可能性の高い仮説に関係するデータ436をナビゲーション・エンジン400に転送することができる。最も可能性の高い速度仮説に関係するデータは、最も可能性が高い速度仮説自体ならびに/または最も可能性の高い速度仮説に関係する推定ドップラーおよび推定クロック・ドリフトを備えることができる。
コンピュータ・プログラムは、上記で説明した方法のうちの任意のものを提供するように構成されることができる。コンピュータ・プログラムは、コンピュータ可読媒体上に提供されることができる。コンピュータ・プログラムは、コンピュータ・プログラム製品とすることができる。製品は、非一時的コンピュータ使用可能ストレージ媒体を備えることができる。コンピュータ・プログラム製品は、方法を実行するように構成された媒体において具現化されたコンピュータ可読プログラムコードを有することができる。コンピュータ・プログラム製品は、少なくとも1つのプロセッサに、本方法の一部または全てを実行させるように構成されることができる。
本明細書において、様々な方法および装置が、コンピュータにより実施される方法、装置(システムおよび/またはデバイス)および/またはコンピュータ・プログラム製品のブロック図またはフローチャート図を参照して説明される。ブロック図および/またはフローチャート図のブロック、ならびにブロック図および/またはフローチャート図におけるブロックの組み合わせは、1つまたは複数のコンピュータ回路によって実行されるコンピュータ・プログラム命令によって実施されることができることが理解される。これらのコンピュータ・プログラム命令は、汎用コンピュータ回路、専用コンピュータ回路のプロセッサ回路、および/または他のプログラマブル・データ処理回路に提供され、コンピュータおよび/または他のプログラマブル・データ処理装置のプロセッサを介して実行される命令が、トランジスタ、メモリ・ロケーションに記憶された値、およびそのような回路部内の他のハードウェア・コンポーネントを変換および制御して、ブロック図および/またはフローチャートの単数または複数のブロックにおいて指定された機能/動作を実施し、それによってブロック図および/またはフローチャートのブロックにおいて指定された機能/動作を実施するための手段(機能性)および/または構造をもたらすようなマシンを作成することができる。
コンピュータ・プログラム命令は、コンピュータ可読媒体に記憶された命令が、ブロック図および/またはフローチャートの単数または複数のブロックにおいて指定された機能/動作を実施する命令を含む製品を作成するような特定の方式で機能するように、コンピュータまたは他のプログラマブル・データ処理装置に指示することができるコンピュータ可読媒体に記憶されることもできる。
有形の非一時的コンピュータ可読媒体は、電子、磁気、光、電磁、または半導体データストレージシステム、装置またはデバイスを含むことができる。コンピュータ可読媒体の更に詳細な例は、以下、すなわち、ポータブル・コンピュータ・ディスケット、ランダム・アクセス・メモリ(RAM)回路、リードオンリー・メモリ(ROM)回路、消去可能プログラマブル・リードオンリー・メモリ(EPROMまたはフラッシュメモリ)回路、ポータブル・コンパクト・ディスク・リードオンリー・メモリ(CD−ROM)、およびポータブル・デジタル・ビデオ・ディスク・リードオンリー・メモリ(DVD/Blu−ray)を含む。
コンピュータ・プログラム命令は、コンピュータまたは他のプログラマブル装置上で実行される命令が、ブロック図および/またはフローチャートの単数または複数のブロックにおいて指定された機能/動作を実施するためのステップを提供するように、コンピュータおよび/または他のプログラマブル装置において実行される一連の動作ステップに、コンピュータにより実施されるプロセスを作成させるために、コンピュータおよび/または他のプログラマブル・データ処理装置上にロードされることもできる。
したがって、本発明は、集合的に「回路」、「モジュール」と呼ばれる場合があるプロセッサまたはその変形において実行されるハードウェアおよび/またはソフトウェア(ファームウェア、常駐ソフトウェア、マイクロコード等を含む)において具現化されることができる。
いくつかの代替的な実施態様において、ブロックに示された機能/動作は、フローチャートに示す順序と異なる順序で行われてもよいことにも留意されるべきである。例えば、連続して示される2つのブロックは、実際には、関与する機能/動作に依存して、実質的に同時に実行されてもよく、またはブロックは場合によっては逆の順序で実行されてもよい。更に、フローチャートおよび/もしくはブロック図の所与のブロックの機能は、複数のブロックに分割されてもよく、かつ/または、フローチャートおよび/もしくはブロック図の2つ以上のブロックの機能は、少なくとも部分的に統合化されてもよい。最終的に、示されるブロック間に他のブロックが追加/挿入されてもよい。
当業者は、添付の特許請求の範囲から逸脱することなく、他の実施形態を考案することが可能であろう。

Claims (36)

  1. 複数の衛星から全地球航法衛星システム(GNSS)受信機によって受信された複数の衛星信号をベクトル追跡するための装置であって、
    複数の相関値に基づいて、複数の速度仮説から最も可能性の高い速度仮説を決定し、前記最も可能性の高い速度仮説に関連するデータを、前記衛星信号を追跡するために前記GNSS受信機のナビゲーション・エンジンに転送するように構成された仮説決定器を備え、
    前記複数の速度仮説は、前記GNSS受信機のための現在のおよび/または前の拡張速度解を示すナビゲーション・エンジン出力に基づいて生成されており、
    前記複数の相関値は、複数の相関器によって決定されており、各々が前記複数の速度仮説のうちの1つから導出された予想ドップラー・シフトを備える複数の第1の信号と、各々が前記複数の衛星信号のうちの1つから導出された真のドップラー・シフトを備える複数の第2の信号との間の相関を表す、装置。
  2. 前記最も可能性の高い速度仮説に関係する前記データは、前記最も可能性の高い速度仮説と、前記最も可能性の高い速度仮説に関連付けられた複数の予想ドップラー・シフトとのうちの1つを備え、前記複数の予想ドップラー・シフトの各々は前記複数の衛星のうちの1つに関係する、請求項1に記載の装置。
  3. 前記複数の速度仮説は、前記拡張速度解の1つまたは複数の要素における予測された変化に基づいて生成されている、請求項1または2に記載の装置。
  4. 前記予測された変化は、前記受信機の動力学と、前記ナビゲーション・データの分散と、慣性センサ・データと、マップ・データとのうちの1つまたは複数に基づいて決定されている、請求項3に記載の装置。
  5. 対応する第1の信号および第2の信号は、各々、前記複数の衛星のうちの1つに関係し、前記相関値は、前記対応する第1の信号および第2の信号間の相関を表す、請求項1〜4のいずれか一項に記載の装置。
  6. 対応する第1の信号および第2の信号の複数の組の各々が、前記速度仮説のうちの1つに関係する、請求項5に記載の装置。
  7. 前記相関値の複数の組の各々は、対応する第1の信号および第2の信号の組における対応する第1の信号および第2の信号ごとに相関値を備える、請求項6に記載の装置。
  8. 前記仮説決定器は、相関値の組における複数の相関値の少なくとも1つの和を決定し、前記少なくとも1つの和に基づいて、前記最も可能性の高い速度仮説を決定するように構成される、請求項7に記載の装置。
  9. 前記仮説決定器は、各々が相関値の異なる組に関係する複数の前記和を決定し、前記最も可能性の高い速度仮説を、前記複数の和のうちの最も大きな和に関係する速度仮説であると決定するように構成される、請求項8に記載の装置。
  10. 前記仮説決定器は、前記最も大きな和が閾値よりも大きいことに依存して、前記最も可能性の高い速度仮説を、前記最も大きな和に関係する速度仮説であると決定するように構成される、請求項9に記載の装置。
  11. 前記複数の相関器のうちの1つまたは複数が、前記GNSS受信機内で生成されたレイト・コード相関サンプル、プロンプト・コード相関サンプルおよびアーリー・コード相関サンプルのうちの1つまたは複数から導出された信号の離散フーリエ変換(DFT)を行うように構成され、
    前記DFTは、前記予想ドップラー・シフトの周波数を包含する周波数範囲に及び、
    対応する相関値は、前記予想ドップラー・シフトの前記周波数における前記DFTの出力の大きさを示す、請求項1〜10のいずれか一項に記載の装置。
  12. 前記複数の相関器のうちの前記1つまたは複数が前記DFTを行う前に、前記レイト・コード相関サンプル、前記プロンプト・コード相関サンプルおよび前記アーリー・コード相関サンプルのうちの前記1つまたは複数から導出された前記信号からナビゲーション・メッセージを除去するように構成された変調ビット除去ユニットを更に備える、請求項11に記載の装置。
  13. 前記複数の衛星の1つまたは複数についてレイト・コード相関サンプル、プロンプト・コード相関サンプルおよび/またはアーリー・コード相関サンプルから導出された信号を受信し、前記レイト・コード相関サンプル、前記プロンプト・コード相関サンプルおよび前記アーリー・コード相関サンプルから導出された前記信号に基づいて、1つまたは複数のコード位相推定値を決定し、各コード位相推定値を前記ナビゲーション・エンジンに転送するように構成された1つまたは複数のコード位相推定ユニットを更に備える、請求項1〜12のいずれか一項に記載の装置。
  14. 前記第1の信号は、前記複数の衛星の各々について、見通し線データを用いた各速度仮説の変換に基づいて導出されている、請求項1〜13のいずれか一項に記載の装置。
  15. 前記複数の速度仮説および/または前記第1の信号を生成するための速度仮説ユニットと、前記複数の相関器と、前記ナビゲーション・エンジンとのうちの1つまたは複数を更に備える、請求項1〜14のいずれか一項に記載の装置。
  16. 前記ナビゲーション・エンジンを備え、前記ナビゲーション・エンジンは、前記最も可能性の高い速度仮説に関係する前記データに少なくとも部分的に基づいて、後続の拡張速度解を決定するように構成される、請求項15に記載の装置。
  17. 請求項1〜16のいずれか一項に記載の装置を備えるGNSS受信機。
  18. 複数の衛星から全地球航法衛星システム(GNSS)受信機によって受信された複数の衛星信号をベクトル追跡するための方法であって、
    仮説決定器によって、複数の相関値に基づいて、複数の速度仮説から最も可能性の高い速度仮説を決定することと、
    前記仮説決定器によって、前記最も可能性の高い速度仮説に関連するデータを、前記衛星信号を追跡するために前記GNSS受信機のナビゲーション・エンジンに転送することと、
    を備え、
    前記複数の速度仮説は、前記GNSS受信機のための現在のおよび/または前の拡張速度解を示すナビゲーション・エンジン出力に基づいて生成されており、
    前記複数の相関値は、複数の相関器によって決定されており、各々が、前記複数の速度仮説のうちの1つから導出された予想ドップラー・シフトを備える複数の第1の信号と、各々が前記複数の衛星信号のうちの1つから導出された真のドップラー・シフトを備える複数の第2の信号との間の相関を表す、方法。
  19. 前記最も可能性の高い速度仮説に関係する前記データは、前記最も可能性の高い速度仮説と、前記最も可能性の高い速度仮説に関連付けられた複数の予想ドップラー・シフトとのうちの1つを備え、前記複数の予想ドップラー・シフトの各々は、前記複数の衛星のうちの1つに関係する、請求項18に記載の方法。
  20. 速度仮説ユニットが前記複数の速度仮説を生成することを更に備える、請求項18または19に記載の方法。
  21. 前記複数の速度仮説は、前記拡張速度解の1つまたは複数の要素における予測された変化に基づいて生成される、請求項20に記載の方法。
  22. 前記速度仮説ユニットが、前記受信機の動力学と、前記ナビゲーション・データの分散と、慣性センサ・データと、マップ・データとのうちの1つまたは複数に基づいて前記予測された変化を決定することを更に備える、請求項21に記載の方法。
  23. 対応する第1の信号および第2の信号は、各々、前記複数の衛星のうちの1つに関係し、前記相関値は、前記対応する第1の信号および第2の信号間の相関を表す、請求項18〜22のいずれか一項に記載の方法。
  24. 対応する第1の信号および第2の信号の複数の組の各々が、前記速度仮説のうちの1つに関係する、請求項23に記載の方法。
  25. 前記相関値の複数の組の各々は、対応する第1の信号および第2の信号の組における対応する第1の信号および第2の信号ごとに相関値を備える、請求項24に記載の方法。
  26. 前記仮説決定器が、相関値の組における複数の相関値の少なくとも1つの和を決定することと、
    前記仮説決定器が、前記少なくとも1つの和に基づいて、前記最も可能性の高い速度仮説を決定することと、
    を更に備える、請求項25に記載の方法。
  27. 前記仮説決定器が、各々が相関値の異なる組に関係する複数の前記和を決定することと、
    前記仮説決定器が、前記最も可能性の高い速度仮説を、前記複数の和のうちの最も大きな和に関係する速度仮説であると決定することと、
    を更に備える、請求項26に記載の方法。
  28. 前記仮説決定器が、前記最も大きな和が閾値よりも大きいことに依存して、前記最も可能性の高い速度仮説を、前記最も大きな和に関係する速度仮説であると決定することを更に備える、請求項27に記載の方法。
  29. 前記複数の相関器が前記複数の相関値を決定することを更に備える、請求項18〜28のいずれか一項に記載の方法。
  30. 前記複数の相関器のうちの1つまたは複数が、前記GNSS受信機内で生成されたレイト・コード相関サンプル、プロンプト・コード相関サンプルおよびアーリー・コード相関サンプルのうちの1つまたは複数から導出された信号の離散フーリエ変換(DFT)を行い、
    前記DFTは、前記予想ドップラー・シフトの周波数を包含する周波数範囲に及び、
    対応する相関値は、前記予想ドップラー・シフトの前記周波数における前記DFTの出力の大きさを示す、請求項29に記載の方法。
  31. 変調ビット除去ユニットによって、前記複数の相関器のうちの前記1つまたは複数が前記DFTを行う前に、前記レイト・コード相関サンプル、前記プロンプト・コード相関サンプルおよび前記アーリー・コード相関サンプルのうちの前記1つまたは複数から導出された前記信号からナビゲーション・メッセージを除去することを更に備える、請求項30に記載の方法。
  32. 1つまたは複数のコード位相推定ユニットが、前記複数の衛星の1つまたは複数についてレイト・コード相関サンプル、プロンプト・コード相関サンプルおよび/またはアーリー・コード相関サンプルから導出された信号を受信することと、
    前記1つまたは複数のコード位相推定ユニットが、前記レイト・コード相関サンプル、前記プロンプト・コード相関サンプルおよび前記アーリー・コード相関サンプルから導出された前記信号に基づいて、1つまたは複数のコード位相推定値を決定することと、
    前記1つまたは複数のコード位相推定ユニットが、各コード位相推定値を前記ナビゲーション・エンジンに転送することと、
    を更に備える、請求項18〜31のいずれか一項に記載の方法。
  33. 速度仮説ユニットが、前記複数の衛星の各々について、見通し線データを用いた各速度仮説の変換に基づいて第1の信号を導出することを更に備える、請求項18〜32のいずれか一項に記載の方法。
  34. 前記ナビゲーション・エンジンが、前記最も可能性の高い速度仮説に関係する前記データに少なくとも部分的に基づいて、後続の拡張速度解を決定することを更に備える、請求項18〜33のいずれか一項に記載の方法。
  35. 少なくとも1つのプロセッサによって実行されると、前記少なくとも1つのプロセッサに、請求項18〜34のいずれか一項に記載の方法を実行させる命令を備えるコンピュータ・プログラム。
  36. 請求項35に記載のコンピュータ・プログラムを含むキャリアであって、前記キャリアは、電子信号、光信号、無線信号または非一時的コンピュータ可読ストレージ媒体のうちの1つである、キャリア。
JP2019503298A 2016-07-22 2016-07-22 全地球航法衛星システム(gnss)信号追跡 Active JP6999640B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2016/067598 WO2018014980A1 (en) 2016-07-22 2016-07-22 Global navigation satellite system (gnss) signal tracking

Publications (2)

Publication Number Publication Date
JP2019528434A true JP2019528434A (ja) 2019-10-10
JP6999640B2 JP6999640B2 (ja) 2022-01-18

Family

ID=56507608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019503298A Active JP6999640B2 (ja) 2016-07-22 2016-07-22 全地球航法衛星システム(gnss)信号追跡

Country Status (5)

Country Link
US (1) US11513235B2 (ja)
EP (1) EP3488265A1 (ja)
JP (1) JP6999640B2 (ja)
CN (1) CN109564293B (ja)
WO (1) WO2018014980A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112166346B (zh) * 2018-05-18 2024-04-23 瑞士优北罗股份有限公司 全球导航卫星系统(gnss)多径抑制
US11226418B2 (en) * 2019-06-19 2022-01-18 Novatel Inc. System and method for calculating protection levels for velocity and course over ground
US11947019B2 (en) * 2021-10-05 2024-04-02 Albora Technologies Limited Secondary code determination in a snapshot receiver based upon transmission time alignment

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578678A (en) * 1983-11-14 1986-03-25 The United States Of America As Represented By The United States National Aeronautics And Space Administration High dynamic global positioning system receiver
US20010033606A1 (en) * 2000-04-06 2001-10-25 David Akopian Method in a receiver and a receiver
US6532251B1 (en) * 2001-08-16 2003-03-11 Motorola, Inc. Data message bit synchronization and local time correction methods and architectures
US20030215005A1 (en) * 2002-05-16 2003-11-20 Nokia Corporation Method for synchronizing a receiver, a system, and an electronic device
JP2004040297A (ja) * 2002-07-01 2004-02-05 Sony Corp 測位用衛星信号の受信機および測位用衛星信号の受信方法
US20060012515A1 (en) * 2004-07-13 2006-01-19 Samsung Electronics Co., Ltd. High sensitivity GPS receiver and method for compensating for doppler variation
JP2008521012A (ja) * 2004-11-17 2008-06-19 クゥアルコム・インコーポレイテッド 測位信号を受信しつつコヒーレント積分長を長くするための方法及び装置
US20080272960A1 (en) * 2007-05-01 2008-11-06 Nobuhiro Kishimoto Method and system for GPS position measuring and frequency error detecting method
JP2010203959A (ja) * 2009-03-04 2010-09-16 Seiko Epson Corp 初期位置決定方法、位置算出方法及び位置算出装置
JP2010206256A (ja) * 2009-02-27 2010-09-16 Furuno Electric Co Ltd Gnss受信装置
JP2011523258A (ja) * 2008-04-28 2011-08-04 クゥアルコム・インコーポレイテッド マルチ・トーン・ジャミングを検出するためのシステム及び/又は方法
US20120326926A1 (en) * 2011-06-24 2012-12-27 Mayflower Communications Company, Inc. High sensitivity gps/gnss receiver
US20130207837A1 (en) * 2012-02-10 2013-08-15 Centre National D'etudes Spatiales (Cnes) Method for Determining a Confidence Indicator Relating to the Trajectory Followed by a Moving Object
US20140070987A1 (en) * 2012-09-07 2014-03-13 Cambridge Silicon Radio Limited Psuedo maximum likelihood tracking for global navigation satellite systems
JP2014070960A (ja) * 2012-09-28 2014-04-21 Japan Radio Co Ltd 衛星信号受信装置
JP2014102137A (ja) * 2012-11-20 2014-06-05 Mitsubishi Electric Corp 自己位置推定装置
JP2014153085A (ja) * 2013-02-05 2014-08-25 Railway Technical Research Institute 車両位置計測方法、および車両位置計測システム
CN104931995A (zh) * 2015-06-12 2015-09-23 南京理工大学 一种基于矢量跟踪的gnss/sins深组合导航方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6597086A (en) * 1985-09-03 1987-03-24 Motorola, Inc. Apparatus for and method of doppler searching in a digital gps receiver
US6393046B1 (en) * 1996-04-25 2002-05-21 Sirf Technology, Inc. Spread spectrum receiver with multi-bit correlator
KR100459834B1 (ko) * 1996-04-25 2005-01-31 서프 테크놀러지, 인코포레이티드 멀티-비트상관기를구비한확산스펙트럼수신기
US5896304A (en) * 1996-07-12 1999-04-20 General Electric Company Low power parallel correlator for measuring correlation between digital signal segments
US5798732A (en) * 1996-09-19 1998-08-25 Trimble Navigation Limited GPS receiver having a fast time to first fix
US6407699B1 (en) * 2000-04-14 2002-06-18 Chun Yang Method and device for rapidly extracting time and frequency parameters from high dynamic direct sequence spread spectrum radio signals under interference
US7420947B2 (en) * 2002-08-30 2008-09-02 Qualcomm Incorporated Communication system performance using position location information
US7486749B2 (en) 2004-12-22 2009-02-03 Nokia Corporation Determination of a code phase
US7474260B2 (en) * 2006-04-19 2009-01-06 Media Tek Inc. Adjustable time-division multiplexing receiver for receiving satellite signal and method for the same
JP5269911B2 (ja) 2008-01-31 2013-08-21 クゥアルコム・インコーポレイテッド Dft計算用装置
CN101308204B (zh) * 2008-05-30 2011-05-04 北京航空航天大学 多系统卫星导航相关器
CN101666868B (zh) * 2009-09-30 2011-11-16 北京航空航天大学 一种基于sins/gps深组合数据融合的卫星信号矢量跟踪方法
CN101776752B (zh) * 2010-01-29 2011-09-21 中国科学院空间科学与应用研究中心 机群链路高动态信号的精密跟踪与测量方法
EP2530487B1 (en) * 2011-06-01 2014-10-01 u-blox A.G. Satellite positioning with assisted calculation
FR2988484B1 (fr) * 2012-03-22 2014-03-07 Thales Sa Dispositif de reception de signaux de radio-navigation a antennes multiples et asservissement de synchronisation commun
CN104570023B (zh) * 2015-01-23 2017-02-22 桂林电子科技大学 一种基于北斗卫星信号转gps模拟信号方法与系统
US10018474B2 (en) * 2015-12-21 2018-07-10 Invensense, Inc. Method and system for using offline map information aided enhanced portable navigation

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578678A (en) * 1983-11-14 1986-03-25 The United States Of America As Represented By The United States National Aeronautics And Space Administration High dynamic global positioning system receiver
US20010033606A1 (en) * 2000-04-06 2001-10-25 David Akopian Method in a receiver and a receiver
US6532251B1 (en) * 2001-08-16 2003-03-11 Motorola, Inc. Data message bit synchronization and local time correction methods and architectures
US20030215005A1 (en) * 2002-05-16 2003-11-20 Nokia Corporation Method for synchronizing a receiver, a system, and an electronic device
JP2004040297A (ja) * 2002-07-01 2004-02-05 Sony Corp 測位用衛星信号の受信機および測位用衛星信号の受信方法
US20060012515A1 (en) * 2004-07-13 2006-01-19 Samsung Electronics Co., Ltd. High sensitivity GPS receiver and method for compensating for doppler variation
JP2008521012A (ja) * 2004-11-17 2008-06-19 クゥアルコム・インコーポレイテッド 測位信号を受信しつつコヒーレント積分長を長くするための方法及び装置
US20080272960A1 (en) * 2007-05-01 2008-11-06 Nobuhiro Kishimoto Method and system for GPS position measuring and frequency error detecting method
JP2011523258A (ja) * 2008-04-28 2011-08-04 クゥアルコム・インコーポレイテッド マルチ・トーン・ジャミングを検出するためのシステム及び/又は方法
JP2010206256A (ja) * 2009-02-27 2010-09-16 Furuno Electric Co Ltd Gnss受信装置
JP2010203959A (ja) * 2009-03-04 2010-09-16 Seiko Epson Corp 初期位置決定方法、位置算出方法及び位置算出装置
US20120326926A1 (en) * 2011-06-24 2012-12-27 Mayflower Communications Company, Inc. High sensitivity gps/gnss receiver
US20130207837A1 (en) * 2012-02-10 2013-08-15 Centre National D'etudes Spatiales (Cnes) Method for Determining a Confidence Indicator Relating to the Trajectory Followed by a Moving Object
US20140070987A1 (en) * 2012-09-07 2014-03-13 Cambridge Silicon Radio Limited Psuedo maximum likelihood tracking for global navigation satellite systems
JP2014070960A (ja) * 2012-09-28 2014-04-21 Japan Radio Co Ltd 衛星信号受信装置
JP2014102137A (ja) * 2012-11-20 2014-06-05 Mitsubishi Electric Corp 自己位置推定装置
JP2014153085A (ja) * 2013-02-05 2014-08-25 Railway Technical Research Institute 車両位置計測方法、および車両位置計測システム
CN104931995A (zh) * 2015-06-12 2015-09-23 南京理工大学 一种基于矢量跟踪的gnss/sins深组合导航方法

Also Published As

Publication number Publication date
US20210286088A1 (en) 2021-09-16
US11513235B2 (en) 2022-11-29
EP3488265A1 (en) 2019-05-29
WO2018014980A1 (en) 2018-01-25
CN109564293B (zh) 2023-09-08
JP6999640B2 (ja) 2022-01-18
CN109564293A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
US11474258B2 (en) System for determining a physical metric such as position
Zhao et al. An open source GPS/GNSS vector tracking loop-implementation, filter tuning, and results
US11187810B2 (en) Global navigation satellite system (GNSS) signal tracking
Stöber et al. ipexSR: A real-time multi-frequency software GNSS receiver
KR101638210B1 (ko) 이동 수신기에 의해, 위성으로부터의 확산 스펙트럼 신호의 획득을 최적화하는 방법
US10746879B2 (en) Method for efficiently detecting impairments in a multi-constellation GNSS receiver
Gebre-Egziabher et al. GNSS applications and methods
Tamazin et al. A new high-resolution GPS multipath mitigation technique using fast orthogonal search
CN116745647A (zh) 现代化的消费者级gnss次级码捕获和信号跟踪
JP6999640B2 (ja) 全地球航法衛星システム(gnss)信号追跡
Musumeci et al. Design of a very high sensitivity acquisition system for a space GNSS receiver
Amani et al. Correlator‐based multipath detection technique for a global positioning system/GNSS receiver
CN115667997A (zh) 用于在定位系统中执行相关的方法、系统和计算机程序产品
US7961145B1 (en) Method and apparatus for estimating relative position in a global navigation satellite system
US11579309B2 (en) Global Navigation Satellite System (GNSS) multipath mitigation
Andrianarison et al. Innovative techniques for collective detection of multiple GNSS signals in challenging environments
Anghileri et al. Performance evaluation of a multi-frequency GPS/Galileo/SBAS software receiver
US11747487B2 (en) GNSS receiver clock frequency drift detection
Mongredien et al. Opportunities and challenges for multi-constellation, multi-frequency automotive GNSS receivers
Shytermeja Robust gnss positioning in urban environment
Dardin et al. The effect of contaminated channel in vector tracking loop for position estimation
Shytermeja Chapter Robust GNSS Positioning in Urban Environment
WO2023067344A1 (en) Positioning system and method
Arul Elango Software Based GPS Receiver Acquisition and Positioning Performance Enhancement under Degraded Conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200911

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211222

R150 Certificate of patent or registration of utility model

Ref document number: 6999640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150