JP2019520163A - Bionic prosthesis - Google Patents

Bionic prosthesis Download PDF

Info

Publication number
JP2019520163A
JP2019520163A JP2018569128A JP2018569128A JP2019520163A JP 2019520163 A JP2019520163 A JP 2019520163A JP 2018569128 A JP2018569128 A JP 2018569128A JP 2018569128 A JP2018569128 A JP 2018569128A JP 2019520163 A JP2019520163 A JP 2019520163A
Authority
JP
Japan
Prior art keywords
finger
assembly
joint member
finger assembly
thumb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018569128A
Other languages
Japanese (ja)
Other versions
JP6712332B2 (en
Inventor
暁▲ベイ▼ 景
暁▲ベイ▼ 景
旭 雍
旭 雍
睿 徐
睿 徐
悦 鄭
悦 鄭
鳳 田
鳳 田
浩詩 張
浩詩 張
向新 李
向新 李
光林 李
光林 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Publication of JP2019520163A publication Critical patent/JP2019520163A/en
Application granted granted Critical
Publication of JP6712332B2 publication Critical patent/JP6712332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/54Artificial arms or hands or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/54Artificial arms or hands or parts thereof
    • A61F2/58Elbows; Wrists ; Other joints; Hands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/54Artificial arms or hands or parts thereof
    • A61F2/58Elbows; Wrists ; Other joints; Hands
    • A61F2/583Hands; Wrist joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/54Artificial arms or hands or parts thereof
    • A61F2/58Elbows; Wrists ; Other joints; Hands
    • A61F2/583Hands; Wrist joints
    • A61F2/586Fingers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • A61F2002/701Operating or control means electrical operated by electrically controlled means, e.g. solenoids or torque motors

Abstract

掌部材(1)と、示指アセンブリ(21)、中指アセンブリ(22)、薬指アセンブリ(23)、小指アセンブリ(24)及び拇指アセンブリ(25)を備え、示指アセンブリ(21)、中指アセンブリ(22)、薬指アセンブリ(23)及び小指アセンブリ(24)が掌部材(1)の上端にそれぞれに開閉可能に接続された指部材(2)と、掌部材(1)の内側に直立回転可能に接続されて、拇指アセンブリ(25)が開閉可能に接続される第1指間部部材(3)と、を含むバイオニック義手である。バイオニック義手では、拇指アセンブリ(25)が、内転又は外転することができ、示指アセンブリ(21)、中指アセンブリ(22)、薬指アセンブリ(23)、小指アセンブリ(24)及び拇指アセンブリ(25)は、伸展又は屈曲動作を実現できるとともに、重量が軽く、患者(上肢欠損者)による長時間にわたる装着や使用に利便性を図る。【選択図】図1The palm member (1), the index finger assembly (21), the middle finger assembly (22), the ring finger assembly (23), the little finger assembly (24) and the thumb assembly (25), the index finger assembly (21), the middle finger assembly (22) Ring finger assembly (23) and little finger assembly (24) are connected upright rotatably inside the palm member (1) with the finger members (2) connected to the upper end of the palm member (1) in an openable / closable manner respectively And a first inter-finger member (3) to which the thumb assembly (25) is openably and closably connected. In the bionic prosthesis, the thumb assembly (25) can be inverted or abducted, the index finger assembly (21), the middle finger assembly (22), the ring finger assembly (23), the thumb assembly (24) and the thumb assembly (25) ) Can realize an extension or bending operation, is light in weight, and is convenient for wearing and use for a long time by a patient (upper limb deficient). [Selected figure] Figure 1

Description

本発明は、義手に関し、特にリハビリ医療器械分野におけるバイオニック義手に関する。   FIELD OF THE INVENTION The present invention relates to prosthetics, and in particular to bionic prosthetics in the field of rehabilitation medical instruments.

筋電義手は、欠損した肢体の代わりに、上肢欠損障害者のため日常生活の利便性を提供することが可能であり、現在のリハビリ工程分野での重要な検討方向の1つとなっている。   Myoelectric prostheses can provide convenience of daily life for people with upper extremity defects instead of lost limbs, and have become one of the important examination directions in the current rehabilitation process field.

従来の製品では、比例制御型筋電義手は、拇指、示指及び中指という三本の指のみを有し、手の開閉という単一モードの動作で掴みを実現することしかできない。また、比例制御型筋電義手の手指は、一体化された構造であり、多関節によるコラボレーション運動を実現できない。そのため、このような製品は、日常生活における実用性が高くないと考えられる。   In a conventional product, a proportional control type myoelectric prosthesis has only three fingers, a thumb, an index finger and a middle finger, and can only realize gripping in a single mode operation of opening and closing the hand. In addition, the fingers of the proportional control type electromyographic artificial hand have an integrated structure, and can not realize multi-joint collaborative exercise. Therefore, such products are considered not to be highly practical in daily life.

従来の製品では、五本の手指を有する義手もあり、薬指と小指によるコラボレーション運動が可能であるほか、各本の手指による動きを個別に制御することができ、多くの手部動作を実現することができる。また、拇指以外の四本の手指は、遠位指節関節以外の2関節がコラボレーション運動を行うという特徴を有する。ただし、このような義手の拇指の中手骨手根関節は、独立した自由度を有しないため、拇指による内転又は外転の回転動作には手動による補助が必要となる。また、このような義手によれば、外観や動作上のバイオニック設計が実現されたが、重量が重い(500g以上)ので、患者に対して大きな負担を与え、長時間にわたる装着に適していない。   In the conventional products, there are also prostheses with five fingers, and it is possible to perform collaboration movement with the ring finger and the little finger, and it is possible to individually control the movement by the fingers of each book, and realize many hand movements. be able to. In addition, the four fingers other than the thumb are characterized in that two joints other than the distal phalanx joint perform collaborative motion. However, since the metacarpal-carpal joint of the artificial finger of this artificial hand does not have an independent degree of freedom, the rotational motion of adduction or abduction by the finger requires manual assistance. Moreover, according to such a prosthetic hand, a bionic design on appearance and operation has been realized, but the heavy weight (500 g or more) places a heavy burden on the patient and is not suitable for long-term wearing .

目下、従来の多自由度筋電義手では、各関節に自由度を与えることによって、単一の手指及び関節による独立した動きが実現され、実現可能な動作の数が多くなるが、しかし、モータの数が多いので、制御システムが複雑となり、メンテナンスコストが高くなっている。また、重量が重いので、患者は、長時間にわたる装着後、痛み、疲れ等が感じているようになるという問題があり、長時間にわたる装着や使用ができなくなる。そのため、このような義手は、実用性が大きく損なわれただけでなく高い価格が障害となり、普通の患者に向いておらず、一般的な家庭に受け入れられにくいと考えられる。   At present, in a conventional multi-DOF electromyograph, by giving each joint a degree of freedom, independent movements with a single finger and joint are realized and the number of feasible movements is increased, but the motor Due to the large number of components, the control system is complicated and the maintenance cost is high. In addition, since the weight is heavy, there is a problem that the patient feels pain and fatigue after wearing for a long time, and can not wear and use for a long time. Therefore, such a prosthetic hand is considered to be unsuitable for ordinary patients and difficult to be accepted by general households, as well as the practicality is greatly impaired and the high price becomes an obstacle.

次に、市販品の筋電義手は、構造上では、本体部分が金属材で製造されたので、重量が重くなるだけでなく、関節にギア等の伝統的な伝動方式が用いられて、複数段の噛合が伝動効率を低下させ、モータのトルクを最大限に発揮させることができなくなり、最終的に、価格が高くて体積が大きい大トルク出力モータを用いて補足しなければならない。ただし、このような対策では、逆にコストを増加し、余計な重量も増加してしまう。   Next, since the commercially available myoelectric prostheses are structurally made of metal in the main body, not only the weight is heavy, but also traditional power transmission methods such as gears are used for joints, The meshing of the steps reduces the transmission efficiency and can not maximize the torque of the motor, and ultimately, it must be supplemented with a high cost, high volume, large torque output motor. However, such measures increase cost and extra weight.

また、既存の筋電義手は、掴み能力がまずまずの程度に過ぎず、物体を掴む時に、他の手指による干渉があるため、利用者が適切な掴み姿勢となるように、上肢の補助運動によって姿勢を変換、調節しなければならない。また、物体を掴む時に、指腹構造は、一定の被覆力及び摩擦力を含有する粘弾性を有しないため、物体の掴みの安定性が不足する。また、手指が横方向(手のひらの平面と平行)の外力の作用を受けた場合に、負荷保護構造が設けられていないため、手指関節が損害されやすく、義手全体の実用性が大きく損なわれる。これも、利用者は筋電義手を用いて細かい動きを行うことができず、利用者は実用性が高くないと認識する要因である。   In addition, the existing EMG hands have only a moderate grasping ability, and when grasping an object, there is interference by other fingers, so the user can take an appropriate holding posture by assisting the upper limbs You have to change and adjust your posture. In addition, when gripping an object, the finger pad structure does not have visco-elastic properties including constant covering power and frictional force, so that the stability of gripping of the object is insufficient. In addition, when the finger is subjected to the external force in the lateral direction (parallel to the plane of the palm), the finger joint is easily damaged because the load protection structure is not provided, and the practicability of the entire prosthetic hand is greatly impaired. This is also a factor that the user can not make fine movements using the myoelectric prosthesis and the user recognizes that the utility is not high.

さらに、従来の筋電義手は、外観からすると、十分にバイオニック化されたものとは思われていない。患者が公共の場で義手を装着、使用している場合、周りから注目されやすく、装着者自身も、心理的な抵抗感が生じてしまい、利用意向が低下する。この場合に、外観が十分にバイオニック化されていない筋電義手を用いるよりも、操作機能がない装飾的な義手を使用したほうがよいと思われることがある。   Furthermore, conventional myoelectric prostheses do not appear to be sufficiently bionic in terms of appearance. When the patient wears and uses the artificial hand in a public place, the patient tends to be noticed from the surroundings, and the wearer itself also feels psychological resistance, and the usage intention decreases. In this case, it may be better to use a decorative artificial hand having no operation function than using an EMG hand whose appearance is not sufficiently bionic.

本発明は、拇指アセンブリが内転又は外転することができ、示指アセンブリ、中指アセンブリ、薬指アセンブリ、小指アセンブリ及び拇指アセンブリが伸展又は屈曲動作を実現できるとともに、重量が軽く、外観がバイオニック化されたものであり、患者による長時間にわたる装着や使用に利便性を図るバイオニック義手を提供することを目的としている。   In the present invention, the thumb finger assembly can be inverted or abducted, and the index finger assembly, the middle finger assembly, the ring finger assembly, the thumb finger assembly and the thumb finger assembly can realize extension or bending action, and can be light in weight and bionic in appearance The purpose of the present invention is to provide a bionic prosthesis that is convenient for long-term wearing and use by patients.

本発明は、
掌部材と、
示指アセンブリ、中指アセンブリ、薬指アセンブリ、小指アセンブリ及び拇指アセンブリを備え、前記示指アセンブリ、前記中指アセンブリ、前記薬指アセンブリ及び前記小指アセンブリが前記掌部材の上端にそれぞれに開閉可能に接続される指部材と、
前記掌部材の内側に回転可能に接続されて、前記拇指アセンブリが開閉可能に接続される第1指間部部材と、
を含むバイオニック義手を提供する。
The present invention
Palm member,
A finger member comprising an indicating finger assembly, a middle finger assembly, a ring finger assembly, a little finger assembly and a finger assembly, wherein the pointing finger assembly, the middle finger assembly, the ring finger assembly and the little finger assembly are respectively openably connected to the upper end of the palm member ,
A first inter-finger part member rotatably connected to the inside of the palm member, to which the thumb assembly is openably connected;
Provide bionic artificial hand including.

本発明のバイオニック義手は、下記のような特徴及び利点を有している。   The bionic prosthesis of the present invention has the following features and advantages.

一、本発明において、2つの小型モータ(即ち、指駆動モータ及び拇指駆動モータ)のみを駆動として用いることで、拇指アセンブリ、示指アセンブリ、中指アセンブリ、薬指アセンブリ及び小指アセンブリという五本の手指による伸展又は屈曲動作、並びに、拇指アセンブリの中手骨手根関節部材による内転又は外転動作を、それぞれに駆動するものが設計された。つまり、本発明は、第1指間部部材に接続され拇指の内転又は外転を駆動する拇指駆動モータにより、拇指アセンブリを、他の四本の手指アセンブリと平行又は対向な異なる空間位置で、垂直に回転させることができる。また、指駆動モータの回転軸により、五本の手指アセンブリの屈曲又は伸展を同時に駆動させる。これによって、拇指アセンブリが他の四本手指アセンブリと協働して、各種の姿勢における握力把握、精密把握及び側面把握という3種類の、健常者の日常生活において85%も占めている主な把握モードを実現した。   First, in the present invention, by using only two small motors (ie, a finger drive motor and a finger drive motor) as the drive, extension with the five fingers of the thumb, finger, middle, middle and pink finger assemblies Alternatively, it has been designed to drive the bending motion and the adduction or abduction motion by the metacarpal carpal joint member of the thumb assembly respectively. That is, according to the present invention, by the thumb drive motor connected to the first interdigital member to drive the adduction or the extrarotation of the thumb, the thumb assembly is placed in a different spatial position parallel or opposite to the other four finger assemblies. Can be rotated vertically. In addition, the rotation axis of the finger drive motor simultaneously drives the bending or extension of the five finger assembly. As a result, the thumb finger assembly cooperates with the other four finger assemblies to achieve 85% as much of the normal daily life as three main types of grasping power, grasping precision, and grasping sides in various postures. I realized the mode.

二、本発明は、指駆動モータの回転軸により、五本の手指アセンブリの同時の伸展又は屈曲を連動させ、掌部材内に設けられた異なる駆動ワイヤ通路の経路長さを、異なるワイヤ通路に穿設されて長さが異なるワイヤに対応させることを介して、各手指アセンブリの分離運動を実現する。つまり、本発明は、薬指アセンブリと小指アセンブリとの分離遅延運動をさらに派生し、これにより、薬指アセンブリと小指アセンブリは、構造上、示指アセンブリ及び中指アセンブリに対して遅延屈曲を起こすように設計され、ミスタッチ又は干渉の問題を効果的に回避することができる。このように、精密把握時に、薬指アセンブリ及び小指アセンブリが示指アセンブリ及び中指アセンブリよりも先に物体に接触したことによる誤動作又は掴み不可能な状況を回避し、把握能力が向上した。   Second, the present invention interlocks the simultaneous extension or bending of the five finger assembly by the rotation shaft of the finger drive motor, and the path lengths of different drive wire passages provided in the palm member are made different wire passages. The separated movement of each finger assembly is achieved through being drilled to accommodate different lengths of wire. That is, the present invention further derives a separate delaying motion between the ring finger assembly and the little finger assembly, whereby the ring finger assembly and the finger assembly are structurally designed to cause delay bending with respect to the index finger assembly and the middle finger assembly. The problem of mistouch or interference can be effectively avoided. Thus, during precise grasping, the grasping ability is improved by avoiding a malfunction or ungrabable situation due to the ring finger assembly and the pinky finger assembly contacting the object prior to the index finger assembly and the middle finger assembly.

三、本発明は、各本の手指アセンブリの異なる長さに基づいて、弾性係数が最適な五本の弾性バンドを算出し対応し、各弾性バンドが、各手指アセンブリの指背部分に設けられている。つまり、受動的な動力源としての、五本の手指アセンブリの指背に設けられた弾性バンドの弾性復元力により、各手指アセンブリの伸展動作が実現出来る。具体的には、指駆動モータが回転軸の逆転を駆動し、各手指アセンブリを牽引する駆動ワイヤを緩めるとともに、各手指アセンブリは、その指背での各弾性バンドの復元力により五本の指が開いた状態に戻り、これによって、各手指アセンブリの伸展動作を実現した。   Third, the present invention calculates and responds to five elastic bands having an optimum elastic modulus based on the different lengths of the respective finger assemblies, and each elastic band is provided on the finger back portion of each finger assembly. ing. That is, the elastic restoring force of the elastic band provided on the back of the five finger assembly as a passive power source can realize the extension operation of each finger assembly. Specifically, while the finger drive motor drives the reverse of the rotation axis and loosens the drive wire pulling on each finger assembly, each finger assembly has five fingers due to the restoring force of each elastic band on its finger back Returns to the open state, thereby realizing the extension operation of each finger assembly.

四、本発明における遠位指節関節部材の柔軟な指腹構造と、剛性な関節部材骨組体は、3Dプリンタにより一体成型されることができ、取り付けまたは粘着による工程数の増加及びコストの向上を回避できる。又は、柔軟な指腹構造は、さらに、粘着又は嵌め込みの方式で関節部材骨組体に接続されてもよい。当該指腹構造は、柔軟性を有するゴム材料からなる柔軟性構造が用いられたことで、手指アセンブリによる物体掴み時の接触面積を大きくし、表面摩擦性能を強くし、物品掴み時の被覆力及び表面摩擦力を向上し、さらに、物体掴みの安定性を顕著に向上させる。   Fourth, the flexible finger pad structure of the distal phalanx joint member according to the present invention and the rigid joint member skeleton can be integrally molded by a 3D printer, thereby increasing the number of steps and cost by attaching or adhering. Can be avoided. Alternatively, the flexible finger pad structure may be further connected to the articulating member skeleton in an adhesive or fitting manner. The finger pad structure uses a flexible structure made of a rubber material having flexibility, thereby increasing the contact area at the time of gripping an object by the finger assembly, enhancing surface friction performance, and covering power at the time of gripping an article And improve the surface friction force, and further significantly improve the stability of object gripping.

五、摩擦がない構造部分について、例えば、「また、近位指節関節部材と掌部材との回転中心、及び中位指節関節部材と近位指節関節部材との回転中心は、同じく回転線である。これらの関節部材において、それぞれの回転中心に沿って他の関節との摩擦が生じない線接触構造が形成されているので、伝統的な関節回転ペアが、相互の面接触に起因して、運動時に摩擦作用が生じ、手指出力が弱くなることは避けられる。本発明のこのような摩擦がない線接触構造では、指駆動モータの出力を各手指アセンブリに対して効率最大化するように出力することができる」又は「従来の義手では関節と関節との間に軸接続の方式が採用されたので、互いに接触する面で摩擦力が生じて出力効率が低下する。これに対し、本発明の各手指アセンブリの各関節部材間では、軸接続ではなく、線接触の方式が採用されたので、摩擦力がゼロであり、指駆動モータの出力に対する内部損失を回避した」が引用されている。   5. For the non-frictional structural part, for example, "also, the center of rotation of the proximal phalanx joint member and the palm member, and the center of rotation of the medial phalanx joint member and the proximal phalanx joint member are also the same. In these articulating members, a line contact structure is formed along each rotation center so that friction with other joints does not occur, so that the traditional joint rotation pair is caused by mutual surface contact. This avoids the occurrence of friction during exercise and a reduction in finger power. Such a friction-free line contact structure of the present invention maximizes the power of the finger drive motor for each finger assembly Or “The conventional artificial hand adopts a method of axial connection between joints and joints, so frictional force is generated on the surfaces in contact with each other, and the output efficiency is reduced. , Of each finger assembly of the present invention The joint member, instead of a shaft connection, because the method of the line contact is adopted, the frictional force is zero, to avoid internal loss with respect to the output of the finger drive motors "are cited.

図1は、本発明に係るバイオニック義手の正面図である。FIG. 1 is a front view of a bionic prosthesis according to the present invention. 図2は、本発明に係るバイオニック義手の背面図である。FIG. 2 is a rear view of the bionic prosthesis according to the present invention. 図3は、本発明に係るバイオニック義手の掌部材の構造を示す模式図である。FIG. 3 is a schematic view showing the structure of the palm member of the bionic prosthesis according to the present invention. 図4は、本発明に係るバイオニック義手の拇指アセンブリの構造を示す模式図である。FIG. 4 is a schematic view showing the structure of the thumb finger assembly of the bionic prosthesis according to the present invention. 図5は、本発明に係るバイオニック義手の示指アセンブリの構造を示す模式図(の1)である。FIG. 5 is a schematic diagram (part 1) showing the structure of the index finger assembly of the bionic prosthesis according to the present invention. 図6は、本発明に係るバイオニック義手の示指アセンブリの構造を示す模式図(の2)である。FIG. 6 is a schematic diagram (part 2) showing the structure of the index finger assembly of the bionic prosthesis according to the present invention.

以下は、本発明の実施例の図面を組み合わせて、本発明の実施例に係る技術案を明瞭、完全に記述する。明らかなことに、記述した実施例が、全部の実施例ではなく、本発明の実施例の一部に過ぎない。本発明の実施例に基づいて、当業者が創意工夫をせずに取得した全ての他の実施例は、いずれも本発明の保護範囲に含まれる。   The following clearly and completely describes the technical solutions according to the embodiments of the present invention by combining the drawings of the embodiments of the present invention. Apparently, the described embodiments are only a part of the embodiments of the present invention, not all the embodiments. All other embodiments obtained by those skilled in the art without inventive ideas based on the embodiments of the present invention are all included in the protection scope of the present invention.

図1及び図2に示されたように、本発明は、掌部材1、指部材2及び第1指間部部材3を含むバイオニック義手を提供する。そのうち、指部材2が、示指アセンブリ21、中指アセンブリ22、薬指アセンブリ23、小指アセンブリ24及び拇指アセンブリ25を備え、前記示指アセンブリ21、前記中指アセンブリ22、前記薬指アセンブリ23及び前記小指アセンブリ24が、前記掌部材1の上端にそれぞれに開閉可能に接続されており、第1指間部部材3が、前記掌部材1の内側に直立回転可能に接続されており、前記拇指アセンブリ25が、前記第1指間部部材3に開閉可能に接続されている。   As shown in FIGS. 1 and 2, the present invention provides a bionic prosthesis including a palm member 1, a finger member 2 and a first inter-finger member 3. Among them, the finger member 2 includes an index finger assembly 21, a middle finger assembly 22, a ring finger assembly 23, a finger assembly 24, and a finger assembly 25, the index finger assembly 21, the middle finger assembly 22, the ring finger assembly 23, and the finger assembly 24; The first inter-finger part member 3 is connected to the upper end of the palm member 1 so as to be openable and closable, and the first inter-finger part member 3 is connected to the inside of the palm member 1 so as to be upright and rotatable. It is connected to the one inter-finger portion member 3 so as to be openable and closable.

具体的には、掌部材1は、外観構造が人手の形状と類似した部材であり、本発明において、当該掌部材1の全体形状は、大人の女性の右手の平均的寸法及び大きさに応じてバイオニック設計を行って得られたものである。人手の外観形状をリアルに模倣できるように、当該掌部材1の両側及び、手首に近接する箇所での構造が、いずれも遷移曲面造型に設計される。本実施例において、当該掌部材1の下端(つまり、手首と接続する端部)には、手首関節の拡張可能な連結軸11が接続されることで、後続の手首機能の拡張や直接的に固定接続端として機能する面に利便性を図る。   Specifically, palm member 1 is a member whose appearance structure is similar to the shape of a human hand, and in the present invention, the overall shape of palm member 1 corresponds to the average size and size of the right hand of an adult female. It is obtained by performing bionic design. The structures on both sides of the palm member 1 and at positions close to the wrist are both designed to be transition curved surface molding so that the external shape of the human hand can be realistically simulated. In the present embodiment, the expandable joint shaft 11 of the wrist joint is connected to the lower end of the palm member 1 (that is, the end connected to the wrist), thereby expanding or directly following the wrist function. Convenience is achieved on the surface that functions as a fixed connection end.

指部材2は、示指アセンブリ21、中指アセンブリ22、薬指アセンブリ23、小指アセンブリ24及び拇指アセンブリ25からなり、示指アセンブリ21、中指アセンブリ22、薬指アセンブリ23及び小指アセンブリ24が掌部材1の上端にそれぞれに接続されている。本発明において、掌部材1での当該示指アセンブリ21、中指アセンブリ22の位置及び角度は、精密把握時の空間噛合により解析、算出した位置と対応する。掌部材1での薬指アセンブリ23、小指アセンブリ24の位置及び角度は、人手の不規則曲面分布に合わせる。本実施例において、図3に示されたように、掌部材1内には、回転軸41が接続された指駆動モータ4が設けられており、当該回転軸41は、複数のピン42により指駆動モータ4の回転軸と接続されている。掌部材1の外側には、軸受43が設けられており、当該軸受43には、中心軸44が穿設されており、回転軸41は、軸受43及び中心軸44により位置が決められて支持される。当該回転軸41には、その軸方向に沿って間隔を空けて複数の環状凹溝411が設けられており、当該示指アセンブリ21、中指アセンブリ22、薬指アセンブリ23、小指アセンブリ24及び拇指アセンブリ25は、示指駆動ワイヤ211、中指駆動ワイヤ221、薬指駆動ワイヤ231、小指駆動ワイヤ241及び拇指駆動ワイヤ251により、回転軸41の複数の環状凹溝411内にそれぞれに接続されることで、当該指駆動モータ4は、前述したワイヤ(つまり、示指駆動ワイヤ211、中指駆動ワイヤ221、薬指駆動ワイヤ231、小指駆動ワイヤ241及び拇指駆動ワイヤ251)により各手指アセンブリ(つまり、示指アセンブリ21、中指アセンブリ22、薬指アセンブリ23、小指アセンブリ24及び拇指アセンブリ25)を駆動して、五本の手指の屈曲動作(つまり、閉動作)を共同で完成することができる。このように、指駆動モータ4は、回転軸41が正転するよう駆動する場合に、五本の駆動ワイヤを連動して五本の手指アセンブリを駆動することで、閉動作を実現することができる。指駆動モータ4は、回転軸41が反転するよう駆動する場合に、五本の駆動ワイヤを緩めることに相当し、五本の手指アセンブリの開動作を実現するために、準備する。   The finger member 2 comprises an index finger assembly 21, a middle finger assembly 22, a ring finger assembly 23, a thumb finger assembly 24 and a finger assembly 25, and the index finger assembly 21, the middle finger assembly 22, the ring finger assembly 23 and the thumb finger assembly 24 are respectively provided on the upper end of the palm member 1. It is connected to the. In the present invention, the positions and angles of the index finger assembly 21 and the middle finger assembly 22 in the palm member 1 correspond to the positions analyzed and calculated by the space engagement at the time of precise grasping. The positions and angles of the ring finger assembly 23 and the little finger assembly 24 on the palm member 1 match the irregular curved surface distribution of the human hand. In the present embodiment, as shown in FIG. 3, the finger drive motor 4 to which the rotation shaft 41 is connected is provided in the palm member 1, and the rotation shaft 41 is a finger by a plurality of pins 42. It is connected to the rotation shaft of the drive motor 4. A bearing 43 is provided on the outside of the palm member 1, and a central shaft 44 is bored in the bearing 43, and the rotational shaft 41 is positioned by the bearing 43 and the central shaft 44 and supported. Be done. The rotary shaft 41 is provided with a plurality of annular grooves 411 spaced along the axial direction, and the index finger assembly 21, the middle finger assembly 22, the ring finger assembly 23, the finger assembly 24 and the finger assembly 25 The finger drive wire 211, the middle finger drive wire 221, the ring finger drive wire 231, the little finger drive wire 241, and the thumb drive wire 251 are connected to the inside of the plurality of annular grooves 411 of the rotation shaft 41, respectively. The motor 4 includes the finger assembly (i.e., the index finger assembly 21, the middle finger assembly 22) by the above-described wires (i.e., the index finger drive wire 211, the middle finger drive wire 221, the ring finger drive wire 231, the finger drive wire 241 and the thumb drive wire 251). Ring finger assembly 23, little finger assembly 24 and thumb finger assembly 2 ) By driving the, it can be completed in co-five pieces of finger bending movement (in other words, closing operation). As described above, when the rotation shaft 41 is driven to rotate normally, the finger drive motor 4 can realize the closing operation by driving the five finger assemblies in conjunction with the five drive wires. it can. The finger drive motor 4 corresponds to loosening the five drive wires when the rotary shaft 41 is driven to reverse, and prepares to realize the opening operation of the five finger assembly.

本実施例において、図3に示されたように、掌部材1には、示指駆動ワイヤ通路12、中指駆動ワイヤ通路13、薬指駆動ワイヤ通路14、小指駆動ワイヤ通路15及び拇指駆動ワイヤ通路16の五本の引き回し通路が設けられており、そのうち、示指駆動ワイヤ211が、示指駆動ワイヤ通路12内に穿設されており、中指駆動ワイヤ221が中指駆動ワイヤ通路13内に穿設されており、薬指駆動ワイヤ231が薬指駆動ワイヤ通路14内に穿設されており、小指駆動ワイヤ241が小指駆動ワイヤ通路15内に穿設されており、拇指駆動ワイヤ251が拇指駆動ワイヤ通路16内に穿設されている。さらに、当該掌部材1内には、前記五本の引き回し通路と連通するキャビティ17が設けられており、前記キャビティ17は、掌部材1の上部に設けられ、指駆動モータ4及び回転軸41は、ともに当該キャビティ17内に位置している。本実施例において、図2に示されたように、当該キャビティ17には、保護カバー18が設けられている。示指駆動ワイヤ211、中指駆動ワイヤ221、薬指駆動ワイヤ231、小指駆動ワイヤ241及び拇指駆動ワイヤ251は、示指アセンブリ21、中指アセンブリ22、薬指アセンブリ23、小指アセンブリ24及び拇指アセンブリ25を駆動するための精密的なコア伝動部であり、且つ、不要な空間体積を余計に増加せずに人手の実際な形態をバイオニック化して模倣するように外観を設計しなければならないことを考慮したうえ、キャビティ17に前記伝動部を内藏させ、さらに保護カバー18を設けることで、防塵及び異物との接触を回避する保護処理を行う必要がある。   In this embodiment, as shown in FIG. 3, the palm member 1 includes the finger drive wire passage 12, the middle finger drive wire passage 13, the ring finger drive wire passage 14, the little finger drive wire passage 15 and the finger drive wire passage 16. Five lead-out passages are provided, of which the index finger drive wire 211 is drilled in the index finger drive wire passage 12 and the middle finger drive wire 221 is drilled in the middle finger drive wire passage 13; The ring finger drive wire 231 is drilled in the ring finger drive wire passage 14, the finger drive wire 241 is drilled in the finger drive wire passage 15, and the finger drive wire 251 is drilled in the finger drive wire passage 16. It is done. Furthermore, in the palm member 1, a cavity 17 communicating with the five lead-out passages is provided, the cavity 17 is provided in the upper part of the palm member 1, and the finger drive motor 4 and the rotation shaft 41 are provided. , Both are located in the cavity 17. In the present embodiment, as shown in FIG. 2, the cavity 17 is provided with a protective cover 18. The index finger drive wire 211, the middle finger drive wire 221, the ring finger drive wire 231, the finger drive wire 241 and the finger drive wire 251 are for driving the index finger assembly 21, the middle finger assembly 22, the ring finger assembly 23, the finger assembly 24 and the finger assembly 25. Considering that it is a precision core transmission, and its appearance must be designed to mimic and mimic the actual form of the human hand without adding unnecessary space volume extra It is necessary to carry out a protection process to prevent dust contact and contact with foreign matter by making the transmission portion inside and further providing a protective cover 18.

精密把握時に、示指アセンブリ21、中指アセンブリ22、薬指アセンブリ23及び小指アセンブリ24という四本の手指アセンブリが、同じの角速度で同時に屈曲すると、薬指アセンブリ23、小指アセンブリ24が他の三本の手指アセンブリ(つまり、示指アセンブリ21、中指アセンブリ22及び拇指アセンブリ25)よりも先に掴み対象物に接触するようになり、そこで、ミスタッチ又は干渉等の問題が生じる。例えば、平面に放置された小体積の物体を掴む時に、拇指アセンブリ25、示指アセンブリ21及び中指アセンブリ22が協力して、3点接触による精密な掴みを形成する必要があるが、この時に薬指アセンブリ23及び小指アセンブリ24は、同じ速度で同時に屈曲させ、さらに平面と接触すると、当該バイオニック義手は、三本の手指アセンブリの3点接触による精密な掴み動作が実現できず、精密掴み動作がよく実現できず、又は、掴み動作が失敗になってしまう。   When the four finger assemblies including the index finger assembly 21, the middle finger assembly 22, the ring finger assembly 23, and the little finger assembly 24 simultaneously bend at the same angular velocity during precise grasping, the ring finger assembly 23 and the finger assembly 24 have three other finger assemblies. The grip object comes into contact with the object prior to (that is, the index finger assembly 21, the middle finger assembly 22, and the thumb assembly 25), where a problem such as mistouch or interference occurs. For example, when grasping a small volume object left flat, thumb finger assembly 25, index finger assembly 21 and middle finger assembly 22 need to cooperate to form a precise grip by three-point contact, but this time ring finger assembly When the finger 23 and the finger assembly 24 are simultaneously bent at the same speed and contact with a flat surface, the bionic prosthesis can not realize the precise gripping operation by the three-point contact of the three finger assembly, and the precise gripping operation is good. It can not be realized or the gripping operation will fail.

そのため、本発明の一実施形態において、薬指駆動ワイヤ231の長さ、小指駆動ワイヤ241の長さを、ともに示指駆動ワイヤ211の長さ及び中指駆動ワイヤ221の長さよりも長くする。   Therefore, in one embodiment of the present invention, both the length of ring finger drive wire 231 and the length of little finger drive wire 241 are made longer than the lengths of index finger drive wire 211 and middle finger drive wire 221.

具体的には、前記薬指駆動ワイヤ231の長さとは、薬指アセンブリ23と接続された一端から回転軸41に接続された他端までの実際の長さであり、当該小指駆動ワイヤ241の長さとは、小指アセンブリ24と接続された一端から回転軸41に接続された他端までの実際の長さであり、当該示指駆動ワイヤ211の長さとは、示指アセンブリ21と接続された一端から回転軸41に接続された他端までの実際の長さであり、当該中指駆動ワイヤ221の長さとは、中指アセンブリ22と接続された一端から回転軸41に接続された他端までの実際の長さである。示指駆動ワイヤ211、中指駆動ワイヤ221、薬指駆動ワイヤ231及び小指駆動ワイヤ241は、掌部材1内に位置している示指駆動ワイヤ通路12、中指駆動ワイヤ通路13、薬指駆動ワイヤ通路14、小指駆動ワイヤ通路15にそれぞれに穿設されたので、本発明には、薬指駆動ワイヤ231の長さ、及び小指駆動ワイヤ241の長さを、いずれも示指駆動ワイヤ211の長さ及び中指駆動ワイヤ221の長さよりも長くし、つまり、薬指駆動ワイヤ通路14の長さ及び小指駆動ワイヤ通路15の長さを、ともに示指駆動ワイヤ通路12の長さ及び中指駆動ワイヤ通路13の長さよりも長くする。   Specifically, the length of the ring finger drive wire 231 is an actual length from one end connected to the ring finger assembly 23 to the other end connected to the rotation shaft 41, and the length of the little finger drive wire 241 Is the actual length from one end connected to the little finger assembly 24 to the other end connected to the rotation shaft 41, and the length of the index finger drive wire 211 is the rotation axis from one end connected to the index finger assembly 21. The actual length of the middle finger drive wire 221 is the actual length from the end connected to the middle finger assembly 22 to the other end connected to the rotation shaft 41. It is. The index finger drive wire 211, the middle finger drive wire 221, the ring finger drive wire 231, and the little finger drive wire 241 are located in the palm member 1. The index finger drive wire passage 12, the middle finger drive wire passage 13, the ring finger drive wire passage 14, the finger drive In the present invention, the length of the ring finger drive wire 231 and the length of the little finger drive wire 241 are the same as those of the finger drive wire 211 and the middle finger drive wire 221 in the present invention. The length of the finger drive wire passage 14 and the length of the finger drive wire passage 15 are both longer than the lengths of the index finger drive wire passage 12 and the middle finger drive wire passage 13.

本発明は、掌部材1内に設けられた異なる駆動ワイヤ通路の路径長さにより、異なる駆動ワイヤ通路に穿設された異なる駆動ワイヤの長さと対応して、各手指アセンブリの分離運動を実現し、これにより、薬指アセンブリ23及び小指アセンブリ24の屈曲運動が、示指アセンブリ21及び中指アセンブリ22の屈曲運動よりも遅くさせられる。このようにすると、拇指アセンブリ25、示指アセンブリ21及び中指アセンブリ22は、薬指アセンブリ23及び小指アセンブリ24が同一の屈曲角度に達することよりも先に3点接触による精密な掴み動作を形成し、これによって、前述したミスタッチ又は干渉問題を回避する。   The present invention realizes the separation motion of each finger assembly corresponding to the lengths of different drive wires drilled in different drive wire passages by the path diameter lengths of different drive wire passages provided in the palm member 1 Thus, the bending movement of the ring finger assembly 23 and the little finger assembly 24 is made slower than the bending movement of the index finger assembly 21 and the middle finger assembly 22. In this way, the thumb finger assembly 25, the index finger assembly 21 and the middle finger assembly 22 form a precise gripping action by three-point contact prior to the ring finger assembly 23 and the finger assembly 24 reaching the same bending angle, To avoid the above-mentioned mistouch or interference problem.

本発明の一実施例において、図1及び図3に示されたように、当該掌部材1には、回転軸51に第1指間部部材3が接続された拇指駆動モータ5がさらに設けられており、拇指アセンブリ25の一端は、当該第1指間部部材3に枢着されている。   In one embodiment of the present invention, as shown in FIG. 1 and FIG. 3, the palm member 1 is further provided with a thumb drive motor 5 in which the first inter-finger part member 3 is connected to the rotation shaft 51. And one end of the thumb assembly 25 is pivotally connected to the first inter-finger member 3.

本実施例において、図4に示されたものを参照して、当該拇指アセンブリ25は、順次に接続された中手骨手根関節部材252、近位指節関節部材253及び遠位指節関節部材254を含み、中手骨手根関節部材252が、拇指駆動ワイヤ251により指駆動モータ4の回転軸41に接続されており、近位指節関節部材253がピン255により中手骨手根関節部材252に接続されており、遠位指節関節部材254がピン(図示しない)により近位指節関節部材253に接続されている。   In this embodiment, referring to what is shown in FIG. 4, the thumb assembly 25 comprises a metacarpal carpal joint member 252, a proximal phalanx joint member 253, and a distal phalanx joint sequentially connected. The metacarpal carpal joint member 252 including the member 254 is connected to the rotation shaft 41 of the finger drive motor 4 by the thumb drive wire 251, and the proximal phalanx joint member 253 is metacarpal carpal by the pin 255 Connected to the articulating member 252, the distal phalanx articulating member 254 is connected to the proximal phalanx articulating member 253 by a pin (not shown).

当該中手骨手根関節部材252は、枢着端2521を備え、当該拇指アセンブリ25は、中手骨手根関節部材252の枢着端2521により第1指間部部材3の他側に枢着されることで、当該拇指アセンブリ25が第1指間部部材3に対して屈曲又は伸展動作を実現できる。さらに、当該拇指アセンブリ25の中手骨手根関節部材252には、第1指間部部材3内に摺動可能に差し込み接続する第1指間部スライドプレート256が接続されており、第1指間部スライドプレート256には、摺動溝2561が設けられており、第1指間部部材3には、摺動溝2561を通過して第1指間部部材3に固定されたストッパピン31が設けられている。第1指間部スライドプレート256が拇指駆動ワイヤ251により第1指間部部材3内で摺動し、つまり、拇指アセンブリ25が屈曲又は伸展動作を実現する場合に、当該摺動溝2561は、ストッパピン31に対して往復摺動することで、第1指間部部材3での第1指間部スライドプレート256の最大限の位置を規制し、拇指アセンブリ25の中手骨手根関節部材252の屈曲又は伸展する時の角度を規制し、これによって、中手骨手根関節部材252が摺動中に第1指間部部材3から離脱する状況の発生を防止でき、且つ、角度誤差を解消することと、伸展の最大限の位置における拇指アセンブリ25の強度の増加とを達成できる。   The metacarpal carpal joint member 252 includes a pivoting end 2521, and the thumb assembly 25 is pivoted to the other side of the first interdigital member 3 by the pivoting end 2521 of the metacarpal carpal joint member 252. By being worn, the thumb finger assembly 25 can realize a bending or extending motion with respect to the first interdigital member 3. Furthermore, the metacarpal-carpal joint member 252 of the thumb assembly 25 is connected to a first inter-finger part slide plate 256 slidably inserted into and connected to the first inter-finger part member 3. A sliding groove 2561 is provided in the inter-finger slide plate 256, and a stopper pin fixed to the first inter-finger member 3 through the sliding groove 2561 in the first inter-finger member 3 31 is provided. When the first inter-finger slide plate 256 slides in the first inter-finger member 3 by the thumb drive wire 251, that is, when the thumb assembly 25 realizes a bending or extending operation, the sliding groove 2561 is By sliding back and forth with respect to the stopper pin 31, the maximum position of the first inter-finger slide plate 256 in the first inter-finger member 3 is regulated, and the metacarpal carpal joint member of the thumb assembly 25 The angle when bending or extending 252 is restricted, thereby preventing occurrence of a situation where the metacarpal-carpal joint member 252 separates from the first interdigital member 3 during sliding, and an angular error And an increase in the strength of the thumb assembly 25 at the position of maximum extension.

本発明の第1指間部部材3と拇指駆動モータ5との間は、一端が固定され、他端が浮動している位置決め接続を採用している。具体的には、当該拇指駆動モータ5は、掌部材1の内側の中下部に設けられており、当該第1指間部部材3の上端は、拇指駆動モータ5の回転軸51と固定接続されており、第1指間部部材3の他端には、接続孔32が設けられており、接続孔32は、隙間嵌めの方式で掌部材の下端の短軸10に接続されることで、回転ペアを形成する。拇指駆動モータ5の回転軸51がそれに伴って回転するときに、それに接続される第1指間部部材3を駆動することで、拇指アセンブリ25を連動させて内転又は外転動作を実現する。このような一端が固定され他端が浮動している接続方式は、拇指アセンブリ25が内転又は外転動作を順調自在に行うことを確保するだけでなく、剛性支持も提供する。   The positioning connection in which one end is fixed and the other end is floating is adopted between the first inter-finger part member 3 and the thumb drive motor 5 according to the present invention. Specifically, the thumb drive motor 5 is provided in the middle lower portion inside the palm member 1, and the upper end of the first inter-finger member 3 is fixedly connected to the rotation shaft 51 of the thumb drive motor 5. The connection hole 32 is provided at the other end of the first inter-finger part member 3, and the connection hole 32 is connected to the short shaft 10 at the lower end of the palm member by a clearance fit method, Form a rotating pair. When the rotation shaft 51 of the thumb drive motor 5 rotates accordingly, by driving the first inter-finger part member 3 connected thereto, the thumb assembly 25 is interlocked to realize the inturn or outturn operation. . Such a connection method in which one end is fixed and the other end is floating not only ensures that the thumb assembly 25 smoothly performs the adduction or eversion operation, but also provides a rigid support.

本発明は、拇指駆動モータ5の回転軸51に接続される第1指間部部材3により、拇指アセンブリ25を連動させて内転又は外転をすることで、拇指アセンブリ25が、他の四本の指と平行又は対向の、異なる空間位置で回転させる。また、指駆動モータ4の回転軸41により、五本の手指アセンブリ(つまり、示指アセンブリ21、中指アセンブリ22、薬指アセンブリ23、小指アセンブリ24及び拇指アセンブリ25)を連動させ屈曲又は伸展を実現するよう駆動する。拇指アセンブリ25の内転又は外転は、五本の手指アセンブリの屈曲又は伸展と協働して、各種の形態の握力把握、精密把握及び側面把握という3種類の把握モードが完成できる。このような多形態の掴み動作は、普通の人の日常生活に85%まで占める。   According to the present invention, the thumb finger assembly 25 is moved in an interlocking or abducting manner by interlocking the thumb finger assembly 25 with the first inter-finger member 3 connected to the rotary shaft 51 of the thumb drive motor 5. Rotate at different spatial positions parallel or opposite to the book finger. In addition, the rotation shaft 41 of the finger drive motor 4 interlocks the five finger assemblies (that is, the index finger assembly 21, the middle finger assembly 22, the ring finger assembly 23, the little finger assembly 24 and the finger assembly 25) to realize bending or extension. To drive. The adduction or abduction of the thumb finger assembly 25 cooperates with the flexion or extension of the five finger assemblies to complete three types of grasping modes: various forms of grasping power, precise grasping, and side grasping. Such polymorphic grabbing operations occupy up to 85% of the daily life of ordinary people.

本発明の一実施形態によれば、当該示指アセンブリ21、中指アセンブリ22、薬指アセンブリ23及び小指アセンブリ24は、構造が同じであり、いずれも順次に接続された近位指節関節部材61、中位指節関節部材62及び遠位指節関節部材63からなり、当該近位指節関節部材61が、示指駆動ワイヤ211、中指駆動ワイヤ221、薬指駆動ワイヤ231又は小指駆動ワイヤ241により回転軸41に接続されており、中位指節関節部材62が近位指節関節部材61の上端に回転可能に接続されており、遠位指節関節部材63が中位指節関節部材62の上端に接続されている。   According to one embodiment of the present invention, the index finger assembly 21, the middle finger assembly 22, the ring finger assembly 23 and the little finger assembly 24 are identical in structure and all are sequentially connected to each other at the proximal phalanx joint member 61. The proximal pharyngeal joint member 61 comprises a position pharyngeal joint member 62 and a distal phalanx joint member 63, and the proximal pharyngeal joint member 61 has a rotation shaft 41 by the index finger drive wire 211, the middle finger drive wire 221, the ring finger drive wire 231 or the finger drive wire And the medial phalanx joint member 62 is rotatably connected to the upper end of the proximal phalanx joint member 61, and the distal phalanx joint member 63 is connected to the upper end of the medial phalanx joint member 62. It is connected.

具体的には、当該示指アセンブリ21、中指アセンブリ22、薬指アセンブリ23及び小指アセンブリ24は、各手指関節の長さが異なる他に、構造では一致しているので、ここで、示指アセンブリ21のみを例として構造を説明する。図5及び図6に示されたように、当該示指アセンブリ21は、近位指節関節部材61、中位指節関節部材62及び遠位指節関節部材63という3つの部分からなる。当該示指アセンブリ21の伝動機構については、掌部材1内に設けられた指駆動モータ4により示指駆動ワイヤ211を駆動することで、近位指節関節部材61を連動させる。ただし、示指駆動ワイヤ211の一端が示指駆動ワイヤ通路12を通って指駆動モータ4の回転軸41に接続されており、他端が引き回し孔611を通って近位指節関節部材61の内部に固定されている。指駆動モータ4の回転軸41が近位指節関節部材61を連動している同時に、第2の示指駆動ワイヤ212を連動している。ただし、第2の示指駆動ワイヤ212は、両端が固定されて、一端が引き回し孔621を通って中位指節関節部材62内部に固定されて、其他端が引き回し孔612を通って近位指節関節部材61を通過して掌部材1に固定されたものである。   Specifically, since the index finger assembly 21, the middle finger assembly 22, the ring finger assembly 23, and the little finger assembly 24 are different in the length of each finger joint, they are identical in structure, so only the index finger assembly 21 is The structure is described as an example. As shown in FIGS. 5 and 6, the index finger assembly 21 comprises three parts: a proximal phalanx joint member 61, a medial phalanx joint member 62 and a distal phalanx joint member 63. Regarding the transmission mechanism of the index finger assembly 21, the proximal finger joint joint member 61 is interlocked by driving the index finger drive wire 211 by the finger drive motor 4 provided in the palm member 1. However, one end of the index finger drive wire 211 is connected to the rotation shaft 41 of the finger drive motor 4 through the index finger drive wire passage 12, and the other end is connected to the inside of the proximal phalanx joint member 61 through the routing hole 611. It is fixed. At the same time that the rotation shaft 41 of the finger drive motor 4 interlocks with the proximal phalanx joint member 61, the second index finger drive wire 212 is interlocked. However, the second index finger drive wire 212 is fixed at both ends, and one end is fixed to the inside of the medial phalanx joint member 62 through the draw hole 621 and the other end is the proximal finger through the draw hole 612 It passes through the joint joint member 61 and is fixed to the palm member 1.

当指駆動モータ4は、示指駆動ワイヤ211を回転駆動する場合に、示指駆動ワイヤ211と第2の示指駆動ワイヤ212との複合連動で、近位指節関節部材61、中位指節関節部材62が同時に屈曲させ、また、ワイヤの伝動で、物体に対する自然で、人間のような掴み動作を実現できる。その一方、遠位指節関節部材63は、ピン631により中位指節関節部材62に固定されているため、個人化を実現するだけでなく、容易に取り外し、メンテナンスすることができる。   The present finger drive motor 4 is a compound interlock of the index finger drive wire 211 and the second index finger drive wire 212 when the index finger drive wire 211 is rotationally driven, and the proximal phalanx joint member 61 and the middle phalanx joint member At the same time, the movement of the wire can realize a natural, human-like gripping action on the object. On the other hand, since the distal phalanx joint member 63 is fixed to the medial phalanx joint member 62 by the pin 631, it can be easily removed and maintained as well as realizing personalization.

また、本発明において、近位指節関節部材61内部には、キャビティ613が設けられており、キャビティ613内には、弾性部材614が取り付けられてもよく、本実施例において、キャビティ613内には、2つの弾性部材614が左右対称に取り付けられ、当該弾性部材614は、例えば、ばねであってもよい。ここで、キャビティ613内の右側に位置している弾性部材614のみを例として説明する。図5に示されたように、当該弾性部材614の一端は、上側ワイヤによって引き回し孔615を通過して中位指節関節部材62に固定されており、当該弾性部材614の他端は、下側ワイヤによって引き回し孔616を通過して掌部材1に固定されており、当該上側ワイヤ及び下側ワイヤは、固定長である。このように、示指アセンブリ21が横方向(掌部材1と平行な平面)の大きな外力を受けた場合に、弾性部材614は変形し、これによって、弾性部材614は、ダンパとして柔軟性回避の作用を奏することだけでなく、その力を近位指節関節部材61及び中位指節関節部材62の2つの固定端に伝達して衝撃力を弱くし、これによって、損害されにくい、受動的に横方向変位可能な示指アセンブリ21の負荷保護構造を実現し、バイオニック義手の安全性を大きく向上した。   In the present invention, a cavity 613 may be provided in the proximal phalanx joint member 61, and an elastic member 614 may be attached in the cavity 613. In the present embodiment, in the cavity 613 The two elastic members 614 are attached symmetrically, and the elastic members 614 may be, for example, a spring. Here, only the elastic member 614 located on the right side in the cavity 613 will be described as an example. As shown in FIG. 5, one end of the elastic member 614 is fixed to the medial phalanx joint member 62 through the drawing hole 615 by the upper wire, and the other end of the elastic member 614 is the lower one. The side wire passes through the routing hole 616 and is fixed to the palm member 1, and the upper wire and the lower wire have a fixed length. As described above, when the index finger assembly 21 receives a large external force in the lateral direction (a plane parallel to the palm member 1), the elastic member 614 is deformed, whereby the elastic member 614 acts as a damper to avoid flexibility. As well as transmitting the force to the two fixed ends of the proximal phalanx joint member 61 and the middle phalanx joint member 62 to weaken the impact force, which is less likely to be damaged, passively. The load protection structure of the laterally displaceable index finger assembly 21 is realized, and the safety of the bionic prosthesis is greatly improved.

その他に、本発明において、近位指節関節部材61の両端には、上側内斜面617及び下側内斜面618がそれぞれに形成されており、近位指節関節部材61と接続した中位指節関節部材62の一端には、下側内斜面622が形成されており、当該上側内斜面617、下側内斜面618及び下側内斜面622の設置により、掌部材1に対する近位指節関節部材61の屈曲角度、及び近位指節関節部材61に対する中位指節関節部材62の屈曲角度を確保した。また、近位指節関節部材61と掌部材1との回転中心、及び中位指節関節部材62と近位指節関節部材61との回転中心は、同じく回転線である。これらの関節部材において、それぞれの回転中心に沿って他の関節の摩擦が生じない線接触構造が形成するので、伝統な関節回転ペアが、相互の面接触により、運動時に摩擦作用を生じて、手指出力が弱くなる状況は避けられる。本発明のこのような摩擦がない線接触構造によって、指駆動モータ4の出力を各手指アセンブリに対して効率最大化することができる。   Besides, in the present invention, the upper inside slope 617 and the lower inside slope 618 are respectively formed on both ends of the proximal phalanx joint member 61, and the middle finger connected to the proximal phalanx joint member 61 A lower inner slope 622 is formed at one end of the joint joint member 62, and the proximal phalanx joint with respect to the palm member 1 is formed by installing the upper inner slope 617, the lower inner slope 618 and the lower inner slope 622 The bending angle of the member 61 and the bending angle of the medial phalanx joint member 62 with respect to the proximal phalanx joint member 61 were secured. Also, the rotation centers of the proximal phalanx joint member 61 and the palm member 1 and the rotation centers of the middle phalanx joint member 62 and the proximal phalanx joint member 61 are similarly rotation lines. In these articulating members, a line contact structure is formed along which the friction of other joints does not occur along the respective rotation centers, so that the traditional joint rotation pair causes a friction action during movement by mutual surface contact, The situation where hand output becomes weak is avoided. The friction-free line contact structure of the present invention allows the output of the finger drive motor 4 to be maximized for each finger assembly.

また、本発明の一実施例において、当該遠位指節関節部材63は、中位指節関節部材62に一体成型されてもよく、または、他の実施例において、当該遠位指節関節部材63は、複数のピン631により中位指節関節部材62に固定接続されてもよく、このように、取り付けが簡単になるだけでなく、損害された場合に、容易にメンテナンスするように当該遠位指節関節部材63を直接、容易に置き換えることができる。また、示指アセンブリ21を3つの部分(つまり、近位指節関節部材61、中位指節関節部材62及び遠位指節関節部材63)に分けて構成するという構造の最も重要な利点としては、各患者の手指乃至関節の異なる長さ及び太さに応じて個人化することができ、異なるユーザに対する当該バイオニック義手の適用範囲を大きく広げる。   Also, in one embodiment of the present invention, the distal phalanx joint member 63 may be integrally molded to the middle phalanx joint member 62, or in another embodiment, the distal phalanx joint member 63 may be fixedly connected to the medial phalanx joint member 62 by means of a plurality of pins 631 and in this way it not only simplifies installation but also allows for easy maintenance in case of damage. The phalangeal joint member 63 can be easily replaced directly. In addition, as the most important advantage of the structure in which the index finger assembly 21 is configured to be divided into three parts (that is, the proximal phalanx joint member 61, the middle phalanx joint member 62 and the distal phalanx joint member 63) Each patient can be personalized according to different lengths and thicknesses of the fingers or joints, greatly expanding the scope of application of the bionic prosthesis to different users.

本発明の一実施形態において、図2及び図4に示されたように、当該示指アセンブリ21、中指アセンブリ22、薬指アセンブリ23、小指アセンブリ24及び拇指アセンブリ25のぞれぞれの指背に、弾性バンド213、弾性バンド222、弾性バンド232、弾性バンド242及び弾性バンド257がそれぞれに接続されており、弾性バンド213、弾性バンド222、弾性バンド232、弾性バンド242及び弾性バンド257は、各手指アセンブリを貫通して掌部材1に接続されている。図2に示された弾性バンド213、弾性バンド222、弾性バンド232、弾性バンド242は、各手指アセンブリの指背の溝と、該溝内のバンプとの間のスリットに取り付けられた。   In one embodiment of the present invention, as shown in FIG. 2 and FIG. 4, on the respective finger backs of the index finger assembly 21, the middle finger assembly 22, the ring finger assembly 23, the little finger assembly 24 and the finger assembly 25, The elastic band 213, the elastic band 222, the elastic band 232, the elastic band 242 and the elastic band 257 are connected to each other, and the elastic band 213, the elastic band 222, the elastic band 232, the elastic band 242 and the elastic band 257 It is connected to the palm member 1 through the assembly. Elastic bands 213, elastic bands 222, elastic bands 232 and elastic bands 242 shown in FIG. 2 were attached to the slits between the finger back grooves of each finger assembly and the bumps in the grooves.

具体的には、図3及び図4に示されたように、掌部材1の手の甲側の上端、つまり、示指アセンブリ21、中指アセンブリ22、薬指アセンブリ23及び小指アセンブリ24が設けられた掌部材1の位置で、4つの係止爪19がそれぞれに設けられており、弾性バンド213、弾性バンド222、弾性バンド232及び弾性バンド242は、示指アセンブリ21、中指アセンブリ22、薬指アセンブリ23及び小指アセンブリ24の各々の中位指節関節部材62及び近位指節関節部材61を貫通し、掌部材1の4つの係止爪19に接続されている。弾性バンド257は、拇指アセンブリ25の近位指節関節部材253及び中手骨手根関節部材252を貫通して第1指間部部材3に接続されている。   Specifically, as shown in FIG. 3 and FIG. 4, the palm member 1 provided with the upper end on the back side of the hand of the palm member 1, that is, the index finger assembly 21, the middle finger assembly 22, the ring finger assembly 23 and the little finger assembly 24. In the position, four locking claws 19 are provided respectively, the elastic band 213, the elastic band 222, the elastic band 232, and the elastic band 242, the index finger assembly 21, the middle finger assembly 22, the ring finger assembly 23, and the little finger assembly 24. Through each medial phalanx joint member 62 and the proximal phalanx joint member 61, and are connected to the four locking claws 19 of the palm member 1. The elastic band 257 is connected to the first interdigital member 3 through the proximal phalanx joint member 253 of the thumb assembly 25 and the metacarpal carpal joint member 252.

本発明は、各手指アセンブリの異なる長さに基づいて計算し、弾性係数が最適である五本の弾性バンドを対応させ、また、弾性バンド213、弾性バンド222、弾性バンド232、弾性バンド242及び弾性バンド257は、示指アセンブリ21、中指アセンブリ22、薬指アセンブリ23、小指アセンブリ24及び拇指アセンブリ25の指背部分に設けられており、つまり、受動的な動力源として、五本の手指アセンブリの指背にて設けられた弾性バンドは、各手指アセンブリを引っ張り、伸展動作を実現する。具体的には、指駆動モータ4は、回転軸41が逆転するよう駆動する場合に、各手指アセンブリを牽引する駆動ワイヤが緩められるとともに、各手指アセンブリは、その指背での各弾性バンドの復元力により五本の指が開いた状態に戻り、これによって、各手指アセンブリの伸展動作を実現する。   The present invention calculates based on the different lengths of each finger assembly, matching five elastic bands whose elastic modulus is optimal, and also corresponds to elastic band 213, elastic band 222, elastic band 232, elastic band 242 and The elastic band 257 is provided on the finger back portion of the index finger assembly 21, the middle finger assembly 22, the ring finger assembly 23, the little finger assembly 24 and the thumb assembly 25, that is, the fingers of the five finger assemblies as a passive power source. An elastic band provided at the back pulls each finger assembly to realize an extension operation. Specifically, when the finger drive motor 4 drives the rotary shaft 41 to reverse, the drive wire for pulling each finger assembly is loosened, and each finger assembly has its elastic band at its finger back. The restoring force returns the five fingers to an open state, thereby realizing the extension operation of each finger assembly.

本発明の一実施形態によれば、示指アセンブリ21、中指アセンブリ22、薬指アセンブリ23及び小指アセンブリ24の遠位指節関節部材63と、拇指アセンブリの遠位指節関節部材254は、いずれも関節部材骨組体632と、当該関節部材骨組体632に接続された指腹構造633と、を含む。   According to one embodiment of the present invention, the distal finger joint member 63 of the index finger assembly 21, the middle finger assembly 22, the ring finger assembly 23 and the little finger assembly 24, and the distal link joint member 254 of the finger assembly all include joints. A member skeleton 632 and a finger pad structure 633 connected to the joint member skeleton 632 are included.

具体的には、当該指腹構造633及び関節部材骨組体632は、3Dプリンタにより一体成型されることができ、こうすると、取り付け及び粘着による工程の増加及びコストの向上を回避する。又は、他の実施例において、当該指腹構造633は、粘着又は嵌め込みの方式で関節部材骨組体632に接続されてもよい。当該嵌め込む接続方式とは、関節部材骨組体632と指腹構造633との間に、例えば、バンプ及び溝の嵌合構造を設けることで、関節部材骨組体632が指腹構造633と係合させる。本発明において、当該指腹構造633は、柔軟性を有するゴム状材料からなる柔軟性構造を採用し、示指アセンブリ21を例として説明すると、遠位指節関節部材63にて、柔軟性を有する材料と骨組体とのそれぞれの割合を算出、分析することにより、普通の人の指腹の粘弾特性に近似するように対応させ、ここで、遠位指節関節部材63の指腹構造633と関節部材骨組体632との体積比は、0.54〜0.66である。これによって、手指アセンブリが物品を掴む時の被覆力を向上するとともに、物体表面と接触する時に生じた表面摩擦力を増加することで、物体を掴む安定性を大きく向上する。   Specifically, the finger pad structure 633 and the joint member frame 632 can be integrally molded by a 3D printer, thereby avoiding an increase in the number of processes and costs due to attachment and adhesion. Alternatively, in another embodiment, the finger pad structure 633 may be connected to the joint member skeleton 632 in an adhesive or fitting manner. The fitting connection method is, for example, by providing a fitting structure of a bump and a groove between the joint member skeleton 632 and the finger pad structure 633, the joint member skeleton 632 engages with the finger pad structure 633. Let In the present invention, the finger pad structure 633 adopts a flexible structure made of a flexible rubber-like material, and the distal finger joint member 63 has flexibility in the case of the index finger assembly 21 as an example. By calculating and analyzing the respective proportions of the material and the skeleton, they are made to correspond to the visco-elastic characteristics of a normal human finger pad, where the finger pad structure 633 of the distal phalanx joint member 63 The volume ratio between the joint member and the joint member skeleton 632 is 0.54 to 0.66. This improves the covering power when the finger assembly grips the article and increases the surface frictional force generated when contacting the surface of the object, thereby greatly improving the stability of gripping the object.

本発明において、2つの小型モータ(つまり、指駆動モータ4及び拇指駆動モータ5)のみを駆動として用いることで、拇指アセンブリ25、示指アセンブリ21、中指アセンブリ22、薬指アセンブリ23及び小指アセンブリ24という五本の手指の伸展又は屈曲動作、並びに、拇指駆動モータ5の回転軸51回りの拇指アセンブリ25の内転又は外転動作を共に駆動するものが設計された。前記動作の組み合わせにより、各種の形態の握力把握、精密把握及び側面把握という3種類の把握モードを形成することができ、このような掴み動作は、日常生活に85%まで占める。さらに、本発明において、近位指節関節部材61には、負荷保護装置が設けられることで、手指アセンブリ(つまり、示指アセンブリ21、中指アセンブリ22、薬指アセンブリ23及び小指アセンブリ24)が横方向の大きな外力を受けた場合に、柔軟的に回避して、損害されにくい。   In the present invention, by using only two small motors (that is, the finger drive motor 4 and the thumb drive motor 5) as the drive, five thumb fingers assembly 25, index finger assembly 21, middle finger assembly 22, ring finger assembly 23, and finger assembly 24 are used. It has been designed to simultaneously drive the extension or flexion movement of the finger and the adduction or eversion movement of the thumb assembly 25 around the rotation axis 51 of the thumb drive motor 5. By combining the operations, it is possible to form three types of grasping modes of grasping power of various forms, precise grasping, and lateral grasping, and such grasping movements occupy up to 85% in daily life. Furthermore, in the present invention, the proximal phalanx joint member 61 is provided with a load protection device so that the finger assembly (i.e., the index finger assembly 21, the middle finger assembly 22, the ring finger assembly 23, and the little finger assembly 24) is transversely When receiving a large external force, it is flexible and avoids damage easily.

また、本発明に係るバイオニック義手在は、患者の実際使用中の詳細に対して、より人間的な設計を行った。薬指アセンブリ23及び小指アセンブリ24の遅延運動を設計することで、精密把握時の掴み能力を向上し、柔軟性構造を採用して、人手指腹の粘弾特性を近似にバイオニックな模倣することで、把握能力を向上し、及び個人化に適用する、取り外しやすく、メンテナンスしやすい手指関節部材構造を設計する。   Also, the bionic prosthesis according to the present invention has a more human-like design on the actual in-use details of the patient. By designing the delayed motion of ring finger assembly 23 and pinky assembly 24 to improve the grasping ability at the time of precise grasping, and adopt a flexible structure to mimic the bionic and elastic characteristics of the hand and finger pads approximately bionic Design an easy-to-remove, easy-to-maintain finger joint structure that improves grasping ability and applies to personalization.

最後に、本発明は、製造及び取り付けプロセスについて、構造の簡素化及び、メンテナンスの便利をできるだけ両立し、また、3Dプリント技術を組み合わせて、最終的に軽量化、低コスト及び外観バイオニック設計を実現し、バイオニック義手のコストパフォーマンス及び実用性を顕著に向上した。   Finally, the present invention combines structural simplification and maintenance convenience as much as possible for the manufacturing and mounting process, and combines 3D printing technology to ultimately reduce weight, cost and appearance bionic design Realized and significantly improved the cost performance and practicability of the bionic prosthesis.

本発明に係るバイオニック義手の特徴及び利点としては、   The features and advantages of the bionic prosthesis according to the present invention are:

一、シングルモータ制御を用いて、五本の指の主動な屈曲及び伸展動作のみを具備する従来の義手に比べて、本発明に係るバイオニック義手は、掌部材1内の許容範囲に拇指駆動モータ5を追加することにより、拇指アセンブリ25の内転又は外転動作を制御することを実現し、このように、異なる物体を掴む前に、拇指位置を手動的に調整し、又は、工具で固定、ロックしてから、物体の掴みを開始するという従来の義手の中間ステップを省略した。   First, the bionic prosthesis according to the present invention can drive the thumb finger within an acceptable range in the palm member 1 as compared with the conventional prosthetic hand having only the main finger bending and extending motions of five fingers using single motor control. The addition of the motor 5 makes it possible to control the adduction or the abduction of the thumb assembly 25 and thus to manually adjust the thumb position or with a tool before grasping different objects The conventional artificial hand intermediate step of fixing and locking and starting to grasp the object is omitted.

二、従来の金属製の義手を採用する場合に、コストが高く、重量が重いだけでなく、患者に負担を加えて、長時間に装着できない問題に対して、本発明は、高強度樹脂材料を採用し、3Dプリント技術を組み合わせて、各手指アセンブリの関節部材を加工し、そこで、製造周期を短くして、コストが低く、二次加工の必要がないだけでなく、最も重要なのは、重量を顕著に軽くして、患者が長時間に装着するによる負担が小さくなり、不快感がないという優れた評価及びフィードバックを取得した。   2. In the case of adopting a conventional metal artificial hand, the present invention is not only expensive and heavy, but also can not be worn for a long time by putting a burden on the patient, the present invention provides a high strength resin material And combine 3D printing technology to process the joint members of each finger assembly, where the production cycle is short, cost is low, there is no need for secondary processing, but most importantly, weight The weight was significantly reduced, and the burden caused by the patient wearing it for a long time was reduced, and it received excellent evaluation and feedback that there was no discomfort.

三、五本の指が同時に屈曲又は伸展しなければならず、握力把握という単一の掴みモードのみができる従来の義手に比べて、本発明は、2つの小型モータのみを採用して、拇指アセンブリの内転又は外転動作、及び五本の指部品の伸展又は屈曲動作をそれぞれに駆動し、これらの動作の組み合わせは、実際の日常生活に手動作の85%まで占める側面把握、精密把握及び握力把握の動作を完成でき、掴み動作の増加だけでなく、実用性も向上した。   Compared with the conventional artificial hand that three or five fingers must flex or extend at the same time and can only hold a single grip mode of grasping power, the present invention adopts only two small motors and The adduction or abduction motion of the assembly and the extension or bending motion of the five finger parts are respectively driven, and the combination of these motions is a side grasp, accurate grasp that occupies up to 85% of the hand movement in actual daily life And the operation of grasping the grip was completed, and not only the increase of the grasping operation but also the practicability was improved.

四、従来の義手が、指腹による掴み能力をさらに向上していないことに比べて、本発明は、柔軟性を有するゴム状材料の指腹構造633を採用し、つまり、人手の指腹の粘弾特性をバイオニックな模倣できる構造を設計し、これによって、物体を掴む時の、物体に対する被覆力及び摩擦力を増加し、また、物体を掴む時の安定性を向上することにより、掴み能力を向上した。また、当該指腹構造633と関節部材骨組体632とは、3Dプリント技術により、一体成形されており、取り付け及び粘着による工程の増加及びコストの向上を回避する。   The present invention adopts finger-belly structure 633 of rubber-like material having flexibility, as compared with the conventional artificial hand that does not further improve the gripping ability by finger-belly. Designing a structure that can mimic the visco-elastic properties bionic, thereby increasing the covering and friction forces on the object when grasping the object, and also improving the stability when grasping the object. I have improved my ability. Further, the finger pad structure 633 and the joint member skeleton 632, which are integrally formed by 3D printing technology, avoid the increase in the number of processes and the cost due to attachment and adhesion.

五、従来の義手は後期メンテナンスが難しく、及び手指負荷保護機構を考慮していないことに対し、本発明は、個人化しただけでなく、容易に取り外し、メンテナンスしやすい手指関節を設計し、手指が横方向(手のひらの平面と平行)の大きな外力を受けた場合に、柔軟的に回避を生じて損害されにくい、受動的に横方向変位可能な近位指節関節部材61構造を実現する。   5. The present invention is designed not only for personalization but also for easy removal and maintenance of the finger joint, whereas the conventional artificial hand is difficult to maintain at the late stage and does not consider the finger load protection mechanism, To provide a passively laterally displaceable proximal phalanx joint member 61 structure that is softly avoided and less susceptible to damage if subjected to a large external force in a lateral direction (parallel to the plane of the palm).

六、従来の義手が関節と関節との間で軸接続の方式を採用するので、互いに接触する面で摩擦力を生じることで、出力効率を低下する。これに対し、本発明の各手指アセンブリの各関節部材間で、軸接続ではなく、線接触の方式を採用したので、摩擦力がゼロであり、指駆動モータ4の出力の内部損失を回避した。   Sixth, since the conventional artificial hand adopts the method of axial connection between the joints, the output efficiency is reduced by generating the frictional force at the surfaces in contact with each other. On the other hand, since not a shaft connection but a line contact system was adopted between the joint members of each finger assembly of the present invention, the frictional force was zero and the internal loss of the output of the finger drive motor 4 was avoided. .

また、当業者が分かるように、本発明の前記バイオニック義手は、掌部材1内の許容範囲に、本発明の指駆動モータ4及び拇指駆動モータ5を、他のモータ又は空気圧、油圧等の駆動方式で置き換えることができる。掌部材1及び各手指アセンブリの空間の許容範囲に、各ワイヤを任意にレイアウトすることができ、各手指アセンブリ中のワイヤの複合連動を、ベルト伝動又は他の種別の複合連動に置き換えることができる。複合連動のワイヤの長さ及び位置を調節することにより、手指関節の屈曲の角速度と出力の大きさを任意に調整できるので、当該伝動システムは、バイオニック義手でない任意の機械的伝達に適用されることができる。各関節部材間の全てのピン式固定は、ボルト固定、係止固定等の他の方式の締付け方式に置き換えられることができる。指腹構造633の柔軟性構造は、3Dプリント技術により一体成形された他に、嵌め込み、粘着等の他の結合形式を採用することができる。各ワイヤの伝動に占める空間は非常に小さいので、掌部材1及び各手指アセンブリの寸法大きさ及び外観を任意に変更することができる。貫通型の各弾性バンドは、ばね、トーションばね又はゴム糸等の固有弾性係数を有する弾性部件に置き換えることができる。バイオニック義手全体の製造に使用された材料及び製造手段は、樹脂、ゴム系材料及び3Dプリント技術に限らず、需要に応じて他の材料及び製造方式を選択することができる。各ワイヤは、PEワイヤを用いる他に、その代わりに、他の材質のワイヤ、糸又はベルトを用いることができる。   Also, as the person skilled in the art will appreciate, the bionic prosthesis of the present invention may have the finger drive motor 4 and the thumb drive motor 5 of the present invention within the tolerance range in the palm member 1 and other motors or pneumatic, hydraulic, etc. It can be replaced by a driving method. Each wire can be arbitrarily laid out within the space tolerance of the palm member 1 and each finger assembly, and the compound interlock of the wires in each finger assembly can be replaced by a belt drive or other type of compound interlock . The transmission system can be applied to any mechanical transmission that is not a bionic prosthesis, as the bending angular velocity and output size of the finger joint can be arbitrarily adjusted by adjusting the wire length and position of the compound linkage. Can be All pin-type fixings between the joint members can be replaced with other types of tightening methods such as bolting and locking. The flexible structure of the finger pad structure 633 may be formed integrally by 3D printing technology, or may be combined with other bonding methods such as fitting and adhesion. Since the space occupied by transmission of each wire is very small, the size and appearance of the palm member 1 and each finger assembly can be arbitrarily changed. Each elastic band of penetration type can be replaced by an elastic member having an inherent elastic modulus such as a spring, a torsion spring or a rubber thread. Materials and production means used for producing the entire bionic prosthesis are not limited to resins, rubber materials and 3D printing techniques, and other materials and production methods can be selected according to demand. In addition to using PE wires, each wire may alternatively use wires, threads or belts of other materials.

最後に、以上の実施例は、本発明の技術案を説明するだけであり、本発明に対する限定ではなく、優れた実施例を参照して本発明を詳しく説明したが、当業者が理解すべきことは、本発明の技術案を修正し、又は等同に置き換えることができ、本発明の精神と原理を脱逸しないものは、本発明の請求項の範囲内に含まれる。   Finally, the above embodiments merely illustrate the technical solution of the present invention and are not limitations on the present invention, and the present invention has been described in detail with reference to the preferred embodiments, but it should be understood by those skilled in the art. That can modify or replace the technical solution of the present invention, and so forth without departing from the spirit and principle of the present invention are included within the scope of the claims of the present invention.

Claims (13)

掌部材と、
示指アセンブリ、中指アセンブリ、薬指アセンブリ、小指アセンブリ及び拇指アセンブリを備え、前記示指アセンブリ、前記中指アセンブリ、前記薬指アセンブリ及び前記小指アセンブリが前記掌部材の上端にそれぞれ開閉可能に接続される指部材と、
前記掌部材の内側に直立回転可能に接続されて、前記拇指アセンブリが開閉可能に接続される第1指間部部材と、
を含む、バイオニック義手。
Palm member,
A finger member comprising an indicating finger assembly, a middle finger assembly, a ring finger assembly, a little finger assembly and a finger assembly, wherein the pointing finger assembly, the middle finger assembly, the ring finger assembly and the little finger assembly are openably connected to the upper end of the palm member;
A first inter-finger member which is rotatably connected to the inside of the palm member, and the thumb assembly is openably connected;
Including bionic artificial hands.
前記掌部材内には指駆動モータが設けられており、前記指駆動モータに回転軸が接続され、前記回転軸にその軸方向に複数の環状凹溝が設けられ、
前記示指アセンブリ、前記中指アセンブリ、前記薬指アセンブリ、前記小指アセンブリ及び前記拇指アセンブリが、それぞれに示指駆動ワイヤ、中指駆動ワイヤ、薬指駆動ワイヤ、小指駆動ワイヤ及び拇指駆動ワイヤにより前記回転軸の複数の環状凹溝内に接続される、
請求項1に記載のバイオニック義手。
A finger drive motor is provided in the palm member, a rotary shaft is connected to the finger drive motor, and a plurality of annular grooves are provided in the axial direction of the rotary shaft,
The index finger assembly, the middle finger assembly, the ring finger assembly, the little finger assembly and the thumb assembly respectively have a plurality of annular shafts of the rotation shaft by a finger drive wire, a middle finger drive wire, a ring finger drive wire and a thumb drive wire respectively. Connected in the recess,
The bionic prosthesis according to claim 1.
前記薬指駆動ワイヤの長さ及び前記小指駆動ワイヤの長さは、ともに前記示指駆動ワイヤの長さ及び前記中指駆動ワイヤの長さよりも長くなる、
請求項2に記載のバイオニック義手。
The length of the ring finger drive wire and the length of the little finger drive wire are both greater than the length of the index finger drive wire and the length of the middle finger drive wire.
The bionic prosthesis according to claim 2.
前記掌部材内には、キャビティが設けられており、
前記指駆動モータ及び前記回転軸が、ともに前記キャビティ内に位置しており、
前記キャビティ外には、保護カバーが設けられている、
請求項2に記載のバイオニック義手。
A cavity is provided in the palm member,
The finger drive motor and the rotary shaft are both located in the cavity,
A protective cover is provided outside the cavity.
The bionic prosthesis according to claim 2.
前記掌部材に拇指駆動モータが設けられ、前記拇指駆動モータの回転軸に前記第1指間部部材が接続され、
前記拇指アセンブリの一端が、前記第1指間部部材に枢着されている、
請求項1に記載のバイオニック義手。
A thumb drive motor is provided on the palm member, and the first inter-finger member is connected to a rotation shaft of the thumb drive motor,
One end of the thumb assembly is pivotally connected to the first inter-finger member,
The bionic prosthesis according to claim 1.
前記拇指アセンブリに第1指間部スライドプレートが接続され、前記第1指間部スライドプレートが前記第1指間部部材内に摺動可能に差し込み接続し、前記第1指間部スライドプレートに摺動溝が設けられ、
前記第1指間部部材には、前記摺動溝内に穿設されたストッパピンが設けられている、
請求項5に記載のバイオニック義手。
A first inter-finger slide plate is connected to the thumb finger assembly, the first inter-finger slide plate is slidably inserted into the first inter-finger member and connected to the first inter-finger slide plate A sliding groove is provided,
The first inter-finger part member is provided with a stopper pin drilled in the sliding groove,
The bionic prosthesis according to claim 5.
前記示指アセンブリ、前記中指アセンブリ、前記薬指アセンブリ、前記小指アセンブリ及び前記拇指アセンブリの指背に、前記掌部材に接続された弾性バンドがそれぞれに設けられている、
請求項1に記載のバイオニック義手。
An elastic band connected to the palm member is respectively provided on the back of the index finger assembly, the middle finger assembly, the ring finger assembly, the little finger assembly and the thumb assembly.
The bionic prosthesis according to claim 1.
前記示指アセンブリ、前記中指アセンブリ、前記薬指アセンブリ及び前記小指アセンブリは、構造が同じであり、それぞれが順次に接続された近位指節関節部材、中位指節関節部材及び遠位指節関節部材からなり、
前記近位指節関節部材が、前記示指駆動ワイヤ、前記中指駆動ワイヤ、前記薬指駆動ワイヤ又は前記小指駆動ワイヤにより前記回転軸に接続されており、
前記中位指節関節部材が、前記近位指節関節部材の上端に回転可能に接続されており、
前記遠位指節関節部材が、前記中位指節関節部材の上端に接続されている、
請求項2に記載のバイオニック義手。
The index finger assembly, the middle finger assembly, the ring finger assembly, and the little finger assembly have the same structure, and are sequentially connected to each other in order to connect the proximal phalanx joint member, the middle phalanx joint member and the distal phalanx joint member Consists of
The proximal phalanx joint member is connected to the rotation shaft by the index finger drive wire, the middle finger drive wire, the ring finger drive wire, or the little finger drive wire;
The medial phalanx joint member is rotatably connected to the upper end of the proximal phalanx joint member;
The distal phalanx joint member is connected to the upper end of the middle phalanx joint member,
The bionic prosthesis according to claim 2.
前記近位指節関節部材内に弾性部材が設けられ、前記弾性部材の一端が上側ワイヤにより前記中位指節関節部材に接続され、前記弾性部材の他端が下側ワイヤにより前記掌部材に接続される
請求項8に記載のバイオニック義手。
An elastic member is provided in the proximal phalanx joint member, one end of the elastic member is connected to the middle phalanx joint member by an upper wire, and the other end of the elastic member is coupled to the palm member by a lower wire The bionic prosthesis according to claim 8, which is connected.
前記遠位指節関節部材は、前記中位指節関節部材に一体成型されている、又は、前記遠位指節関節部材は、複数のピンにより前記中位指節関節部材に固定接続されている、
請求項8に記載のバイオニック義手。
The distal phalanx joint member is integrally molded to the middle phalanx joint member, or the distal phalanx joint member is fixedly connected to the middle phalanx joint member by a plurality of pins. Yes,
A bionic prosthesis according to claim 8.
前記拇指アセンブリは、順次に接続された中手骨手根関節部材、近位指節関節部材及び遠位指節関節部材を含み、
前記中手骨手根関節部材が、前記拇指ワイヤにより前記回転軸に接続されており、前記近位指節関節部材がピンにより前記中手骨手根関節部材に接続されており、前記遠位指節関節部材がピンにより前記近位指節関節部材に接続されている、
請求項2に記載のバイオニック義手。
The thumb assembly includes a sequentially connected metacarpal carpal joint member, a proximal phalanx joint member and a distal phalanx joint member,
The metacarpal carpal joint member is connected to the rotation shaft by the thumb finger wire, and the proximal phalanx joint member is connected to the metacarpal carpal joint member by a pin, the distal A phalanx joint member is connected to the proximal phalanx joint member by a pin,
The bionic prosthesis according to claim 2.
前記遠位指節関節部材は、関節部材骨組体と、前記関節部材骨組体に接続された指腹構造と、を含む
請求項8又は11に記載のバイオニック義手。
The bionic artificial hand according to claim 8 or 11, wherein the distal phalanx joint member includes a joint member skeleton and a finger pad structure connected to the joint member skeleton.
前記指腹構造と前記関節部材骨組体は、3Dプリンタにより一体成型される、又は、前記指腹構造は、粘着又は嵌め込みの方式で前記関節部材骨組体に接続される、ことを特徴とする
請求項12に記載のバイオニック義手。
The finger pad structure and the joint member skeleton are integrally molded by a 3D printer, or the finger pad structure is connected to the joint member skeleton in an adhesive or fitting manner. Item 13. The bionic prosthesis according to item 12.
JP2018569128A 2016-07-04 2017-06-27 Prosthetic hand Active JP6712332B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610520941.7A CN106038007B (en) 2016-07-04 2016-07-04 Bionical prosthetic hand
CN201610520941.7 2016-07-04
PCT/CN2017/090255 WO2018006722A1 (en) 2016-07-04 2017-06-27 Bionic prosthetic hand

Publications (2)

Publication Number Publication Date
JP2019520163A true JP2019520163A (en) 2019-07-18
JP6712332B2 JP6712332B2 (en) 2020-06-17

Family

ID=57201968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018569128A Active JP6712332B2 (en) 2016-07-04 2017-06-27 Prosthetic hand

Country Status (3)

Country Link
JP (1) JP6712332B2 (en)
CN (1) CN106038007B (en)
WO (1) WO2018006722A1 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10034780B2 (en) 2014-02-04 2018-07-31 Rehabilitation Institute Of Chicago Modular and lightweight myoelectric prosthesis components and related methods
GB201403265D0 (en) 2014-02-25 2014-04-09 Touch Emas Ltd Prosthetic digit for use with touchscreen devices
CN106038007B (en) * 2016-07-04 2017-11-07 中国科学院深圳先进技术研究院 Bionical prosthetic hand
CN106510909A (en) * 2016-11-21 2017-03-22 上海理工大学 Rapid-forming modular interest artificial hand
ES1187509Y (en) * 2017-03-31 2017-10-03 Centro Ortopedico Tecnologico S L U Microelectric prosthesis
CN108687744A (en) * 2017-04-08 2018-10-23 金子楗 A kind of ectoskeleton based on touch feedback
CN106974749A (en) * 2017-04-25 2017-07-25 北京展翼计划科技发展有限公司 Bionical prosthetic hand and device based on 3D printing
CN107160366B (en) * 2017-06-20 2021-05-04 成都黑盒子科技有限公司 Service type robot arm structure and joint angle correction method
CN107397613A (en) * 2017-06-27 2017-11-28 上海理工大学 3D printing multiple freedom degrees hand-prosthesis the five fingers interlinked mechanism
EP3459505B1 (en) * 2017-09-20 2020-10-28 HKK Bionics GmbH Hand orthosis, module member for use in a hand orthosis and method of manufacturing a hand orthosis
US10973660B2 (en) 2017-12-15 2021-04-13 Touch Bionics Limited Powered prosthetic thumb
CN108186171B (en) * 2017-12-28 2020-08-28 中国科学院深圳先进技术研究院 Bionic hand device and robot
WO2019166990A1 (en) * 2018-03-01 2019-09-06 Brink Bionics Inc. Modular prosthetic hands
CN110216700B (en) * 2018-03-02 2022-07-08 华东理工大学 Flexible under-actuated bionic hand
CN108563222B (en) * 2018-03-17 2024-02-02 西安科技大学 Vehicle-mounted intelligent bionic integrated gripper, control system and control method thereof
IT201800005214A1 (en) * 2018-05-09 2019-11-09 PROSTHETIC FINGER
CN108464912A (en) * 2018-05-11 2018-08-31 合肥工业大学 A kind of apery hand-type manipulators in rehabilitation
CN109172064B (en) * 2018-07-13 2020-07-07 东南大学 Artificial hand sensing mechanism and system supporting cloud fusion
CN108972515B (en) * 2018-09-10 2024-02-06 河南翔宇医疗设备股份有限公司 Bionic movement function upper limb
CN109172061B (en) * 2018-09-10 2024-01-02 河南翔宇医疗设备股份有限公司 Multi-degree-of-freedom upper limb prosthesis
CN109352670A (en) * 2018-10-22 2019-02-19 同济大学 A kind of bionic soft Dextrous Hand
CN109259906B (en) * 2018-10-30 2020-04-17 上海理工大学 Modular multi-mode artificial hand
CN109674562B (en) * 2019-01-22 2024-03-12 王宇光 Gear train type under-actuated bionic artificial finger
CN109940646A (en) * 2019-04-16 2019-06-28 彭新楚 A kind of electronic flexible bionic machine palm of commercial exhibition
CN113771067B (en) * 2019-05-29 2023-11-28 浙江大学 Jitter-free bionic manipulator
US11931270B2 (en) 2019-11-15 2024-03-19 Touch Bionics Limited Prosthetic digit actuator
CN111227998B (en) * 2020-02-14 2022-08-16 泰兴市致远知识产权服务有限公司 Flexible and convenient cable-controlled elbow joint separation artificial limb
CN111467097B (en) * 2020-04-17 2022-02-22 苏州通和景润康复科技有限公司 Five-degree-of-freedom intelligent prosthetic hand
CN113618757B (en) * 2020-05-08 2023-09-26 京东科技信息技术有限公司 Bionic manipulator and bionic robot
CN111529148B (en) * 2020-05-08 2022-09-16 上海理工大学 Bionic thumb device
TR2021006099A2 (en) * 2020-12-16 2022-06-21 Istanbul Medipol Ueniversitesi SMART HAND PROSTHESIS THAT CAN CHANGE FLEXIBILITY WITH SHAPE MEMORY POLYMERS
CN112754519B (en) * 2021-01-26 2022-08-12 秦毅 Supplementary palm board of using of ultrasonic examination
CN113101020B (en) * 2021-03-25 2022-06-07 复旦大学 Rigid-flexible coupling dexterous prosthetic hand
CN113081413B (en) * 2021-04-01 2022-03-29 北京理工大学 Intelligent bionic artificial hand
WO2023278459A1 (en) 2021-06-28 2023-01-05 Alt-Bionics, Inc. Modular prosthetic hand system
CN113787509B (en) * 2021-09-13 2023-04-07 江南大学 Multi-pneumatic muscle cooperatively driven crustacean-imitated arthropod finger
CN114102643B (en) * 2021-12-06 2023-10-03 之江实验室 Design method of under-actuated humanoid robot paw and other fingers
CN114434472A (en) * 2022-01-28 2022-05-06 西安交通大学 Bionic hand system and control method
CN114434471A (en) * 2022-01-28 2022-05-06 西安交通大学 Rigid-flexible bionic hand and bionic robot
CN114698624B (en) * 2022-04-27 2023-05-16 中垦种业股份有限公司 Efficient weeding method for paddy field
CN114888832B (en) * 2022-05-05 2023-09-15 大连理工大学 Tendon rope under-actuated humanoid multi-finger dexterous hand device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000325375A (en) * 1999-05-19 2000-11-28 Harada Denshi Kogyo Kk Movable finger for artificial limb prosthesis, prosthesis hand using movable finger, and controller for movable finger
JP2001104349A (en) * 1999-10-12 2001-04-17 Harada Denshi Kogyo Kk Thumb shape adjustable artificial hand
CN201572217U (en) * 2009-12-03 2010-09-08 上海纳米技术及应用国家工程研究中心有限公司 Human-simulated artificial hand used for rehabilitation
WO2012039479A1 (en) * 2010-09-24 2012-03-29 国立大学法人岐阜大学 Humanoid electric hand
CN102528815A (en) * 2012-01-05 2012-07-04 上海大学 Multi-degree-of-freedom underactuated manipulator
WO2013012029A1 (en) * 2011-07-20 2013-01-24 株式会社岩田鉄工所 Multi-fingered hand device
JP2013240863A (en) * 2012-05-21 2013-12-05 Precision Machinery Research & Development Center Robot hand device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080682A (en) * 1990-07-05 1992-01-14 Schectman Leonard A Artificial robotic hand
CN1231332C (en) * 2002-11-29 2005-12-14 清华大学 Robot anthropomorphic multi finger band device
CN101073520A (en) * 2007-06-27 2007-11-21 哈尔滨工业大学 Sinew-driven pseudohand finger mechanism
CN202568538U (en) * 2012-04-10 2012-12-05 上海科生假肢有限公司 Practical bionic artificial hand
CN103565562B (en) * 2013-08-02 2014-06-04 华中科技大学 Under-actuated artificial limb hand
CN103690280B (en) * 2013-12-13 2015-07-22 上海交通大学 Continuum transmission mechanism-based under-actuated prosthetic hand
CN104161608B (en) * 2014-08-04 2018-01-16 中国科学院深圳先进技术研究院 A kind of tendon transmission is done evil through another person
CN104382674B (en) * 2014-10-20 2016-06-01 华中科技大学 A kind of drive lacking prosthetic hand reappearing staff crawl function
CN206063263U (en) * 2016-07-04 2017-04-05 中国科学院深圳先进技术研究院 Bionical prosthetic hand
CN106038007B (en) * 2016-07-04 2017-11-07 中国科学院深圳先进技术研究院 Bionical prosthetic hand

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000325375A (en) * 1999-05-19 2000-11-28 Harada Denshi Kogyo Kk Movable finger for artificial limb prosthesis, prosthesis hand using movable finger, and controller for movable finger
JP2001104349A (en) * 1999-10-12 2001-04-17 Harada Denshi Kogyo Kk Thumb shape adjustable artificial hand
CN201572217U (en) * 2009-12-03 2010-09-08 上海纳米技术及应用国家工程研究中心有限公司 Human-simulated artificial hand used for rehabilitation
WO2012039479A1 (en) * 2010-09-24 2012-03-29 国立大学法人岐阜大学 Humanoid electric hand
WO2013012029A1 (en) * 2011-07-20 2013-01-24 株式会社岩田鉄工所 Multi-fingered hand device
CN102528815A (en) * 2012-01-05 2012-07-04 上海大学 Multi-degree-of-freedom underactuated manipulator
JP2013240863A (en) * 2012-05-21 2013-12-05 Precision Machinery Research & Development Center Robot hand device

Also Published As

Publication number Publication date
CN106038007A (en) 2016-10-26
JP6712332B2 (en) 2020-06-17
WO2018006722A1 (en) 2018-01-11
CN106038007B (en) 2017-11-07

Similar Documents

Publication Publication Date Title
JP2019520163A (en) Bionic prosthesis
EP3102158B1 (en) Modular and lightweight prosthesis components
Smit et al. The lightweight Delft Cylinder Hand: first multi-articulating hand that meets the basic user requirements
Bajaj et al. State of the art in prosthetic wrists: Commercial and research devices
EP2858791B1 (en) An exoskeleton structure for physical interaction with a human being
EP2178680B1 (en) Wearable mechatronic device
CN108272537A (en) A kind of modular multiple degrees of freedom under-actuated bionic prosthetic hand
US20180098862A1 (en) Injection molded prosthetic limb system and related methods
WO2010018358A2 (en) A device resembling a part of the human body which is able to be actuated
Controzzi et al. Bio-inspired mechanical design of a tendon-driven dexterous prosthetic hand
WO2008030419A2 (en) A modular mechanical device resembling a human arm and hand
US20130030550A1 (en) Modular human hand prosthesis with modular, mechanically independent finger modules
CN112641598B (en) Finger rehabilitation exoskeleton robot with adduction and abduction and flexion and extension functions
Bandara et al. Upper extremity prosthetics: current status, challenges and future directions
CN104799982A (en) Single-motor underactuation prosthetic hand based on continuum differential mechanism
JP5754835B2 (en) Electric gripping member
CN206063263U (en) Bionical prosthetic hand
JP6371064B2 (en) Prosthetic finger flexion and extension mechanism using the remaining finger function
KR20180038113A (en) Wearable Mechanism of the Hand for Rehabilitation
CN110538015B (en) Mechanical artificial limb arm
Nemoto et al. F3Hand II: A flexible five-fingered prosthetic hand using curved pneumatic artificial muscles
CN209933083U (en) Wearable elastic rigid composite rod artificial limb finger
CN214382426U (en) Bionic artificial limb for upper limb
Nemoto et al. F3Hand: A five-fingered prosthetic hand driven with curved pneumatic artificial muscles
CN110216700A (en) Flexible under-actuated bionic hand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190906

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200529

R150 Certificate of patent or registration of utility model

Ref document number: 6712332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250