JP2019519217A5 - - Google Patents

Download PDF

Info

Publication number
JP2019519217A5
JP2019519217A5 JP2018560605A JP2018560605A JP2019519217A5 JP 2019519217 A5 JP2019519217 A5 JP 2019519217A5 JP 2018560605 A JP2018560605 A JP 2018560605A JP 2018560605 A JP2018560605 A JP 2018560605A JP 2019519217 A5 JP2019519217 A5 JP 2019519217A5
Authority
JP
Japan
Prior art keywords
tissue matrix
lung tissue
pump
lung
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018560605A
Other languages
Japanese (ja)
Other versions
JP6840774B2 (en
JP2019519217A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2017/031076 external-priority patent/WO2017200762A2/en
Publication of JP2019519217A publication Critical patent/JP2019519217A/en
Publication of JP2019519217A5 publication Critical patent/JP2019519217A5/ja
Application granted granted Critical
Publication of JP6840774B2 publication Critical patent/JP6840774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

他の実施形態
本発明は、その詳細な説明と共に説明してきたが、前述の説明は、添付の特許請求の範囲によって定義される本発明の範囲を説明するためのものであり、それを制限するためのものではないと理解される。他の態様、利点、および変更は、以下の特許請求の範囲の範囲内である。
本発明の様々な実施形態を以下に示す。
1.バイオ人工肺臓器を提供する方法であって、
ヒトドナーから増殖性の基底幹細胞集団を提供するステップであって、前記細胞が、好ましくは前記ドナーの気道から得たKrt5+p63+細胞である、ステップと;
任意選択でROCK阻害剤の非存在下で、任意選択で最大5回の継代(好ましくは、細胞を60〜100%、好ましくは80%コンフルエンシーで継代した)まで、前記細胞を培養において維持および増大させるステップと;
気道および実質的な血管系を含む(無細胞)肺組織マトリックスを提供するステップと;
前記肺組織マトリックスに、前記気道を通して前記幹細胞を、および前記血管系を通して内皮細胞を播種するステップと;
前記気道における機能的上皮および機能的血管系の形成にとって十分な条件で前記マトリックスを維持するステップであって、前記マトリックスの維持が、notch阻害剤、好ましくはガンマセクレターゼ阻害剤を含む液体培地を使用して、第1の所望の程度に臓器を成熟させて、湿潤成熟臓器を産生させるために十分な時間、前記肺組織マトリックスに湿式換気を提供することと、任意選択で湿式換気の間、臓器チャンバーにおいて実質的に一定の流体レベルを維持することとを含む、ステップと、
を含む方法。
2.前記臓器チャンバーが、各々がチャンバー圧センサーによって伝達されるデータに反応して二方向排液ポンプを制御する制御モジュールによって制御されるチャンバー圧センサーと二方向排液チャンバーポンプとを備える、上記1に記載の方法。
3.静脈ラインにおける圧力レベルを培地リザーバーにおける圧力レベルと平衡にすることによって、肺内外圧差を防止するステップをさらに含む、上記1に記載の方法。
4.前記臓器チャンバーが、前記臓器チャンバーに接続された空気圧制御モジュールをさらに備え、前記空気圧制御モジュールが、
吸気相の間、前記臓器チャンバーにおいて陰圧を生成し;
平衡相の間、前記臓器チャンバー圧を維持し;および
呼気相の間、前記臓器チャンバーにおいて陽圧を生成する、
上記1に記載の方法。
5.湿式換気が、
コントローラーに接続された二方向気管ポンプを含む気管ラインを、培地リザーバーに接続するステップと;
前記二方向気管ポンプを使用して前記肺組織マトリックスを培地によって膨らませるステップと;
前記二方向気管ポンプを使用し前記肺組織マトリックスから培地を引き抜いて、前記肺組織マトリックスをしぼませるステップとを含み、
前記培地が湿式換気の間、絶えず補充される、
上記1に記載の方法。
6.前記湿式換気が、
各々がコントローラーに接続された第1のポンプと第2のポンプとを含む前記気管ラインを、培地リザーバーに接続するステップと;
前記第1のポンプを使用して、前記肺組織マトリックスを培地によって膨らませるステップと;
前記第2のポンプを使用し前記肺組織マトリックスから培地を引き抜いて、前記肺組織マトリックスをしぼませるステップとを含み、
前記培地が湿式換気の間、絶えず補充される、
上記1に記載の方法。
7.前記コントローラーが、前記気管ラインに接続された気管圧センサーによって伝達されるデータに反応して前記二方向気管ポンプを制御する、上記6に記載の方法。
8.notch阻害剤を含む液体培地を使用して湿式換気を少なくとも2、5、7、または10日間提供し、任意選択で、その後に、notch阻害剤を含まない液体培地を使用して追加の湿式換気をするステップを含む、上記1に記載の方法。
9.前記肺組織マトリックスが、外から添加したテネイシン−cおよび/または外から添加したフィブリリン−2の1つまたは両方を含む、上記1に記載の方法。
10.播種の前に、前記肺組織マトリックスにテネイシン−cまたはフィブリリン−2の1つまたは両方を接触させるステップを含む、上記9に記載の方法。
11.上記1〜10に記載の方法によって産生された機能的な肺。
12.前記臓器が、完全な肺またはその血管柄付きの部分である、上記11に記載の機能的な肺。
13.上記11に記載の肺を対象に移植するステップを含む、肺活量が損なわれたまたは低減した対象を治療する方法。
14.肺活量が損なわれたまたは低減した対象を治療する方法における、上記11に記載の機能的な肺の使用。
15.肺活量が損なわれたまたは低減した対象を治療する方法に使用するための上記11に記載の機能的な肺。
Other Embodiments While the present invention has been described in conjunction with its detailed description, the foregoing description is for the purpose of illustrating and limiting the scope of the invention as defined by the appended claims. It is understood that it is not intended. Other aspects, advantages, and modifications are within the scope of the following claims.
Various embodiments of the present invention are shown below.
1. A method of providing a bioartificial lung organ, comprising:
Providing a proliferative basal stem cell population from a human donor, said cells being Krt5+p63+ cells, preferably obtained from the respiratory tract of said donor.
The cells are in culture, optionally in the absence of a ROCK inhibitor, optionally up to a maximum of 5 passages (preferably 60-100%, preferably 80% confluency). Maintaining and augmenting;
Providing a (cellular) lung tissue matrix comprising airways and a substantial vasculature;
Seeding the lung tissue matrix with the stem cells through the airways and endothelial cells through the vasculature;
Maintaining said matrix in conditions sufficient for the formation of functional epithelium and functional vasculature in said airways, said matrix being maintained using a liquid medium comprising a notch inhibitor, preferably a gamma secretase inhibitor. And providing the wet ventilation to the lung tissue matrix for a time sufficient to mature the organ to a first desired degree and produce a wet mature organ, and optionally during the wet ventilation. Maintaining a substantially constant fluid level in the chamber;
Including the method.
2. 1 wherein said organ chamber comprises a chamber pressure sensor and a two-way drainage chamber pump each controlled by a control module controlling a two-way drainage pump in response to data transmitted by the chamber pressure sensor. The method described.
3. The method of claim 1 further comprising the step of preventing transpulmonary pressure differential by balancing the pressure level in the venous line with the pressure level in the media reservoir.
4. The organ chamber further comprises a pneumatic control module connected to the organ chamber, the pneumatic control module,
Creating a negative pressure in the organ chamber during the inspiration phase;
Maintaining the organ chamber pressure during the equilibrium phase; and
Generate positive pressure in the organ chamber during the expiratory phase,
The method described in 1 above.
5. Wet ventilation
Connecting a tracheal line containing a two-way tracheal pump connected to a controller to the medium reservoir;
Inflating the lung tissue matrix with medium using the two-way tracheal pump;
Withdrawing medium from the lung tissue matrix using the two-way tracheal pump to deflate the lung tissue matrix,
The medium is constantly replenished during wet ventilation,
The method described in 1 above.
6. The wet ventilation is
Connecting the tracheal line to a culture medium reservoir, the tracheal line comprising a first pump and a second pump each connected to a controller;
Inflating the lung tissue matrix with a medium using the first pump;
Withdrawing medium from the lung tissue matrix using the second pump to deflate the lung tissue matrix,
The medium is constantly replenished during wet ventilation,
The method described in 1 above.
7. 7. The method according to claim 6, wherein the controller controls the bidirectional tracheal pump in response to data transmitted by a tracheal pressure sensor connected to the tracheal line.
8. Providing wet ventilation using a liquid medium containing a notch inhibitor for at least 2, 5, 7, or 10 days, optionally followed by additional wet ventilation using a liquid medium containing no notch inhibitor. The method according to 1 above, which comprises the step of:
9. The method of claim 1 wherein the lung tissue matrix comprises one or both of exogenously added tenascin-c and/or exogenously added fibrillin-2.
10. 10. The method of claim 9, comprising contacting the lung tissue matrix with one or both of tenascin-c or fibrillin-2 prior to seeding.
11. A functional lung produced by the method according to 1 to 10 above.
12. 12. The functional lung according to 11 above, wherein the organ is a complete lung or a vascularized portion thereof.
13. 13. A method of treating a subject with impaired or reduced vital capacity, comprising the step of transplanting the lung of claim 11 to the subject.
14. The use of the functional lung according to the above 11, in a method of treating a subject with impaired or reduced vital capacity.
15. A functional lung according to claim 11 for use in a method of treating a subject with impaired or reduced vital capacity.

Claims (16)

バイオ人工肺臓器を提供する方法であって、
ヒトドナーから増殖性の基底幹細胞集団を提供するステップであって、前記細胞が、Krt5+p63+細胞である、ステップと;
大5回の継代で、前記細胞を培養において維持および増大させるステップであって、細胞が60〜100%コンフルエンシーで継代されるステップと;
気道および血管系を含む無細胞肺組織マトリックスを提供するステップであって、前記肺組織マトリックスが、外から添加したテネイシン−cまたは外から添加したフィブリリン−2の1つまたは両方を含むステップと;
前記肺組織マトリックスに、前記気道を通して前記幹細胞を、および前記血管系を通して内皮細胞を播種するステップと;
otch阻害剤を含む液体培地を使用して、あらかじめ選択された程度に臓器を成熟させるために十分な時間、前記肺組織マトリックスに湿式換気を提供することを含む条件で前記マトリックスを臓器チャンバーに維持するステップと、
を含む方法。
A method of providing a bioartificial lung organ, comprising:
Providing a proliferative basal stem cell population from a human donor, said cells being Krt5+p63+ cells;
Passaging of up 5 times, a step of maintaining and increasing in culturing the cells, the steps the cells are passaged at 60% to 100% confluency;
Comprising: providing a cell-free lung tissue matrix including airway and vascular system, the lung tissue matrix comprises one or both of fibrillin -2 added from tenascin -c or outer exogenously added Steps ;
Seeding the lung tissue matrix with the stem cells through the airways and endothelial cells through the vasculature;
using a liquid medium containing n Otch inhibitor for a time sufficient to mature organ to the degree that is preselected, the matrix organ chamber under conditions comprising providing a wet ventilation to the lung tissue matrix Steps to maintain ,
Including the method.
前記臓器チャンバーが、各々がチャンバー圧センサーによって伝達されるデータに反応して二方向排液ポンプを制御する制御モジュールによって制御されるチャンバー圧センサーと二方向排液チャンバーポンプとを備える、請求項1に記載の方法。 2. The organ chamber comprises a chamber pressure sensor and a two-way drainage chamber pump each controlled by a control module that controls the two-way drainage pump in response to data transmitted by the chamber pressure sensor. The method described in. 前記肺組織マトリックスの肺静脈に接続された静脈ラインにおける圧力レベルを培地リザーバーにおける圧力レベルと平衡にすることによって、肺内外圧差を防止するステップをさらに含む、請求項1に記載の方法。 The method of claim 1, further comprising preventing transpulmonary pressure differentials by balancing the pressure level in the venous line connected to the pulmonary vein of the pulmonary tissue matrix with the pressure level in the media reservoir. 前記臓器チャンバーが、前記臓器チャンバーに接続された空気圧制御モジュールをさらに備え、前記空気圧制御モジュールが、
吸気相の間、前記臓器チャンバーにおいて陰圧を生成し;
平衡相の間、前記臓器チャンバー圧を維持し;および
呼気相の間、前記臓器チャンバーにおいて陽圧を生成する、
請求項1に記載の方法。
The organ chamber further comprises a pneumatic control module connected to the organ chamber, the pneumatic control module,
Creating a negative pressure in the organ chamber during the inspiration phase;
Maintain the organ chamber pressure during the equilibrium phase; and generate positive pressure in the organ chamber during the expiratory phase,
The method of claim 1.
湿式換気が、
前記肺組織マトリックスの気道にも接続された気管ラインであって、コントローラーに接続された二方向気管ポンプを含む前記気管ラインを、培地リザーバーに接続するステップと;
前記二方向気管ポンプを使用して前記肺組織マトリックスを培地によって膨らませるステップと;
前記二方向気管ポンプを使用し前記肺組織マトリックスから培地を引き抜いて、前記肺組織マトリックスをしぼませるステップとを含み、
前記培地が湿式換気の間、絶えず補充される、
請求項1に記載の方法。
Wet ventilation
Wherein a lung tissue matrix trachea lines to the connected airway, the trachea lines containing bidirectional trachea pump connected to the controller, and connecting the medium reservoir;
Inflating the lung tissue matrix with medium using the two-way tracheal pump;
Withdrawing culture medium from the lung tissue matrix using the two-way tracheal pump to deflate the lung tissue matrix,
The medium is constantly replenished during wet ventilation,
The method of claim 1.
前記湿式換気が、
前記肺組織マトリックスの気道にも接続された気管ラインであって、各々がコントローラーに接続された第1のポンプと第2のポンプとを含む前記気管ラインを、培地リザーバーに接続するステップと;
前記第1のポンプを使用して、前記肺組織マトリックスを培地によって膨らませるステップと;
前記第2のポンプを使用し前記肺組織マトリックスから培地を引き抜いて、前記肺組織マトリックスをしぼませるステップとを含み、
前記培地が湿式換気の間、絶えず補充される、
請求項1に記載の方法。
The wet ventilation is
Connecting a tracheal line also to the airway of the lung tissue matrix, the tracheal line comprising a first pump and a second pump , each connected to a controller, to a culture medium reservoir;
Inflating the lung tissue matrix with a medium using the first pump;
Withdrawing medium from the lung tissue matrix using the second pump to deflate the lung tissue matrix,
The medium is constantly replenished during wet ventilation,
The method of claim 1.
前記コントローラーが、前記気管ラインに接続された気管圧センサーによって伝達されるデータに反応して前記二方向気管ポンプを制御する、請求項6に記載の方法。 7. The method of claim 6, wherein the controller controls the two-way tracheal pump in response to data transmitted by a tracheal pressure sensor connected to the tracheal line. notch阻害剤を含む液体培地を使用して湿式換気を少なくとも2、5、7、または10日間提供し、任意選択で、その後に、notch阻害剤を含まない液体培地を使用して追加の湿式換気をするステップを含む、請求項1に記載の方法。 Providing wet ventilation using a liquid medium containing a notch inhibitor for at least 2, 5, 7, or 10 days, optionally followed by additional wet ventilation using a liquid medium containing no notch inhibitor. The method of claim 1 including the step of: 播種の前に、前記肺組織マトリックスにテネイシン−cまたはフィブリリン−2の1つまたは両方を接触させるステップを含む、請求項に記載の方法。 2. The method of claim 1 , comprising contacting the lung tissue matrix with one or both of tenascin-c or fibrillin-2 prior to seeding. 請求項1に記載の方法によって産生された機能的な肺。 A functional lung produced by the method of claim 1 . 前記臓器が、完全な肺またはその血管柄付きの部分である、請求項10に記載の機能的な肺。 11. The functional lung of claim 10 , wherein the organ is a complete lung or vascularized portion thereof. 活量が損なわれたまたは低減した対象を治療する方法に使用するための請求項10に記載の肺 Lung claim 10 for use in a method of treating a subject pulmonary activity of the was impaired or reduced. 前記Krt5+p63+細胞が前記ドナーの気道から得られる、請求項1に記載の方法。The method of claim 1, wherein the Krt5 + p63 + cells are obtained from the airways of the donor. 細胞が80%コンフルエンシーで継代される、請求項1に記載の方法。The method of claim 1, wherein the cells are passaged at 80% confluency. notch阻害剤が、ガンマセクレターゼ阻害剤である、請求項1に記載の方法。The method of claim 1, wherein the notch inhibitor is a gamma secretase inhibitor. 肺組織マトリックスへの播種前に、細胞がROCK阻害剤の非存在下での培養において継代される、請求項1に記載の方法。The method of claim 1, wherein the cells are passaged in culture in the absence of a ROCK inhibitor prior to seeding into lung tissue matrix.
JP2018560605A 2016-05-16 2017-05-04 Human airway stem cells in lung epithelial engineering Active JP6840774B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201662337041P 2016-05-16 2016-05-16
US62/337,041 2016-05-16
US201662426146P 2016-11-23 2016-11-23
US62/426,146 2016-11-23
US201762483760P 2017-04-10 2017-04-10
US62/483,760 2017-04-10
PCT/US2017/031076 WO2017200762A2 (en) 2016-05-16 2017-05-04 Human airway stem cells in lung epithelial engineering

Publications (3)

Publication Number Publication Date
JP2019519217A JP2019519217A (en) 2019-07-11
JP2019519217A5 true JP2019519217A5 (en) 2020-06-11
JP6840774B2 JP6840774B2 (en) 2021-03-10

Family

ID=60326629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018560605A Active JP6840774B2 (en) 2016-05-16 2017-05-04 Human airway stem cells in lung epithelial engineering

Country Status (7)

Country Link
EP (1) EP3458076A4 (en)
JP (1) JP6840774B2 (en)
KR (1) KR102362222B1 (en)
CN (1) CN109689071B (en)
AU (1) AU2017268078B2 (en)
CA (1) CA3024424A1 (en)
WO (1) WO2017200762A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111944737B (en) * 2019-05-16 2023-12-26 苏州吉美瑞生医学科技有限公司 Clinical grade autologous bronchial basal layer cell and reinfusion preparation and preparation process
CN113940951A (en) * 2020-07-15 2022-01-18 苏州吉美瑞生医学科技有限公司 New application of REGEND001 cell autologous transfusion preparation
CN112501110B (en) * 2020-11-26 2023-08-25 海西纺织新材料工业技术晋江研究院 Standardized culture medium for three-dimensional culture of lung and lung cancer tissue organoids and culture method
CN112410282B (en) * 2020-11-26 2023-03-24 安徽大学 Method for efficiently inducing high-level branched lung organoid in vitro, experimental model and compound combination
CN112852709B (en) * 2021-01-25 2023-01-03 南京医科大学 Method for culturing mouse lung organoid
CN113827617B (en) * 2021-06-25 2022-11-18 广州医科大学附属第一医院(广州呼吸中心) Application of airway basal layer stem cells in benign airway stenosis treatment
CN114891725B (en) * 2022-03-29 2024-01-16 南京医科大学 Mouse airway culture method

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087552A (en) 1994-11-15 2000-07-11 Sisters Of Providence Of Oregon Method of producing fused biomaterials and tissue
US6635632B1 (en) 1996-12-23 2003-10-21 Athena Neurosciences, Inc. Cycloalkyl, lactam, lactone and related compounds, pharmaceutical compositions comprising same, and methods for inhibiting β-amyloid peptide release and/or its synthesis by use of such compounds
CN1171878C (en) 1996-12-23 2004-10-20 伊兰药品公司 Cycloalkyl, lactam lactone and related compounds as 'beta'-amyloid peptide release inhibitors
US6734018B2 (en) 1999-06-07 2004-05-11 Lifenet Process for decellularizing soft-tissue engineered medical implants, and decellularized soft-tissue medical implants produced
US7662409B2 (en) 1998-09-25 2010-02-16 Gel-Del Technologies, Inc. Protein matrix materials, devices and methods of making and using thereof
CN1333818A (en) 1998-11-19 2002-01-30 奥加诺吉尼西斯公司 Bioengineered tissue constructs and method for producing and using them
US6756511B2 (en) 2000-01-24 2004-06-29 Merck Sharp & Dohme Limited Gamma-secretase inhibitors
GB0005251D0 (en) 2000-03-03 2000-04-26 Merck Sharp & Dohme Therapeutic compounds
EP1268412B8 (en) 2000-03-20 2007-02-21 MERCK SHARP & DOHME LTD. Sulphonamido-substituted bridged bicycloalkyl derivatives
GB0008710D0 (en) 2000-04-07 2000-05-31 Merck Sharp & Dohme Therapeutic compounds
ATE302753T1 (en) 2000-11-02 2005-09-15 Merck Sharp & Dohme SULFAMIDES AS GAMMA SECRETASE INHIBITORS
US7468365B2 (en) 2000-11-17 2008-12-23 Eli Lilly And Company Lactam compound
UA74849C2 (en) 2000-11-17 2006-02-15 Lilly Co Eli Lactam
US6483732B2 (en) 2000-12-13 2002-11-19 Koninklijke Philips Electronics N.V. Relational content addressable memory
AU2002239810A1 (en) 2001-01-02 2002-07-16 The Charles Stark Draper Laboratory, Inc. Tissue engineering of three-dimensional vascularized using microfabricated polymer assembly technology
AU2002367580A1 (en) 2001-05-16 2003-09-22 Tracy C. Grikscheit Tissue-engineered organs
US20020182261A1 (en) 2001-05-31 2002-12-05 Jianwu Dai EB matrix production from fetal tissues and its use for tissue repair
GB0119152D0 (en) 2001-08-06 2001-09-26 Merck Sharp & Dohme Therapeutic agents
US20030166274A1 (en) 2001-11-15 2003-09-04 Hewitt Charles W. Three-dimensional matrix for producing living tissue equivalents
US20030180268A1 (en) 2002-02-05 2003-09-25 Anthony Atala Tissue engineered construct for supplementing or replacing a damaged organ
GB0209995D0 (en) 2002-05-01 2002-06-12 Merck Sharp & Dohme Therapeutic agents
WO2003093252A1 (en) 2002-05-01 2003-11-13 Merck Sharp & Dohme Limited Heteroaryl substituted spirocyclic sulfamides for inhibition of gamma secretase
GB0209997D0 (en) 2002-05-01 2002-06-12 Merck Sharp & Dohme Therapeutic agents
GB0209991D0 (en) 2002-05-01 2002-06-12 Merck Sharp & Dohme Therapeutic agents
WO2004003178A2 (en) 2002-06-28 2004-01-08 Cardio, Inc. Decellularized tissue
GB0223038D0 (en) 2002-10-04 2002-11-13 Merck Sharp & Dohme Therapeutic compounds
GB0223039D0 (en) 2002-10-04 2002-11-13 Merck Sharp & Dohme Therapeutic compounds
GB0225475D0 (en) 2002-11-01 2002-12-11 Merck Sharp & Dohme Therapeutic agents
GB0225474D0 (en) 2002-11-01 2002-12-11 Merck Sharp & Dohme Therapeutic agents
RU2342374C2 (en) 2003-03-31 2008-12-27 Уайт Fluorine and trifluoralkyl-containing heterocyclic sulfonamide inhibitors of beta-amyloid formation and their derivatives
US20080292677A1 (en) 2004-12-09 2008-11-27 The Board Of Regents Of The University Of Texas System Engineered lung tissue, hydrogel/somatic lung progenitor cell constructs to support tissue growth, and method for making and using same
GB0318447D0 (en) 2003-08-05 2003-09-10 Merck Sharp & Dohme Therapeutic agents
ATE509917T1 (en) 2003-09-24 2011-06-15 Merck Sharp & Dohme GAMMA SECRETASE INHIBITORS
GB0326039D0 (en) 2003-11-07 2003-12-10 Merck Sharp & Dohme Therapeutic agents
US20070244568A1 (en) 2003-12-26 2007-10-18 Cardio Incorporated Decellularized Tissue and Method of Preparing the Same
PL1720909T3 (en) 2004-02-23 2012-04-30 Lilly Co Eli Anti-abeta antibody
WO2005087287A1 (en) 2004-03-05 2005-09-22 University Of Florida Research Foundation Inc. Novel tissue engineered scaffolds derived from copper capillary alginate gels
GB0415080D0 (en) 2004-07-05 2004-08-04 Ucl Biomedica Plc Methods for preparing tissue equivalent implants and products thereof
JP5409009B2 (en) 2005-12-01 2014-02-05 エイジェンシー フォー サイエンス,テクノロジー アンド リサーチ Three-dimensional reconstructed extracellular matrix as a scaffold for tissue engineering
EP2198863A1 (en) 2006-02-27 2010-06-23 The Johns Hopkins University Cancer treatment with gamma-secretase inhibitors
US8175269B2 (en) 2006-07-05 2012-05-08 Oracle International Corporation System and method for enterprise security including symmetric key protection
WO2008100555A2 (en) 2007-02-14 2008-08-21 Drexel University Engineered lung tissue construction for high throughput toxicity screening and drug discovery
WO2009048661A1 (en) 2007-07-16 2009-04-16 Vaxdesign Corporation Artificial tissue constructs comprising alveolar cells and methods for using the same
MX2010001754A (en) 2007-08-14 2010-05-14 Lilly Co Eli Azepine derivatives as gamma-secretase inhibitors.
EP2225361A1 (en) 2007-11-28 2010-09-08 Organogenesis, Inc. Bioengineered tissue constructs and methods for production and use
BRPI0906831A2 (en) 2008-01-11 2019-09-24 Hoffmann La Roche use of a gamma secretase inhibitor for cancer treatment
WO2010068564A1 (en) 2008-12-11 2010-06-17 Merck Sharp & Dohme Corp. Method for treating alzheimer's disease and related conditions
ES2620778T3 (en) * 2009-02-04 2017-06-29 Yale University Lung tissue engineering
US8609897B2 (en) 2009-02-06 2013-12-17 Merck Sharp & Dohme Corp. Trifluoromethylsulfonamide gamma secretase inhibitor
ES2599828T3 (en) * 2009-06-04 2017-02-03 The General Hospital Corporation Bioartificial lung
CN105142652B (en) * 2013-01-08 2019-11-12 耶鲁大学 People and large mammal lung bioreactor
JP6602745B2 (en) * 2013-03-15 2019-11-06 ザ ジャクソン ラボラトリー Isolation and use of non-embryonic stem cells
WO2015108893A1 (en) * 2014-01-14 2015-07-23 Yale University Compositions and methods of preparing airway cells
ES2841142T3 (en) 2014-03-14 2021-07-07 Massachusetts Gen Hospital Lung bioreactor

Similar Documents

Publication Publication Date Title
JP2019519217A5 (en)
JP2020188780A5 (en)
CN109310077B (en) Device and method for ex vivo lung ventilation using varying external pressure
Morley Continuous distending pressure
Gattinoni et al. The role of total static lung compliance in the management of severe ARDS unresponsive to conventional treatment
IL262236A (en) Systems and methods for ex vivo organ care
DE69432708D1 (en) DEVICE FOR SUPPORTING CARDIOPULMONARY REVIVAL
Rudolph et al. Physical factors affecting normal and serotonin-constricted pulmonary vessels
CN2905075Y (en) Pulsed ventricular assist device
CN210330976U (en) Neurosurgery is with nursing pillow
Reiss et al. Recovery of organ dysfunction during bridging to heart transplantation in children and adolescents
Laas et al. Oxygen consumption of the left ventricle during transapical left ventricular bypass
CN211409670U (en) Dedicated organ heat sink of lung transplantation
US8070668B2 (en) Controlled inflation of a pneumatic L-VAD
CN206081269U (en) Establish air flue humidifier that long -time off -line patient of artifical air flue used
West Physiological consequences of the apposition of blood and gas in the lung
CN204563063U (en) Pulmonary belb reverse treating device
CN204563195U (en) A kind of Cardiological artificial ventilator
CN104027878B (en) Adjust blood pressure charge valve
WO2021238580A1 (en) Ards artificial model lung
Robison Physiology and functional pathology of the lymphatic system applied to allergy of the nose and paranasal sinuses
Donawick et al. Techniques for successful cardiopulmonary bypass in the calf
CN104707192A (en) Reverse treatment device for pulmonary bullae
Sasaki et al. Development of an isolated, pulsatile blood-perfused rat lung model for evaluating the preserved lung functions
Vu et al. Aortic Insufficiency during LVAD Support: A Mock Loop Study