JP2019508575A - Hot press-formed product in which fine cracks are suppressed and method for manufacturing the same - Google Patents

Hot press-formed product in which fine cracks are suppressed and method for manufacturing the same Download PDF

Info

Publication number
JP2019508575A
JP2019508575A JP2018532709A JP2018532709A JP2019508575A JP 2019508575 A JP2019508575 A JP 2019508575A JP 2018532709 A JP2018532709 A JP 2018532709A JP 2018532709 A JP2018532709 A JP 2018532709A JP 2019508575 A JP2019508575 A JP 2019508575A
Authority
JP
Japan
Prior art keywords
zinc
plating layer
steel sheet
hot press
formed product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018532709A
Other languages
Japanese (ja)
Other versions
JP6661772B2 (en
Inventor
ヒョン−ソク ファン、
ヒョン−ソク ファン、
イル−リョン ソン、
イル−リョン ソン、
ジョン−サン キム、
ジョン−サン キム、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2019508575A publication Critical patent/JP2019508575A/en
Application granted granted Critical
Publication of JP6661772B2 publication Critical patent/JP6661772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment

Abstract

素地鋼板及び上記素地鋼板の表面に形成された亜鉛系めっき層を含む亜鉛系めっき鋼板を熱間プレス成形して製造される熱間プレス成形品であって、上記亜鉛系めっき層はSb、Sn及びBiからなる群から選択された1種以上の元素:合計0.05〜2.0重量%、残部Zn及び不可避不純物を含み、上記Sb、Sn及びBiからなる群から選択された1種以上の元素の70重量%以上は、上記亜鉛系めっき層が合金化して形成された上記熱間プレス成形品の合金化亜鉛系めっき層の表面から3μm以内の領域に濃化する、熱間プレス成形品、及びそれを製造する方法が開示される。A base material steel sheet and a hot press-formed product produced by hot-press forming a zinc-based plated steel sheet including a zinc-based plating layer formed on the surface of the base steel sheet, wherein the zinc-based plating layer is Sb, Sn And one or more elements selected from the group consisting of: 0.05 to 2.0% by weight in total, the balance including Zn and unavoidable impurities, and one or more types selected from the group consisting of Sb, Sn, and Bi described above 70% by weight or more of the element is concentrated in a region within 3 μm from the surface of the alloyed zinc-based plating layer of the hot press-formed product formed by alloying the zinc-based plating layer An article and method of making the same are disclosed.

Description

本発明は、微細クラックが抑制された熱間プレス成形品及びその製造方法に関する。   The present invention relates to a hot press-formed product in which fine cracks are suppressed and a method of manufacturing the same.

最近、自動車の軽量化のために高強度鋼の活用が増加しているが、このような高強度鋼は、常温で加工するときに容易に摩耗したり破断したりするという問題がある。また、加工するときに、スプリングバックの現象も発生することにより精密な寸法加工が困難であり、複雑な製品の成形が困難である。これにより、高強度鋼を加工するための好ましい方法として熱間プレス成形(HPF)が適用されている。   Recently, the use of high strength steels has been increased to reduce the weight of automobiles, but such high strength steels have a problem that they easily wear or break when processed at normal temperature. Moreover, when processing, the phenomenon of a spring back also generate | occur | produces, precise dimension processing is difficult, and shaping | molding of a complicated product is difficult. Thereby, hot press forming (HPF) is applied as a preferable method for processing high strength steel.

熱間プレス成形(HPF)は、鋼板が高温では軟質化し高延性となる性質を利用して高温で複雑な形状に加工をする方法であり、より具体的には、鋼板をオーステナイト領域以上に加熱した状態で加工とともに急冷を行うことにより鋼板の組織をマルテンサイトに変態させ、高強度の精密な形状を有する製品を製造することができる方法である。   Hot press forming (HPF) is a method of processing a steel sheet into a complex shape at high temperature by utilizing the property of softening and high ductility at high temperature, and more specifically, heating the steel sheet to austenite region or more It is a method which can transform the structure of a steel plate to martensite by performing quenching in the processed state and quenching, and can manufacture a product having a high strength and precise shape.

但し、鋼材を高温に加熱する場合には鋼材の表面に腐食や脱炭などのような現象が発生する恐れがあるが、これを防止するために熱間プレス成形のための素材として表面に亜鉛系又はアルミニウム系めっき層が形成されためっき鋼材が多く用いられる。特に亜鉛系めっき層を有する亜鉛めっき鋼板は、亜鉛の自己犠牲防食性を利用して耐食性を向上させた鋼材である。   However, when heating steel materials to high temperatures, there is a possibility that phenomena such as corrosion and decarburization may occur on the surface of steel materials, but zinc is used as a material for hot press forming to prevent this. A plated steel material having a base or aluminum-based plating layer formed thereon is often used. In particular, a galvanized steel sheet having a zinc-based plating layer is a steel material in which the corrosion resistance is improved by utilizing the self-corrosion corrosion resistance of zinc.

しかし、このようなめっき鋼材を熱間プレス成形する場合において、金型とめっき層とが直接接し、表面摩擦が大きい深絞り加工部位でめっき層にクラックが発生し、めっき層に発生したクラックに沿って素地鋼板の表面にまで微細な亀裂が発生するという問題がある。   However, when such a plated steel material is hot press-formed, a crack is generated in the plated layer at the deep drawn portion where the mold and the plated layer are in direct contact and the surface friction is large, and the crack generated in the plated layer There is a problem that fine cracks occur along the surface of the base steel sheet.

このような問題を解決するために特許文献1(米国特許第6296805号明細書)では、鋼板の表面にAl系めっきを行う技術を提案した。上記特許文献1で提案したように、Al系めっきを行い、加熱炉でめっき層が維持されながら鋼板の表面の酸化反応を抑制し、Alの不動態皮膜の形成を利用することにより耐食性を増大させるという利点があるが、Alめっき鋼板は耐食性が大きく劣るという問題があった。   In order to solve such a problem, Patent Document 1 (US Pat. No. 6,296,805) proposes a technique of performing Al-based plating on the surface of a steel plate. As proposed in Patent Document 1 above, Al-based plating is performed, the oxidation reaction on the surface of the steel sheet is suppressed while the plating layer is maintained in the heating furnace, and corrosion resistance is increased by utilizing the formation of the passive film of Al. Al-plated steel sheet has a problem that the corrosion resistance is significantly inferior.

このような問題を解決するために、Znめっき熱間プレス鋼板に関する研究が再び注目を浴びて行われているが、めっき鋼材が900℃を超える高温作業環境と、熱間プレス成形において合金化したZn−Fe合金化層とダイスとの間の摩擦によるストレスによって素地鋼板の表面にまで微細クラックが発生するという問題がある。このような微細クラックは素地鋼板においてクラックが伝播する開始点として作用したり、疲労亀裂を起こす原因として作用したりする可能性があり、部品の耐久性を阻害する可能性が高いという問題がある。   In order to solve such problems, research on Zn-plated hot-pressed steel sheets has been focused again, but the plated steels are alloyed in a hot working environment with a high-temperature working environment exceeding 900 ° C. There is a problem that micro-cracks are generated to the surface of the base steel sheet due to stress due to friction between the Zn-Fe alloyed layer and the die. Such a micro crack may act as a starting point for the crack to propagate in the base steel plate or may act as a cause of causing a fatigue crack, and there is a problem that the possibility of inhibiting the durability of the part is high. .

米国登録特許第6296805号明細書U.S. Pat. No. 6,296,805

本発明の目的の一つは、微細クラックが抑制された熱間プレス成形品とそれを製造する方法を提供することである。   One of the objects of the present invention is to provide a hot press-formed product in which fine cracks are suppressed and a method of manufacturing the same.

本発明の一実施形態によれば、素地鋼板及び上記素地鋼板の表面に形成された亜鉛系めっき層を含む亜鉛系めっき鋼板を熱間プレス成形して製造される熱間プレス成形品であって、上記亜鉛系めっき層はSb、Sn及びBiからなる群から選択された1種以上の元素:合計0.05〜2.0重量%、残部Zn及び不可避不純物を含み、上記Sb、Sn及びBiからなる群から選択された1種以上の元素の70重量%以上は、上記亜鉛系めっき層が合金化して形成された上記熱間プレス成形品の合金化亜鉛系めっき層の表面から3μm以内の領域に濃化する、熱間プレス成形品が提供される。   According to one embodiment of the present invention, it is a hot press-formed product manufactured by hot-press forming a base steel sheet and a zinc-based plated steel sheet including a zinc-based plated layer formed on the surface of the base steel sheet The zinc-based plating layer contains one or more elements selected from the group consisting of Sb, Sn and Bi: a total of 0.05 to 2.0% by weight, the balance Zn and unavoidable impurities, and the Sb, Sn and Bi 70% by weight or more of one or more elements selected from the group consisting of: 3 μm or less from the surface of the alloyed zinc-based plated layer of the hot press-formed product formed by alloying the zinc-based plated layer A hot-press formed part is provided which concentrates in the area.

本発明の他の実施形態によれば、亜鉛系めっき鋼板を用意する段階と、上記亜鉛系めっき鋼板を3.5〜4.2℃/secの速度で640〜680℃の温度まで1次加熱する段階と、上記1次加熱された亜鉛系めっき鋼板を1.1〜1.6℃/secの速度で900〜930℃の温度まで2次加熱する段階と、上記2次加熱された亜鉛系めっき鋼板を1〜5分間恒温維持する段階と、上記恒温維持された亜鉛系めっき鋼板を金型によって成形するとともに急冷する段階とを含み、上記亜鉛系めっき鋼板は素地鋼板、及び上記素地鋼板の表面に形成され、Sb、Sn及びBiからなる群から選択された1種以上の元素を合計で0.05〜2.0重量%含む亜鉛系めっき層を含む熱間プレス成形品の製造方法が提供される。   According to another embodiment of the present invention, the step of preparing a zinc-based plated steel sheet, and the primary heating of the zinc-based plated steel sheet to a temperature of 640-680 ° C. at a speed of 3.5-4.2 ° C./sec. And secondarily heating the primary heated zinc-based plated steel sheet to a temperature of 900 to 930 ° C. at a rate of 1.1 to 1.6 ° C./sec, and secondarily heating the zinc-based plated steel plate And holding the plated steel sheet at a constant temperature for 1 to 5 minutes, and forming and rapidly cooling the zinc-based plated steel sheet maintained at the constant temperature with a mold, wherein the zinc-based plated steel sheet comprises a base steel plate and the base steel plate. A method of producing a hot press-formed product comprising a zinc-based plating layer formed on the surface and containing 0.05 to 2.0% by weight in total of one or more elements selected from the group consisting of Sb, Sn and Bi Provided.

本発明の多様な効果の一つとして、本発明の一実施形態による熱間プレス成形品は、熱間プレス成形において発生するめっき層内の微細クラックが素地鋼板に伝播することを効果的に抑制し、耐久性に優れるという利点がある。   As one of various effects of the present invention, the hot press-formed product according to one embodiment of the present invention effectively suppresses the propagation of micro cracks in the plating layer generated in the hot press forming to the base steel plate. And the durability is excellent.

但し、本発明の多様で有益な利点と効果は、上述した内容に限定されず、本発明の具体的な実施形態を説明する過程で、より容易に理解することができる。   However, various and beneficial advantages and effects of the present invention are not limited to the above-described contents, and can be more easily understood in the process of describing specific embodiments of the present invention.

比較例1の微細クラックを観察して示したものである。The micro crack of Comparative Example 1 is observed and shown. 発明例1の微細クラックを観察して示したものである。The micro crack of the invention example 1 is observed and shown. 発明例3の微細クラックを観察して示したものである。The micro crack of the invention example 3 is observed and shown. 比較例4の微細クラックを観察して示したものである。The micro crack of Comparative Example 4 is observed and shown. 発明例5の微細クラックを観察して示したものである。The micro crack of the invention example 5 is observed and shown. (a)は発明例1のめっき層の深さによるAl、Mg及びSnの含量を分析したGDSデータであり、(b)は発明例3のめっき層の深さによるAl、Mg及びSnの含量を分析したGDSデータであり、(c)は発明例5のめっき層の深さによるAl、Mg及びSnの含量を分析したGDSデータである。(A) is GDS data which analyzed content of Al, Mg, and Sn by the depth of the plating layer of the invention example 1, (b) is content of Al, Mg, and Sn by the depth of the plating layer of the invention example 3 And (c) are GDS data obtained by analyzing the contents of Al, Mg and Sn according to the depth of the plating layer of Inventive Example 5.

本発明者らは微細クラックが抑制された熱間プレス成形品を提供するために鋭意研究した結果、適量の粒界偏析元素が含有された亜鉛系めっき層を有する亜鉛系めっき鋼板を熱間プレス成形用素材として利用し、かつ熱間プレス成形において加熱条件を適切に制御して上記粒界偏析元素をめっき層の表層に濃化させることにより、めっき層内の微細クラックが素地鋼板に伝播することを効果的に遮断することができることを見出し、本発明を完成するに至った。   As a result of intensive studies conducted by the present inventors to provide a hot press-formed product in which micro cracks are suppressed, the zinc-based plated steel sheet having a zinc-based plated layer containing an appropriate amount of grain boundary segregation elements is hot pressed The microcracks in the plating layer propagate to the base steel plate by using it as a forming material and by appropriately controlling the heating conditions in hot press forming to concentrate the grain boundary segregation element on the surface layer of the plating layer It has been found that it is possible to effectively block things, and the present invention has been completed.

以下、本発明の一実施形態による熱間プレス成形品について詳細に説明する。   Hereinafter, a hot press-formed product according to an embodiment of the present invention will be described in detail.

本発明の一実施形態による熱間プレス成形品は、素地鋼板及び上記素地鋼板の表面に形成された亜鉛系めっき層を含む亜鉛系めっき鋼板を熱間プレス成形して製造される。   The hot press-formed product according to an embodiment of the present invention is manufactured by hot press-forming a zinc-based plated steel plate including a base steel plate and a zinc-based plated layer formed on the surface of the base steel plate.

本発明では素地鋼板の種類については特に限定せず、例えば、通常の亜鉛系めっき鋼板の素地として用いられる熱延鋼板又は冷延鋼板であってもよい。但し、熱延鋼板の場合、その表面に多量の酸化スケールを有し、このような酸化スケールはめっき密着性を低下させてめっき品質を低下させるという問題があるため、酸溶液によって予め酸化スケールを除去した熱延鋼板を素地とすることがより好ましい。   In the present invention, the type of the base steel sheet is not particularly limited, and may be, for example, a hot-rolled steel sheet or a cold-rolled steel sheet used as a base of a normal zinc-based plated steel sheet. However, in the case of a hot-rolled steel sheet, it has a large amount of oxide scale on its surface, and such an oxide scale has a problem of reducing the plating adhesion and lowering the plating quality. It is more preferable to use the removed hot-rolled steel sheet as a substrate.

一方、亜鉛系めっき層は素地鋼板の一面又は両面に形成され、上記亜鉛系めっき層は熱間プレス成形のための熱処理において合金化され、合金化亜鉛系めっき層に変化する。   On the other hand, the zinc-based plating layer is formed on one side or both sides of the base steel plate, and the zinc-based plating layer is alloyed in heat treatment for hot press forming to change to an alloyed zinc-based plating layer.

亜鉛系めっき層は、Sb、Sn及びBiからなる群から選択された1種以上の元素:合計0.05〜2.0重量%、残部Zn及び不可避不純物を含むことが好ましい。   The zinc-based plating layer preferably contains one or more elements selected from the group consisting of Sb, Sn, and Bi: 0.05 to 2.0% by weight in total, the balance Zn, and unavoidable impurities.

Sb、Sn及びBiは粒界偏析元素であり、高温の作業環境で酸素の粒界浸透による内部酸化物の形成を抑制する役割をする元素である。本発明においてこのような効果を示すためには、上記元素の含量の和が0.05重量%以上であることが好ましく、0.3重量%以上であることがより好ましい。但し、その含量が多すぎる場合は、めっき層の表面に形成されるアルミニウム酸化膜の形成を妨げ、アルミニウムのバリア役割を阻害する恐れがあり、その含量増加に比べて効果が低下し、経済性が低下するという問題がある。したがって、上記元素の含量の和は2.0重量%以下であることが好ましく、1.5重量%以下であることがより好ましい。   Sb, Sn and Bi are grain boundary segregation elements, and are elements that play a role of suppressing the formation of internal oxides due to the grain boundary penetration of oxygen in a high temperature working environment. In order to exhibit such effects in the present invention, the sum of the contents of the above elements is preferably 0.05% by weight or more, and more preferably 0.3% by weight or more. However, if the content is too high, the formation of the aluminum oxide film formed on the surface of the plating layer may be hindered and the barrier role of aluminum may be inhibited, and the effect is reduced compared to the increase in the content, which is economical There is a problem that Therefore, the sum of the contents of the above elements is preferably 2.0% by weight or less, more preferably 1.5% by weight or less.

一例によれば、亜鉛系めっき層は、Mg:0.1〜5.0重量%及びAl:0.1〜7.5重量%をさらに含むことができる。   According to an example, the zinc-based plating layer may further include 0.1 to 5.0% by weight of Mg and 0.1 to 7.5% by weight of Al.

Mgは、熱間プレス成形品の耐食性を向上させる役割をする元素である。本発明においてこのような効果を示すためには0.1重量%以上含むことが好ましく、1重量%以上含むことがより好ましい。但し、その含量が多すぎる場合は、めっき浴中のMg酸化によりめっき浴のドロスが発生するという問題がある。したがって、マグネシウム含量の上限は5.0重量%であることが好ましく、4.0重量%であることがより好ましく、3.0重量%であることがさらに好ましい。   Mg is an element that plays a role in improving the corrosion resistance of a hot press-formed product. In order to exhibit such an effect in the present invention, the content is preferably 0.1% by weight or more, and more preferably 1% by weight or more. However, when the content is too large, there is a problem that the dross of the plating bath is generated due to the oxidation of Mg in the plating bath. Therefore, the upper limit of the magnesium content is preferably 5.0% by weight, more preferably 4.0% by weight, and still more preferably 3.0% by weight.

Alは、Mg酸化物ドロスを抑制する役割をする。もし、その含量が低すぎる場合はめっき浴中のMg酸化防止効果が微小である。したがって、アルミニウム含量の下限は0.1重量%であることが好ましく、1.5重量%であることがより好ましい。但し、その含量が多すぎる場合は、めっき浴の温度を高めなければならないという問題がある。めっき浴の温度が高いと、めっき設備の浸食などをもたらす。したがって、アルミニウム含量の上限は7.5重量%であることが好ましく、7.2重量%であることがより好ましい。   Al plays a role of suppressing Mg oxide dross. If the content is too low, the Mg antioxidation effect in the plating bath is minimal. Therefore, the lower limit of the aluminum content is preferably 0.1% by weight, and more preferably 1.5% by weight. However, if the content is too high, there is a problem that the temperature of the plating bath must be increased. If the temperature of the plating bath is high, it causes erosion of the plating equipment. Therefore, the upper limit of the aluminum content is preferably 7.5% by weight, and more preferably 7.2% by weight.

一例によれば、亜鉛系めっき層が合金化して形成された合金化亜鉛系めっき層のFe合金化度は30〜85%であることが好ましく、45〜78%であることがより好ましく、50〜75%であることがさらに好ましい。Fe合金化度が上記の範囲を満たす場合、熱間プレスにおいて表面亀裂を効果的に防止することができ、犠牲防食による耐食特性に優れるという利点がある。もし、Fe合金化度が30%未満の場合は、めっき層内における一部Znの濃化した領域が液相として存在し、加工において液相脆化割れをもたらす可能性がある。一方、Fe合金化度が85%を超える場合は、耐食性が低下する恐れがある。   According to an example, the Fe alloying degree of the alloyed zinc-based plated layer formed by alloying the zinc-based plated layer is preferably 30 to 85%, more preferably 45 to 78%, and 50 It is further preferable that it is -75%. When the Fe alloying degree satisfies the above range, surface cracks can be effectively prevented in hot pressing, and there is an advantage that the corrosion resistance by sacrificial corrosion protection is excellent. If the Fe alloying degree is less than 30%, a part of the Zn-rich region in the plating layer may exist as a liquid phase, which may lead to liquid phase embrittlement cracking in processing. On the other hand, when the degree of Fe alloying exceeds 85%, the corrosion resistance may be reduced.

本発明の熱間プレス成形品は、Sb、Sn及びBiからなる群から選択された1種以上の元素の70重量%以上が合金化亜鉛系めっき層の表面から3μm以内の領域に濃化していることを特徴とする。   In the hot press-formed product of the present invention, 70% by weight or more of one or more elements selected from the group consisting of Sb, Sn and Bi is concentrated in a region within 3 μm from the surface of the alloyed zinc-based plating layer It is characterized by

上記のようにSb、Sn及びBiが合金化亜鉛系めっき層の表面に多量に濃化している場合、酸素がめっき層の表面から浸透して粒界偏析を起こすよりも先にSb、Sn及びBiがめっき層の表面に位置することにより、内部酸化物の形成を抑制し、めっき層で粒界クラックが発生することを防止し、これにより、素地部材への微細クラックの伝播を遮断することができる。さらに、微細クラックは金型とめっき層との摩擦が大きい部位で主に発生するが、表面に濃化したSb、Sn及びBiの酸化物は金型とめっき層との間の摩擦係数を減らし、微細クラックの発生自体を減少させて熱間プレス成形品の耐久性をより向上させることができる。   As described above, when Sb, Sn, and Bi are concentrated in large amounts on the surface of the alloyed zinc-based plating layer, Sb, Sn, and Sb are present before oxygen penetrates from the surface of the plating layer and causes grain boundary segregation. By locating Bi on the surface of the plating layer, the formation of internal oxides is suppressed, and the occurrence of intergranular cracks in the plating layer is prevented, whereby the propagation of micro cracks to the base member is interrupted. Can. Furthermore, although micro cracks mainly occur at a site where the friction between the mold and the plating layer is large, the oxides of Sb, Sn and Bi concentrated on the surface reduce the coefficient of friction between the mold and the plating layer The occurrence of micro cracks can be reduced to further improve the durability of the hot press-formed product.

一方、本発明では合金化亜鉛系めっき層の表面から3μm以内の領域に濃化したSb、Sn及びBiからなる群から選択された1種以上の元素の含量を測定する具体的な方法については特に限定しないが、例えば、次のような方法を利用することができる。即ち、熱間プレス成形品を垂直に切断し、グロー放電分光分析器(GDS)を利用してめっき層の断面でのSb、Sn及びBiからなる群から選択された1種以上の元素の分布を測定した後、めっき層の表面からの深さに対するSb、Sn及びBiからなる群から選択された1種以上の元素の含量に関するグラフでその面積を積分することにより、合金化亜鉛系めっき層の表面から3μm以内の領域に濃化したSb、Sn及びBiからなる群から選択された1種以上の元素の含量を測定することができる。   On the other hand, in the present invention, a specific method of measuring the content of one or more elements selected from the group consisting of Sb, Sn and Bi concentrated in a region within 3 μm from the surface of the alloyed zinc-based plating layer Although not particularly limited, for example, the following method can be used. That is, the hot press-formed product is vertically cut, and distribution of one or more elements selected from the group consisting of Sb, Sn and Bi in the cross section of the plating layer using a glow discharge spectrometer (GDS) By measuring the area and integrating the area in a graph relating to the content of one or more elements selected from the group consisting of Sb, Sn and Bi with respect to the depth from the surface of the plating layer, It is possible to measure the content of one or more elements selected from the group consisting of Sb, Sn and Bi concentrated in a region within 3 μm from the surface of

以上で説明した本発明の熱間プレス成形品は多様な方法で製造されることができ、その製造方法は特に制限されない。但し、その一実施形態として次のような方法により製造されることができる。   The hot press formed article of the present invention described above can be manufactured by various methods, and the manufacturing method is not particularly limited. However, as one embodiment, it can be manufactured by the following method.

以下、本発明の他の実施形態による耐久性に優れた熱間プレス成形品の製造方法について詳細に説明する。   Hereinafter, a method of manufacturing a hot press-formed product excellent in durability according to another embodiment of the present invention will be described in detail.

まず、前述した合金組成を有する亜鉛系めっき鋼板を用意する。本発明では亜鉛系めっき鋼板を用意する具体的な方法については特に限定せず、通常の溶融亜鉛系めっき鋼板の製造方法により製造することができ、例えば、上述の組成を有する亜鉛系めっき浴に素地鋼板を浸漬した後、それを冷却することにより亜鉛系めっき鋼板を用意することができる。   First, a zinc-based plated steel sheet having the above-described alloy composition is prepared. In the present invention, a specific method for preparing a zinc-based plated steel sheet is not particularly limited, and it can be produced by a common method for producing a hot-dip galvanized steel sheet, for example, a zinc-based plating bath having the above-mentioned composition. After the base steel sheet is immersed, the galvanized steel sheet can be prepared by cooling it.

但し、本発明において目的とする効果をより大きくするためには、亜鉛系めっき浴に素地鋼板を浸漬する前に、予め亜鉛系めっき浴中に不活性ガスを供給し、バブリングを行うことが好ましい。この際、不活性ガスは窒素(N)、アルゴン(Ar)及びヘリウム(He)からなる群から選択された1種又は2種以上であってもよい。 However, in order to increase the effect to be achieved in the present invention, it is preferable to carry out bubbling by previously supplying an inert gas into the zinc-based plating bath before immersing the base steel plate in the zinc-based plating bath . At this time, the inert gas may be one or more selected from the group consisting of nitrogen (N 2 ), argon (Ar) and helium (He).

このようにめっきを行うに先立ち、亜鉛系めっき浴中にバブリングを行う場合、Sb、Sn及びBiを亜鉛系めっき浴中により均一に分布させるのに役立つのみならず、後述するめっき作業によって得られる亜鉛系めっき層内にSb、Sn及びBiをより均一に分布させるのにも役立ち、結果として得られる熱間プレス成形品の合金化亜鉛系めっき層の表面にSb、Sn及びBiを濃化させるのにも役立つ。これは熱間プレス成形のための加熱前のめっき層内のSb、Sn及びBiの分布が均一であるほどSb、Sn及びBiの表面濃化が容易であるためである。   When bubbling in a zinc-based plating bath prior to plating in this way, it not only helps to distribute Sb, Sn and Bi more uniformly in the zinc-based plating bath, but is obtained by the plating operation described later It also helps to distribute Sb, Sn and Bi more uniformly in the zinc-based plating layer, and concentrates Sb, Sn and Bi on the surface of the alloyed zinc-based plating layer of the resulting hot-pressed product. It also helps. This is because the surface concentration of Sb, Sn and Bi is easier as the distribution of Sb, Sn and Bi in the plated layer before heating for hot press forming is uniform.

一方、上記のような効果を得るためには、不活性ガスの供給は1時間以上維持されることが好ましく、3時間以上維持されることがより好ましい。一方、不活性ガスの供給時間が増加するほどめっき浴中の成分を均一に分布させるのに有利であるため、その上限については特に限定しない。   On the other hand, in order to obtain the above effects, the supply of the inert gas is preferably maintained for 1 hour or more, more preferably 3 hours or more. On the other hand, the upper limit is not particularly limited because it is advantageous to uniformly distribute the components in the plating bath as the supply time of the inert gas increases.

次に、めっきされた亜鉛系めっき鋼板を成形品に加工するために1次加熱する。本段階は、めっき層の亜鉛が大気中で酸化する前に素地鉄と合金化することにより融点を高め、その後に加熱される工程でめっき層の亜鉛含量を十分に付与するために行われる段階である。   Next, primary heating is performed to process the plated zinc-based plated steel sheet into a formed product. This step is carried out to increase the melting point by alloying with the base iron before the zinc of the plating layer oxidizes in the atmosphere, and to sufficiently provide the zinc content of the plating layer in the subsequent heating step. It is.

1次加熱の平均加熱速度は3.5〜4.2℃/secであることが好ましい。もし、3.5℃/sec未満の場合は、上昇時間が長くなり、合金化による融点上昇効果が遅延し、亜鉛の過度な酸化が起こる恐れがある。これに対し、4.2℃/secを超える場合は、素材の合金化よりも表面の亜鉛が先に溶融し、めっき層の表面酸化が著しくなる恐れがある。   The average heating rate of the primary heating is preferably 3.5 to 4.2 ° C./sec. If the temperature is less than 3.5 ° C./sec, the rise time becomes long, the effect of raising the melting point due to alloying is delayed, and excessive oxidation of zinc may occur. On the other hand, if it exceeds 4.2 ° C./sec, zinc on the surface melts earlier than alloying the material, and there is a possibility that the surface oxidation of the plating layer will be remarkable.

1次加熱の1次加熱終了温度は640〜680℃であることが好ましい。もし、650℃未満の場合は、低温によってめっき層内の拡散係数が低く、めっき層の均一な合金化がなされない恐れがある。これに対し、680℃を超える場合は、亜鉛Delta相の融点を超えてめっき層が液相化し、亜鉛が気化してめっき層の損失をもたらす可能性がある。   It is preferable that the primary heating completion temperature of primary heating is 640-680 degreeC. If the temperature is lower than 650 ° C., the diffusion coefficient in the plating layer may be low due to the low temperature, and uniform plating of the plating layer may not be achieved. On the other hand, if it exceeds 680 ° C., the plating layer may be liquid phased over the melting point of the zinc Delta phase, and the zinc may be vaporized to cause loss of the plating layer.

次に、1次加熱された亜鉛系めっき鋼板を2次加熱する。本段階は十分にDelta相に変化しためっき層を安定的にFe−alpha相に変化させながら添加した内部酸化抑制物質が粒界に先に偏析し、酸素による粒界酸化を防止し、微細クラックを抑制するために行われる段階である。   Next, the primarily heated zinc-based plated steel sheet is secondarily heated. At this stage, the internal oxidation inhibitor that is added while stably changing the plating layer that has sufficiently changed to the Delta phase to the Fe-alpha phase first segregates to the grain boundaries to prevent the grain boundary oxidation by oxygen, and micro cracks Is a stage performed to curb

2次加熱の平均加熱速度は1.1〜1.6℃/secであることが好ましい。もし、1.1℃/sec未満の場合は、Fe−alpha相への合金化時間が長くなり、粒界偏析元素よりも酸素による粒界酸化の恐れがある。これに対し、1.6℃/secを超える場合は、高温のめっき層の表面で部分的なめっき層液化が発生し、不均一な表面による品質低下の恐れがある。   The average heating rate of the secondary heating is preferably 1.1 to 1.6 ° C./sec. If the temperature is less than 1.1 ° C./sec, the alloying time to the Fe-alpha phase becomes long, and there is a fear of the intergranular oxidation by oxygen rather than the intergranular segregation element. On the other hand, when the temperature exceeds 1.6 ° C./sec, partial plating layer liquefaction occurs on the surface of the high temperature plating layer, and there is a risk of quality deterioration due to the non-uniform surface.

2次加熱の2次加熱終了温度は900〜930℃であることが好ましい。もし、900℃未満の場合は、素材の十分なオーステナイト変態が行われず、最終製品の強度の確保に困難があり、930℃を超える場合は、めっき層がすべて液相化し、添加した粒界酸化元素による微細クラック抑制効果が低下することがある。   It is preferable that the secondary heating completion temperature of secondary heating is 900-930 degreeC. If the temperature is less than 900 ° C., sufficient austenite transformation of the material is not performed, and it is difficult to secure the strength of the final product. If the temperature exceeds 930 ° C., all the plating layer is liquid phased and the grain boundary oxidation added The micro crack suppression effect by an element may fall.

次に、2次加熱された亜鉛系めっき鋼板を2次加熱終了温度で1〜5分間恒温維持する。もし、維持時間が1分未満の場合は、総加熱時間の不足によって素材のオーステナイト変態の十分な時間の確保が困難になる恐れがある。これに対し、5分を超える場合は、めっき層の過度な合金化の発生によってめっき層内の亜鉛含量の低下による耐食性の低下をもたらすことがある。   Next, the secondary heated zinc-based plated steel sheet is maintained at a constant temperature for 1 to 5 minutes at the secondary heating end temperature. If the maintenance time is less than one minute, the lack of the total heating time may make it difficult to secure a sufficient time for austenite transformation of the material. On the other hand, if it exceeds 5 minutes, the occurrence of excessive alloying of the plating layer may lead to a reduction in corrosion resistance due to a reduction in the zinc content in the plating layer.

次に、2次加熱された亜鉛系めっき鋼板を金型によって成形するとともに急冷する。この際、金型による成形及び急冷は通常の熱間プレス成形方法によれば十分であるため、本発明ではこれを特に限定しない。   Next, the secondary-heated zinc-based plated steel sheet is formed by a mold and rapidly cooled. Under the present circumstances, since shaping | molding and quenching by a metal mold | die are sufficient according to the normal hot press-forming method, in this invention, this does not specifically limit.

以下、実施例を挙げて本発明をより具体的に説明する。しかし、下記の実施例は本発明の実施を例示するためのものに過ぎず、下記の実施例によって本発明が制限されるものではない。本発明の権利範囲は、特許請求の範囲に記載された事項とそれから合理的に類推される事項によって決定される。   Hereinafter, the present invention will be more specifically described by way of examples. However, the following examples are only for illustrating the practice of the present invention, and the present invention is not limited by the following examples. The scope of the present invention is determined by the matters described in the claims and the matters reasonably deduced therefrom.

めっき用試験片として厚さ0.8mm、幅100mm、長さ200mmの低炭素冷延鋼板を素地鋼板として用意した後、上記素地鋼板をアセトンに浸漬し超音波洗浄して、表面に存在する圧延油などの異物を除去した。その後、一般溶融めっき現場で鋼板の機械的特性の確保のために行う750℃還元雰囲気熱処理を行った後、下記表1の組成を有する亜鉛系めっき浴に浸漬してめっき鋼材を製造した。その後、製造されたそれぞれのめっき鋼材をガスワイピングし、めっき付着量を片面当たり70g/mに調節し、12℃/secの速度で冷却した。 A low-carbon cold-rolled steel plate with a thickness of 0.8 mm, a width of 100 mm, and a length of 200 mm is prepared as a substrate steel plate as a test specimen for plating, and then the substrate steel plate is immersed in acetone and subjected to ultrasonic cleaning, and rolled on the surface. Removed foreign matter such as oil. Thereafter, heat treatment at a temperature of 750 ° C. in a reducing atmosphere was conducted to secure the mechanical properties of the steel plate at a general hot-dip galvanizing site, and then immersed in a zinc-based plating bath having the composition of Table 1 below to produce a plated steel material. Thereafter, each of the manufactured plated steel materials was gas wiped, the plating adhesion amount was adjusted to 70 g / m 2 per one side, and cooled at a rate of 12 ° C./sec.

その後、冷却されたそれぞれのめっき鋼材を下記表2の条件で加熱した後、熱間プレス成形して熱間プレス成形品を得た。   Thereafter, each of the cooled plated steel materials was heated under the conditions of Table 2 below, and then hot press-formed to obtain a hot press-formed product.

その後、それぞれの熱間プレス成形品を垂直に切断し、GDS分析によりめっき層内の粒界偏析元素の分布を測定し、その結果を下記表2に共に示した。具体的な測定方法は前述の通りである。   Thereafter, each hot press-formed product was vertically cut, and the distribution of grain boundary segregated elements in the plating layer was measured by GDS analysis, and the results are shown in Table 2 below. The specific measurement method is as described above.

その後、成形時の引っ張りと表面摩擦の最も大きい部位での微細クラックの最大深さを測定し、その結果を下記表2に共に示した。   Then, the maximum depth of the micro crack in the largest part of the tension at the time of molding and surface friction was measured, and the result is shown together in the following Table 2.

Figure 2019508575
Figure 2019508575

Figure 2019508575
Figure 2019508575

表2を参照すると、本発明の条件をすべて満たす発明例1から10の場合、微細クラックの最大深さが10μm以下に抑制されたことが確認できる。   Referring to Table 2, it can be confirmed that in the case of the invention examples 1 to 10 satisfying all the conditions of the present invention, the maximum depth of the micro cracks is suppressed to 10 μm or less.

一方、図1は比較例1の微細クラックを観察して示したものであり、図2は発明例1の微細クラックを観察して示したものであり、図3は発明例3の微細クラックを観察して示したものであり、図4は比較例4の微細クラックを観察して示したものであり、図5は発明例5の微細クラックを観察して示したものである。図1から図5を参照すると、発明例の場合、めっき層内の微細クラックが素地鋼板に伝播することを効果的に遮断することが確認できる。   On the other hand, FIG. 1 observes and shows the micro crack of Comparative Example 1, FIG. 2 shows and observes the micro crack of Inventive Example 1, and FIG. 3 shows the micro crack of Inventive Example 3 It observes and shows, FIG. 4 observes and shows the micro crack of Comparative Example 4, and FIG. 5 observes and shows the micro crack of the invention example 5. As shown in FIG. 1 to 5, in the case of the invention example, it can be confirmed that the micro cracks in the plating layer effectively block the propagation to the base steel plate.

一方、図6の(a)は発明例1のめっき層の深さによるAl、Mg及びSnの含量を分析したGDSデータであり、図6の(b)は発明例3のめっき層の深さによるAl、Mg及びSnの含量を分析したGDSデータであり、図6の(c)は発明例5のめっき層の深さによるAl、Mg及びSnの含量を分析したGDSデータである。   On the other hand, FIG. 6 (a) is GDS data obtained by analyzing the contents of Al, Mg and Sn according to the depth of the plating layer of the invention example 1, and FIG. 6 (b) is the depth of the plating layer of the invention example 3. The GDS data which analyzed the content of Al, Mg, and Sn by A, and (c) of FIG. 6 are the GDS data which analyzed the content of Al, Mg, and Sn by the depth of the plating layer of the invention example 5.

1次加熱の1次加熱終了温度は640〜680℃であることが好ましい。もし、640℃未満の場合は、低温によってめっき層内の拡散係数が低く、めっき層の均一な合金化がなされない恐れがある。これに対し、680℃を超える場合は、亜鉛Delta相の融点を超えてめっき層が液相化し、亜鉛が気化してめっき層の損失をもたらす可能性がある。 It is preferable that the primary heating completion temperature of primary heating is 640-680 degreeC. If the temperature is lower than 640 ° C., the diffusion coefficient in the plating layer may be low due to the low temperature, and uniform plating of the plating layer may not be achieved. On the other hand, if it exceeds 680 ° C., the plating layer may be liquid phased over the melting point of the zinc Delta phase, and the zinc may be vaporized to cause loss of the plating layer.

Claims (7)

素地鋼板及び前記素地鋼板の表面に形成された亜鉛系めっき層を含む亜鉛系めっき鋼板を熱間プレス成形して製造される熱間プレス成形品であって、
前記亜鉛系めっき層はSb、Sn及びBiからなる群から選択された1種以上の元素:合計0.05〜2.0重量%、残部Zn及び不可避不純物を含み、
前記Sb、Sn及びBiからなる群から選択された1種以上の元素の70重量%以上は、前記亜鉛系めっき層が合金化して形成された前記熱間プレス成形品の合金化亜鉛系めっき層の表面から3μm以内の領域に濃化する、熱間プレス成形品。
A hot press-formed product manufactured by hot-press forming a base steel sheet and a zinc-based plated steel sheet including a zinc-based plated layer formed on the surface of the base steel sheet,
The zinc-based plating layer contains one or more elements selected from the group consisting of Sb, Sn and Bi: 0.05 to 2.0% by weight in total, the balance Zn and unavoidable impurities,
At least 70% by weight of one or more elements selected from the group consisting of Sb, Sn and Bi is the alloyed zinc-based plated layer of the hot press-formed product formed by alloying the zinc-based plated layer A hot press-formed product that concentrates in an area within 3 μm from the surface of
前記亜鉛系めっき層はSb、Sn及びBiからなる群から選択された1種以上の元素を合計で0.3〜1.5重量%含む、請求項1に記載の熱間プレス成形品。   The hot press-formed product according to claim 1, wherein the zinc-based plating layer contains 0.3 to 1.5% by weight in total of one or more elements selected from the group consisting of Sb, Sn and Bi. 前記亜鉛系めっき層は重量%で、Al:0.1〜5.0%及びMg:0.1〜5.0%をさらに含む、請求項1に記載の熱間プレス成形品。   The hot press-formed product according to claim 1, wherein the zinc-based plating layer further comprises, in weight%, Al: 0.1-5.0% and Mg: 0.1-5.0%. 前記合金化亜鉛系めっき層のFe合金化度は30〜85%である、請求項1に記載の熱間プレス成形品。   The hot press-formed product according to claim 1, wherein the Fe alloying degree of the alloyed zinc-based plated layer is 30 to 85%. 亜鉛系めっき鋼板を用意する段階と、
前記亜鉛系めっき鋼板を3.5〜4.2℃/secの速度で640〜680℃の温度まで1次加熱する段階と、
前記1次加熱された亜鉛系めっき鋼板を1.1〜1.6℃/secの速度で900〜930℃の温度まで2次加熱する段階と、
前記2次加熱された亜鉛系めっき鋼板を1〜5分間恒温維持する段階と、
前記恒温維持された亜鉛系めっき鋼板を金型によって成形するとともに急冷する段階と、
を含み、
前記亜鉛系めっき鋼板は素地鋼板、及び前記素地鋼板の表面に形成され、Sb、Sn及びBiからなる群から選択された1種以上の元素を合計で0.05〜2.0重量%含む亜鉛系めっき層を含む、熱間プレス成形品の製造方法。
Preparing a galvanized steel sheet,
Primary heating the zinc-based plated steel sheet to a temperature of 640-680 ° C. at a rate of 3.5-4.2 ° C./sec;
Secondarily heating the primary-heated galvanized steel sheet to a temperature of 900 to 930 ° C. at a rate of 1.1 to 1.6 ° C./sec;
Maintaining the temperature of the secondarily heated galvanized steel sheet for 1 to 5 minutes;
Forming and rapidly cooling the zinc-based plated steel sheet maintained at a constant temperature with a mold;
Including
The zinc-based plated steel sheet is formed on the surface of the base steel plate and the base steel plate, and contains 0.05 to 2.0% by weight in total of one or more elements selected from the group consisting of Sb, Sn and Bi. The manufacturing method of a hot press-formed article containing a system plating layer.
前記亜鉛系めっき層はSb、Sn及びBiからなる群から選択された1種以上の元素を合計で0.3〜1.5重量%含む、請求項1に記載の熱間プレス成形品の製造方法。   The production of a hot press-formed product according to claim 1, wherein the zinc-based plating layer contains 0.3 to 1.5% by weight in total of one or more elements selected from the group consisting of Sb, Sn and Bi. Method. 前記亜鉛系めっき層は重量%で、Al:0.1〜5.0%及びMg:0.1〜5.0%をさらに含む、請求項1に記載の熱間プレス成形品の製造方法。   The method for producing a hot press-formed product according to claim 1, wherein the zinc-based plating layer further comprises, in weight%, Al: 0.1-5.0% and Mg: 0.1-5.0%.
JP2018532709A 2015-12-24 2016-12-21 Hot press-formed product in which fine cracks are suppressed and method for producing the same Active JP6661772B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2015-0186107 2015-12-24
KR1020150186107A KR101726094B1 (en) 2015-12-24 2015-12-24 Hot pressed part with reduced microcrack and method for manufacturing same
PCT/KR2016/014963 WO2017111442A1 (en) 2015-12-24 2016-12-21 Microcrack-reduced, hot press-formed article, and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP2019508575A true JP2019508575A (en) 2019-03-28
JP6661772B2 JP6661772B2 (en) 2020-03-11

Family

ID=58580256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018532709A Active JP6661772B2 (en) 2015-12-24 2016-12-21 Hot press-formed product in which fine cracks are suppressed and method for producing the same

Country Status (6)

Country Link
US (2) US20190003031A1 (en)
EP (1) EP3396006B1 (en)
JP (1) JP6661772B2 (en)
KR (1) KR101726094B1 (en)
CN (1) CN108431286B (en)
WO (1) WO2017111442A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108950160A (en) * 2018-08-25 2018-12-07 马鞍山钢铁股份有限公司 A kind of Zn-based plating layer hot forming steel and preparation method thereof based on CSP process
CN113564507B (en) * 2021-07-28 2022-08-09 东北大学 Hot galvanizing low-temperature plating solution and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124207A (en) * 2002-10-04 2004-04-22 Nippon Steel Corp Zn-PLATED STEEL SHEET FOR HOT-PRESS, AND CAR COMPONENTS WITH HIGH STRENGTH USING IT
WO2011081043A1 (en) * 2009-12-28 2011-07-07 住友金属工業株式会社 Method for manufacturing a hot press-molded member
JP2014043641A (en) * 2012-07-31 2014-03-13 Jfe Steel Corp Method for manufacturing hot-dip galvanized steel pipe
JP2014527120A (en) * 2011-06-28 2014-10-09 ポスコ Plated steel sheet for hot press forming with excellent plating layer stability

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055590B2 (en) * 1980-07-18 1985-12-05 新日本製鐵株式会社 Zero-spangle galvanized steel sheet with excellent peeling resistance over time, method for producing the same, and hot-dip galvanizing coating bath
FR2780984B1 (en) 1998-07-09 2001-06-22 Lorraine Laminage COATED HOT AND COLD STEEL SHEET HAVING VERY HIGH RESISTANCE AFTER HEAT TREATMENT
EP1354970B1 (en) * 2000-12-29 2011-02-16 Nippon Steel Corporation High-strength molten-zinc-plated steel plate excellent in deposit adhesion and suitability for press forming and process for producing the same
KR20080060981A (en) * 2006-12-27 2008-07-02 주식회사 포스코 Zn-coated steel sheet having excellent surface quality and the method for manufacturing the same
KR100928788B1 (en) * 2007-12-28 2009-11-25 주식회사 포스코 High strength steel sheet with excellent weldability and manufacturing method
KR101143072B1 (en) * 2009-08-07 2012-05-08 주식회사 포스코 Ultra-high strength galvinized steel sheet having excellent coatability and bending-workability and method for manufacturing the same
DE202011107125U1 (en) * 2011-04-13 2011-11-30 Tata Steel Ijmuiden Bv Thermoformable strip, sheet or blank and thermoformed product
CN104520464B (en) * 2012-08-07 2016-08-24 新日铁住金株式会社 Hot forming electrogalvanized steel plate
KR101528010B1 (en) * 2012-12-21 2015-06-10 주식회사 포스코 High manganese hot dip galvanized steel sheet with superior weldability and method for manufacturing the same
ES2891582T3 (en) * 2013-04-10 2022-01-28 Tata Steel Ijmuiden Bv Formed product by hot forming metal-coated steel sheet, method for forming the product, and steel strip
CN103350539A (en) * 2013-07-23 2013-10-16 江苏克罗德科技有限公司 High temperature resistant anti-corrosion Al-Zn alloy coated steel sheet and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124207A (en) * 2002-10-04 2004-04-22 Nippon Steel Corp Zn-PLATED STEEL SHEET FOR HOT-PRESS, AND CAR COMPONENTS WITH HIGH STRENGTH USING IT
WO2011081043A1 (en) * 2009-12-28 2011-07-07 住友金属工業株式会社 Method for manufacturing a hot press-molded member
JP2014527120A (en) * 2011-06-28 2014-10-09 ポスコ Plated steel sheet for hot press forming with excellent plating layer stability
JP2014043641A (en) * 2012-07-31 2014-03-13 Jfe Steel Corp Method for manufacturing hot-dip galvanized steel pipe

Also Published As

Publication number Publication date
EP3396006A1 (en) 2018-10-31
CN108431286A (en) 2018-08-21
CN108431286B (en) 2020-03-20
EP3396006A4 (en) 2018-11-07
EP3396006B1 (en) 2019-11-20
WO2017111442A1 (en) 2017-06-29
US20240082902A1 (en) 2024-03-14
US20190003031A1 (en) 2019-01-03
KR101726094B1 (en) 2017-04-12
JP6661772B2 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
JP5614496B2 (en) Hot stamped high strength parts with excellent post-painting corrosion resistance and manufacturing method thereof
JP6475824B2 (en) HPF molded member having excellent peel resistance and method for producing the same
JP6237884B2 (en) High strength hot-formed steel sheet
JP5605503B2 (en) Steel sheet for hot stamp member and manufacturing method thereof
JP5732906B2 (en) Hot-pressed steel, hot-pressed steel and hot-pressed steel manufacturing method
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
US20240082902A1 (en) Microcrack-reduced, hot press-formed article, and method for manufacturing same
JP2017066508A (en) Galvanized steel sheet for hot press and method of producing hot press formed article
WO2015001705A1 (en) Method of manufacturing hot press member
KR20200076741A (en) Manufacturing method of aluminum-based plated steel sheet, manufacturing method of aluminum-based plated steel sheet, and manufacturing method of automotive parts
JP2012112010A (en) Plated steel sheet for hot press, method for manufacturing hot-pressed member using the same, and hot-pressed member
CN108430662B (en) Hot press molded article having excellent corrosion resistance and method for producing same
JP5023871B2 (en) Manufacturing method of hot pressed steel plate member
JP7241283B2 (en) Aluminum-iron plated steel sheet for hot press with excellent corrosion resistance and weldability and its manufacturing method
CN111511942B (en) Aluminum-plated steel sheet, method for producing aluminum-plated steel sheet, and method for producing automobile component
JP4889212B2 (en) High-strength galvannealed steel sheet and method for producing the same
JP5245475B2 (en) Steel sheet and manufacturing method thereof
KR101719446B1 (en) Press-molded article and method for manufacturing same
KR101736640B1 (en) Hot dip zinc alloy coated steel sheet having excellent coatability and spot weldability and method for manufacturing same
JP5092858B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP2020122202A (en) Al-Fe-BASED PLATED SHEET STEEL FOR HOT PRESSING AND MANUFACTURING METHOD OF HOT PRESS MEMBER
JP2003231947A (en) HOT-DIP Al PLATED STEEL SHEET SUPERIOR IN HIGH- TEMPERATURE OXIDIZATION RESISTANCE AT FORMED PART, AND MANUFACTURING METHOD THEREFOR

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200212

R150 Certificate of patent or registration of utility model

Ref document number: 6661772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250