JP2019504213A - Warm rolled steel containing rollable austenite - Google Patents

Warm rolled steel containing rollable austenite Download PDF

Info

Publication number
JP2019504213A
JP2019504213A JP2018536491A JP2018536491A JP2019504213A JP 2019504213 A JP2019504213 A JP 2019504213A JP 2018536491 A JP2018536491 A JP 2018536491A JP 2018536491 A JP2018536491 A JP 2018536491A JP 2019504213 A JP2019504213 A JP 2019504213A
Authority
JP
Japan
Prior art keywords
rolling
steel
metastable
temperature
warm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018536491A
Other languages
Japanese (ja)
Other versions
JP6830493B2 (en
JP2019504213A5 (en
Inventor
ギル、アマリンダー、シン
Original Assignee
エーケー スティール プロパティ−ズ、インク.
エーケー スティール プロパティ−ズ、インク.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エーケー スティール プロパティ−ズ、インク., エーケー スティール プロパティ−ズ、インク. filed Critical エーケー スティール プロパティ−ズ、インク.
Publication of JP2019504213A publication Critical patent/JP2019504213A/en
Publication of JP2019504213A5 publication Critical patent/JP2019504213A5/ja
Application granted granted Critical
Publication of JP6830493B2 publication Critical patent/JP6830493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

【解決手段】 冷間圧延の前または最中に準安定な鋼を加温することにより、オーステナイトのマルテンサイトへの変態が抑制され、同様の負荷でより低い圧延負荷およびより大きな減量をもたらす。温間圧延鋼は、冷間圧延によって同量減少された鋼と比較して、向上した機械的特性を有する。その後の焼鈍後の温間圧延は、同量で冷間圧延され、その後焼鈍された材料で達成されたものよりも優れた機械的特性をもたらした。その後の室温圧延(冷間圧延)時に温間圧延された準安定鋼も、強度と延性の両方において向上を示す。
【選択図】 なし
By warming metastable steel before or during cold rolling, transformation of austenite to martensite is suppressed, resulting in lower rolling load and greater weight loss at similar loads. Warm rolled steel has improved mechanical properties compared to steel reduced by the same amount by cold rolling. Subsequent warm rolling after annealing resulted in mechanical properties superior to those achieved with materials that were cold rolled with the same amount and then annealed. Metastable steel that has been hot-rolled during subsequent room temperature rolling (cold rolling) also shows improvements in both strength and ductility.
[Selection figure] None

Description

本出願は、2016年1月14日に圧延可能なオーステナイトを含む温間圧延鋼という発明の名称で出願された米国仮出願第62/278,567号、及び2016年10月12日に圧延可能なオーステナイトを含む温間圧延鋼という発明の名称で出願された米国特許出願第62/407,001号に対する優先権の利益を主張し、その出願の全内容が本参照により本明細書に組み込まれる。   This application is US Provisional Application No. 62 / 278,567 filed in the title of the invention of a warm rolled steel containing austenite that can be rolled on January 14, 2016, and can be rolled on October 12, 2016. Claims the benefit of priority over US patent application No. 62 / 407,001, filed in the title of the invention of warm-rolled steel containing non-austenite, the entire contents of which are incorporated herein by reference. .

準安定オーステナイトを含む鋼の冷間圧延は、準安定オーステナイトの高強度マルテンサイト相への変形誘起変態してしまうため、困難であり得る。そのような鋼を冷間圧延すると、圧延負荷が大幅に増加する。鋼はまた、さらなる冷間圧下が行われる前に、部分オーステナイトまたは完全オーステナイトに焼鈍処理する必要がある。  Cold rolling of steel containing metastable austenite can be difficult because it causes deformation-induced transformation of metastable austenite to a high-strength martensite phase. When such steel is cold rolled, the rolling load is greatly increased. The steel also needs to be annealed to partially or fully austenite before further cold rolling takes place.

本発明は、オーステナイトからマルテンサイトへの変態を抑制するために、冷間圧延の前または最中に材料を加温する工程を含む。これは、同様の負荷での圧延機負荷の低下および高い減少量を生じさせ得る。さらに材料を減少させる能力は、材料が最終的なゲージに到達する前に中間焼鈍を少なくすることにもつながる。驚くべきことに、温間圧延鋼は、冷間圧延によって同じ量減少した鋼と比較して、機械的特性が向上したことを示した。その後の焼鈍後の温間圧延は、同じ量で冷間圧延し、その後焼鈍された材料でできたものより優れた機械的特性をもたらした。温間圧延され、続いて室温圧延(冷間圧延)された鋼は、強度と延性の両方の向上を示す。   The present invention includes a step of heating the material before or during cold rolling in order to suppress transformation from austenite to martensite. This can result in a reduction in rolling mill load and high reduction at similar loads. The ability to further reduce the material also leads to less intermediate annealing before the material reaches the final gauge. Surprisingly, warm-rolled steel showed improved mechanical properties compared to steel that was reduced by the same amount by cold rolling. Subsequent warm rolling after annealing resulted in better mechanical properties than those made of materials that were cold rolled with the same amount and then annealed. Steel that has been hot rolled, followed by room temperature rolling (cold rolling), exhibits improved strength and ductility.

従来、潤滑油として使用される油の温暖に関連した目下のリスクばかりでなく、圧延設備に損傷を与える恐れがあるため、温間圧延は生産環境で回避されてきた。本出願は、温間圧延の利点が、適度な温度で、広範囲にわたる方向性を変更せずに達成できることを示す。   Traditionally, warm rolling has been avoided in the production environment because it can damage the rolling equipment as well as the current risks associated with the warming of the oil used as the lubricating oil. The present application shows that the advantages of warm rolling can be achieved at moderate temperatures without changing a wide range of orientations.

図1は、準安定鋼中のマルテンサイト百分率を、温間圧延および冷間圧延から生じる減少率の関数として示す。FIG. 1 shows the martensite percentage in metastable steel as a function of the reduction rate resulting from warm rolling and cold rolling. 図2は、冷間圧延および温間圧延から生じる減少率の関数としての準安定鋼の伸長率を示す。FIG. 2 shows the elongation of metastable steel as a function of the reduction rate resulting from cold and warm rolling. 図3(a)は、温間圧延した後に冷間圧延した準安定鋼の真応力−歪み曲線を示す。FIG. 3 (a) shows a true stress-strain curve of metastable steel that has been cold-rolled and then cold-rolled. 図3(b)は、二経路で冷間圧延された準安定鋼の真応力−歪み曲線を示す。FIG. 3 (b) shows a true stress-strain curve of metastable steel cold-rolled in two paths.

本発明は、「準安定鋼」と称される相当量の準安定オーステナイト(10%〜100%オーステナイト)を含む鋼に関する。オーステナイトは、機械的変形によりマルテンサイトに変態すると準安定とみなされる。そのようなマルテンサイトは、変形誘起マルテンサイトと称される。そのような準安定オーステナイトを含む鋼は、炭素鋼またはステンレス鋼であり得る。   The present invention relates to a steel containing a substantial amount of metastable austenite (10% to 100% austenite) referred to as “metastable steel”. Austenite is considered metastable when transformed into martensite by mechanical deformation. Such martensite is referred to as deformation induced martensite. The steel containing such metastable austenite can be carbon steel or stainless steel.

オーステナイトの安定性を特徴付けるいくつかの方法がある。1つの方法は、その化学組成に基づいてオーステナイトの不安定係数(IF)を計算することである。この因子は、IFを以下のように定義することが米国特許第3,599,320号(この開示は参照により本明細書に組み込まれる)に記載されている。   There are several ways to characterize the stability of austenite. One method is to calculate the instability coefficient (IF) of austenite based on its chemical composition. This factor is described in US Pat. No. 3,599,320 (the disclosure of which is incorporated herein by reference) to define IF as follows.

IF=37.193−51.248(%C)−0.4677(%Cr)−1.0174(%Mn)−34.396(%N)−2.5884(%Ni) 式1   IF = 37.193-51248 (% C) -0.4677 (% Cr) -1.0174 (% Mn) -34.396 (% N) -2.5884 (% Ni) Formula 1

0〜2.9と計算されたIF値を有する鋼は「わずかに準安定」と分類され、2.9より大きいIFの鋼は「中程度に準安定」と分類される。本発明の方法は、2.9より大きいIFを有する準安定オーステナイト含有鋼に最も顕著にあらわれる。   Steels with IF values calculated from 0 to 2.9 are classified as “slightly metastable” and steels with an IF greater than 2.9 are classified as “moderately metastable”. The method of the present invention appears most prominently in metastable austenite-containing steels having an IF greater than 2.9.

オーステナイトの安定性を特徴付ける別の技術は、M30温度として知られているものを計算または測定することである。所与の準安定鋼組成物について、M30温度で0.3の真歪までの変形で、オーステナイトの50%がマルテンサイトに変態する。所与の準安定鋼組成物について、M温度は、変形の際にマルテンサイトが形成されない温度である。MおよびM30の温度は当該技術分野において周知である。実験に基づく決定に加えて、特定の鋼組成物のM30温度は、以下を含む文献に見られ得るいくつかの式の1つによっても計算され得る。 Another technique that characterizes the stability of austenite is to calculate or measure what is known as the M d 30 temperature. For a given metastable steel composition, 50% of the austenite transforms to martensite at a M d 30 temperature of up to 0.3 true strain. For a given metastable steel composition, the M d temperature is the temperature at which martensite is not formed upon deformation. The temperatures of M d and M d 30 are well known in the art. In addition to empirical determination, the M d 30 temperature of a particular steel composition can also be calculated by one of several equations that can be found in the literature including:

Composition and Grain−Size Dependencies of Strain−Induced Martensitic Transformation in Metastable Austenitic Stainless Steels.Journal of Iron and Steel Institute of Japan,63(5),pp.212−222(その開示内容は本明細書の一部を構成する。)
30=551−462(%C+%N)−68%Cb−13.7Cr−29(%Cu+%Ni)−8.1%Mn−18.5%Mo−9.2%Si 式2
Composition and Grain-Size Dependencies of Strain-Induced Martensitic Transformation in Metastatic Stainless Steels. Journal of Iron and Steel Institute of Japan, 63 (5), pp. 212-222 (the disclosure of which forms part of this specification)
M d 30 = 551-462 (% C +% N) -68 * % Cb-13.7 * Cr-29 (% Cu +% Ni) -8.1 * % Mn-18.5 * % Mo-9.2 * % Si formula 2

1954年、Angel、T.によって教示されるFormation of Martensite in Austenitic Stainless Steels.Journal of the Iron and Steel Institute,177(5),pp.165−174(この開示は参照により本明細書に組み込まれる)。
30=413−462(%C+%N)−13.7%Cr−8.1%Mn−18.5Mo−9.5%Ni−9.2%Si 式3
1954, Angel, T .; Formation of martensite in Authentic Stainless Steels. Journal of the Iron and Steel Institute, 177 (5), pp. 165-174 (this disclosure is incorporated herein by reference).
M d 30 = 413-462 * (% C +% N) -13.7 *% Cr-8.1 *% Mn-18.5 * Mo-9.5 *% Ni-9.2 *% Si Formula 3

所与の準安定鋼組成物のオーステナイトのM30温度が高いほど、オーステナイトが不安定になる。そのような準安定オーステナイトにおけるM30温度は、M温度(熱マルテンサイトのマルテンサイト開始温度)より高い。 As M d 30 temperature of austenite given metastable steel composition is high, the austenite becomes unstable. The M d 30 temperature in such metastable austenite is higher than the M s temperature (the martensite start temperature of thermal martensite).

多量の準安定オーステナイト加工を有する鋼は、オーステナイトがより高強度のマルテンサイトに変態するにつれて急速に硬化する。この加工硬化、及び生じたマルテンサイトは、圧延機の能力を超える可能性がある負荷を必要とし得るため、そのような鋼をさらに冷間圧延する際に課題が生まれる可能性がある。そのような準安定鋼はその後、さらに冷間圧延する前にオーステナイトの一部または全部を形成するために焼鈍される必要がある。圧延中にオーステナイトからマルテンサイトへの変態が抑制されれば、鋼はより低い圧延荷重でより薄いゲージに圧延することができる。そのような変態を抑制する1つの方法は、冷間圧延の前またはその間に材料を温めることである。温間圧延は、より優れた機械的性質をもたらすという付加的な利点を有することを示す。   Steel with a large amount of metastable austenitic processing hardens rapidly as austenite transforms to higher strength martensite. This work hardening, and the resulting martensite, may require loads that may exceed the capabilities of the rolling mill, which can create challenges when further cold rolling such steel. Such metastable steel then needs to be annealed to form part or all of the austenite before further cold rolling. If the transformation from austenite to martensite is suppressed during rolling, the steel can be rolled to a thinner gauge with a lower rolling load. One way to suppress such transformation is to warm the material before or during cold rolling. It shows that warm rolling has the additional advantage of providing better mechanical properties.

本出願の方法は、鋼を温める間、そのような準安定鋼を転動させる工程を含む。準安定な鋼の温度が室温(一般的に約80°F)を上回ると、それは温かいとみなされる。特定の実施形態では、鋼は特定の準安定鋼組成物のM温度に近いかまたはそれより高い温度に加温される。他の実施形態では、鋼は特定の準安定な鋼組成物のM30温度以上の温度に加温される。他の実施形態では、準安定鋼を250°Fまたはそれ未満の温度に加温される。 The method of the present application includes rolling such metastable steel while warming the steel. When the temperature of a metastable steel exceeds room temperature (generally about 80 ° F.), it is considered warm. In certain embodiments, the steel is warmed to a temperature near or above the Md temperature of a particular metastable steel composition. In other embodiments, the steel is warmed to a temperature above the M d 30 temperature of a particular metastable steel composition. In other embodiments, the metastable steel is warmed to a temperature of 250 ° F. or less.

そのような材料のコイルは、以下の方法のうちの1つまたはそれらの組み合わせを含む、当業者に明らかな方法で加温され得る。   The coil of such material can be warmed in a manner apparent to those skilled in the art, including one or a combination of the following methods.

I.コイルを炉/オーブン内で温めてから圧延ライン上に置く。   I. The coil is warmed in the furnace / oven and then placed on the rolling line.

II.冷間圧延する前に、ヒーターを使用してライン上のコイルを温める。   II. Prior to cold rolling, a heater is used to warm the coils on the line.

III.鋼材を圧延する前に、圧延機上の冷却材を温める。これはいくつかの方法で実行可能である。1つの方法は、圧延機上の冷却塔を止め、準安定鋼を圧延する前に冷却剤を温めるためにいくつかの他の材料を使用する。圧延の前に冷却剤を加温する他の方法は、当業者には明らかであろう。   III. Warm the coolant on the rolling mill before rolling the steel. This can be done in several ways. One method turns off the cooling tower on the rolling mill and uses several other materials to warm the coolant before rolling the metastable steel. Other methods of warming the coolant prior to rolling will be apparent to those skilled in the art.

準安定鋼は、特定の組成物のための典型的な金属製造処理に従って、冷間圧延(適用可能な場合)前に、溶融、鋳造、熱間圧延、および焼鈍される。準安定鋼の冷間圧延処理中に、少なくとも一回の「冷間圧延」経路は、鋼を温める間、すなわち鋼が80°Fを超える温度で温める間に行われる「温間圧延」経路である。いくつかの実施形態では、鋼は250°F以下の温度に加温される。他の実施形態では、準安定鋼は、特定の準安定鋼組成物のM温度に近いか、またはそれより高い温度に加温される。他の実施形態では、準安定鋼は、特定の準安定鋼組成物のM30温度に近いかまたはそれより高い温度に加温される。このような温間圧延経路は、第一、第二、またはそれに続く「冷間圧延」工程のうちの1つまたは複数であり得る。 The metastable steel is melted, cast, hot rolled, and annealed prior to cold rolling (when applicable) according to typical metal manufacturing processes for a particular composition. During the cold rolling process of metastable steel, at least one “cold rolling” path is a “warm rolling” path that takes place while the steel is warmed, ie while the steel is warmed to a temperature above 80 ° F. is there. In some embodiments, the steel is warmed to a temperature of 250 ° F. or lower. In other embodiments, the metastable steel is warmed to a temperature near or above the Md temperature of a particular metastable steel composition. In other embodiments, the metastable steel is warmed to a temperature near or above the M d 30 temperature of a particular metastable steel composition. Such a warm rolling path can be one or more of a first, second, or subsequent “cold rolling” process.

本発明のいくつかの実施形態では、準安定鋼は1またはそれ以上の温間圧延工程の後に焼鈍されても良い。例えば、「冷間圧延」処理の間、準安定鋼は第一経路で温間圧延され、焼鈍され、次に第二経路で冷間圧延(室温で)されても良い。   In some embodiments of the present invention, the metastable steel may be annealed after one or more warm rolling steps. For example, during the “cold rolling” process, the metastable steel may be warm rolled and annealed in a first path and then cold rolled (at room temperature) in a second path.

実施例1
準安定な鋼は、不安定係数が8.5およびM30(Nohara)=447.6°Fである化学物質で熱を溶融することによって調製された。熱は連続的にスラブに鋳込まれた。スラブを2300°Fに再加熱し、1000°Fのコイル温度で0.175"の厚さまで熱間圧延した。熱帯は、その後、酸化膜を取り除くために酸洗した。酸洗した熱帯の断面を冷間圧延し、温間圧延した。温間圧延の目的のために、熱帯部分を炉内で所望の温度に加温し、所望のゲージに圧延した。
Example 1
The metastable steel was prepared by melting heat with a chemical whose instability factor was 8.5 and M d 30 (Nohara) = 447.6 ° F. Heat was continuously cast into the slab. The slab was reheated to 2300 ° F and hot rolled to a thickness of 0.175 "with a coil temperature of 1000 ° F. The tropics were then pickled to remove the oxide film. Cross section of pickled tropics. For the purpose of warm rolling, the tropical part was heated to a desired temperature in a furnace and rolled to a desired gauge.

図1は、そのような準安定鋼の冷間圧延及び温間圧延からのマルテンサイト変形の量を示す。同じ減少量では、各温間圧延鋼のマルテンサイト量は、室温で圧延された冷間圧延鋼の場合よりもはるかに少ない。温間圧延の利点は、低温(この実施例では150°F)で見られるが、温間圧延(この実施例では250°F)中の温度が高いほど、形成されるマルテンサイトの量が少なくなる。   FIG. 1 shows the amount of martensite deformation from cold and warm rolling of such metastable steel. At the same reduction, the amount of martensite in each warm rolled steel is much less than in the case of cold rolled steel rolled at room temperature. The advantages of warm rolling are seen at low temperatures (150 ° F in this example), but the higher the temperature during warm rolling (250 ° F in this example), the less martensite is formed. Become.

図2は、温間圧延および冷間圧延後の準安定鋼の異なる伸び量に対する伸長率%を示す。驚くべきことに、温間圧延は、降下を開始する前に一定量の減少まで伸長率%の増加をもたらした。温間圧延の利点は、ある温度で行われる還元の量を変えることによって、または温度を変えることによって調整し得る。一方、室温での冷間圧延は、常に準安定鋼の伸長率%の減少をもたらす。   FIG. 2 shows% elongation for different elongations of metastable steel after warm rolling and cold rolling. Surprisingly, warm rolling resulted in a% elongation increase to a certain amount of decrease before starting the descent. The benefits of warm rolling can be adjusted by changing the amount of reduction performed at a certain temperature or by changing the temperature. On the other hand, cold rolling at room temperature always results in a reduction in the percent elongation of metastable steel.

実施例2
13.11及びM30(Nohara)=227.6°Fの不安定係数を有する化学物質を選択することにより、別の準安定鋼を調製した。熱はインゴットに鋳込まれた。インゴットをトリミングした後、5.75インチ(W)×2.75インチ(T)×2.75インチ(L)の4本の帯を得た。これらのトリミングされたインゴットを2200°Fで浸漬し、1100°Fの仕上げ温度で0.2"まで熱間圧延した。次に熱帯を酸洗して酸化膜を除去した。酸洗した熱帯の断面を冷間圧延し、異なる温度で温間圧延した。温間圧延の目的のために、熱帯部分を炉内の所望の温度に加温し、所望のゲージに圧延した。
Example 2
Another metastable steel was prepared by selecting chemicals with an instability factor of 13.11 and M d 30 (Nohara) = 227.6 ° F. Heat was cast into the ingot. After trimming the ingot, four bands of 5.75 inches (W) × 2.75 inches (T) × 2.75 inches (L) were obtained. These trimmed ingots were dipped at 2200 ° F. and hot rolled to 0.2 "at a finishing temperature of 1100 ° F. The tropics were then pickled to remove the oxide film. The sections were cold rolled and warm rolled at different temperatures.For the purpose of warm rolling, the tropical part was heated to the desired temperature in the furnace and rolled to the desired gauge.

そのような準安定鋼では、冷間圧延後の温間圧延では、強度と伸長率の両方が増加した。従来の温間圧延なしでは、予想どおり、同じ鋼は強度の増加を示したが、一方で伸長率%の減少を示した。図3(a)は、温間圧延30%後に室温で冷間圧延を施した準安定鋼の真応力歪みデータを示す。図3(a)及び(b)において、「WR」は温間圧延を示し、「RT」は室温での冷間圧延を示す。30%の温間圧延に続いてさらに10%の冷間圧延では、伸長および強度の両方において増加を示した。図3(b)に示すように、30%冷間圧延した後に0〜30%の室温で追加の冷間圧延を施した場合、最大抗引張力(UTS)は増加したが、予想どおり、伸長率は減少した。また、温間圧延の利点は、ある温度で行われる減少量を変化させることによって、または温度を変化させることによって調整し得ることである。   In such metastable steels, both strength and elongation increased in warm rolling after cold rolling. Without conventional warm rolling, as expected, the same steel showed an increase in strength, while a decrease in% elongation. FIG. 3 (a) shows true stress strain data of metastable steel that was cold rolled at room temperature after 30% warm rolling. 3A and 3B, “WR” indicates warm rolling, and “RT” indicates cold rolling at room temperature. 30% warm rolling followed by another 10% cold rolling showed an increase in both elongation and strength. As shown in FIG. 3 (b), when 30% cold rolled and then additional cold rolled at room temperature of 0-30%, the maximum tensile strength (UTS) increased, but as expected The rate decreased. Also, an advantage of warm rolling is that it can be adjusted by changing the amount of reduction performed at a certain temperature or by changing the temperature.

実施例3
上記の実施例1の準安定鋼は、以下の表1および2に示す試験データによってさらに示されるように、準安定オーステナイトを含有する鋼上への温間圧延の効果を示し、これは、プラント(コイル2)で25%温間圧延された準安定オーステナイトを含む鋼と、完全に焼鈍された(コイル1)準安定オーステナイトを含む鋼の特性を比較するものである。

Figure 2019504213
Figure 2019504213
Example 3
The metastable steel of Example 1 above shows the effect of warm rolling on steel containing metastable austenite, as further shown by the test data shown in Tables 1 and 2 below, This compares the properties of the steel containing metastable austenite that was warm-rolled 25% in (Coil 2) and the steel containing metastable austenite that was fully annealed (Coil 1).
Figure 2019504213
Figure 2019504213

実施例4
実施例1の準安定鋼について、異方性に対する温間圧延の効果が研究された。異方性は、その後の成形に著しい影響を及ぼし得る。温間圧延は、準安定鋼の機械的性質における異方性を管理するのに役立つ。
Example 4
For the metastable steel of Example 1, the effect of warm rolling on anisotropy was studied. Anisotropy can have a significant impact on subsequent molding. Warm rolling helps manage anisotropy in the mechanical properties of metastable steels.

冷間圧延と比較した温間圧延の効果は、以下の表3に示すデータによってさらに実証される。最初の熱帯は両方のローリングセットで同じだった。1セットは、さまざまな減量(10、15および20%)で温間圧延(@〜250°F)し、その他は同減量で冷間圧延された。冷間圧延されたサンプルの場合、縦方向(L)および横方向(T)の伸長率はかなり異なる。減少量が大きいほど、前記差は大きい。しかし、温間圧延の場合、その差ははるかに小さい。

Figure 2019504213
The effect of warm rolling compared to cold rolling is further demonstrated by the data shown in Table 3 below. The first tropics were the same for both rolling sets. One set was warm rolled (@ ˜250 ° F.) with various weight loss (10, 15 and 20%) and the other was cold rolled with the same weight loss. For cold-rolled samples, the longitudinal (L) and transverse (T) stretch rates are quite different. The greater the amount of decrease, the greater the difference. However, in the case of warm rolling, the difference is much smaller.
Figure 2019504213

Claims (9)

準安定鋼を圧延する方法であって、
a.2.9またはそれより大きい不安定係数(IF)を有する準安定鋼を選択する工程であって、IFは以下の式:
IF=37.193−51.248(%C)−0.4677(%Cr)−1.0174(%Mn)−34.396(%N)−2.5884(%Ni)
によって計算される、前記選択する工程と、
b.圧延する前に、80°Fより高い加温温度に前記準安定鋼を加温する工程と、
c.前記準安定鋼を圧延する工程と、
を有する方法。
A method of rolling metastable steel,
a. Selecting a metastable steel having an instability factor (IF) of 2.9 or greater, where IF is:
IF = 37.193-51248 (% C) -0.4677 (% Cr) -1.0174 (% Mn) -34.396 (% N) -2.5884 (% Ni)
The step of selecting, calculated by:
b. Heating the metastable steel to a heating temperature higher than 80 ° F. before rolling;
c. Rolling the metastable steel;
Having a method.
請求項1記載の方法において、前記加温温度は、特定の準安定鋼組成物のM温度に近い、またはそれ以上である、方法。 The method of claim 1, wherein the heating temperature is close to the M d temperature specific metastable steel composition, or is more, the method. 請求項1記載の方法において、前記加温温度は、特定の準安定鋼組成物のM30温度に近い、またはそれ以上である、方法。 The method of claim 1, wherein the heating temperature is close to M d 30 temperature of a specific metastable steel composition, or is more, the method. 請求項1記載の方法において、前記加温温度は、250°Fまたはそれ未満である、方法。   The method of claim 1, wherein the warming temperature is 250 ° F. or less. 請求項3記載の方法において、前記準安定鋼のM30温度は、以下の式:
30=551−462(%C+%N)−68%Cb−13.7Cr−29(%Cu+%Ni)−8.1%Mn−18.5%Mo−9.2%Si
に従って計算される、方法。
4. The method of claim 3, wherein the M d 30 temperature of the metastable steel is given by the following formula:
M d 30 = 551-462 (% C +% N) -68 * % Cb-13.7 * Cr-29 (% Cu +% Ni) -8.1 * % Mn-18.5 * % Mo-9.2 * % Si
Calculated according to the method.
請求項3記載の方法において、前記準安定鋼のM30温度は、以下の式:
30=413−462(%C+%N)−13.7%Cr−8.1%Mn−18.5%Mo−9.5%Ni−9.2%Si
に従って計算される、方法:
4. The method of claim 3, wherein the M d 30 temperature of the metastable steel is given by the following formula:
M d 30 = 413-462 * (% C +% N) -13.7 *% Cr-8.1 *% Mn-18.5 *% Mo-9.5 *% Ni-9.2 *% Si
Calculated according to the method:
請求項1、2、3、4、5、または6記載の方法であって、さらに、圧延後、前記準安定鋼を室温で圧延する工程を有する、方法。   The method according to claim 1, 2, 3, 4, 5, or 6, further comprising a step of rolling the metastable steel at room temperature after rolling. 請求項7記載の方法であって、さらに、前記準安定鋼を室温で圧延する前に焼鈍する工程を有する、方法。   The method according to claim 7, further comprising a step of annealing the metastable steel before rolling at room temperature. 請求項1、2、3、4、5、または6記載の方法であって、さらに、圧延後、前記準安定鋼を第二の圧延工程で圧延し、前記第二の圧延工程の前に準安定鋼を80°Fより高い加温温度まで加温する工程を有する、方法。   The method according to claim 1, 2, 3, 4, 5, or 6, further, after rolling, the metastable steel is rolled in a second rolling step and before the second rolling step. Heating the stable steel to a warming temperature higher than 80 ° F.
JP2018536491A 2016-01-14 2017-01-17 Warm rolled steel containing rollable austenite Active JP6830493B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662278567P 2016-01-14 2016-01-14
US62/278,567 2016-01-14
US201662407001P 2016-10-12 2016-10-12
US62/407,001 2016-10-12
PCT/US2017/013717 WO2017124081A1 (en) 2016-01-14 2017-01-17 Warm rolling of steels containing metastable austenite

Publications (3)

Publication Number Publication Date
JP2019504213A true JP2019504213A (en) 2019-02-14
JP2019504213A5 JP2019504213A5 (en) 2019-09-05
JP6830493B2 JP6830493B2 (en) 2021-02-17

Family

ID=58094491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018536491A Active JP6830493B2 (en) 2016-01-14 2017-01-17 Warm rolled steel containing rollable austenite

Country Status (13)

Country Link
US (1) US20170204493A1 (en)
EP (1) EP3402906A1 (en)
JP (1) JP6830493B2 (en)
KR (1) KR102249721B1 (en)
CN (1) CN108431242A (en)
AU (1) AU2017208084A1 (en)
BR (1) BR112018013818A2 (en)
CA (1) CA3009514C (en)
CO (1) CO2018006462A2 (en)
MX (1) MX2018008714A (en)
PH (1) PH12018501374A1 (en)
TW (2) TWI623622B (en)
WO (1) WO2017124081A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3089283C (en) 2018-03-13 2023-02-14 Ak Steel Properties, Inc. Reduction at elevated temperature of coated steels containing metastable austenite
CN113088652B (en) * 2021-03-31 2024-08-02 长春工业大学 Preparation method of dispersion-strengthened high-stability medical high-nitrogen nickel-free austenitic stainless steel
CN114273426B (en) * 2022-01-10 2024-04-16 南京理工大学 Method for preparing high-strength high-plasticity 316L stainless steel by high-strain warm rolling

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3599320A (en) * 1967-12-26 1971-08-17 United States Steel Corp Metastable austenitic stainless steel
JPS6092457A (en) * 1983-10-24 1985-05-24 Daido Steel Co Ltd High strength stainless steel
JPH0768584B2 (en) * 1986-06-09 1995-07-26 日新製鋼株式会社 Manufacturing method of stainless steel for springs having excellent spring characteristics
JPH076858B2 (en) * 1987-11-20 1995-01-30 富士写真フイルム株式会社 Pressure converter
JPH0768584A (en) 1993-09-07 1995-03-14 Asahi Chem Ind Co Ltd Manufacture of molding using crystalline vinyliden chloride resin particle
TWI271438B (en) * 2003-05-09 2007-01-21 Nippon Mining Co Metastable austenite series stainless steel strap with excellent fatigue resistance
US9267193B2 (en) * 2008-11-05 2016-02-23 Honda Motor Co., Ltd High-strength steel sheet and the method for production therefor
TWI415954B (en) * 2010-10-27 2013-11-21 China Steel Corp High strength steel and its manufacturing method
US9587287B2 (en) * 2011-03-31 2017-03-07 Nippon Steel and Sumitomo Metal Corporation Bainite-containing-type high-strength hot-rolled steel sheet having excellent isotropic workability and manufacturing method thereof
JP5856002B2 (en) * 2011-05-12 2016-02-09 Jfeスチール株式会社 Collision energy absorbing member for automobiles excellent in impact energy absorbing ability and method for manufacturing the same
BR112014007498B1 (en) * 2011-09-30 2019-04-30 Nippon Steel & Sumitomo Metal Corporation HIGH RESISTANCE HOT GALVANIZED STEEL SHEET AND SAME PRODUCTION METHOD

Also Published As

Publication number Publication date
BR112018013818A2 (en) 2018-12-11
KR20180095662A (en) 2018-08-27
CN108431242A (en) 2018-08-21
CO2018006462A2 (en) 2018-07-10
TW201730348A (en) 2017-09-01
CA3009514C (en) 2021-03-16
US20170204493A1 (en) 2017-07-20
JP6830493B2 (en) 2021-02-17
KR102249721B1 (en) 2021-05-10
WO2017124081A1 (en) 2017-07-20
AU2017208084A1 (en) 2018-07-05
MX2018008714A (en) 2018-09-21
CA3009514A1 (en) 2017-07-20
PH12018501374A1 (en) 2019-02-11
TWI623622B (en) 2018-05-11
EP3402906A1 (en) 2018-11-21
TW201825688A (en) 2018-07-16

Similar Documents

Publication Publication Date Title
KR102459257B1 (en) Method for manufacturing a high strength steel sheet and sheet obtained
JP6093702B2 (en) Cold rolled flat steel product made from multiphase steel and its manufacturing method
JP6766190B2 (en) Ultra-high-strength, high-ductility steel sheet with excellent yield strength and its manufacturing method
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP6001541B2 (en) Cold rolled flat steel product made from multiphase steel and its manufacturing method
JP6916909B2 (en) Manufacturing method of steel parts and corresponding steel parts
JP5316634B2 (en) High-strength steel sheet with excellent workability and method for producing the same
CN105518175B (en) Method for manufacturing steel member
JP6202579B2 (en) Cold rolled flat steel product and method for producing the same
WO2016080315A1 (en) Rolled steel bar or rolled wire material for cold-forged component
KR20180009785A (en) Low-alloy third-generation ultrahigh strength steel
JPWO2019107042A1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
KR102249721B1 (en) Warm rolling of steel containing metastable austenite
US20150000801A1 (en) High-carbon hot rolled steel sheet with excellent hardenability and small in-plane anistropy and method for manufacturing the same (as amended)
JP5407552B2 (en) Hot-rolled steel sheet with excellent formability and manufacturing method thereof
JP5484135B2 (en) Austenite + martensite duplex stainless steel sheet and method for producing the same
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP2006342387A (en) High-strength hot-rolled steel sheet and its manufacturing method
JP7329304B2 (en) Reduction at Elevated Temperature of Coated Steels Containing Metastable Austenite
JP4608242B2 (en) Steel for cold bending
JP6485125B2 (en) High carbon hot-rolled steel sheet with excellent cold workability
JP5429331B2 (en) High-strength cold-rolled steel sheet with excellent manufacturing stability and manufacturing method thereof
JP6059569B2 (en) Manufacturing method of steel material excellent in cold workability and machinability
JP6756088B2 (en) Hot-rolled steel sheet with excellent cold workability and its manufacturing method
JPH0448052A (en) Method for hot-working austenitic stainless steel excellent in high temperature ductility

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210126

R150 Certificate of patent or registration of utility model

Ref document number: 6830493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250