JP2019219472A - Imaging optical system - Google Patents

Imaging optical system Download PDF

Info

Publication number
JP2019219472A
JP2019219472A JP2018115803A JP2018115803A JP2019219472A JP 2019219472 A JP2019219472 A JP 2019219472A JP 2018115803 A JP2018115803 A JP 2018115803A JP 2018115803 A JP2018115803 A JP 2018115803A JP 2019219472 A JP2019219472 A JP 2019219472A
Authority
JP
Japan
Prior art keywords
lens
cemented
refractive power
lens element
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018115803A
Other languages
Japanese (ja)
Other versions
JP7106099B2 (en
Inventor
北斗 宇佐見
Hokuto Usami
北斗 宇佐見
健太 藤田
Kenta Fujita
健太 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Corp
Original Assignee
Sigma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Corp filed Critical Sigma Corp
Priority to JP2018115803A priority Critical patent/JP7106099B2/en
Publication of JP2019219472A publication Critical patent/JP2019219472A/en
Application granted granted Critical
Publication of JP7106099B2 publication Critical patent/JP7106099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

To provide an imaging optical system which is well corrected for axial chromatic aberration, which has been a problem of conventional imaging optical systems, and has an F-value of approximately 1.4.SOLUTION: An imaging optical system consists of a first lens group L1 having positive refractive power and a second lens group L2 having positive refractive power in order form the object side to the image side. The first lens group L1 has two or more cemented lenses, each consisting of a negative lens element and a positive lens element arranged in order from the object side to the image side. The second lens group L2 includes an aperture stop S. When focusing, the second lens group L2 moves toward the object side while the first lens group L1 is stationary relative to the image plane. The imaging optical system satisfies predefined conditional expressions.SELECTED DRAWING: Figure 1

Description

本発明は、デジタルカメラ、銀塩カメラ及びビデオカメラ等に最適であり、特に、画角が72°〜94°程度で、F値がF1.4程度の、結像光学系に関する。   The present invention relates to an imaging optical system which is most suitable for digital cameras, silver halide cameras, video cameras, and the like, and particularly has an angle of view of about 72 ° to 94 ° and an F value of about F1.4.

昨今のデジタルカメラはイメージセンサーが高画素化しているため、特に軸上色収差が補正不足な結像光学系の場合、結像面での像の色付きや、アウトフォーカス部でのボケ像への色付きがより顕著なものとなってしまう。このような問題を解決するためには軸上色収差をより小さくなるよう補正することが重要となる。   In recent digital cameras, the number of pixels in the image sensor has been increased, so especially in the case of an imaging optical system in which axial chromatic aberration is undercorrected, coloring of the image on the imaging surface and coloring of the blurred image in the out-of-focus part Becomes more noticeable. In order to solve such a problem, it is important to correct axial chromatic aberration so as to be smaller.

以下の特許文献において従来の結像光学系が開示されている。   The following patent documents disclose a conventional imaging optical system.

特許文献1では、画角が71°〜84°程度で、F値がF1.4程度の光学系が開示されている。   Patent Literature 1 discloses an optical system having an angle of view of about 71 ° to 84 ° and an F value of about F1.4.

また、特許文献2では、画角が75°程度で、F値がF1.4程度の光学系が開示されている。   Patent Document 2 discloses an optical system having an angle of view of about 75 ° and an F value of about F1.4.

特許第5196204号公報Japanese Patent No. 5196204 特許第3261716号公報Japanese Patent No. 3261716

しかしながら、特許文献1や特許文献2で開示されている結像光学系は、軸上色収差補正が不十分である。   However, the imaging optical systems disclosed in Patent Literature 1 and Patent Literature 2 have insufficient axial chromatic aberration correction.

そこで、本発明は、従来の結像光学系の課題を解決し、軸上色収差が良好に補正され、F値がF1.4程度の結像光学系を提供することを目的とする。   Therefore, an object of the present invention is to solve the problem of the conventional imaging optical system, and to provide an imaging optical system in which axial chromatic aberration is satisfactorily corrected and an F value is about F1.4.

上記の課題を解決するために、本発明の結像光学系は、物体側から像側へ順に、正の屈折力を有する第1レンズ群L1と、正の屈折力を有する第2レンズ群L2と、からなり、前記第1レンズ群L1は、2つ以上の接合レンズを有し、前記接合レンズは全て、物体側から像側へ順に、負レンズ素子と正レンズ素子とで構成され、前記第2レンズ群L2は、開口絞りSを含み、フォーカシングに際して、前記第2レンズ群L2が物体側に移動するとともに、前記第1レンズ群L1が像面に対して固定であり、以下の条件式を満足することを特徴とした。

Figure 2019219472
但し、
Aciは以下の式で表される。
Aci = φcpi/νdcpi + φcmi/νdcmi
φcpiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの正レンズ素子の屈折力、
νdcpiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの正レンズ素子のアッベ数、
φcmiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの負レンズ素子の屈折力、
νdcmiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの負レンズ素子のアッベ数である。 In order to solve the above problem, an imaging optical system according to the present invention includes, in order from an object side to an image side, a first lens unit L1 having a positive refractive power and a second lens unit L2 having a positive refractive power. Wherein the first lens unit L1 has two or more cemented lenses, and all of the cemented lenses are composed of a negative lens element and a positive lens element in order from the object side to the image side. The second lens unit L2 includes an aperture stop S. During focusing, the second lens unit L2 moves to the object side, and the first lens unit L1 is fixed with respect to the image plane. Is satisfied.
Figure 2019219472
However,
Aci is represented by the following equation.
Aci = φcpi / νdcpi + φcmi / νdcmi
φcpi is the refractive power of the positive lens element of the ith cemented lens from the object side included in the first lens unit L1,
νdcpi is the Abbe number of the positive lens element of the ith cemented lens from the object side included in the first lens unit L1,
φcmi is the refractive power of the negative lens element of the ith cemented lens from the object side included in the first lens unit L1,
νdcmi is the Abbe number of the negative lens element of the ith cemented lens from the object side included in the first lens unit L1.

また、第2の発明は、第1の発明においてさらに、前記接合レンズが以下の条件式を同時に満足することを特徴とした。
φcp/νdcp + φcm/νdcm > 0 (2)
φc′p/νdc′p + φc′m/νdc′m < 0 (3)
但し、
φcpは、前記第1レンズ群L1に含まれる前記接合レンズの正レンズ素子の屈折力、
νdcpは、前記第1レンズ群L1に含まれる前記接合レンズの正レンズ素子のアッベ数、
φcmは、前記第1レンズ群L1に含まれる前記接合レンズの負レンズ素子の屈折力、
νdcmは、前記第1レンズ群L1に含まれる前記接合レンズの負レンズ素子のアッベ数、
φc′pは、前記第1レンズ群L1に含まれる前記接合レンズで条件式(2)を満足する接合レンズ以外の接合レンズの正レンズ素子の屈折力、
νdc′pは、前記第1レンズ群L1に含まれる前記接合レンズで条件式(2)を満足する接合レンズ以外の接合レンズの正レンズ素子のアッベ数、
φc′mは、前記第1レンズ群L1に含まれる前記接合レンズで条件式(2)を満足する接合レンズ以外の接合レンズの負レンズ素子の屈折力、
νdc′mは、前記第1レンズ群L1に含まれる前記接合レンズで条件式(2)を満足する接合レンズ以外の接合レンズの負レンズ素子のアッベ数である。
Further, the second invention is characterized in that, in the first invention, the cemented lens satisfies the following conditional expressions at the same time.
φcp / νdcp + φcm / νdcm> 0 (2)
φc′p / νdc′p + φc′m / νdc′m <0 (3)
However,
φcp is the refractive power of the positive lens element of the cemented lens included in the first lens unit L1,
νdcp is the Abbe number of the positive lens element of the cemented lens included in the first lens unit L1,
φcm is the refractive power of the negative lens element of the cemented lens included in the first lens unit L1,
νdcm is the Abbe number of the negative lens element of the cemented lens included in the first lens unit L1,
φc′p is the refractive power of the positive lens element of a cemented lens other than the cemented lens that satisfies conditional expression (2) in the cemented lens included in the first lens unit L1;
νdc′p is the Abbe number of the positive lens element of a cemented lens other than the cemented lens that satisfies the conditional expression (2) in the cemented lens included in the first lens unit L1,
φc′m is the refractive power of the negative lens element of a cemented lens other than the cemented lens that satisfies the conditional expression (2) among the cemented lenses included in the first lens unit L1;
νdc′m is the Abbe number of the negative lens element of a cemented lens other than the cemented lens that satisfies the conditional expression (2) among the cemented lenses included in the first lens unit L1.

また、第3の発明は、第1及び第2の発明においてさらに、前記第2レンズ群L2は、前記開口絞りSより物体側に少なくとも1枚の正レンズ素子を有し、少なくとも1枚の前記正レンズ素子が以下の条件式を満足することを特徴とした。
νdL2fp < 30 (4)
0.0090 < ΔPgfL2fp (5)
但し、
νdL2fpは前記正レンズ素子のアッベ数νd、
PgfL2fpは前記正レンズ素子のg線とF線に関する部分分散比Pgfである。
ΔPgfL2fpは前記正レンズ素子の異常分散性であり、以下の式で表される。
ΔPgfL2fp = PgfL2fp + 0.0018×νdL2fp ― 0.64833
Further, in the third invention, in the first and second inventions, the second lens unit L2 further includes at least one positive lens element on the object side with respect to the aperture stop S, and includes at least one positive lens element. The positive lens element satisfies the following conditional expression.
νdL2fp <30 (4)
0.0090 <ΔPgfL2fp (5)
However,
νdL2fp is the Abbe number νd of the positive lens element,
PgfL2fp is a partial dispersion ratio Pgf of the positive lens element with respect to the g-line and the F-line.
ΔPgfL2fp is the anomalous dispersion of the positive lens element, and is represented by the following equation.
ΔPgfL2fp = PgfL2fp + 0.0018 × νdL2fp−0.64833

また、第4の発明は、第1乃至第3の発明においてさらに、前記第2レンズ群L2は、負の屈折力の3枚接合レンズL2cを少なくとも1つ有し、前記接合レンズL2cは、物体側から像側へ順に、正レンズ素子と負レンズ素子と正レンズ素子とで構成され、以下の条件式を満足することを特徴とした。
|AL2c| < 0.0020 (6)

Figure 2019219472
但し、
Figure 2019219472
は、前記接合レンズL2cに含まれる正レンズ素子の部分分散比の平均値、
PgfL2cmは、前記接合レンズL2cに含まれる負レンズ素子の部分分散比であり、
AL2cは以下の式で表される。
AL2c= φL2cp1/νdL2cp1 + φL2cm1/νdL2cm1 + φL2cp2/νdL2cp2
但し、
φL2cp1は、前記接合レンズL2cのうち、最も物体側に配される正レンズ素子の屈折力、
νdL2cp1は、前記接合レンズL2cのうち、最も物体側に配される正レンズ素子のアッベ数、
φL2cm1は、前記接合レンズL2cのうち、負レンズ素子の屈折力、
νdL2cm1は、前記接合レンズL2cのうち、負レンズ素子のアッベ数、
φL2cp2は、前記接合レンズL2cのうち、最も像側に配される正レンズ素子の屈折力、
νdL2cp2は、前記接合レンズL2cのうち、最も像側に配される正レンズ素子のアッベ数である。 In a fourth aspect based on the first to third aspects, the second lens unit L2 further includes at least one triplet cemented lens L2c having a negative refractive power. In order from the side to the image side, it is composed of a positive lens element, a negative lens element and a positive lens element, and satisfies the following conditional expression.
| AL2c | <0.0020 (6)
Figure 2019219472
However,
Figure 2019219472
Is the average value of the partial dispersion ratio of the positive lens element included in the cemented lens L2c,
PgfL2cm is a partial dispersion ratio of the negative lens element included in the cemented lens L2c,
AL2c is represented by the following equation.
AL2c = φL2cp1 / νdL2cp1 + φL2cm1 / νdL2cm1 + φL2cp2 / νdL2cp2
However,
φL2cp1 is the refractive power of the positive lens element closest to the object side among the cemented lenses L2c;
νdL2cp1 is the Abbe number of the positive lens element disposed closest to the object side in the cemented lens L2c;
φL2cm1 is the refractive power of the negative lens element of the cemented lens L2c,
νdL2cm1 is the Abbe number of the negative lens element in the cemented lens L2c,
φL2cp2 is the refracting power of the positive lens element closest to the image side among the cemented lenses L2c;
νdL2cp2 is the Abbe number of the positive lens element closest to the image side in the cemented lens L2c.

また、第5の発明は、第1乃至第4の発明においてさらに、前記開口絞りSの物体側に配される全てのレンズ素子をレンズ群Lsfとし、前記レンズ群Lsfは正の屈折力を有し、以下の条件式を満足することを特徴とした。
1.50 < φ/φsf < 3.80 (8)
但し、
φは、レンズ全系の無限遠合焦時の屈折力、
φsfは、前記レンズ群Lsfの無限遠合焦時の屈折力である。
Further, in the fifth invention, in the first to fourth inventions, all the lens elements disposed on the object side of the aperture stop S are a lens unit Lsf, and the lens unit Lsf has a positive refractive power. In addition, the following conditional expression is satisfied.
1.50 <φ / φsf <3.80 (8)
However,
φ is the refractive power of the entire lens system when focused on infinity,
φsf is the refractive power of the lens unit Lsf when focused on infinity.

また、第6の発明は、第1乃至第5の発明においてさらに、以下の条件式を満足することを特徴とした。
1.50 < φ/φ2 < 2.80 (9)
但し、
φは、レンズ全系の無限遠合焦時の屈折力、
φ2は、前記第2レンズ群L2の屈折力である。
The sixth invention is characterized in that the following conditional expressions are further satisfied in the first to fifth inventions.
1.50 <φ / φ2 <2.80 (9)
However,
φ is the refractive power of the entire lens system when focused on infinity,
φ2 is the refractive power of the second lens unit L2.

本発明によれば、従来の結像光学系の課題であった軸上色収差を良好に補正し、F値がF1.4程度の結像光学系を提供することができる。   According to the present invention, it is possible to satisfactorily correct axial chromatic aberration, which is a problem of the conventional imaging optical system, and to provide an imaging optical system having an F value of about F1.4.

本発明の実施例1に係る無限遠合焦時のレンズ構成図である。FIG. 2 is a lens configuration diagram when focusing on infinity according to Embodiment 1 of the present invention. 本発明の実施例1に係る無限遠合焦時の縦収差図である。FIG. 4 is a longitudinal aberration diagram when focusing on infinity according to the first embodiment of the present invention. 本発明の実施例1に係る撮影距離953mmにおける縦収差図である。FIG. 4 is a longitudinal aberration diagram at an imaging distance of 953 mm according to the first embodiment of the present invention. 本発明の実施例1に係る無限遠合焦時の横収差図である。FIG. 4 is a lateral aberration diagram when focusing on infinity according to the first embodiment of the present invention. 本発明の実施例1に係る撮影距離953mmにおける横収差図である。FIG. 4 is a lateral aberration diagram at an imaging distance of 953 mm according to the first embodiment of the present invention. 本発明の実施例2に係る無限遠合焦時のレンズ構成図である。FIG. 9 is a lens configuration diagram when focusing on infinity according to a second embodiment of the present invention. 本発明の実施例2に係る無限遠合焦時の縦収差図である。FIG. 8 is a longitudinal aberration diagram when focusing on infinity according to Embodiment 2 of the present invention. 本発明の実施例2に係る撮影距離1119mmにおける縦収差図である。FIG. 11 is a longitudinal aberration diagram at an imaging distance of 1119 mm according to Embodiment 2 of the present invention. 本発明の実施例2に係る無限遠合焦時の横収差図である。FIG. 10 is a lateral aberration diagram at the time of focusing on infinity according to Example 2 of the present invention. 本発明の実施例2に係る撮影距離1119mmにおける横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance of 1119 mm according to the second embodiment of the present invention. 本発明の実施例3に係る無限遠合焦時のレンズ構成図である。FIG. 9 is a diagram illustrating a lens configuration when focusing on infinity according to a third embodiment of the present invention. 本発明の実施例3に係る無限遠合焦時の縦収差図である。FIG. 11 is a longitudinal aberration diagram when focusing on infinity according to Embodiment 3 of the present invention. 本発明の実施例3に係る撮影距離1271mmにおける縦収差図である。FIG. 13 is a longitudinal aberration diagram at an imaging distance of 1271 mm according to Embodiment 3 of the present invention. 本発明の実施例3に係る無限遠合焦時の横収差図である。FIG. 14 is a lateral aberration diagram when focusing on infinity according to Example 3 of the present invention. 本発明の実施例3に係る撮影距離1271mmにおける横収差図である。FIG. 14 is a lateral aberration diagram at an imaging distance of 1271 mm according to Embodiment 3 of the present invention. 本発明の実施例4に係る無限遠合焦時のレンズ構成図である。FIG. 10 is a lens configuration diagram when focusing on infinity according to Embodiment 4 of the present invention. 本発明の実施例4に係る無限遠合焦時の縦収差図である。FIG. 13 is a longitudinal aberration diagram when focusing on infinity according to Example 4 of the present invention. 本発明の実施例4に係る撮影距離1261mmにおける縦収差図である。FIG. 14 is a longitudinal aberration diagram at an imaging distance of 1261 mm according to Embodiment 4 of the present invention. 本発明の実施例4に係る無限遠合焦時の横収差図である。FIG. 14 is a lateral aberration diagram at the time of focusing on infinity according to Example 4 of the present invention. 本発明の実施例4に係る撮影距離1261mmにおける横収差図である。FIG. 14 is a lateral aberration diagram at an imaging distance of 1261 mm according to Embodiment 4 of the present invention. 本発明の実施例5に係る無限遠合焦時のレンズ構成図である。FIG. 13 is a diagram illustrating a lens configuration when focusing on infinity according to a fifth embodiment of the present invention. 本発明の実施例5に係る無限遠合焦時の縦収差図である。FIG. 14 is a longitudinal aberration diagram when focusing on infinity according to Example 5 of the present invention. 本発明の実施例5に係る撮影距離1275mmにおける縦収差図である。FIG. 14 is a longitudinal aberration diagram at an imaging distance of 1275 mm according to Example 5 of the present invention. 本発明の実施例5に係る無限遠合焦時の横収差図である。FIG. 14 is a lateral aberration diagram at the time of focusing on infinity according to Example 5 of the present invention. 本発明の実施例5に係る撮影距離1275mmにおける横収差図である。FIG. 14 is a lateral aberration diagram at an imaging distance of 1275 mm according to Embodiment 5 of the present invention. 本発明の実施例6に係る無限遠合焦時のレンズ構成図である。FIG. 15 is a diagram illustrating a lens configuration when focusing on infinity according to a sixth embodiment of the present invention. 本発明の実施例6に係る無限遠合焦時の縦収差図である。FIG. 13 is a longitudinal aberration diagram when focusing on infinity according to Example 6 of the present invention. 本発明の実施例6に係る撮影距離1275mmにおける縦収差図である。FIG. 14 is a longitudinal aberration diagram at an imaging distance of 1275 mm according to Embodiment 6 of the present invention. 本発明の実施例6に係る無限遠合焦時の横収差図である。FIG. 14 is a lateral aberration diagram at the time of focusing on infinity according to Example 6 of the present invention. 本発明の実施例6に係る撮影距離1275mmにおける横収差図である。FIG. 14 is a lateral aberration diagram at an imaging distance of 1275 mm according to Embodiment 6 of the present invention. 本発明の実施例7に係る無限遠合焦時のレンズ構成図である。FIG. 13 is a lens configuration diagram when focusing on infinity according to a seventh embodiment of the present invention. 本発明の実施例7に係る無限遠合焦時の縦収差図である。FIG. 13 is a longitudinal aberration diagram when focusing on infinity according to Example 7 of the present invention. 本発明の実施例7に係る撮影距離1335mmにおける縦収差図である。FIG. 13 is a longitudinal aberration diagram at an imaging distance of 1335 mm according to Embodiment 7 of the present invention. 本発明の実施例7に係る無限遠合焦時の横収差図である。FIG. 14 is a lateral aberration diagram at the time of focusing on infinity according to Example 7 of the present invention. 本発明の実施例7に係る撮影距離1335mmにおける横収差図である。FIG. 14 is a lateral aberration diagram at an imaging distance of 1335 mm according to Embodiment 7 of the present invention.

以下に、本発明にかかる光学系の実施例について詳細に説明する。なお、以下の実施例の説明は本発明の光学系の一例を説明したものであり、本発明はその要旨を逸脱しない範囲において本実施例に限定されるものではない。   Hereinafter, embodiments of the optical system according to the present invention will be described in detail. It should be noted that the following description of the embodiments describes an example of the optical system of the present invention, and the present invention is not limited to the present embodiments without departing from the gist thereof.

本実施例の結像光学系は、物体側から像側へ順に、正の屈折力を有する第1レンズ群L1と、正の屈折力を有する第2レンズ群L2と、
からなり、前記第1レンズ群L1は、2つ以上の接合レンズを有し、前記接合レンズは全て、物体側から像側へ順に、負レンズ素子と正レンズ素子とで構成され、前記第2レンズ群L2は、開口絞りSを含み、フォーカシングに際して、前記第2レンズ群L2が物体側に移動するとともに、前記第1レンズ群L1が像面に対して固定であり、以下の条件式を満足することを特徴とする。

Figure 2019219472
但し、
Aciは以下の式で表される。
Aci = φcpi/νdcpi + φcmi/νdcmi
φcpiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの正レンズ素子の屈折力、
νdcpiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの正レンズ素子のアッベ数、
φcmiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの負レンズ素子の屈折力、
νdcmiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの負レンズ素子のアッベ数である。 The imaging optical system of the present embodiment includes, in order from the object side to the image side, a first lens unit L1 having a positive refractive power, a second lens unit L2 having a positive refractive power,
Wherein the first lens unit L1 has two or more cemented lenses, and all of the cemented lenses are composed of a negative lens element and a positive lens element in order from the object side to the image side; The lens unit L2 includes an aperture stop S. During focusing, the second lens unit L2 moves toward the object side, and the first lens unit L1 is fixed with respect to the image plane, and satisfies the following conditional expression. It is characterized by doing.
Figure 2019219472
However,
Aci is represented by the following equation.
Aci = φcpi / νdcpi + φcmi / νdcmi
φcpi is the refractive power of the positive lens element of the ith cemented lens from the object side included in the first lens unit L1,
νdcpi is the Abbe number of the positive lens element of the ith cemented lens from the object side included in the first lens unit L1,
φcmi is the refractive power of the negative lens element of the ith cemented lens from the object side included in the first lens unit L1,
νdcmi is the Abbe number of the negative lens element of the ith cemented lens from the object side included in the first lens unit L1.

なお、F線、d線、C線、の屈折率をそれぞれ、NF、Nd、NCとした場合、アッベ数νdは以下の式で表す。
νd = (Nd−1)/(NF−NC)
When the refractive indices of the F line, the d line, and the C line are NF, Nd, and NC, respectively, the Abbe number νd is represented by the following equation.
νd = (Nd-1) / (NF-NC)

第1レンズ群L1内に少なくとも2つの接合レンズを配することで、レンズ全系の軸上色収差補正を効果的に行うことができる。   By disposing at least two cemented lenses in the first lens unit L1, it is possible to effectively correct axial chromatic aberration of the entire lens system.

条件式(1)は、高性能化のため、第1レンズ群L1に含まれる接合レンズの1次の色消し条件の和を規定したものである。   Conditional expression (1) defines the sum of the primary achromatic conditions of the cemented lens included in the first lens unit L1 for higher performance.

条件式(1)の上限値を超え、第1レンズ群L1に含まれる接合レンズの色消し条件の和が大きくなると、1次の色消しが不十分となるため、軸上色収差が悪化してしまう。   If the value exceeds the upper limit of conditional expression (1) and the sum of the achromatic conditions of the cemented lens included in the first lens unit L1 increases, the first-order achromaticity becomes insufficient, so that axial chromatic aberration worsens. I will.

なお、条件式(1)の上限値を0.0011にすることで、前述の効果をより確実にすることができる。   By setting the upper limit of conditional expression (1) to 0.0011, the above-described effect can be further ensured.

さらに、第1レンズ群L1内の接合レンズが以下の条件式を同時に満足することを特徴とする。
φcp/νdcp + φcm/νdcm > 0 (2)
φc′p/νdc′p + φc′m/νdc′m < 0 (3)
但し、
φcpは、前記第1レンズ群L1に含まれる前記接合レンズの正レンズ素子の屈折力、
νdcpは、前記第1レンズ群L1に含まれる前記接合レンズの正レンズ素子のアッベ数、
φcmは、前記第1レンズ群L1に含まれる前記接合レンズの負レンズ素子の屈折力、
νdcmは、前記第1レンズ群L1に含まれる前記接合レンズの負レンズ素子のアッベ数、
φc′pは、前記第1レンズ群L1に含まれる前記接合レンズで条件式(2)を満足する接合レンズ以外の接合レンズの正レンズ素子の屈折力、
νdc′pは、前記第1レンズ群L1に含まれる前記接合レンズで条件式(2)を満足する接合レンズ以外の接合レンズの正レンズ素子のアッベ数、
φc′mは、前記第1レンズ群L1に含まれる前記接合レンズで条件式(2)を満足する接合レンズ以外の接合レンズの負レンズ素子の屈折力、
νdc′mは、前記第1レンズ群L1に含まれる前記接合レンズで条件式(2)を満足する接合レンズ以外の接合レンズの負レンズ素子のアッベ数である。
Further, the cemented lens in the first lens unit L1 satisfies the following conditional expressions at the same time.
φcp / νdcp + φcm / νdcm> 0 (2)
φc′p / νdc′p + φc′m / νdc′m <0 (3)
However,
φcp is the refractive power of the positive lens element of the cemented lens included in the first lens unit L1,
νdcp is the Abbe number of the positive lens element of the cemented lens included in the first lens unit L1,
φcm is the refractive power of the negative lens element of the cemented lens included in the first lens unit L1,
νdcm is the Abbe number of the negative lens element of the cemented lens included in the first lens unit L1,
φc′p is the refractive power of the positive lens element of a cemented lens other than the cemented lens that satisfies conditional expression (2) in the cemented lens included in the first lens unit L1;
νdc′p is the Abbe number of the positive lens element of a cemented lens other than the cemented lens that satisfies the conditional expression (2) in the cemented lens included in the first lens unit L1,
φc′m is the refractive power of the negative lens element of a cemented lens other than the cemented lens that satisfies the conditional expression (2) among the cemented lenses included in the first lens unit L1;
νdc′m is the Abbe number of the negative lens element of a cemented lens other than the cemented lens that satisfies the conditional expression (2) among the cemented lenses included in the first lens unit L1.

条件式(2)及び(3)は、高性能化のため、第1レンズ群L1に含まれる接合レンズの1次の色消し条件値の符号を規定したものである。   The conditional expressions (2) and (3) define the sign of the primary achromatic condition value of the cemented lens included in the first lens unit L1 for high performance.

条件式(2)及び(3)を同時に満足することで、第1レンズ群L1に含まれる異なる接合レンズ同士間で1次の色消し条件の値を打ち消すことができるため、条件式(1)で規定した第1レンズ群L1に含まれる接合レンズの1次の色消し条件の和をより効果的に小さくすることができる。これにより、軸上色収差を低減し易くすることができる。   By satisfying conditional expressions (2) and (3) at the same time, the value of the primary achromatic condition can be canceled between different cemented lenses included in the first lens unit L1, so that conditional expression (1) It is possible to more effectively reduce the sum of the primary achromatic conditions of the cemented lens included in the first lens unit L1 specified in the above. Thereby, axial chromatic aberration can be easily reduced.

条件式(2)及び(3)を同時に満足しない場合、異なる接合レンズ同士間で1次の色消し条件の値を打ち消すことができない。そのため、条件式(1)を満足するには、条件式(2)及び(3)を同時に満足する場合に比べ、各接合レンズ単体での1次の色消し条件の値を小さくする必要があり、接合レンズを構成するレンズ素子の硝材や屈折力の自由度が制限されてしまう。   When the conditional expressions (2) and (3) are not satisfied at the same time, the value of the primary achromatic condition cannot be canceled between different cemented lenses. Therefore, in order to satisfy the conditional expression (1), it is necessary to reduce the value of the primary achromatization condition of each cemented lens alone compared to the case where the conditional expressions (2) and (3) are simultaneously satisfied. In addition, the degree of freedom of the glass material and the refractive power of the lens element constituting the cemented lens is limited.

さらに、前記第2レンズ群L2は、前記開口絞りSより物体側に少なくとも1枚の正レンズ素子を有し、少なくとも1枚の前記正レンズ素子が以下の条件式を満足することを特徴とする。
νdL2fp < 30 (4)
0.0090 < ΔPgfL2fp (5)
但し、
νdL2fpは前記正レンズ素子のアッベ数νd、
PgfL2fpは前記正レンズ素子のg線とF線に関する部分分散比Pgfである。
ΔPgfL2fpは前記正レンズ素子の異常分散性であり、以下の式で表される。
ΔPgfL2fp = PgfL2fp + 0.0018×νdL2fp ― 0.64833
Further, the second lens unit L2 has at least one positive lens element on the object side of the aperture stop S, and at least one positive lens element satisfies the following conditional expression. .
νdL2fp <30 (4)
0.0090 <ΔPgfL2fp (5)
However,
νdL2fp is the Abbe number νd of the positive lens element,
PgfL2fp is a partial dispersion ratio Pgf of the positive lens element with respect to the g-line and the F-line.
ΔPgfL2fp is the anomalous dispersion of the positive lens element, and is represented by the following equation.
ΔPgfL2fp = PgfL2fp + 0.0018 × νdL2fp−0.64833

条件式(4)及び(5)は、高性能化のため、前記第2レンズ群L2のうち、前記開口絞りSより物体側に配される正レンズ素子のアッベ数νdと異常分散性ΔPgfを規定したものである。   Conditional expressions (4) and (5) satisfy Abbe number νd and anomalous dispersion ΔPgf of the positive lens element disposed on the object side of the aperture stop S in the second lens unit L2 in order to improve performance. It is specified.

なお、g線、F線、d線、C線、の屈折率をそれぞれ、Ng、NF、Nd、NCとした場合、部分分散比Pgfはそれぞれ以下の式で表す。
Pgf = (Ng−NF)/(NF−NC)
When the refractive indices of the g-line, F-line, d-line, and C-line are Ng, NF, Nd, and NC, respectively, the partial dispersion ratio Pgf is represented by the following equation.
Pgf = (Ng-NF) / (NF-NC)

条件式(4)の上限値を超えると共に条件式(5)の下限値を超え、正レンズ素子L2fpのアッベ数νdが大きくなると共に異常分散性ΔPgfが小さくなると、特に、2次スペクトルの補正が不足することで、軸上色収差が悪化してしまう。   When the value exceeds the upper limit value of the conditional expression (4) and exceeds the lower limit value of the conditional expression (5), the Abbe number νd of the positive lens element L2fp increases, and the anomalous dispersion ΔPgf decreases. Insufficiency leads to deterioration of axial chromatic aberration.

なお、条件式(4)の上限値を24、条件式(5)の下限値を0.0100にすることで、前述の効果をより確実にすることができる。   By setting the upper limit value of the conditional expression (4) to 24 and the lower limit value of the conditional expression (5) to 0.0100, the above-mentioned effect can be further ensured.

さらに、前記第2レンズ群L2は負の屈折力の3枚接合レンズL2cを少なくとも1つ有し、前記接合レンズL2cは、物体側から像側へ順に、正レンズ素子と負レンズ素子と正レンズ素子とで構成され、以下の条件式を満足することを特徴とする。
|AL2c|< 0.0020 (6)

Figure 2019219472
但し、
Figure 2019219472
は、前記接合レンズL2cに含まれる正レンズ素子の部分分散比の平均値、
PgfL2cmは、前記接合レンズL2cに含まれる負レンズ素子の部分分散比であり、
AL2cは以下の式で表される。
AL2c= φL2cp1/νdL2cp1 + φL2cm1/νdL2cm1 + φL2cp2/νdL2cp2
但し、
φL2cp1は、前記接合レンズL2cのうち、最も物体側に配される正レンズ素子の屈折力、
νdL2cp1は、前記接合レンズL2cのうち、最も物体側に配される正レンズ素子のアッベ数、
φL2cm1は、前記接合レンズL2cのうち、負レンズ素子の屈折力、
νdL2cm1は、前記接合レンズL2cのうち、負レンズ素子のアッベ数、
φL2cp2は、前記接合レンズL2cのうち、最も像側に配される正レンズ素子の屈折力、
νdL2cp2は、前記接合レンズL2cのうち、最も像側に配される正レンズ素子のアッベ数である。 Furthermore, the second lens unit L2 has at least one cemented lens L2c having a negative refractive power, and the cemented lens L2c has a positive lens element, a negative lens element, and a positive lens in order from the object side to the image side. And the element satisfies the following conditional expression.
| AL2c | <0.0020 (6)
Figure 2019219472
However,
Figure 2019219472
Is the average value of the partial dispersion ratio of the positive lens element included in the cemented lens L2c,
PgfL2cm is a partial dispersion ratio of the negative lens element included in the cemented lens L2c,
AL2c is represented by the following equation.
AL2c = φL2cp1 / νdL2cp1 + φL2cm1 / νdL2cm1 + φL2cp2 / νdL2cp2
However,
φL2cp1 is the refractive power of the positive lens element closest to the object side among the cemented lenses L2c;
νdL2cp1 is the Abbe number of the positive lens element disposed closest to the object side in the cemented lens L2c;
φL2cm1 is the refractive power of the negative lens element of the cemented lens L2c,
νdL2cm1 is the Abbe number of the negative lens element in the cemented lens L2c,
φL2cp2 is the refracting power of the positive lens element closest to the image side among the cemented lenses L2c;
νdL2cp2 is the Abbe number of the positive lens element closest to the image side in the cemented lens L2c.

第2レンズ群L2に含まれる3枚接合レンズL2cは、2枚接合レンズに正レンズ素子を追加し3枚接合レンズとすることで、接合レンズ全体としては負の屈折力を保持しつつ、2枚接合時に比べてペッツバール和を小さくすることができる。これによりレンズ全系での像面湾曲補正がし易くなる。またさらに、2次スペクトルの補正を効果的に行うことができるようになるため、軸上色収差補正に有利となる。   The three cemented lens L2c included in the second lens unit L2 is formed by adding a positive lens element to the two cemented lens to form a three cemented lens, thereby maintaining a negative refractive power as a whole of the cemented lens while maintaining the negative refractive power. The Petzval sum can be reduced as compared with the case of sheet joining. This facilitates field curvature correction in the entire lens system. Further, since the secondary spectrum can be effectively corrected, it is advantageous for axial chromatic aberration correction.

条件式(6)は軸上色収差低減のため、接合レンズL2cの1次の色消し条件を規定したものである。またさらに、条件式(7)は、軸上色収差低減のため、接合レンズL2cを構成する正レンズ素子の部分分散比の平均値と負レンズ素子の部分分散比の差を規定したものである。   Conditional expression (6) defines a primary achromatic condition of the cemented lens L2c in order to reduce axial chromatic aberration. Further, the conditional expression (7) defines the difference between the average value of the partial dispersion ratio of the positive lens element constituting the cemented lens L2c and the partial dispersion ratio of the negative lens element to reduce longitudinal chromatic aberration.

条件式(6)の上限値を超え、接合レンズL2cの色消し条件値が大きくなると、1次の色消しが不十分となるため、軸上色収差が悪化してしまう。   When the value exceeds the upper limit value of the conditional expression (6) and the achromatic condition value of the cemented lens L2c increases, the primary achromatism becomes insufficient, so that the axial chromatic aberration deteriorates.

条件式(7)の上限値を超え、接合レンズL2c含まれる正レンズ素子の部分分散比の平均値と負レンズ素子の部分分散比の差が大きくなると、2次スペクトルの補正が不十分となるため、軸上色収差が悪化してしまう。   When the value exceeds the upper limit of conditional expression (7) and the difference between the average value of the partial dispersion ratio of the positive lens element included in the cemented lens L2c and the partial dispersion ratio of the negative lens element increases, the correction of the secondary spectrum becomes insufficient. Therefore, the axial chromatic aberration is deteriorated.

なお、上述した条件式(6)について、その上限値を0.0015に、また、条件式(7)について上限値を0.060にすることで、前述の効果をより確実にすることができる。   By setting the upper limit of conditional expression (6) to 0.0015 and the upper limit of conditional expression (7) to 0.060, the above-mentioned effect can be further ensured. .

さらに、前記開口絞りSの物体側に配されるレンズ群をレンズ群Lsfとし、前記レンズ群Lsfは正の屈折力を有し、以下の条件式を満足することを特徴とする。
1.50 < φ/φsf < 3.80 (8)
但し、
φは、レンズ全系の無限遠合焦時の屈折力、
φsfは、前記レンズ群Lsfの無限遠合焦時の屈折力である。
Further, a lens group disposed on the object side of the aperture stop S is referred to as a lens group Lsf, and the lens group Lsf has a positive refractive power and satisfies the following conditional expression.
1.50 <φ / φsf <3.80 (8)
However,
φ is the refractive power of the entire lens system when focused on infinity,
φsf is the refractive power of the lens unit Lsf when focused on infinity.

条件式(8)は、小型化と高性能化のため、前記レンズ群Lsfの屈折力を規定したものである。   Conditional expression (8) defines the refractive power of the lens unit Lsf for miniaturization and high performance.

条件式(8)の上限値を超え、レンズ群Lsfの屈折力が弱くなると、開口絞りSでのF値光束径が増大するため、F値を維持しようとした場合に、絞り径が増大し、絞りユニット径の増大、ひいては製品径の増大に繋がり、小型化に不利となる。   When the value exceeds the upper limit of conditional expression (8) and the refractive power of the lens unit Lsf becomes weak, the F-number luminous flux diameter at the aperture stop S increases. Therefore, when the F-number is to be maintained, the stop diameter increases. This leads to an increase in the diameter of the aperture unit and, consequently, an increase in the product diameter, which is disadvantageous for downsizing.

条件式(8)の下限値を超え、レンズ群Lsfの屈折力が強くなると、開口絞りSでのF値光束径は減少するため、絞りユニット径が減少し、小型化には有利になる。一方、主にレンズ群Lsfで発生する像面湾曲が悪化し、これをレンズ全系で良好に補正することが困難となるため、高性能化に不利となる。   When the value exceeds the lower limit of conditional expression (8) and the refractive power of the lens unit Lsf increases, the diameter of the F-number light beam at the aperture stop S decreases, and the diameter of the stop unit decreases, which is advantageous for miniaturization. On the other hand, the curvature of field mainly generated in the lens unit Lsf is deteriorated, and it becomes difficult to satisfactorily correct this in the entire lens system, which is disadvantageous for high performance.

なお、条件式(8)下限値を1.60、上限値を3.40にすることで、前述の効果をより確実にすることができる。   By setting the lower limit of conditional expression (8) to 1.60 and the upper limit to 3.40, the above-mentioned effect can be ensured.

さらに、以下の条件式を満足することを特徴とする。
1.50 < φ/φ2 < 2.80 (9)
但し、
φは、レンズ全系の無限遠合焦時の屈折力、
φ2は、前記第2レンズ群L2の屈折力である。
Further, the following conditional expression is satisfied.
1.50 <φ / φ2 <2.80 (9)
However,
φ is the refractive power of the entire lens system when focused on infinity,
φ2 is the refractive power of the second lens unit L2.

条件式(9)は、高性能化と小型化のため、第2レンズ群L2の屈折力を規定したものである。   Conditional expression (9) defines the refractive power of the second lens unit L2 for higher performance and smaller size.

条件式(9)の下限値を超え、第2レンズ群L2の屈折力が強くなると、フォーカシングに際する移動量が小さくなるため、小型化には有利になるが、フォーカシングに際する非点収差や球面収差等、諸収差の変動が増大するだけでなく、製造誤差敏感度が大きくなるため、高性能化に不利となる。   When the value exceeds the lower limit of conditional expression (9) and the refractive power of the second lens unit L2 is increased, the moving amount at the time of focusing becomes small, which is advantageous for downsizing. However, astigmatism at the time of focusing is obtained. Not only does the variation of various aberrations such as aberration and spherical aberration increase, but also the manufacturing error sensitivity increases, which is disadvantageous for high performance.

条件式(9)の上限値を超え、第2レンズ群L2の屈折力が弱くなると、フォーカシングに際する諸収差の変動は軽減するため、高性能化には有利になるが、フォーカシングに際する移動量が増大するため、小型化には不利となる。   When the value exceeds the upper limit of conditional expression (9) and the refractive power of the second lens unit L2 becomes weak, fluctuations of various aberrations during focusing are reduced, which is advantageous for high performance, but is advantageous for focusing. Since the moving amount increases, it is disadvantageous for miniaturization.

なお、上述した条件式(9)について、その下限値を1.60、また上限値を2.40にすることで、前述の効果をより確実にすることができる。   By setting the lower limit and the upper limit of conditional expression (9) to 1.60 and 2.40, the above-described effects can be further ensured.

以下、本発明にかかる結像光学系の実施例1乃至7の数値データを示す。   Hereinafter, numerical data of Examples 1 to 7 of the imaging optical system according to the present invention will be described.

[面データ]において、面番号は物体側から数えたレンズ面又は開口絞りの番号、rは各面の曲率半径、dは各面の間隔、ndはd線(波長λ=587.56nm)に対する屈折率、νdはd線に対するアッベ数を示す。また、BFはバックフォーカスを表し、空気の屈折率n=1.0000はその記載を省略する。   In [surface data], the surface number is the number of the lens surface or the aperture stop counted from the object side, r is the radius of curvature of each surface, d is the distance between the surfaces, and nd is the d line (wavelength λ = 587.56 nm). The refractive index, νd, indicates the Abbe number for the d-line. BF represents the back focus, and the description of the refractive index n = 1.0000 of air is omitted.

面番号を付した(絞り)には、平面または開口絞りに対する曲率半径∞(無限大)を記入している。   In the area number (stop), the radius of curvature ∞ (infinity) with respect to a plane or aperture stop is entered.

[非球面データ]には[面データ]において*を付したレンズ面の非球面形状を与える各係数値を示している。非球面の形状は、光軸に直交する方向への変位をy、非球面と光軸の交点から光軸方向への変位(サグ量)をz、コーニック係数をK、4、6、8、10、12次の非球面係数をそれぞれA4、A6、A8、A10、A12と置くとき、非球面の座標が以下の式で表わされるものとする。   [Aspherical surface data] shows each coefficient value that gives the aspherical shape of the lens surface marked with * in [surface data]. As for the shape of the aspherical surface, the displacement in the direction orthogonal to the optical axis is y, the displacement (sag amount) from the intersection of the aspherical surface and the optical axis in the optical axis direction is z, and the conic coefficient is K, 4, 6, 8, When the tenth and twelfth order aspherical coefficients are set as A4, A6, A8, A10 and A12, the coordinates of the aspherical surface are represented by the following equations.

Figure 2019219472
Figure 2019219472

[各種データ]には、各焦点距離状態における焦点距離等の値を示している。   In [various data], values such as the focal length in each focal length state are shown.

[可変間隔データ]には、各焦点距離状態における可変間隔及びBF(バックフォーカス)の値を示している。   [Variable interval data] shows the variable interval and BF (back focus) value in each focal length state.

[レンズ群データ]には、各レンズ群を構成する最も物体側の面番号及び群全体の合成焦点距離を示している。   [Lens group data] shows the surface number of the most object side constituting each lens group and the combined focal length of the entire group.

なお、以下の全ての諸元の値において、記載している焦点距離f、曲率半径r、レンズ面間隔d、その他の長さの単位は特記のない限りミリメートル(mm)を使用するが、光学系では比例拡大と比例縮小とにおいても同等の光学性能が得られるので、これに限られるものではない。   In all of the following values, the focal length f, radius of curvature r, lens surface distance d, and other units of the length are expressed in millimeters (mm) unless otherwise specified. The system is not limited to this, since the same optical performance can be obtained in proportional expansion and proportional reduction.

また、これらの各実施例における条件式の対応値の一覧を示す。   Also, a list of corresponding values of the conditional expression in each of the embodiments is shown.

また、各実施例に対応する収差図において、d、g、Cはそれぞれd線、g線、C線を表しており、ΔS、ΔMはそれぞれサジタル像面、メリジオナル像面を表している。さらに図1、6、11、16、21、26、31に示すレンズ構成図において、Sは開口絞り、Iは像面、LPFはローパスフィルター、中心を通る一点鎖線は光軸である。   In the aberration diagrams corresponding to the examples, d, g, and C represent d-line, g-line, and C-line, respectively, and ΔS and ΔM represent a sagittal image plane and a meridional image plane, respectively. Further, in the lens configuration diagrams shown in FIGS. 1, 6, 11, 16, 21, 26, and 31, S is an aperture stop, I is an image plane, LPF is a low-pass filter, and an alternate long and short dash line passing through the center is an optical axis.

図1は、実施例1に係る結像光学系の無限遠におけるレンズ構成図である。実施例1の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2とから構成される。   FIG. 1 is a lens configuration diagram at infinity of the imaging optical system according to the first embodiment. The imaging optical system according to the first embodiment includes, in order from the object side to the image side, a first lens unit L1 having a fixed positive refractive power during focusing, and a second lens unit L1 moving toward the object side during focusing and having a positive refractive power. And a lens group L2.

第1レンズ群L1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと、R1面とR2面両面が非球面で物体側に凸面を向けた凹メニスカスレンズと、物体側に凹面を向けた凸メニスカスレンズと、両凹レンズと両凸レンズの接合レンズと、両凹レンズと両凸レンズの接合レンズと、両凸レンズとから構成される。   The first lens unit L1 includes, in order from the object side to the image side, a concave meniscus lens having a convex surface facing the object side, a concave meniscus lens having both aspherical surfaces R1 and R2 and having a convex surface facing the object side, It is composed of a convex meniscus lens with a concave surface facing the side, a cemented lens of a biconcave lens and a biconvex lens, a cemented lens of a biconcave lens and a biconvex lens, and a biconvex lens.

第2レンズ群L2は、物体側から像側へ順に、R1面とR2面両面が非球面の両凸レンズと、両凸レンズと両凹レンズの接合レンズと、開口絞りSと、物体側に凹面を向けた凸メニスカスレンズと物体側に凹面を向けた凹メニスカスレンズと物体側に凹面を向けた凸メニスカスレンズとの3枚接合レンズと、両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。   The second lens unit L2 includes, in order from the object side to the image side, a biconvex lens having both aspherical surfaces R1 and R2, a cemented lens of a biconvex lens and a biconcave lens, an aperture stop S, and a concave surface facing the object side. Cemented lens consisting of a convex meniscus lens, a concave meniscus lens with a concave surface facing the object side, and a convex meniscus lens with a concave surface facing the object side, a biconvex lens, and both R1 and R2 surfaces are aspherical and the object side. And a convex meniscus lens having a concave surface.

続いて、以下に実施例1に係る結像光学系の諸元値を示す。   Next, specifications of the imaging optical system according to the first embodiment will be described below.

数値実施例1
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 53.4749 2.3408 1.77250 49.62
2 27.5945 7.7901
3* 29.5724 2.4000 1.58913 61.25
4* 16.2027 21.2312
5 -136.8641 3.9575 1.77250 49.62
6 -49.2678 1.1941
7 -39.8952 1.7000 1.49700 81.61
8 70.9259 5.5173 1.91082 35.25
9 -84.3707 2.6708
10 -43.7633 1.5001 1.85025 30.05
11 26.4118 7.8197 1.72916 54.67
12 -136.5673 0.2500
13 48.6668 5.3624 1.84666 23.78
14 -236.4311 d14
15* 90.0894 4.9824 1.77250 49.50
16* -62.7008 0.1500
17 220.3760 3.2473 1.84666 23.78
18 -96.1980 1.1000 1.73800 32.33
19 29.7541 5.2694
20(絞り) ∞ 7.0592
21 -42.6299 6.6374 1.43700 95.10
22 -14.9350 1.0000 1.73800 32.33
23 -195.3434 3.1938 1.59282 68.63
24 -50.6823 0.1500
25 67.9179 9.8729 1.49700 81.61
26 -25.9219 0.1500
27* -45.4031 2.6766 1.77250 49.47
28* -31.2521 d28
29 ∞ 1.4500 1.52301 58.59
30 ∞ BF
像面 ∞
[非球面データ]
3面 4面 15面
K 0.0000 -1.0000 0.0000
A4 -1.1390E-05 -2.7150E-06 -8.5665E-07
A6 5.4962E-09 -1.1948E-08 -1.7530E-09
A8 -9.6831E-12 4.7094E-11 8.1494E-12
A10 0.0000E+00 -1.3842E-13 3.0132E-15
A12 0.0000E+00 1.2548E-16 0.0000E+00
16面 27面 28面
K 0.0000 0.0000 0.0000
A4 4.8448E-06 -2.1308E-05 -1.0105E-05
A6 -5.3211E-09 1.0902E-08 1.3472E-08
A8 9.5752E-12 -2.3912E-10 -1.8227E-10
A10 -2.5306E-15 4.7523E-13 3.7010E-13
A12 0.0000E+00 0.0000E+00 0.0000E+00
[各種データ]
INF
焦点距離 20.70
Fナンバー 1.47
全画角2ω 94.26
像高Y 21.63
レンズ全長 152.53
[可変間隔データ]
INF 撮影距離953mm
d0 ∞ 800.4343
d14 4.3469 3.8142
d28 36.5102 37.0429
BF 1.0000 1.0000
[レンズ群データ]
群 始面 焦点距離
L1 1 118.45
L2 15 45.91
Lsf 1 66.80
Numerical example 1
Unit: mm
[Surface data]
Surface number rd nd vd
Object surface ∞ (d0)
1 53.4749 2.3408 1.77250 49.62
2 27.5945 7.7901
3 * 29.5724 2.4000 1.58913 61.25
4 * 16.2027 21.2312
5 -136.8641 3.9575 1.77250 49.62
6 -49.2678 1.1941
7 -39.8952 1.7000 1.49700 81.61
8 70.9259 5.5173 1.91082 35.25
9 -84.3707 2.6708
10 -43.7633 1.5001 1.85025 30.05
11 26.4118 7.8197 1.72916 54.67
12 -136.5673 0.2500
13 48.6668 5.3624 1.84666 23.78
14 -236.4311 d14
15 * 90.0894 4.9824 1.77250 49.50
16 * -62.7008 0.1500
17 220.3760 3.2473 1.84666 23.78
18 -96.1980 1.1000 1.73800 32.33
19 29.7541 5.2694
20 (aperture) ∞ 7.0592
21 -42.6299 6.6374 1.43700 95.10
22 -14.9350 1.0000 1.73800 32.33
23 -195.3434 3.1938 1.59282 68.63
24 -50.6823 0.1500
25 67.9179 9.8729 1.49700 81.61
26 -25.9219 0.1500
27 * -45.4031 2.6766 1.77250 49.47
28 * -31.2521 d28
29 ∞ 1.4500 1.52301 58.59
30 ∞ BF
Image plane ∞
[Aspheric data]
3 4 4
K 0.0000 -1.0000 0.0000
A4 -1.1390E-05 -2.7150E-06 -8.5665E-07
A6 5.4962E-09 -1.1948E-08 -1.7530E-09
A8 -9.6831E-12 4.7094E-11 8.1494E-12
A10 0.0000E + 00 -1.3842E-13 3.0132E-15
A12 0.0000E + 00 1.2548E-16 0.0000E + 00
16 surfaces 27 surfaces 28 surfaces
K 0.0000 0.0000 0.0000
A4 4.8448E-06 -2.1308E-05 -1.0105E-05
A6 -5.3211E-09 1.0902E-08 1.3472E-08
A8 9.5752E-12 -2.3912E-10 -1.8227E-10
A10 -2.5306E-15 4.7523E-13 3.7010E-13
A12 0.0000E + 00 0.0000E + 00 0.0000E + 00
[Various data]
INF
Focal length 20.70
F-number 1.47
Full angle of view 2ω 94.26
Image height Y 21.63
Total lens length 152.53
[Variable interval data]
INF shooting distance 953mm
d0 ∞ 800.4343
d14 4.3469 3.8142
d28 36.5102 37.0429
BF 1.0000 1.0000
[Lens group data]
Group Starting surface Focal length
L1 1 118.45
L2 15 45.91
Lsf 1 66.80

図6は、実施例2に係る結像光学系の無限遠におけるレンズ構成図である。実施例2の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2とから構成される。   FIG. 6 is a lens configuration diagram of the imaging optical system according to the second embodiment at infinity. The imaging optical system according to the second embodiment includes, in order from the object side to the image side, a first lens unit L1 having a fixed positive refractive power during focusing, and a second lens unit L1 moving to the object side during focusing and having a positive refractive power. And a lens group L2.

第1レンズ群L1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと、R1面とR2面両面が非球面で物体側に凸面を向けた凹メニスカスレンズと、両凸レンズと、両凹レンズと両凸レンズの接合レンズと、両凹レンズと両凸レンズの接合レンズと、両凸レンズとから構成される。   The first lens unit L1 includes, in order from the object side to the image side, a concave meniscus lens having a convex surface facing the object side, a concave meniscus lens having both aspherical surfaces R1 and R2 and having a convex surface facing the object side, It comprises a convex lens, a cemented lens of a biconcave lens and a biconvex lens, a cemented lens of a biconcave lens and a biconvex lens, and a biconvex lens.

第2レンズ群L2は、物体側から像側へ順に、R1面とR2面両面が非球面の両凸レンズと、両凸レンズと両凹レンズの接合レンズと、開口絞りSと、物体側に凹面を向けた凸メニスカスレンズと両凹レンズと両凸レンズとの3枚接合レンズL2cと、両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。   The second lens unit L2 includes, in order from the object side to the image side, a biconvex lens having both aspherical surfaces R1 and R2, a cemented lens of a biconvex lens and a biconcave lens, an aperture stop S, and a concave surface facing the object side. The lens comprises a cemented lens L2c consisting of a convex meniscus lens, a biconcave lens, and a biconvex lens, a biconvex lens, and a convex meniscus lens having both aspherical surfaces R1 and R2 and a concave surface facing the object side.

続いて、以下に実施例2に係る結像光学系の諸元値を示す。   Next, specifications of the imaging optical system according to the second embodiment will be described below.

数値実施例2
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 42.6657 1.9000 1.77250 49.62
2 22.8995 8.5583
3* 38.3333 2.4000 1.49710 81.56
4* 19.2526 8.7434
5 278.5124 3.3670 1.85478 24.80
6 -139.9988 3.9263
7 -37.2551 1.7000 1.49700 81.61
8 67.1430 6.2229 1.91082 35.25
9 -80.5816 1.5661
10 -63.9954 1.5000 1.85478 24.80
11 34.6073 7.8360 1.59282 68.63
12 -103.1843 3.8780
13 53.9119 5.5666 1.90366 31.32
14 -375.5120 d14
15* 264.4779 4.0349 1.88202 37.22
16* -77.3746 0.1500
17 146.7616 5.3028 1.84666 23.78
18 -55.1442 1.1000 1.73800 32.33
19 42.0650 4.7092
20(絞り) ∞ 4.0693
21 -48.9249 8.3301 1.43700 95.10
22 -18.2490 1.0000 1.73800 32.33
23 49.7510 5.9436 1.59282 68.63
24 -94.0091 0.1500
25 59.8943 9.5878 1.59282 68.63
26 -34.5739 3.9360
27* -63.6600 2.4583 1.77250 49.50
28* -39.9714 d28
29 ∞ 1.4500 1.52301 58.59
30 ∞ BF
像面 ∞
[非球面データ]
3面 4面 15面
K 0.0000 -1.0000 0.0000
A4 -4.4298E-07 -4.9531E-07 5.2261E-07
A6 1.6875E-09 -4.4836E-09 9.4980E-10
A8 6.3740E-12 -2.5171E-11 -6.2182E-12
A10 0.0000E+00 1.0175E-13 3.2821E-14
A12 0.0000E+00 -2.1236E-16 0.0000E+00
16面 27面 28面
K 0.0000 0.0000 0.0000
A4 2.9534E-06 -1.6336E-05 -7.6523E-06
A6 -1.4551E-09 -1.8624E-08 -1.4413E-08
A8 -7.6519E-13 -5.6588E-11 -3.9912E-11
A10 2.5510E-14 1.9222E-13 1.5418E-13
A12 0.0000E+00 0.0000E+00 0.0000E+00
[各種データ]
INF
焦点距離 24.80
Fナンバー 1.47
全画角2ω 83.34
像高Y 21.63
レンズ全長 152.51
[可変間隔データ]
INF 撮影距離1119mm
d0 ∞ 966.5632
d14 5.6134 4.9812
d28 36.5100 37.1422
BF 1.0000 1.0000
[レンズ群データ]
群 始面 焦点距離
L1 1 171.66
L2 15 49.78
Lsf 1 55.69
Numerical example 2
Unit: mm
[Surface data]
Surface number rd nd vd
Object surface ∞ (d0)
1 42.6657 1.9000 1.77250 49.62
2 22.8995 8.5583
3 * 38.3333 2.4000 1.49710 81.56
4 * 19.2526 8.7434
5 278.5124 3.3670 1.85478 24.80
6 -139.9988 3.9263
7 -37.2551 1.7000 1.49700 81.61
8 67.1430 6.2229 1.91082 35.25
9 -80.5816 1.5661
10 -63.9954 1.5000 1.85478 24.80
11 34.6073 7.8360 1.59282 68.63
12 -103.1843 3.8780
13 53.9119 5.5666 1.90366 31.32
14 -375.5120 d14
15 * 264.4779 4.0349 1.88202 37.22
16 * -77.3746 0.1500
17 146.7616 5.3028 1.84666 23.78
18 -55.1442 1.1000 1.73800 32.33
19 42.0650 4.7092
20 (aperture) ∞ 4.0693
21 -48.9249 8.3301 1.43700 95.10
22 -18.2490 1.0000 1.73800 32.33
23 49.7510 5.9436 1.59282 68.63
24 -94.0091 0.1500
25 59.8943 9.5878 1.59282 68.63
26 -34.5739 3.9360
27 * -63.6600 2.4583 1.77250 49.50
28 * -39.9714 d28
29 ∞ 1.4500 1.52301 58.59
30 ∞ BF
Image plane ∞
[Aspheric data]
3 4 4
K 0.0000 -1.0000 0.0000
A4 -4.4298E-07 -4.9531E-07 5.2261E-07
A6 1.6875E-09 -4.4836E-09 9.4980E-10
A8 6.3740E-12 -2.5171E-11 -6.2182E-12
A10 0.0000E + 00 1.0175E-13 3.2821E-14
A12 0.0000E + 00 -2.1236E-16 0.0000E + 00
16 surfaces 27 surfaces 28 surfaces
K 0.0000 0.0000 0.0000
A4 2.9534E-06 -1.6336E-05 -7.6523E-06
A6 -1.4551E-09 -1.8624E-08 -1.4413E-08
A8 -7.6519E-13 -5.6588E-11 -3.9912E-11
A10 2.5510E-14 1.9222E-13 1.5418E-13
A12 0.0000E + 00 0.0000E + 00 0.0000E + 00
[Various data]
INF
Focal length 24.80
F-number 1.47
Full angle of view 2ω 83.34
Image height Y 21.63
Total lens length 152.51
[Variable interval data]
INF Shooting distance 1119mm
d0 ∞ 966.5632
d14 5.6134 4.9812
d28 36.5100 37.1422
BF 1.0000 1.0000
[Lens group data]
Group Starting surface Focal length
L1 1 171.66
L2 15 49.78
Lsf 1 55.69

図11は、実施例3に係る結像光学系の無限遠におけるレンズ構成図である。実施例3の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2とから構成される。   FIG. 11 is a lens configuration diagram at infinity of the imaging optical system according to the third embodiment. The imaging optical system according to the third embodiment includes, in order from the object side to the image side, a first lens unit L1 having a fixed positive refractive power during focusing, and a second lens unit L1 moving toward the object side during focusing and having a positive refractive power. And a lens group L2.

第1レンズ群L1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと、R1面とR2面両面が非球面で物体側に凸面を向けた凹メニスカスレンズと、両凸レンズと、両凹レンズと両凸レンズの接合レンズと、両凹レンズと両凸レンズの接合レンズと、両凸レンズとから構成される。   The first lens unit L1 includes, in order from the object side to the image side, a concave meniscus lens having a convex surface facing the object side, a concave meniscus lens having both aspherical surfaces R1 and R2 and having a convex surface facing the object side, It comprises a convex lens, a cemented lens of a biconcave lens and a biconvex lens, a cemented lens of a biconcave lens and a biconvex lens, and a biconvex lens.

第2レンズ群L2は、物体側から像側へ順に、両凸レンズと、R1面とR2面両面が非球面の両凸レンズと、両凸レンズと両凹レンズの接合レンズと、開口絞りSと、物体側に凹面を向けた凸メニスカスレンズと両凹レンズと両凸レンズとの3枚接合レンズL2cと、両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。   The second lens unit L2 includes, in order from the object side to the image side, a biconvex lens, a biconvex lens having both aspherical surfaces R1 and R2, a cemented lens of a biconvex lens and a biconcave lens, an aperture stop S, A convex meniscus lens with a concave surface facing the lens, a three-element cemented lens L2c consisting of a biconcave lens and a biconvex lens, a biconvex lens, and a convex meniscus lens with both R1 and R2 surfaces being aspheric and having a concave surface facing the object side. Is done.

続いて、以下に実施例3に係る結像光学系の諸元値を示す。   Next, specifications of the imaging optical system according to the third embodiment will be described below.

数値実施例3
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 48.0651 1.9000 1.76385 48.49
2 25.4960 9.1253
3* 55.2369 2.4000 1.59201 67.02
4* 24.2885 7.2278
5 223.6627 3.8007 1.91082 35.25
6 -139.9982 4.0139
7 -40.4092 1.7000 1.49700 81.61
8 94.1778 6.6641 1.91082 35.25
9 -68.7374 2.4945
10 -45.3983 1.5000 1.73800 32.33
11 29.9643 9.4843 1.61997 63.88
12 -365.2249 0.2500
13 59.6766 7.3739 1.80420 46.50
14 -101.7896 d14
15 83.0947 4.5999 1.77250 49.62
16 -204.8076 0.1489
17* 189.2058 2.7314 1.88202 37.22
18* -259.0589 0.1500
19 249.0484 5.2515 1.94595 17.98
20 -50.9436 1.1000 1.80518 25.46
21 36.5588 5.0575
22(絞り) ∞ 4.9913
23 -38.4110 7.4087 1.43700 95.10
24 -17.8239 1.0000 1.73800 32.33
25 113.4447 3.2521 1.59282 68.63
26 -186.0674 0.1500
27 69.4137 9.2429 1.59282 68.63
28 -28.7374 0.1500
29* -63.6682 3.4000 1.76802 49.24
30* -39.4280 d30
31 ∞ 1.4500 1.52301 58.59
32 ∞ BF
像面 ∞
[非球面データ]
3面 4面 17面
K 0.0000 -1.0000 0.0000
A4 -3.3407E-06 -4.1324E-06 -1.3952E-06
A6 7.2687E-09 1.3754E-09 -5.4192E-09
A8 -6.1564E-12 3.5885E-12 -2.0446E-11
A10 0.0000E+00 -2.8503E-14 4.9685E-14
A12 0.0000E+00 7.1075E-18 0.0000E+00
18面 29面 30面
K 0.0000 0.0000 0.0000
A4 1.4159E-06 -1.7948E-05 -8.6298E-06
A6 -8.6100E-09 -1.6767E-08 -1.0088E-08
A8 -1.0466E-11 -3.2632E-11 -1.8291E-11
A10 4.2104E-14 1.3700E-13 1.0494E-13
A12 0.0000E+00 0.0000E+00 0.0000E+00
[各種データ]
INF
焦点距離 28.59
Fナンバー 1.46
全画角2ω 74.99
像高Y 21.63
レンズ全長 152.51
[可変間隔データ]
INF 撮影距離1271mm
d0 ∞ 1118.5395
d14 6.9812 6.2507
d30 36.5101 37.2406
BF 1.0000 1.0000
[レンズ群データ]
群 始面 焦点距離
L1 1 186.95
L2 15 54.21
Lsf 1 50.34
Numerical example 3
Unit: mm
[Surface data]
Surface number rd nd vd
Object surface ∞ (d0)
1 48.0651 1.9000 1.76385 48.49
2 25.4960 9.1253
3 * 55.2369 2.4000 1.59201 67.02
4 * 24.2885 7.2278
5 223.6627 3.8007 1.91082 35.25
6 -139.9982 4.0139
7 -40.4092 1.7000 1.49700 81.61
8 94.1778 6.6641 1.91082 35.25
9 -68.7374 2.4945
10 -45.3983 1.5000 1.73800 32.33
11 29.9643 9.4843 1.61997 63.88
12 -365.2249 0.2500
13 59.6766 7.3739 1.80420 46.50
14 -101.7896 d14
15 83.0947 4.5999 1.77250 49.62
16 -204.8076 0.1489
17 * 189.2058 2.7314 1.88202 37.22
18 * -259.0589 0.1500
19 249.0484 5.2515 1.94595 17.98
20 -50.9436 1.1000 1.80518 25.46
21 36.5588 5.0575
22 (aperture) ∞ 4.9913
23 -38.4110 7.4087 1.43700 95.10
24 -17.8239 1.0000 1.73800 32.33
25 113.4447 3.2521 1.59282 68.63
26 -186.0674 0.1500
27 69.4137 9.2429 1.59282 68.63
28 -28.7374 0.1500
29 * -63.6682 3.4000 1.76802 49.24
30 * -39.4280 d30
31 ∞ 1.4500 1.52301 58.59
32 ∞ BF
Image plane ∞
[Aspheric data]
3 4 4 17
K 0.0000 -1.0000 0.0000
A4 -3.3407E-06 -4.1324E-06 -1.3952E-06
A6 7.2687E-09 1.3754E-09 -5.4192E-09
A8 -6.1564E-12 3.5885E-12 -2.0446E-11
A10 0.0000E + 00 -2.8503E-14 4.9685E-14
A12 0.0000E + 00 7.1075E-18 0.0000E + 00
18 29 29
K 0.0000 0.0000 0.0000
A4 1.4159E-06 -1.7948E-05 -8.6298E-06
A6 -8.6100E-09 -1.6767E-08 -1.0088E-08
A8 -1.0466E-11 -3.2632E-11 -1.8291E-11
A10 4.2104E-14 1.3700E-13 1.0494E-13
A12 0.0000E + 00 0.0000E + 00 0.0000E + 00
[Various data]
INF
Focal length 28.59
F-number 1.46
Full angle of view 2ω 74.99
Image height Y 21.63
Total lens length 152.51
[Variable interval data]
INF Shooting distance 1271mm
d0 ∞ 1118.5395
d14 6.9812 6.2507
d30 36.5101 37.2406
BF 1.0000 1.0000
[Lens group data]
Group Starting surface Focal length
L1 1 186.95
L2 15 54.21
Lsf 1 50.34

図16は、実施例4に係る結像光学系の無限遠におけるレンズ構成図である。実施例4の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2とから構成される。   FIG. 16 is a lens configuration diagram at infinity of the imaging optical system according to Example 4. The imaging optical system according to Example 4 includes, in order from the object side to the image side, a first lens unit L1 having a fixed positive refractive power during focusing, and a second lens unit L1 moving toward the object side during focusing and having a positive refractive power. And a lens group L2.

第1レンズ群L1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと、R1面とR2面両面が非球面で物体側に凸面を向けた凹メニスカスレンズと、両凸レンズと、両凹レンズと両凸レンズの接合レンズと、両凹レンズと両凸レンズの接合レンズと、両凸レンズとから構成される。   The first lens unit L1 includes, in order from the object side to the image side, a concave meniscus lens having a convex surface facing the object side, a concave meniscus lens having both aspherical surfaces R1 and R2 and having a convex surface facing the object side, It comprises a convex lens, a cemented lens of a biconcave lens and a biconvex lens, a cemented lens of a biconcave lens and a biconvex lens, and a biconvex lens.

第2レンズ群L2は、物体側から像側へ順に、両凸レンズと、R1面とR2面両面が非球面の両凸レンズと、両凸レンズと両凹レンズの接合レンズと、開口絞りSと、物体側に凹面を向けた凸メニスカスレンズと両凹レンズと両凸レンズとの3枚接合レンズL2cと、両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。   The second lens unit L2 includes, in order from the object side to the image side, a biconvex lens, a biconvex lens having both aspherical surfaces R1 and R2, a cemented lens of a biconvex lens and a biconcave lens, an aperture stop S, A convex meniscus lens with a concave surface facing the lens, a three-element cemented lens L2c consisting of a biconcave lens and a biconvex lens, a biconvex lens, and a convex meniscus lens with both R1 and R2 surfaces being aspheric and having a concave surface facing the object side. Is done.

続いて、以下に実施例4に係る結像光学系の諸元値を示す。   Next, specifications of the imaging optical system according to Example 4 will be described below.

数値実施例4
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 40.3177 1.9000 1.76385 48.49
2 25.7126 7.5974
3* 44.2156 2.4000 1.59201 67.02
4* 20.5178 8.4195
5 264.0942 3.5009 1.91082 35.25
6 -139.9958 2.5184
7 -52.5311 1.7000 1.45860 90.20
8 147.2965 4.2924 1.91082 35.25
9 -101.0200 2.9144
10 -46.8652 1.5000 1.78472 25.72
11 27.8321 8.6177 1.67300 38.26
12 -366.2456 0.2500
13 57.4848 6.4522 1.91082 35.25
14 -106.9221 d14
15 147.6181 3.3163 1.77250 49.62
16 -191.4821 0.1500
17* 129.6377 2.5087 1.90270 31.00
18* -1000.0000 0.1500
19 144.7154 4.8929 1.92286 20.88
20 -56.5434 1.1000 1.73800 32.33
21 28.5414 5.5297
22(絞り) ∞ 4.0957
23 -42.9190 8.6221 1.43700 95.10
24 -16.7511 1.0000 1.73800 32.33
25 66.6742 6.4832 1.59282 68.63
26 -51.0243 0.1500
27 80.2726 9.7613 1.59282 68.63
28 -31.6434 0.6771
29* -51.2206 3.4000 1.76802 49.24
30* -36.9659 d30
31 ∞ 1.4500 1.52301 58.59
32 ∞ BF
像面 ∞
[非球面データ]
3面 4面 17面
K 0.0000 -1.0000 0.0000
A4 -4.7779E-06 -2.2050E-06 -3.9461E-06
A6 3.1498E-09 -2.7099E-09 -1.0961E-08
A8 -4.4913E-12 -3.2222E-12 -1.7534E-11
A10 0.0000E+00 -1.6124E-14 8.1668E-14
A12 0.0000E+00 8.8775E-18 0.0000E+00
18面 29面 30面
K 0.0000 0.0000 0.0000
A4 -1.2500E-06 -1.1731E-05 -4.5517E-06
A6 -1.3843E-08 -7.5844E-09 -4.4807E-09
A8 -1.3501E-12 -1.9037E-11 -1.2108E-11
A10 6.2566E-14 3.5850E-14 2.9970E-14
A12 0.0000E+00 0.0000E+00 0.0000E+00
[各種データ]
INF
焦点距離 28.43
Fナンバー 1.46
全画角2ω 75.30
像高Y 21.63
レンズ全長 152.52
[可変間隔データ]
INF 撮影距離1261mm
d0 ∞ 1108.5202
d14 6.8207 6.0907
d30 39.3494 40.0794
BF 1.0000 1.0000
[レンズ群データ]
群 始面 焦点距離
L1 1 166.83
L2 15 48.39
Lsf 1 84.96
Numerical example 4
Unit: mm
[Surface data]
Surface number rd nd vd
Object surface ∞ (d0)
1 40.3177 1.9000 1.76385 48.49
2 25.7126 7.5974
3 * 44.2156 2.4000 1.59201 67.02
4 * 20.5178 8.4195
5 264.0942 3.5009 1.91082 35.25
6 -139.9958 2.5184
7 -52.5311 1.7000 1.45860 90.20
8 147.2965 4.2924 1.91082 35.25
9 -101.0200 2.9144
10 -46.8652 1.5000 1.78472 25.72
11 27.8321 8.6177 1.67300 38.26
12 -366.2456 0.2500
13 57.4848 6.4522 1.91082 35.25
14 -106.9221 d14
15 147.6181 3.3163 1.77250 49.62
16 -191.4821 0.1500
17 * 129.6377 2.5087 1.90270 31.00
18 * -1000.0000 0.1500
19 144.7154 4.8929 1.92286 20.88
20 -56.5434 1.1000 1.73800 32.33
21 28.5414 5.5297
22 (aperture) ∞ 4.0957
23 -42.9190 8.6221 1.43700 95.10
24 -16.7511 1.0000 1.73800 32.33
25 66.6742 6.4832 1.59282 68.63
26 -51.0243 0.1500
27 80.2726 9.7613 1.59282 68.63
28 -31.6434 0.6771
29 * -51.2206 3.4000 1.76802 49.24
30 * -36.9659 d30
31 ∞ 1.4500 1.52301 58.59
32 ∞ BF
Image plane ∞
[Aspheric data]
3 4 4 17
K 0.0000 -1.0000 0.0000
A4 -4.7779E-06 -2.2050E-06 -3.9461E-06
A6 3.1498E-09 -2.7099E-09 -1.0961E-08
A8 -4.4913E-12 -3.2222E-12 -1.7534E-11
A10 0.0000E + 00 -1.6124E-14 8.1668E-14
A12 0.0000E + 00 8.8775E-18 0.0000E + 00
18 29 29
K 0.0000 0.0000 0.0000
A4 -1.2500E-06 -1.1731E-05 -4.5517E-06
A6 -1.3843E-08 -7.5844E-09 -4.4807E-09
A8 -1.3501E-12 -1.9037E-11 -1.2108E-11
A10 6.2566E-14 3.5850E-14 2.9970E-14
A12 0.0000E + 00 0.0000E + 00 0.0000E + 00
[Various data]
INF
Focal length 28.43
F-number 1.46
Full angle of view 2ω 75.30
Image height Y 21.63
Total lens length 152.52
[Variable interval data]
INF Shooting distance 1261mm
d0 ∞ 1108.5202
d14 6.8207 6.0907
d30 39.3494 40.0794
BF 1.0000 1.0000
[Lens group data]
Group Starting surface Focal length
L1 1 166.83
L2 15 48.39
Lsf 1 84.96

図21は、実施例5に係る結像光学系の無限遠におけるレンズ構成図である。実施例5の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2とから構成される。   FIG. 21 is a lens configuration diagram at infinity of the imaging optical system according to Example 5. The imaging optical system of Example 5 includes, in order from the object side to the image side, a first lens unit L1 having a fixed positive refractive power during focusing, and a second lens unit L1 moving to the object side during focusing and having a positive refractive power. And a lens group L2.

第1レンズ群L1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと、R1面とR2面両面が非球面で物体側に凸面を向けた凹メニスカスレンズと、両凸レンズと、両凹レンズと両凸レンズの接合レンズと、両凹レンズと両凸レンズの接合レンズと、両凸レンズとから構成される。   The first lens unit L1 includes, in order from the object side to the image side, a concave meniscus lens having a convex surface facing the object side, a concave meniscus lens having both aspherical surfaces R1 and R2 and having a convex surface facing the object side, It comprises a convex lens, a cemented lens of a biconcave lens and a biconvex lens, a cemented lens of a biconcave lens and a biconvex lens, and a biconvex lens.

第2レンズ群L2は、物体側から像側へ順に、両凸レンズと、R1面とR2面両面が非球面の両凸レンズと、両凸レンズと両凹レンズの接合レンズと、開口絞りSと、物体側に凹面を向けた凸メニスカスレンズと両凹レンズと両凸レンズとの3枚接合レンズL2cと、両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。   The second lens unit L2 includes, in order from the object side to the image side, a biconvex lens, a biconvex lens having both aspherical surfaces R1 and R2, a cemented lens of a biconvex lens and a biconcave lens, an aperture stop S, A convex meniscus lens with a concave surface facing the lens, a three-element cemented lens L2c consisting of a biconcave lens and a biconvex lens, a biconvex lens, and a convex meniscus lens with both R1 and R2 surfaces being aspheric and having a concave surface facing the object side. Is done.

続いて、以下に実施例5に係る結像光学系の諸元値を示す。   Next, specifications of the imaging optical system according to Example 5 will be described below.

数値実施例5
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 45.9977 1.9000 1.76385 48.49
2 25.1338 9.4070
3* 56.5779 2.4000 1.59201 67.02
4* 24.7684 7.4494
5 471.3973 3.3291 1.95375 32.32
6 -140.0067 3.8048
7 -41.9847 1.7000 1.43700 95.10
8 100.5258 6.3247 1.91082 35.25
9 -72.3098 2.6764
10 -44.8985 1.5000 1.73800 32.33
11 31.9074 8.8575 1.59282 68.63
12 -387.2246 0.2500
13 61.5260 7.5947 1.80420 46.50
14 -89.3001 d14
15 72.1665 4.2559 1.76385 48.49
16 -958.4060 0.1500
17* 119.0382 3.6213 1.76802 49.24
18* -149.1866 0.1500
19 333.2382 4.3554 1.92286 20.88
20 -63.2930 1.1000 1.73800 32.33
21 30.9770 5.5835
22(絞り) ∞ 4.9652
23 -39.6314 7.4855 1.45860 90.20
24 -17.8628 1.0000 1.73800 32.33
25 168.2052 3.2768 1.49700 81.61
26 -118.1115 0.7368
27 72.6269 8.5694 1.59282 68.63
28 -31.7540 0.2466
29* -76.1964 3.4000 1.76802 49.24
30* -41.4083 d30
31 ∞ 1.4500 1.52301 58.59
32 ∞ BF
像面 ∞
[非球面データ]
3面 4面 17面
K 0.0000 -1.0000 0.0000
A4 -3.9398E-06 -4.3891E-06 -2.1535E-06
A6 8.2421E-09 1.3317E-09 -9.2600E-10
A8 -8.6736E-12 8.3525E-12 -2.1205E-11
A10 0.0000E+00 -5.3271E-14 6.6801E-14
A12 0.0000E+00 3.4710E-17 0.0000E+00
18面 29面 30面
K 0.0000 0.0000 0.0000
A4 1.6303E-06 -7.6843E-06 -3.6277E-07
A6 -4.1954E-09 -7.4072E-09 -3.7194E-09
A8 -6.8591E-12 6.8616E-11 5.8130E-11
A10 5.1181E-14 -9.0126E-14 -5.9129E-14
A12 0.0000E+00 0.0000E+00 0.0000E+00
[各種データ]
INF
焦点距離 28.72
Fナンバー 1.46
全画角2ω 74.75
像高Y 21.63
レンズ全長 152.06
[可変間隔データ]
INF 撮影距離1275mm
d0 ∞ 1122.9079
d14 6.9915 6.2577
d30 36.5288 37.2626
BF 1.0000 1.0000
[レンズ群データ]
群 始面 焦点距離
L1 1 186.69
L2 15 54.14
Lsf 1 53.19
Numerical example 5
Unit: mm
[Surface data]
Surface number rd nd vd
Object surface ∞ (d0)
1 45.9977 1.9000 1.76385 48.49
2 25.1338 9.4070
3 * 56.5779 2.4000 1.59201 67.02
4 * 24.7684 7.4494
5 471.3973 3.3291 1.95375 32.32
6 -140.0067 3.8048
7 -41.9847 1.7000 1.43700 95.10
8 100.5258 6.3247 1.91082 35.25
9 -72.3098 2.6764
10 -44.8985 1.5000 1.73800 32.33
11 31.9074 8.8575 1.59282 68.63
12 -387.2246 0.2500
13 61.5260 7.5947 1.80420 46.50
14 -89.3001 d14
15 72.1665 4.2559 1.76385 48.49
16 -958.4060 0.1500
17 * 119.0382 3.6213 1.76802 49.24
18 * -149.1866 0.1500
19 333.2382 4.3554 1.92286 20.88
20 -63.2930 1.1000 1.73800 32.33
21 30.9770 5.5835
22 (aperture) ∞ 4.9652
23 -39.6314 7.4855 1.45860 90.20
24 -17.8628 1.0000 1.73800 32.33
25 168.2052 3.2768 1.49700 81.61
26 -118.1115 0.7368
27 72.6269 8.5694 1.59282 68.63
28 -31.7540 0.2466
29 * -76.1964 3.4000 1.76802 49.24
30 * -41.4083 d30
31 ∞ 1.4500 1.52301 58.59
32 ∞ BF
Image plane ∞
[Aspheric data]
3 4 4 17
K 0.0000 -1.0000 0.0000
A4 -3.9398E-06 -4.3891E-06 -2.1535E-06
A6 8.2421E-09 1.3317E-09 -9.2600E-10
A8 -8.6736E-12 8.3525E-12 -2.1205E-11
A10 0.0000E + 00 -5.3271E-14 6.6801E-14
A12 0.0000E + 00 3.4710E-17 0.0000E + 00
18 29 29
K 0.0000 0.0000 0.0000
A4 1.6303E-06 -7.6843E-06 -3.6277E-07
A6 -4.1954E-09 -7.4072E-09 -3.7194E-09
A8 -6.8591E-12 6.8616E-11 5.8130E-11
A10 5.1181E-14 -9.0126E-14 -5.9129E-14
A12 0.0000E + 00 0.0000E + 00 0.0000E + 00
[Various data]
INF
Focal length 28.72
F-number 1.46
Full angle of view 2ω 74.75
Image height Y 21.63
Total lens length 152.06
[Variable interval data]
INF Shooting distance 1275mm
d0 ∞ 1122.9079
d14 6.9915 6.2577
d30 36.5288 37.2626
BF 1.0000 1.0000
[Lens group data]
Group Starting surface Focal length
L1 1 186.69
L2 15 54.14
Lsf 1 53.19

図26は、実施例6に係る結像光学系の無限遠におけるレンズ構成図である。実施例6の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2とから構成される。   FIG. 26 is a lens configuration diagram of an imaging optical system according to Example 6 at infinity. The imaging optical system of Example 6 includes, in order from the object side to the image side, a first lens unit L1 having a fixed positive refractive power during focusing, and a second lens unit L1 moving to the object side during focusing and having a positive refractive power. And a lens group L2.

第1レンズ群L1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと、R1面とR2面両面が非球面で物体側に凸面を向けた凹メニスカスレンズと、両凸レンズと、両凹レンズと両凸レンズの接合レンズと、両凹レンズと両凸レンズの接合レンズと、両凸レンズとから構成される。   The first lens unit L1 includes, in order from the object side to the image side, a concave meniscus lens having a convex surface facing the object side, a concave meniscus lens having both aspherical surfaces R1 and R2 and having a convex surface facing the object side, It comprises a convex lens, a cemented lens of a biconcave lens and a biconvex lens, a cemented lens of a biconcave lens and a biconvex lens, and a biconvex lens.

第2レンズ群L2は、物体側から像側へ順に、両凸レンズと、R1面とR2面両面が非球面の両凸レンズと、両凸レンズと両凹レンズの接合レンズと、開口絞りSと、物体側に凹面を向けた凸メニスカスレンズと両凹レンズと両凸レンズとの3枚接合レンズL2cと、両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。   The second lens unit L2 includes, in order from the object side to the image side, a biconvex lens, a biconvex lens having both aspherical surfaces R1 and R2, a cemented lens of a biconvex lens and a biconcave lens, an aperture stop S, A convex meniscus lens with a concave surface facing the lens, a three-element cemented lens L2c consisting of a biconcave lens and a biconvex lens, a biconvex lens, and a convex meniscus lens with both R1 and R2 surfaces being aspheric and having a concave surface facing the object side. Is done.

続いて、以下に実施例6に係る結像光学系の諸元値を示す。   Next, specifications of the imaging optical system according to Example 6 will be described below.

数値実施例6
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 47.3207 1.9000 1.76385 48.49
2 25.1370 8.4554
3* 46.9543 2.4000 1.59201 67.02
4* 23.2091 8.1561
5 618.4976 3.2330 1.95375 32.32
6 -139.9990 4.0127
7 -40.5659 1.7000 1.43700 95.10
8 94.3906 6.6136 1.91082 35.25
9 -70.5544 2.4296
10 -46.9968 1.5000 1.73800 32.33
11 32.1175 8.6744 1.59282 68.63
12 -544.2563 0.2500
13 60.1374 7.5297 1.80420 46.50
14 -94.6982 d14
15 69.9167 4.3560 1.76385 48.49
16 -904.2656 0.1500
17* 112.6199 3.6175 1.76802 49.24
18* -158.1655 0.1500
19 385.7929 4.1192 1.92286 20.88
20 -67.3866 1.1000 1.73800 32.33
21 30.2728 5.6940
22(絞り) ∞ 5.1548
23 -40.6450 7.8692 1.49700 81.61
24 -17.6592 1.0000 1.72047 34.71
25 89.6119 4.1610 1.49700 81.61
26 -102.4644 0.1500
27 67.2593 8.6087 1.59282 68.63
28 -32.5264 0.1500
29* -74.3568 3.4000 1.76802 49.24
30* -43.9446 d30
31 ∞ 1.4500 1.52301 58.59
32 ∞ BF
像面 ∞
[非球面データ]
3面 4面 17面
K 0.0000 -1.0000 0.0000
A4 -5.1231E-06 -4.8891E-06 -2.6581E-06
A6 1.0612E-08 3.7734E-09 -1.9882E-09
A8 -9.9412E-12 9.3013E-12 -1.8211E-11
A10 0.0000E+00 -5.7662E-14 5.9593E-14
A12 0.0000E+00 3.3125E-17 0.0000E+00
18面 29面 30面
K 0.0000 0.0000 0.0000
A4 1.0964E-06 -7.2907E-06 -3.3343E-07
A6 -4.7729E-09 -9.4121E-09 -6.1575E-09
A8 -3.7791E-12 8.7358E-11 7.6511E-11
A10 4.3214E-14 -1.2811E-13 -9.5067E-14
A12 0.0000E+00 0.0000E+00 0.0000E+00
[各種データ]
INF
焦点距離 28.70
Fナンバー 1.46
全画角2ω 74.78
像高Y 21.63
レンズ全長 152.51
[可変間隔データ]
INF 撮影距離1275mm
d0 ∞ 1122.6885
d14 7.0149 6.2814
d30 36.5101 37.2436
BF 1.0000 1.0000
[レンズ群データ]
群 始面 焦点距離
L1 1 186.32
L2 15 54.03
Lsf 1 56.03
Numerical example 6
Unit: mm
[Surface data]
Surface number rd nd vd
Object surface ∞ (d0)
1 47.3207 1.9000 1.76385 48.49
2 25.1370 8.4554
3 * 46.9543 2.4000 1.59201 67.02
4 * 23.2091 8.1561
5 618.4976 3.2330 1.95375 32.32
6 -139.9990 4.0127
7 -40.5659 1.7000 1.43700 95.10
8 94.3906 6.6136 1.91082 35.25
9 -70.5544 2.4296
10 -46.9968 1.5000 1.73800 32.33
11 32.1175 8.6744 1.59282 68.63
12 -544.2563 0.2500
13 60.1374 7.5297 1.80420 46.50
14 -94.6982 d14
15 69.9167 4.3560 1.76385 48.49
16 -904.2656 0.1500
17 * 112.6199 3.6175 1.76802 49.24
18 * -158.1655 0.1500
19 385.7929 4.1192 1.92286 20.88
20 -67.3866 1.1000 1.73800 32.33
21 30.2728 5.6940
22 (aperture) ∞ 5.1548
23 -40.6450 7.8692 1.49700 81.61
24 -17.6592 1.0000 1.72047 34.71
25 89.6119 4.1610 1.49700 81.61
26 -102.4644 0.1500
27 67.2593 8.6087 1.59282 68.63
28 -32.5264 0.1500
29 * -74.3568 3.4000 1.76802 49.24
30 * -43.9446 d30
31 ∞ 1.4500 1.52301 58.59
32 ∞ BF
Image plane ∞
[Aspheric data]
3 4 4 17
K 0.0000 -1.0000 0.0000
A4 -5.1231E-06 -4.8891E-06 -2.6581E-06
A6 1.0612E-08 3.7734E-09 -1.9882E-09
A8 -9.9412E-12 9.3013E-12 -1.8211E-11
A10 0.0000E + 00 -5.7662E-14 5.9593E-14
A12 0.0000E + 00 3.3125E-17 0.0000E + 00
18 29 29
K 0.0000 0.0000 0.0000
A4 1.0964E-06 -7.2907E-06 -3.3343E-07
A6 -4.7729E-09 -9.4121E-09 -6.1575E-09
A8 -3.7791E-12 8.7358E-11 7.6511E-11
A10 4.3214E-14 -1.2811E-13 -9.5067E-14
A12 0.0000E + 00 0.0000E + 00 0.0000E + 00
[Various data]
INF
Focal length 28.70
F-number 1.46
Full angle of view 2ω 74.78
Image height Y 21.63
Total lens length 152.51
[Variable interval data]
INF Shooting distance 1275mm
d0 ∞ 1122.6885
d14 7.0149 6.2814
d30 36.5101 37.2436
BF 1.0000 1.0000
[Lens group data]
Group Starting surface Focal length
L1 1 186.32
L2 15 54.03
Lsf 1 56.03

図31は、実施例7に係る結像光学系の無限遠におけるレンズ構成図である。実施例7の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2とから構成される。   FIG. 31 is a diagram illustrating a lens configuration of an imaging optical system according to Example 7 at infinity. The imaging optical system of Example 7 includes, in order from the object side to the image side, a first lens unit L1 having a fixed positive refractive power during focusing, and a second lens unit L1 moving to the object side during focusing and having a positive refractive power. And a lens group L2.

第1レンズ群L1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと、R1面とR2面両面が非球面で物体側に凸面を向けた凹メニスカスレンズと、両凸レンズと、物体側に凹面を向けた凹メニスカスレンズと物体側に凹面を向けた凸メニスカスレンズの接合レンズと、両凹レンズと両凸レンズの接合レンズと、両凸レンズとから構成される。   The first lens unit L1 includes, in order from the object side to the image side, a concave meniscus lens having a convex surface facing the object side, a concave meniscus lens having both aspherical surfaces R1 and R2 and having a convex surface facing the object side, It is composed of a convex lens, a cemented lens of a concave meniscus lens having a concave surface facing the object side, a cemented lens of a convex meniscus lens having a concave surface facing the object side, a cemented lens of a biconcave lens and a biconvex lens, and a biconvex lens.

第2レンズ群L2は、物体側から像側へ順に、両凸レンズと、R1面とR2面両面が非球面の両凸レンズと、両凸レンズと両凹レンズの接合レンズと、開口絞りSと、物体側に凹面を向けた凸メニスカスレンズと両凹レンズと両凸レンズとの3枚接合レンズL2cと、両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。   The second lens unit L2 includes, in order from the object side to the image side, a biconvex lens, a biconvex lens having both aspherical surfaces R1 and R2, a cemented lens of a biconvex lens and a biconcave lens, an aperture stop S, A convex meniscus lens with a concave surface facing the lens, a three-element cemented lens L2c consisting of a biconcave lens and a biconvex lens, a biconvex lens, and a convex meniscus lens with both R1 and R2 surfaces being aspheric and having a concave surface facing the object side. Is done.

続いて、以下に実施例7に係る結像光学系の諸元値を示す。   Next, specifications of the imaging optical system according to Example 7 will be described below.

数値実施例7
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 58.1029 1.9000 1.49700 81.61
2 25.8323 7.2193
3* 43.8421 2.4000 1.49710 81.56
4* 22.0018 8.6381
5 192.3206 3.3668 1.91082 35.25
6 -203.9976 3.6511
7 -44.3384 1.7000 1.45860 90.20
8 -541.7426 3.0629 1.91082 35.25
9 -89.2131 2.6893
10 -48.4573 1.5000 1.74077 27.76
11 31.0147 8.8448 1.64000 60.08
12 -184.2732 0.2500
13 62.0439 6.5390 1.91082 35.25
14 -116.2143 d14
15 127.7060 3.1356 1.77250 49.62
16 -575.1914 0.1500
17* 89.9200 3.1227 1.90270 31.00
18* -1000.0000 0.1500
19 182.1987 5.2105 1.92286 20.88
20 -53.1299 1.1000 1.73800 32.33
21 28.8535 5.7797
22(絞り) ∞ 3.8979
23 -50.8188 8.1716 1.43700 95.10
24 -18.3608 1.0000 1.73800 32.33
25 57.3244 6.2597 1.59282 68.63
26 -63.7403 0.1500
27 76.7803 9.2815 1.59282 68.63
28 -33.2081 1.4684
29* -53.8051 3.4000 1.76802 49.24
30* -37.8796 d30
31 ∞ 1.4500 1.52301 58.59
32 ∞ BF
像面 ∞
[非球面データ]
3面 4面 17面
K 0.0000 -1.0000 0.0000
A4 3.0045E-06 5.2317E-06 -3.4789E-06
A6 -6.2605E-09 -5.4397E-09 -9.3009E-09
A8 8.9736E-12 -1.9937E-11 -1.8154E-11
A10 0.0000E+00 7.0849E-14 3.5896E-14
A12 0.0000E+00 -6.9098E-17 0.0000E+00
18面 29面 30面
K 0.0000 0.0000 0.0000
A4 -8.7973E-07 -1.2297E-05 -5.3524E-06
A6 -1.1780E-08 -4.4775E-09 -2.5556E-09
A8 -3.2855E-12 -2.9605E-11 -1.9302E-11
A10 2.1332E-14 5.0434E-14 3.8201E-14
A12 0.0000E+00 0.0000E+00 0.0000E+00
[各種データ]
INF
焦点距離 30.28
Fナンバー 1.47
全画角2ω 72.18
像高Y 21.63
レンズ全長 152.52
[可変間隔データ]
INF 撮影距離1335mm
d0 ∞ 1182.9464
d14 7.5525 6.7750
d30 38.4785 39.2560
BF 1.0000 1.0000
[レンズ群データ]
群 始面 焦点距離
L1 1 177.70
L2 15 51.53
Lsf 1 81.41
Numerical example 7
Unit: mm
[Surface data]
Surface number rd nd vd
Object surface ∞ (d0)
1 58.1029 1.9000 1.49700 81.61
2 25.8323 7.2193
3 * 43.8421 2.4000 1.49710 81.56
4 * 22.0018 8.6381
5 192.3206 3.3668 1.91082 35.25
6 -203.9976 3.6511
7 -44.3384 1.7000 1.45860 90.20
8 -541.7426 3.0629 1.91082 35.25
9 -89.2131 2.6893
10 -48.4573 1.5000 1.74077 27.76
11 31.0147 8.8448 1.64000 60.08
12 -184.2732 0.2500
13 62.0439 6.5390 1.91082 35.25
14 -116.2143 d14
15 127.7060 3.1356 1.77250 49.62
16 -575.1914 0.1500
17 * 89.9200 3.1227 1.90270 31.00
18 * -1000.0000 0.1500
19 182.1987 5.2105 1.92286 20.88
20 -53.1299 1.1000 1.73800 32.33
21 28.8535 5.7797
22 (aperture) ∞ 3.8979
23 -50.8188 8.1716 1.43700 95.10
24 -18.3608 1.0000 1.73800 32.33
25 57.3244 6.2597 1.59282 68.63
26 -63.7403 0.1500
27 76.7803 9.2815 1.59282 68.63
28 -33.2081 1.4684
29 * -53.8051 3.4000 1.76802 49.24
30 * -37.8796 d30
31 ∞ 1.4500 1.52301 58.59
32 ∞ BF
Image plane ∞
[Aspheric data]
3 4 4 17
K 0.0000 -1.0000 0.0000
A4 3.0045E-06 5.2317E-06 -3.4789E-06
A6 -6.2605E-09 -5.4397E-09 -9.3009E-09
A8 8.9736E-12 -1.9937E-11 -1.8154E-11
A10 0.0000E + 00 7.0849E-14 3.5896E-14
A12 0.0000E + 00 -6.9098E-17 0.0000E + 00
18 29 29
K 0.0000 0.0000 0.0000
A4 -8.7973E-07 -1.2297E-05 -5.3524E-06
A6 -1.1780E-08 -4.4775E-09 -2.5556E-09
A8 -3.2855E-12 -2.9605E-11 -1.9302E-11
A10 2.1332E-14 5.0434E-14 3.8201E-14
A12 0.0000E + 00 0.0000E + 00 0.0000E + 00
[Various data]
INF
Focal length 30.28
F-number 1.47
Full angle of view 2ω 72.18
Image height Y 21.63
Total lens length 152.52
[Variable interval data]
INF Shooting distance 1335mm
d0 ∞ 1182.9464
d14 7.5525 6.7750
d30 38.4785 39.2560
BF 1.0000 1.0000
[Lens group data]
Group Starting surface Focal length
L1 1 177.70
L2 15 51.53
Lsf 1 81.41

[条件式対応値]

Figure 2019219472
[Values for conditional expressions]
Figure 2019219472

各実施例の諸収差図から明らかなとおり、本発明によれば、従来の結像光学系の課題であった軸上色収差を良好に補正し、F値がF1.4程度の結像光学系を提供することができる。   As is clear from the aberration diagrams of the respective embodiments, according to the present invention, the axial chromatic aberration, which has been a problem of the conventional imaging optical system, is favorably corrected, and the F-number is approximately 1.4. Can be provided.

L1 第1レンズ群
L2 第2レンズ群
Lsf レンズ群Lsf
L2c 3枚接合レンズL2c
S 開放絞り
LPF ローパスフィルター
I 像面
L1 First lens group L2 Second lens group Lsf Lens group Lsf
L2c Triple cemented lens L2c
S Open stop LPF Low pass filter I Image plane

Claims (6)

物体側から像側へ順に、
正の屈折力を有する第1レンズ群L1と、
正の屈折力を有する第2レンズ群L2と、
からなり、
前記第1レンズ群L1は、2つ以上の接合レンズを有し、前記接合レンズは全て、物体側から像側へ順に、負レンズ素子と正レンズ素子とで構成され、
前記第2レンズ群L2は、開口絞りSを含み、
フォーカシングに際して、前記第2レンズ群L2が物体側に移動するとともに、前記第1レンズ群L1が像面に対して固定であり、以下の条件式を満足することを特徴とする結像光学系。
Figure 2019219472
但し、
Aciは以下の式で表される。
Aci = φcpi/νdcpi + φcmi/νdcmi
φcpiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの正レンズ素子の屈折力、
νdcpiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの正レンズ素子のアッベ数、
φcmiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの負レンズ素子の屈折力、
νdcmiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの負レンズ素子のアッベ数である。
In order from the object side to the image side,
A first lens unit L1 having a positive refractive power;
A second lens unit L2 having a positive refractive power;
Consisting of
The first lens unit L1 includes two or more cemented lenses, and all of the cemented lenses include a negative lens element and a positive lens element in order from the object side to the image side;
The second lens unit L2 includes an aperture stop S,
An imaging optical system, wherein during focusing, the second lens unit L2 moves to the object side, and the first lens unit L1 is fixed with respect to an image plane, and satisfies the following conditional expression.
Figure 2019219472
However,
Aci is represented by the following equation.
Aci = φcpi / νdcpi + φcmi / νdcmi
φcpi is the refractive power of the positive lens element of the ith cemented lens from the object side included in the first lens unit L1,
νdcpi is the Abbe number of the positive lens element of the ith cemented lens from the object side included in the first lens unit L1,
φcmi is the refractive power of the negative lens element of the ith cemented lens from the object side included in the first lens unit L1,
νdcmi is the Abbe number of the negative lens element of the ith cemented lens from the object side included in the first lens unit L1.
前記接合レンズが以下の条件式を同時に満足することを特徴とする請求項1記載の結像光学系。
φcp/νdcp + φcm/νdcm > 0 (2)
φc′p/νdc′p + φc′m/νdc′m < 0 (3)
但し、
φcpは、前記第1レンズ群L1に含まれる前記接合レンズの正レンズ素子の屈折力、
νdcpは、前記第1レンズ群L1に含まれる前記接合レンズの正レンズ素子のアッベ数、
φcmは、前記第1レンズ群L1に含まれる前記接合レンズの負レンズ素子の屈折力、
νdcmは、前記第1レンズ群L1に含まれる前記接合レンズの負レンズ素子のアッベ数、
φc′pは、前記第1レンズ群L1に含まれる前記接合レンズで条件式(2)を満足する接合レンズ以外の接合レンズの正レンズ素子の屈折力、
νdc′pは、前記第1レンズ群L1に含まれる前記接合レンズで条件式(2)を満足する接合レンズ以外の接合レンズの正レンズ素子のアッベ数、
φc′mは、前記第1レンズ群L1に含まれる前記接合レンズで条件式(2)を満足する接合レンズ以外の接合レンズの負レンズ素子の屈折力、
νdc′mは、前記第1レンズ群L1に含まれる前記接合レンズで条件式(2)を満足する接合レンズ以外の接合レンズの負レンズ素子のアッベ数である。
The imaging optical system according to claim 1, wherein the cemented lens satisfies the following conditional expressions at the same time.
φcp / νdcp + φcm / νdcm> 0 (2)
φc′p / νdc′p + φc′m / νdc′m <0 (3)
However,
φcp is the refractive power of the positive lens element of the cemented lens included in the first lens unit L1,
νdcp is the Abbe number of the positive lens element of the cemented lens included in the first lens unit L1,
φcm is the refractive power of the negative lens element of the cemented lens included in the first lens unit L1,
νdcm is the Abbe number of the negative lens element of the cemented lens included in the first lens unit L1,
φc′p is the refractive power of the positive lens element of a cemented lens other than the cemented lens that satisfies conditional expression (2) in the cemented lens included in the first lens unit L1;
νdc′p is the Abbe number of the positive lens element of a cemented lens other than the cemented lens that satisfies the conditional expression (2) in the cemented lens included in the first lens unit L1,
φc′m is the refractive power of the negative lens element of a cemented lens other than the cemented lens that satisfies the conditional expression (2) among the cemented lenses included in the first lens unit L1;
νdc′m is the Abbe number of the negative lens element of a cemented lens other than the cemented lens that satisfies the conditional expression (2) among the cemented lenses included in the first lens unit L1.
前記第2レンズ群L2は、前記開口絞りSより物体側に少なくとも1枚の正レンズ素子を有し、少なくとも1枚の前記正レンズ素子が以下の条件式を満足することを特徴とする請求項1又は2記載の結像光学系。
νdL2fp < 30 (4)
0.0090 < ΔPgfL2fp (5)
但し、
νdL2fpは前記正レンズ素子のアッベ数νd、
PgfL2fpは前記正レンズ素子のg線とF線に関する部分分散比Pgfである。
ΔPgfL2fpは前記正レンズ素子の異常分散性であり、以下の式で表される。
ΔPgfL2fp = PgfL2fp + 0.0018×νdL2fp ― 0.64833
The second lens unit L2 has at least one positive lens element on the object side of the aperture stop S, and at least one positive lens element satisfies the following conditional expression. 3. The imaging optical system according to 1 or 2.
νdL2fp <30 (4)
0.0090 <ΔPgfL2fp (5)
However,
νdL2fp is the Abbe number νd of the positive lens element,
PgfL2fp is a partial dispersion ratio Pgf of the positive lens element with respect to the g-line and the F-line.
ΔPgfL2fp is the anomalous dispersion of the positive lens element, and is represented by the following equation.
ΔPgfL2fp = PgfL2fp + 0.0018 × νdL2fp−0.64833
前記第2レンズ群L2は、負の屈折力の3枚接合レンズL2cを少なくとも1つ有し、前記接合レンズL2cは、物体側から像側へ順に、正レンズ素子と負レンズ素子と正レンズ素子とで構成され、以下の条件式を満足することを特徴とする請求項1乃至3のいずれかに記載の結像光学系。
|AL2c| < 0.0020 (6)
Figure 2019219472
但し、
Figure 2019219472
は、前記接合レンズL2cに含まれる正レンズ素子の部分分散比の平均値、
PgfL2cmは、前記接合レンズL2cに含まれる負レンズ素子の部分分散比であり、
AL2cは以下の式で表される。
AL2c= φL2cp1/νdL2cp1 + φL2cm1/νdL2cm1 + φL2cp2/νdL2cp2
但し、
φL2cp1は、前記接合レンズL2cのうち、最も物体側に配される正レンズ素子の屈折力、
νdL2cp1は、前記接合レンズL2cのうち、最も物体側に配される正レンズ素子のアッベ数、
φL2cm1は、前記接合レンズL2cのうち、負レンズ素子の屈折力、
νdL2cm1は、前記接合レンズL2cのうち、負レンズ素子のアッベ数、
φL2cp2は、前記接合レンズL2cのうち、最も像側に配される正レンズ素子の屈折力、
νdL2cp2は、前記接合レンズL2cのうち、最も像側に配される正レンズ素子のアッベ数である。
The second lens unit L2 has at least one cemented lens L2c having a negative refractive power, and the cemented lens L2c has a positive lens element, a negative lens element, and a positive lens element in order from the object side to the image side. 4. The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
| AL2c | <0.0020 (6)
Figure 2019219472
However,
Figure 2019219472
Is the average value of the partial dispersion ratio of the positive lens element included in the cemented lens L2c,
PgfL2cm is a partial dispersion ratio of the negative lens element included in the cemented lens L2c,
AL2c is represented by the following equation.
AL2c = φL2cp1 / νdL2cp1 + φL2cm1 / νdL2cm1 + φL2cp2 / νdL2cp2
However,
φL2cp1 is the refractive power of the positive lens element closest to the object side among the cemented lenses L2c;
νdL2cp1 is the Abbe number of the positive lens element disposed closest to the object side in the cemented lens L2c;
φL2cm1 is the refractive power of the negative lens element of the cemented lens L2c,
νdL2cm1 is the Abbe number of the negative lens element in the cemented lens L2c,
φL2cp2 is the refracting power of the positive lens element closest to the image side among the cemented lenses L2c;
νdL2cp2 is the Abbe number of the positive lens element closest to the image side in the cemented lens L2c.
前記開口絞りSの物体側に配される全てのレンズ素子をレンズ群Lsfとし、前記レンズ群Lsfは正の屈折力を有し、以下の条件式を満足することを特徴とする請求項1乃至4のいずれかに記載の結像光学系。
1.50 < φ/φsf < 3.80 (8)
但し、
φは、レンズ全系の無限遠合焦時の屈折力、
φsfは、前記レンズ群Lsfの無限遠合焦時の屈折力である。
4. A lens unit Lsf, wherein all lens elements disposed on the object side of the aperture stop S have a positive refractive power and satisfy the following conditional expressions. 5. The imaging optical system according to any one of 4.
1.50 <φ / φsf <3.80 (8)
However,
φ is the refractive power of the entire lens system when focused on infinity,
φsf is the refractive power of the lens unit Lsf when focused on infinity.
以下の条件式を満足することを特徴とする請求項1乃至5のいずれかに記載の結像光学系。
1.50 < φ/φ2 < 2.80 (9)
但し、
φは、レンズ全系の無限遠合焦時の屈折力、
φ2は、前記第2レンズ群L2の屈折力である。
The imaging optical system according to any one of claims 1 to 5, wherein the following conditional expression is satisfied.
1.50 <φ / φ2 <2.80 (9)
However,
φ is the refractive power of the entire lens system when focused on infinity,
φ2 is the refractive power of the second lens unit L2.
JP2018115803A 2018-06-19 2018-06-19 Imaging optical system Active JP7106099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018115803A JP7106099B2 (en) 2018-06-19 2018-06-19 Imaging optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018115803A JP7106099B2 (en) 2018-06-19 2018-06-19 Imaging optical system

Publications (2)

Publication Number Publication Date
JP2019219472A true JP2019219472A (en) 2019-12-26
JP7106099B2 JP7106099B2 (en) 2022-07-26

Family

ID=69096371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018115803A Active JP7106099B2 (en) 2018-06-19 2018-06-19 Imaging optical system

Country Status (1)

Country Link
JP (1) JP7106099B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122941A (en) * 2019-01-31 2020-08-13 富士フイルム株式会社 Imaging lens and imaging apparatus
JP2021117492A (en) * 2020-01-29 2021-08-10 富士フイルム株式会社 Image capturing lens and image capturing device
US11841486B2 (en) 2020-01-29 2023-12-12 Fujifilm Corporation Imaging lens and imaging apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005316052A (en) * 2004-04-28 2005-11-10 Tochigi Nikon Corp Image forming optical system
JP2015152811A (en) * 2014-02-17 2015-08-24 株式会社ニコン Optical system, optical device, and method for manufacturing the optical system
JP2015152812A (en) * 2014-02-17 2015-08-24 株式会社ニコン Optical system, optical device, and method for manufacturing the optical system
WO2019073744A1 (en) * 2017-10-13 2019-04-18 ソニー株式会社 Imaging lens and imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005316052A (en) * 2004-04-28 2005-11-10 Tochigi Nikon Corp Image forming optical system
JP2015152811A (en) * 2014-02-17 2015-08-24 株式会社ニコン Optical system, optical device, and method for manufacturing the optical system
JP2015152812A (en) * 2014-02-17 2015-08-24 株式会社ニコン Optical system, optical device, and method for manufacturing the optical system
WO2019073744A1 (en) * 2017-10-13 2019-04-18 ソニー株式会社 Imaging lens and imaging device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122941A (en) * 2019-01-31 2020-08-13 富士フイルム株式会社 Imaging lens and imaging apparatus
JP7048521B2 (en) 2019-01-31 2022-04-05 富士フイルム株式会社 Imaging lens and imaging device
US11353682B2 (en) 2019-01-31 2022-06-07 Fujifilm Corporation Imaging lens and imaging apparatus
JP2021117492A (en) * 2020-01-29 2021-08-10 富士フイルム株式会社 Image capturing lens and image capturing device
JP7203811B2 (en) 2020-01-29 2023-01-13 富士フイルム株式会社 Imaging lens and imaging device
US11841486B2 (en) 2020-01-29 2023-12-12 Fujifilm Corporation Imaging lens and imaging apparatus

Also Published As

Publication number Publication date
JP7106099B2 (en) 2022-07-26

Similar Documents

Publication Publication Date Title
JP5388446B2 (en) Optical system and optical apparatus having the same
JP4890090B2 (en) Zoom lens system
CN108535850B (en) Zoom lens and image pickup apparatus including the same
JP6749632B2 (en) Large aperture lens
JP2007156251A (en) Zoom lens and imaging apparatus having the same
US11415787B2 (en) Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
JP7123383B2 (en) Imaging optical system
JP5006637B2 (en) Zoom lens and image projection apparatus having the same
JP7106099B2 (en) Imaging optical system
JP5615141B2 (en) Zoom lens
JP6808428B2 (en) Optical system and optical equipment with it
JP2011170086A (en) Large aperture zoom lens with anti-vibration function
US20240151953A1 (en) Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
WO2020166390A1 (en) Observation optical system and image display device provided therewith
US9069158B2 (en) Variable magnification optical system and imaging apparatus
JP6758640B2 (en) Zoom lens
JP2020012908A (en) Zoom lens and image capturing device
JP7399473B2 (en) Imaging optical system
CN111025611B (en) Optical system and image pickup apparatus
JP7172776B2 (en) shooting lens system
JP2022073433A (en) Imaging optical system
JPH0772388A (en) Small-sized zoom lens
JP2020129022A (en) Wide-angle lens system
JP7239955B2 (en) zoom lens
JP7423044B2 (en) Optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220706

R150 Certificate of patent or registration of utility model

Ref document number: 7106099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150